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ABSTRACT

KEYWORDS Massive Random Access; Sparse Recovery; Joint Activity Detection;

Model Based Network;Pathloss

Massive random access has emerged as a critical requirement in modern communication

systems, including 5G, Internet of Things (IoT), and machine-type communications. This

study focuses on addressing the challenges associated with jointly detecting user activity

and estimating channels in scenarios where users experience different pathloss levels.

By considering the pathloss model, we modify the conventional MMSE shrinkage

function to better adapt to varying pathloss levels. Furthermore, we introduce a model-

based neural network to learn the modified MMSE shrinkage function, thereby enhancing

the accuracy of user activity detection and channel estimation.

The modified MMSE-MMV-TISTA approach, with varying number of nodes in the

neural network, is designed to handle increased input complexity, specifically a higher

number of covariance matrices. To evaluate its performance, comprehensive performance

evaluations are conducted comparing the modified approach with the existing MMSE-

MMV-TISTA method in equal pathloss scenarios. In addition to comparing the two

methods, the performance of the learned versions of both approaches is also assessed.

Lastly, we estimate the pathloss using the ML estimator, we generate a comparison

plot between the modified MMSE-MMV-TISTA method, which utilizes the estimated

pathloss values, and the true pathloss.
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CHAPTER 1

INTRODUCTION

1.1 MASSIVE RANDOM ACCESS

In Massive random access a base station needs to connect with a large number of devices

that have irregular patterns of activity. These devices are designed to conserve energy by

staying inactive most of the time and only becoming active when needed. As a result,

only a small fraction of devices are active at any given moment, making it challenging to

establish reliable and efficient communication.

Figure 1.1: Massive Random Access.

In the context of Internet-of-Things (IoT) and machine-type communications (MTC), the

base station (BS) encounters the challenge of dynamically identifying active users among

a large number of devices. As these devices exhibit sporadic patterns of activity and

transmit short data packets, a random access procedure is utilized for data transmission.

This procedure involves users transmitting pilot sequences followed by their actual data.

The focus of this study is on addressing the joint problem of detecting device activity and

estimating the channel in the context of massive random access. To tackle this problem,

sparse recovery algorithms have emerged as effective tools. These algorithms leverage



the sparsity of user activity and exploit channel characteristics to accurately detect active

users and estimate their channels.

The proposed methods will enable the BS to effectively identify active users and estimate

their channels, thus enhancing the reliability and efficiency of communication in IoT and

MTC systems Liu and Yu (2018).

1.2 PATH LOSS

In real-world scenarios, different users often experience different pathloss due to their

random locations and varying distances from the base station. As the signal travels from

the devices, it undergoes attenuation, causing the power level to decrease. Additionally,

the signals from different users may arrive at the base station with different power levels.

To capture the effects of pathloss, there are several ways to model it. One common

approach is to use pathloss models that describe the relationship between the distance

between the user and the base station and the received signal power. Examples of popular

pathloss models include the Free Space Path Loss (FSPL) model, the Two-Ray Ground

Reflection model, and the Log-Distance Path Loss model.

These pathloss models consider factors such as the transmission frequency, the

environment (e.g., open space or urban area), and the presence of obstacles. By

incorporating these models into the analysis and design of communication systems, it is

possible to account for the variations in pathloss experienced by different users and

optimize system performance accordingly.

1.3 SPARSE RECOVERY AND ACTIVITY DETECTION

In order to estimate the channels and decode the transmitted messages from the active

devices, the base station (BS) is required to identify which devices are currently active.

This process of activity detection and channel estimation relies on the utilization of pilot
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sequences, which are transmitted by the devices before sending their actual data within

each coherence time interval.

Given that the activity pattern of the devices is sporadic, the joint problem of activity

detection and channel estimation can be framed as a sparse recovery problem. The goal

is to accurately recover the sparse activity pattern and estimate the corresponding channel

coefficients based on the received pilot sequences. By solving this sparse recovery

problem, the BS can effectively identify the active devices and estimate their channels,

facilitating reliable communication and data decoding. The theory of CS demonstrates

that if the signal vector x, which is to be estimated, possesses sparsity (i.e., a small

number of non-zero elements), it is possible to recover the signal using significantly fewer

measurements than the size of the original signal. In other words, the measurement vector

y can be much smaller than the size of the signal vector x. This fundamental principle

of CS has paved the way for efficient and low-dimensional signal recovery techniques,

enabling the reconstruction of sparse signals from limited measurements(Zhang et al.

(2015))

1.3.1 Multiple Measurement Vector (MMV) Problem

The problem of joint activity detection and channel estimation in the presence of

a multi-antenna base station (BS) can be mathematically formulated as a multiple-

measurement-vector (MMV) problem or a joint-sparse recovery problem. In this context,

MMV refers to the scenario where multiple measurement vectors are obtained from

different antennas, and the objective is to simultaneously recover the sparse activity

patterns and estimate the channels associated with the active users. By exploiting the

sparsity of the user activity and the correlation across antennas, the joint-sparse recovery

framework allows for more accurate and efficient estimation of the user activity and

channel parameters. Various algorithms and techniques have been developed to address

the MMV or joint-sparse recovery problem in the context of joint activity detection and

channel estimation in wireless communication systems. Figure 1.2 illustrates the case

3



Figure 1.2: Multiple Measurement Vector problem

where the base station (BS) has 𝑀 antennas and the pilot sequence length is 𝐿. In this

scenario, the observation 𝑌 is represented as a matrix that contains data from all 𝑀

antennas. Similarly, the unknown 𝑋 is also a matrix, where each row corresponds to a

user in the network. If a user is active, the corresponding row in 𝑋 represents the channel

vector from that user to the 𝑀-antenna BS. On the other hand, if a user is inactive, the

row in 𝑋 is filled with zeros. Therefore, the matrix 𝑋 to be estimated is a row-sparse

matrix, where only a subset of rows corresponding to active users contains non-zero

entries. This formulation indicates that activity detection and channel estimation can be

viewed as a multiple measurement vector problem or a joint sparse recovery problem. In

our work, we specifically consider this multi-antenna setting to address the joint activity

detection and channel estimation problem.

1.4 CONTRIBUTIONS

In this study, we investigated the performance of an existing learning-based sparse

recovery method for joint activity detection and channel estimation in massive random

access systems. Specifically, we focused on scenarios where different users experience

varying pathloss.

Our findings revealed that the learning-based approach outperforms the conventional
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TISTA method in such scenarios. We achieved this by modifying the existing Minimum

Mean Squared Error (MMSE) shrinkage function to account for the effects of different

pathloss. Additionally, we employed a Maximum Likelihood (ML) estimator to estimate

the pathloss values.

The results demonstrated that our modified learning-based method, which incorporates

pathloss considerations, significantly improves the accuracy of joint activity detection

and channel estimation in massive random access systems.

1.5 OUTLINE OF THE THESIS

This chapter served as an introduction to the concept of massive random access and

the different types of sparse recovery algorithms used in this context. We discussed

the main objectives of the thesis and highlighted our contributions in addressing the

challenges of joint activity detection and channel estimation in massive random access

systems. The remaining chapters of this thesis are organized as follows: Chapter 2

presents an overview of the system model used in this thesis, focusing on the massive

random access system and the problem of joint activity detection and channel estimation.

Additionally, we introduce a modified version of the MMSE-MMV-TISTA method called

L-MMSE-MMV-TISTA, which incorporates a learning-based approach.Chapter 3 of the

thesis presents the simulation results obtained from the proposed methods. Chapter 4

concludes the thesis by providing a brief summary of the main findings and contributions

discussed in the previous chapters
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CHAPTER 2

SYSTEM MODEL AND MODIFICATIONS TO
EXISTING ALGORITHM

2.1 SYSTEM MODEL

We consider a massive random access system with a single-antenna IoT devices and a

𝑀-antenna base station (BS). The devices become active independently with a probability

𝑝, resulting in a set of active devices denoted by S = {1, 2, . . . , 𝑆} .Each active user

transmits an 𝐿-length pilot sequence followed by data. In our study, we assume that the

training sequences, a𝑛 ∈ C𝐿×1, used by the users are designed as i.i.d. complex Gaussian

entries with zero mean and unit variance for simplicity.

The complex baseband channel vector between user 𝑛 and the BS is denoted as h𝑇𝑛 ∈ C1×𝑀 .

The channels could be correlated across antennas, and we model the channel vector as

h𝑇
𝑛 ∼ CN(0, 𝛼𝑛Cℎ), where Cℎ represents the covariance matrix of the channel, and 𝛼𝑛

denotes the path-loss and shadowing. The path-loss and shadowing components, which

depend on the user location, are assumed to be known at the BS.

The received training signal at the BS is denoted as Y ∈ C𝐿×𝑀 and is modeled as.

Y =
∑︁
𝑖∈S

a𝑖h𝑇
𝑖 + N (2.1)

, where the noise N has i.i.d. CN(0, 𝜎2) entries. For each user 𝑛, let 𝜆𝑛 = 0 if the user is

inactive and 𝜆𝑛 = 1 if the user is active. Then, we can rewrite the above as

Y =

𝑁∑︁
𝑛=1

𝜆𝑛a𝑛h𝑇
𝑛 + N = AX + N (2.2)

where X = [𝜆1h1, 𝜆2h2, . . . , 𝜆𝑁h𝑁 ]𝑇 ∈ C𝑁×𝑀 and A = [a1, a2, . . . , a𝑁 ].Considering

that the number of active users, denoted by S, is significantly smaller than the total



number of users 𝑁 , the matrix X becomes row sparse. Consequently, the receiver is

faced with a joint sparse recovery problem, where the objective is to estimate a row

sparse matrix X based on the observations of Y.

2.2 TRAINABLE ISTA (TISTA)

We provide a brief overview of TISTA for the single measurement vector case (𝑀 =

1) as presented in the work by Ito et al. (2019). Each iteration (or layer) of TISTA is

described by the following equations. Here, 𝑡 represents the iteration number, and the

estimate of X (which is a vector when 𝑀 = 1) at iteration 𝑡 is denoted as 𝑆𝑡 .

𝒓𝑡 = 𝒔𝑡 + 𝛾𝑡𝑾 (𝒀 − 𝑨𝒔𝑡)

𝒔𝑡+1 = 𝜂MMSE

(
𝒓𝑡 ; 𝜏2

𝑡

)
,

𝑣2
𝑡 = max


∥𝒀 − 𝑨𝒔𝑡 ∥2

2 − 𝐿𝜎2

tr
(
𝑨𝑇 𝑨

) , 𝜖


𝜏2
𝑡 =

𝑣2
𝑡

𝑁

(
𝑁 +

(
𝛾2
𝑡 − 2𝛾𝑡

)
𝐿

)
+
𝛾2
𝑡 𝜎

2

𝑁
tr
(
𝑾𝑾𝑇

)
,

(2.3)

In the TISTA algorithm, the matrix W represents the pseudo-inverse of the detection

matrix A, and 𝜖 is a small constant. The initial condition s0 can be initialized as zero,

and the final estimate of X after 𝑇 iterations is denoted as s𝑇 . The scalar variables 𝛾𝑡

for 𝑡 = 0, 1, . . . , 𝑇 − 1 can be learned and adjusted during the learning process. The

function 𝜂MMSE(·; ·) corresponds to the MMSE contraction function derived based on

the aforementioned assumptions about X.

In the study by Ito et al. (2019), X is considered as a vector of i.i.d. Bernoulli-Gaussian

random variables. Each entry of X follows a Gaussian distribution with mean zero and

variance 𝛼2 with probability 𝑝, and it is zero with probability 1 − 𝑝. In each iteration, r𝑡

is modeled as r𝑡 = X + Z, where Z follows a Gaussian distribution with mean zero and

variance 𝜏2I. For this particular model, the MMSE noise canceller can be implemented

8



to denoise the input.

𝜂

(
𝑦; 𝜏2

)
=

𝑦𝛼2

𝛼2 + 𝜏2 ·
𝑝𝐹

(
𝑦;𝛼2 + 𝜏2)

(1 − 𝑝)𝐹
(
𝑦; 𝜏2) + 𝑝𝐹

(
𝑦;𝛼2 + 𝜏2) (2.4)

where

𝐹 (𝑧; 𝑣) = 1
√

2𝜋𝑣
exp

(
−𝑧2

2𝑣

)
(2.5)

Please note that {𝛾𝑡}, 𝑝, and 𝛼2 are learned from the training data in TISTA, while 𝜎2 is

assumed to be known. 𝜏2 is estimated in each iteration. The sparse recovery problem

with complex vectors and matrices in equation (2.1) can be converted to an equivalent

real-valued problem, as done in several other works (Borgerding et al. (2017); Li et al.

(2019);Sabulal and Bhashyam (2020)) that employ deep learning-based optimizers

proposed by Kingma and Ba (2017), which operate with real-valued parameters. Hence,

all the algorithms presented in this thesis are designed for the real-valued case.

2.3 MODIFIED MMSE-MMV-TISTA

To handle the MMV model in equation (2.1) with 𝑀 > 1 antennas, one approach is

to apply TISTA using equations (2.2)-(2.5) by vectorizing Y and treating it as a single

measurement vector (SMV) model. However, this method treats each entry in the

vectorized X independently and does not take advantage of the row-sparsity structure

of X , the correlation structure of each h𝑛,and the path loss of individual user 𝛼𝑛 . To

exploit these structures, the MMSE shrinkage step in equation (2.3) needs to be modified.

Before discussing this modification, let us briefly explain how the other two steps of

TISTA are adapted to our problem. .The linear estimation step in (2.2) is modified to

R𝑡 = S𝑡 + 𝛾𝑡W(Y − AS𝑡) (2.6)

where R𝑡 and S𝑡 are now 𝑁 × 𝑀 matrices. The error variance estimation in (2.4) can be

used either with the vectorized model or simply with the observation from any one of the

antennas.
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The MMSE shrinkage function can be derived as follows. Let x𝑇
𝑖

represent the 𝑖-th row

of matrix X, which corresponds to the received signal vector from the 𝑖-th user at the 𝑀

receive antennas. If user 𝑖 is active, x𝑖 is distributed as complex Gaussian with mean

zero and covariance matrix 𝛼𝑖Cℎ, and if user 𝑖 is not active, x𝑖 is zero. It is assumed that

the correlation matrix Cℎ is different for all users and arises due to the mutual coupling

between receive antennas. The channel vectors x𝑖 and x 𝑗 are assumed to be independent

for 𝑖 ≠ 𝑗 . Therefore, the MMSE denoiser, denoted by 𝜂MMSE, is given by

S𝑡+1 = 𝜂MMSE(R𝑡 ; 𝜏2
𝑡 ) (2.7)

is used to estimate the signal matrix S𝑡+1 from the received signal matrix R𝑡 and the noise

variance 𝜏2
𝑡 at iteration 𝑡.

Let y𝑇
𝑖

represent the 𝑖th row of R𝑡 , and x̂𝑇
𝑖

represent the 𝑖th row of S𝑡+1. In order to obtain

x̂𝑖, the MMSE estimate of x𝑖, we model y𝑖 = x𝑖 + z𝑖, where z𝑖 ∼ N(0, 𝜏2
𝑡 I) and x𝑖 is

a Bernoulli-Gaussian random vector as described above. we can obtain the row-wise

MMSE estimator using approach in Neumann et al. (2018) and Shiv et al. (2022).

In our scenario, we have a total of 𝑇 observations denoted as Y, where each observation

y𝑡 is given by y𝑡 = x𝑡 + z𝑡 . The noise term z𝑡 follows a complex Gaussian distribution

z𝑡 ∼ N(0, 𝜎2I), and the channel vector h𝑡 is conditionally Gaussian with a parameter

𝛿, i.e., h𝑡 ∼ N(0,C𝛿). The observations at different intervals 𝑡 are independent. In

our specific case, 𝑇 = 1, meaning we have a single observation. Each observation y𝑖 is

given by y𝑖 = x𝑖 + z𝑖, where z𝑖 follows a Gaussian distribution z𝑖 ∼ N(0, 𝜏2
𝑡 I), and x𝑖 is

distributed as a complex Gaussian x𝑖 ∼ CN(0, 𝛼𝑖Cℎ) with probability 𝑝, and is zero

with probability 1 − 𝑝.
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Y = {y1, . . . , y𝑇 }

y𝑡 = h𝑡 + z𝑡 , z𝑡 ∼ N(0, 𝜎2I), h𝑡 ∼ N(0,C𝛿)

y𝑖 = x𝑖 + z𝑖, z𝑖 ∼ N(0, 𝜏2
𝑡 I), x𝑖 ∼ CN(0, 𝛼iCℎ),

where C𝛿 and Cℎ represent the covariance matrices associated with the parameter 𝛿 and

the channel vector h, respectively.

The MMSE estimate of the channel vector x𝑖 conditioned on 𝛿 is given by

𝐸 [x𝑖 |Y, 𝛿] = W𝛿y𝑖 (2.8)

where

W𝛿 = C𝛿 (C𝛿 + 𝜎2I)−1 (2.9)

This estimate of x𝑖 depends only on y𝑖 if the parameters 𝛿 and the covariance matrix C𝛿 are

available. Now, let us consider the case where 𝛿 is an unknown random variable following

the distribution 𝑝(𝛿). In this case, the MMSE estimator, which is the conditional mean

of x𝑖 given Y, can be written as:

𝐸 [x𝑖 |Y] = 𝐸 [𝐸 [x𝑖 |Y, 𝛿] |Y] = 𝐸 [W𝛿y𝑖 |Y] = 𝐸 [W𝛿 |Y]y𝑖 = W∗(Y)y𝑖 .

Using Bayes’ theorem, the posterior distribution of 𝛿 can be expressed as

𝑝(𝛿 |Y) = 𝑝(Y|𝛿)𝑝(𝛿)∫
𝑝(Y|𝛿)𝑝(𝛿)𝑑𝛿

(2.10)
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Now, we can write the MMSE filter W∗(Y) as

Ŵ∗(Y) =
∫

𝑝(𝛿 |Y)W𝛿𝑑𝛿 =

∫
𝑝(Y|𝛿)W𝛿𝑝(𝛿)𝑑𝛿∫
𝑝(Y|𝛿)𝑝(𝛿)𝑑𝛿

(2.11)

In Neumann et al. (2018), the equation for the MMSE filter W∗ in (2.11) is simplified for

the case where the noise covariance matrix is Σ = 𝜎2I as follows:

W∗(Ĉ) =
∫

exp
{
tr(W𝛿Ĉ) + 𝑇 log |I − W𝛿 |

}
W𝛿𝑝(𝛿)𝑑𝛿∫

exp
{
tr(W𝛿Ĉ) + 𝑇 log |I − W𝛿 |

}
𝑝(𝛿)𝑑𝛿

(2.12)

where W𝛿 is given by (2.9) and Ĉ is given as:

Ĉ =
1
𝜎2

𝑇∑︁
𝑡=1

y𝑡y𝐻𝑡 (2.13)

Note that the MMSE estimator depends on Y only through the scaled sample covariance

matrix. It should be noted here that C𝛿 is considered to be known while deriving the

equation. We can then estimate x𝑡 as:

x̂𝑡 = W∗(Ĉ)y𝑡 (2.14)

The prior 𝑝(𝛿) in our system model is discrete, {𝛿𝑖 : 𝑖 = 1, 2}. For discrete and uniform

𝑝(𝛿) with 𝑝(𝛿𝑖) = 1
𝑁

, for all 𝑖 = 1, . . . , 𝑁 , the MMSE estimator can be calculated as

(Neumann et al. (2018)):

�̂� (𝑪) =
1
𝑁

∑𝑁
𝑖=1 exp

(
tr
(
𝑾𝜹𝑖𝑪

)
+ 𝑏𝑖

)
𝑾𝜹𝑖

1
𝑁

∑𝑁
𝑖=1 exp

(
tr
(
𝑾𝜹𝑖𝑪

)
+ 𝑏𝑖

) (2.15)
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where W𝛿𝑖 can be obtained by evaluating (2.9) for 𝛿 = 𝛿𝑖.

In our setting, the probabilities for the 𝛿i’s are unequal. In this case, we can derive the

estimator to be:

�̂�𝑖 = 𝑾 (�̂�)𝒚𝑖,with �̂� =
1
𝜏2
𝑡

𝒚𝑖𝒚
𝑇
𝑖 (2.16)

�̂� (𝑪) =

∑𝑁
𝑖=1 𝑝𝑖 exp

(
tr
(
𝑾𝜹𝑖𝑪

)
+ 𝑏𝑖

)
𝑾𝜹𝑖∑𝑁

𝑖=1 𝑝𝑖 exp
(
tr
(
𝑾𝜹𝑖𝑪

)
+ 𝑏𝑖

) (2.17)

where

𝑾𝛿𝑖 = 𝛼𝑖𝑪ℎ

(
𝛼𝑖𝑪ℎ + 𝜏2

𝑡 𝑰
)−1

(2.18)

𝑏𝑖 = log |I −𝑾𝛿𝑖 | (2.19)

The MMSE denoiser was derived under the assumption of prior knowledge of the

pathloss.

2.4 L-MMSE-MMV-TISTA

Both the proposed "learnt MMSE-MMV-TISTA" version by Shiv et al. (2022) and the

modified method demonstrate no differences. The learnt version closely adheres to the

original approach, indicating that no modifications or alterations have been introduced

during the learning process. This observation affirms the consistency between the learnt

version and the modified method.

The learned version, referred to as L-MMSE-MMV-TISTA, offers several advantages.

Firstly, it eliminates the need for prior knowledge of Ch and 𝑝, as these parameters are
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learned implicitly during the training phase. Secondly, it does not require individual

user’s pathloss information, making it more flexible and applicable in scenarios where

such information may be unavailable. Lastly, the inaccuracies arising from the model

assumptions in the linear estimation step, specifically the estimation Rt = X + Z, can

potentially be mitigated through the training process, enhancing the overall performance

and robustness of the algorithm.

Let vec(X) denote the column vector obtained by stacking the columns of X. Simplifying

(2.16), we get:

vec(W(Ĉ)) =
AW exp(A𝑇

Wvec(Ĉ) + b)
1𝑇 exp(A𝑇

Wvec(Ĉ) + b)
(2.20)

Aw = [vec(W𝛿1), . . . , vec(W𝛿𝐹 )] ∈ C𝑀
2×𝐹 and b = [𝑏1, . . . , 𝑏𝐹] where

𝑏𝑖 = log
��I − W𝛿𝑖

�� + log 𝑝𝑖 and 𝐹 represents numbe of nodes in the hidden layer. In our

scenario, the rows of X are generated from a Gaussian distribution with many potential

covariance matrices: zero with a probability of 1 − 𝑝, and 𝛼𝑖Cℎ with a probability of

𝑝𝑖(sum of 𝑝𝑖 = 𝑝).

In our scenario, the exact probabilities associated with the different covariance matrices

are unknown due to the variability in pathloss and the generation of 𝛼𝑖 with specific

probabilities. To address this, we aim to approximate the continuous probability function

using discrete samples. This involves increasing the dimensions of the weight matrix,

allowing it to incorporate the covariance matrix that corresponds to the most probable

pathloss. The equation (2.18) is derived by incorporating unequal probabilities for the

different possible covariance matrices. This is achieved by adding the term log 𝑝𝑖 to

𝑏𝑖, where 𝑝𝑖 represents the probability of covariance matrix 𝑖.We do not have exact

knowledge of the probabilities involved, as they depend on the distribution of pathloss

and the generation of 𝛼i.

The structure described in (2.18) resembles that of a feed-forward neural network

consisting of two linear layers connected by a softmax activation function. This denoiser
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structure, depicted inside a box in Figure 2.1, can be simplified to (2.18) when we set

A1 = AT
W, b1 = b, and A1 = AW. In this network, the input is vec(Ĉ) and the output is

vec(𝑾 (Ĉ)).

Figure 2.1 illustrates the computations involved in a single iteration of the learnt MMSE-

MMVTISTA method(Shiv et al. (2022)). The trainable parameters for each iteration,

including 𝛾𝑡 , A1, b1, and A2, are highlighted in red. It should be noted that the same

network is utilized to denoise each row of Rt, with Ĉ computed as described in (2.13)

for each row. Consequently, the total number of trainable parameters in one iteration is

4𝑀2 + 3, which is expected due to the unknown covariance matrix Cℎ being an 𝑀 × 𝑀

matrix. However, the number of parameters can be reduced through the following

approaches: (i) By leveraging the knowledge that one of the covariances is zero (when

the user is not active), the structure of AW in (2.18) can be modified accordingly; (ii) If

the covariance matrix exhibits a Toeplitz structure (common in many practical scenarios),

the number of parameters can be further reduced.

Figure 2.1: One Iteration of L-MMSE-MMV-TISTA [8]
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2.5 SNR DERIVATION

2.5.1 Signal Power

(l,m) element in AX matrix is

AX𝑙,𝑚 =

𝑁∑︁
𝑗=1

𝑎𝑙 𝑗𝑥 𝑗𝑚𝛼 𝑗

𝐸 [|AX𝑙,𝑚 |2𝐹] = 𝐸 [
𝑁∑︁
𝑗=1

|𝑎𝑙 𝑗𝑥 𝑗𝑚𝛼 𝑗 |2]

𝑎𝑙 𝑗 is independent of 𝑥 𝑗𝑚 and 𝛼 𝑗

𝐸 [|AX𝑙,𝑚 |2𝐹] =
𝑁∑︁
𝑗=1

𝐸 [|𝑎𝑙 𝑗 |2]𝐸 [|𝑥 𝑗𝑚 |2]𝐸 [|𝛼 𝑗 |2]

𝑎𝑙 𝑗 is normally distributed with mean and standard deviation 1/𝑀:

𝑎𝑙 𝑗 ∼ CN( 0, 1/𝑀)

𝐸 [|𝑎𝑙 𝑗 |2] = 1/𝑀

𝑥 𝑗𝑚 is Bernoulli-Gaussian distribution

𝐸 [|𝑥 𝑗𝑚 |2] = 𝑝

𝐸 [|AX𝑙,𝑚 |2𝐹] =
𝑝

𝑀

𝑁∑︁
𝑗=1

𝐸 [|𝛼 𝑗 |2]

𝐸 [|AX|2𝐹] =
𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=1

𝐸 [|AX𝑙,𝑚 |2𝐹] =
𝑝

𝑀

𝐿∑︁
𝑙=1

𝑀∑︁
𝑚=1

𝑁∑︁
𝑗=1

𝐸 [|𝛼 𝑗 |2]
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𝐸 [|AX|2𝐹] = 𝑝𝐿

𝑁∑︁
𝑗=1

𝐸 [|𝛼 𝑗 |2]

2.5.2 Noise Power

𝑛𝑖 𝑗 is normally distributed with mean and standard deviation 𝜎2:

𝑛𝑙 𝑗 ∼ CN( 0, 𝜎2)

𝐸 [|N|2] =
𝐿∑︁
𝑖=1

𝑀∑︁
𝑘=1

𝐸 [|𝑛𝑖 𝑗 |2]

𝐸 [|N|2] = 𝐿𝑀𝜎2

2.5.3 SNR

𝑆𝑁𝑅 =
𝑝
∑𝑁

𝑗=1 𝐸 [|𝛼 𝑗 |2]
𝑀𝜎2 (2.21)

2.6 ESTIMATOR FOR PATHLOSS

1. Assume that the received signal R follows the distribution:

𝑅 =
√
𝛼𝑋 + 𝑍 (2.22)

Where 𝑋 ∼ N(0, 𝐶ℎ)represents the signal component and, 𝑍 ∼ N(0, 𝜏2𝐼) represents the

noise component.

2. The likelihood function L() is given by the probability density function (PDF) of the

received signal R, which can be expressed as:

𝐿 (𝛼) = 1√︁
(2𝜋)𝑛 |𝛼𝐶ℎ + 𝜏2𝐼 |

exp
(
−1

2
𝑅𝑇 (𝛼𝐶ℎ + 𝜏2𝐼)−1𝑅

)
(2.23)
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where n is the dimension of the received signal.

3. To find the MLE for , we maximize the likelihood function L() with respect to . Taking

the logarithm of L() to simplify the calculations, we have:

log 𝐿 (𝛼) = −𝑛
2

log(2𝜋) − 1
2

log |𝛼𝐶ℎ + 𝜏2𝐼 | − 1
2
𝑅𝑇 (𝛼𝐶ℎ + 𝜏2𝐼)−1𝑅 (2.24)

4. Using eigenvalue decomposition, we can express the matrices Ch and XXT as:

𝐶ℎ = 𝑉Λ𝑉𝑇 (2.25)

where V is unitary matrix containing the eigenvectors, and is the diagonal matrix

containing the eigenvalues.

5.Substituting the eigendecomposition into the equation, we get:

log 𝐿 (𝛼) = −𝑛
2

log(2𝜋) − 1
2

log |𝛼Λ + 𝜏2𝐼 | − 1
2
𝑅′𝑇 (𝛼Λ + 𝜏2𝐼)−1𝑅′ (2.26)

where R’=VR

6. To find the minimum, we take the derivative of the logarithm of the likelihood function

with respect to and set it to zero:

𝜕

𝜕𝛼
log 𝐿 (𝛼) = 𝜕

𝜕𝛼

©­«
𝑛∑︁
𝑗=1

log(𝛼Λ 𝑗 + 𝜏2) − 𝑅′
𝑗
𝑇 (𝛼Λ 𝑗 + 𝜏2)−1𝑅′

𝑗

ª®¬ (2.27)

=

𝑛∑︁
𝑗=1

𝜕

𝜕𝛼
log(𝛼Λ 𝑗 + 𝜏2) − 𝜕

𝜕𝛼

(
𝑅′
𝑗
𝑇 (𝛼Λ 𝑗 + 𝜏2)−1𝑅′

𝑗

)
(2.28)

Now, let’s focus on the two terms separately:
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1. For the first term:

𝜕

𝜕𝛼
log(𝛼Λ 𝑗 + 𝜏2) = 1

𝛼Λ 𝑗 + 𝜏2 · Λ 𝑗 (2.29)

=
Λ 𝑗

𝛼Λ 𝑗 + 𝜏2 (2.30)

2. For the second term:

𝜕

𝜕𝛼

(
𝑅′
𝑗
𝑇 (𝛼Λ 𝑗 + 𝜏2)−1𝑅′

𝑗

)
= −𝑅′

𝑗
𝑇 (𝛼Λ 𝑗 + 𝜏2)−2 · Λ 𝑗 · 𝑅′

𝑗 (2.31)

= −
Λ 𝑗

(𝛼Λ 𝑗 + 𝜏2)2 · 𝑅′
𝑗
𝑇𝑅′

𝑗 (2.32)

Now, substituting these derivatives back into the expression, we have:

𝜕

𝜕𝛼
log 𝐿 (𝛼) =

𝑛∑︁
𝑗=1

Λ 𝑗

𝛼Λ 𝑗 + 𝜏2 −
Λ 𝑗

(𝛼Λ 𝑗 + 𝜏2)2 · 𝑅′
𝑗
𝑇𝑅′

𝑗 (2.33)

=

𝑛∑︁
𝑗=1

Λ 𝑗 (𝛼Λ 𝑗 + 𝜏2) − Λ 𝑗𝑅
′
𝑗
𝑇𝑅′

𝑗

(𝛼Λ 𝑗 + 𝜏2)2 (2.34)

Setting this derivative to zero, we can solve for the maximum likelihood estimator of .

2.7 TRAINING

There is no difference in the training process compared to L-MMSE-MMV-TISTA

proposed by Shiv et al. (2022). However, there is a distinction in the signal generation

stage. In our approach, we initially generate the pathloss values for individual users

using a prior model. We then take the square root of the generated pathloss values. The

channel matrix is generated using a Bernoulli-Gaussian process. Finally, we multiply the

pathloss values and the channel matrix to obtain new channel matrix with the pathloss.

The recursive step of L-MMSE-MMV-TISTA can be unfolded to reveal a signal-flow

graph that resembles a multi-layer feed-forward neural network. Figure 2.2 illustrates a

unit of the signal-flow graph representing the 𝑡-th iteration of L-MMSE-MMV-TISTA.
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By concatenating these units together, the entire network can be constructed.

This configuration can be identified as a feed-forward neural network (NN) featuring

two linear layers connected by a non-linear activation function. In this specific network,

the activation function employed is the softmax function: 𝜑(𝑥) = exp(𝑥)
1𝑇 exp(𝑥) and specific

parameter choices: 𝐴(1) = 𝐴𝑇
W, 𝐴(2) = 𝐴W, 𝑏 (1) = 𝑏, and 𝑏 (2) = 0.

To mathematically formulate the learning problem, we define the set

𝑓 (·) : C𝑀
2 → C𝑀2

, 𝒇 (𝒙) = 𝑨2𝚽(𝑨1𝑥 + b1) + b2,

where 𝑨1 ∈ C𝑁×𝑀2 , 𝑨2 ∈ C𝑀2×𝑁 , 𝒃1 ∈ C𝑁 , and 𝒃2 ∈ C𝑀2 .

Here, 𝑁 and 𝑀 represent the dimensions of the matrices.

Figure 2.2: One Iteration of L-MMSE-MMV-TISTA [4].

To realize a system with good recovery performance, the trainable variables [𝛾𝑡]𝑡=0
𝑡=𝑇−1,

𝑨1, 𝒃1, and 𝑨2 need to be properly trained. We divide our training data, i.e., randomly

generated pairs (𝑋,𝑌 ), into mini-batches and use the Adam optimizer (Kingma and Ba,

2014). Based on the experiments in Ito et al (2019)„ it has been observed that incremental

training of each layer provides superior performance while learning parameters as it can

reduce the effect of the vanishing gradient. The loss function is the mean squared error

between the output from each layer X𝑘+1 and the true X. The neural network system

derives gradients and updates weights from this loss function.

The L-MMSE-MMV-TISTA estimator performs the following optimization:
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vec(𝑊 (·)) = arg min
vec(�̂� (·))∈𝑊NN

𝜖 (�̂� (·)) (2.35)

Notably, this optimization formula does not rely on covariance matrices or any other

analytical data, enabling the network to be trained using a large dataset of channel

realizations and corresponding observations. Our training data consists of samples X

following a prior distributions of PX(𝑥),P𝛼 (𝛼), and the observed data Y is given by

Y = AX + N, where the observation noise N is independently and identically distributed

(i.i.d.) Gaussian. It is assumed that the network has prior knowledge of the matrix A.

During incremental training, the network is optimized layer-by-layer. The mean squared

error (MSE) is minimized by tuning all the variables using an optimizer. In each

generation, denoted by the index 𝑡, the network is trained with 𝐷 mini-batches. After

completing the training of the 𝑡-th layer, a new layer 𝑡 + 1 is added to the network, and

the network is trained again with 𝐷 mini-batches. The variable values obtained after

optimization in one generation serve as the initial values for the variables in the next

generation’s optimization process. Each layer of the network is trained using a batch size

of 200, and a total of 200 batches are used. Gradient updates per batch are performed

using the ADAM optimizer Kingma and Ba (2017) with a learning rate of 0.04. During

the testing phase, the normalized mean squared error (NMSE) is computed using 7500

samples. All training procedures are implemented using the PyTorch framework.
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CHAPTER 3

SIMULATION RESULTS AND DISCUSSION

In this chapter, we evaluate the performance of two modified methods called

MMSEMMV-TISTA and L-MMSE-MMV-TISTA in a massive random access setting.

These methods are compared with the original MMSEMMV-TISTA and

L-MMSE-MMV-TISTA algorithms, but with different pathloss values for individual

users. Additionally, the performance of these modified algorithms is also compared with

the original algorithms using equal pathloss.

In a study conducted by Shiv et al. (2022), it was observed that MMSEMMV-TISTA and

L-MMSE-MMV-TISTA with equal pathloss outperformed the Trainable ISTA method

and reduced the preamble length by 30-40%. Therefore, it is expected that the modified

algorithms would also yield a similar reduction in the preamble length by 30-40%, even

in scenarios where different pathloss values are considered.

By evaluating the performance of these modified algorithms with different pathloss

values and comparing them to the original algorithms with equal pathloss, we aim to

assess the impact of pathloss variations on the system’s performance and preamble length.

This analysis will provide insights into the effectiveness of the modified algorithms

in handling different pathloss conditions and their potential for reducing the preamble

length in real-world scenarios.

Overall, this chapter focuses on evaluating and comparing the performance of modified

algorithms with varying pathloss values, providing valuable information for improving

massive random access systems and reducing preamble length in wireless communication

networks.



In the conducted simulations, several parameters were set as follows: the number of

users 𝑁 was set to 500, the number of antennas 𝑀 was 4, and the number of iterations

(or layers after unfolding) of each algorithm was set to 12. These choices were consistent

with previous studies such as those by Shiv et al. (2022)).

The signal-to-noise ratio (SNR) was defined as the ratio of the expected value of the

squared norm of the transmitted signal ∥AX∥2 to the expected value of the squared norm

of the noise ∥N∥2. This definition provides a measure of the signal strength relative to

the background noise in the system.

The covariance matrix 𝛼𝑖Cℎ, which characterizes the channel conditions, had entries

given by 𝛼𝑖𝜌
|𝑖 − 𝑗 |, where 𝑖 and 𝑗 represent the indices of the entries. This choice of

covariance matrix is based on previous works such as Clerckx et al. (2008) .

The L-MMSE-MMV-TISTA network was trained layer-by-layer in a supervised manner

using the ADAM optimizer (Kingma and Ba (2017)). This approach involves training

each layer of the network sequentially while utilizing the minimum mean square error

(MMSE) criterion and multiple measurement vectors (MMV) framework.

To evaluate the performance of the L-MMSE-MMV-TISTA network, the normalized

mean square error (NMSE) was employed. NMSE is calculated as the expected value of

the squared norm of the difference between the estimated signal X̂ and the true signal X,

divided by the expected value of the squared norm of X. This metric provides a measure

of the accuracy of the network’s estimates relative to the true signal.

Overall, these simulation settings and evaluation metrics were chosen to analyze the

performance of the L-MMSE-MMV-TISTA network in a realistic wireless communication

scenario, considering the number of users, antennas, iterations, channel covariance, and

training methodology.
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3.0.1 Path Loss Model

In the considered scenario, let 𝑑𝑛 denote the distance between user 𝑛 and the base station

(BS) for all 𝑛. It is assumed that the distances 𝑑𝑛 are randomly distributed within the

range of 0.5 km to 1 km.

The path loss model characterizing the wireless channel for user 𝑛 is given by 𝛼𝑛 =

−128.1 − 36.7 log10(𝑑𝑛) in decibels (dB) for all 𝑛(Liu and Yu (2018)). This model

captures the attenuation or loss of signal power as it propagates through the wireless

medium, taking into account the distance between the user and the base station. The

logarithmic term reflects the logarithmic relationship between the distance and path loss,

and the constant coefficients (-128.1 and -36.7) determine the specific characteristics of

the path loss model.

3.1 PHASE TRANSITION

The phase transition in a multiple access system characterizes the minimum required

ratio of preamble length to the number of users 𝐿
𝑁

to achieve a target probability of error

for a given activity probability 𝑝.

The activity probability, denoted by 𝑝, represents the probability that a user is active and

transmits a signal during a given time slot. It quantifies the level of user activity in the

system.

The phase transition phenomenon occurs when there is a critical threshold value of 𝐿
𝑁

below which it is impossible to achieve the target probability of error, regardless of the

activity probability. This critical threshold marks a phase transition point in the system’s

behavior. The phase transition analysis helps in determining the minimum value of 𝐿
𝑁

required to ensure reliable signal recovery and estimation performance in the presence of

user activity.
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By studying the phase transition behavior, we can gain insights into the fundamental

trade-offs between preamble length, number of users, activity probability, and the

achievable estimation performance in multiple access systems.

Figure 3.1: 𝑁 = 500, 𝑀 = 4, SNR = 30dB, 𝜌 = 0.5. Users are uniformly located
between 500m and 1000m.

Figure 3.1 showcases the outcomes of an experimental setup with specific parameters.

The signal-to-noise ratio (SNR) is fixed at 30 dB, and 𝜌 = 0.5. The networks are trained

and tested using different activity values of 𝑝 within the range of 0.01 to 0.2.

During the training phase, the loss function employed is the normalized mean square

error (NMSE). However, during the evaluation or testing phase, the success of network

recovery is determined based on the probability of error falling below 0.05. In this

context, the probability of error refers to the combined sum of the probability of false

alarm and the probability of missed detection.

The probability of false alarm represents the likelihood of incorrectly detecting an inactive

user’s signal as active. It quantifies the probability of false positives, where the network

wrongly identifies a non-transmitting user as transmitting.
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The probability of missed detection, on the other hand, denotes the probability of failing

to detect an active user’s signal correctly. It captures the likelihood of false negatives,

where the network fails to identify and recover the signal of an active user.

To achieve successful recovery, the network aims to minimize the combined probability

of false alarm and missed detection, ensuring that it falls below the threshold of 0.05.

This criterion serves as a measure of the network’s effectiveness in accurately detecting

and recovering the transmitted signals, while minimizing both types of errors.

In Figure 3.1, a comparison is made between the MMSE-MMV-TISTA and L-MMSE-

MMV-TISTA network architectures in two different scenarios: one with uniformly

distributed users between 500m and 1000m, and the other with all users located at 500m

from the base station.

The results clearly indicate that the modified L-MMSE-MMV-TISTA with 5 nodes in the

hidden layer performs well even in cases with various path losses for each user. However,

it is observed that the MMSE-MMV-TISTA algorithm requires a longer preamble length

compared to the scenario where all users are at the same fixed location. This is expected

because as the distance between the users and the base station increases, a longer preamble

is necessary to account for weaker user signals.

Previous research by Shiv et al. (2022) has demonstrated that L-MMSE-MMV-TISTA

can reduce the preamble length by 30-40% compared to the TISTA algorithm. Therefore,

it can be inferred that the modified version of L-MMSE-MMV-TISTA also provides a

similar reduction in the preamble length, leading to more efficient transmission in the

system.

Figure 3.2 showcases the outcomes of an experimental setup with specific parameters.

The signal-to-noise ratio (SNR) is fixed at 20 dB, and 𝜌 = 0.5. The networks are trained

and tested using different activity values of 𝑝 within the range of 0.01 to 0.2
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Figure 3.2: 𝑁 = 500, 𝑀 = 4, SNR = 20dB, 𝜌 = 0.5. Users are uniformly located
between 500m and 1000m.

We can observe a similar behavior as in the case of SNR=30dB, but with L-MMSE-

MMV-TISTA, at higher active probabilities, the performance matches that of the scenario

where all users are at the same location.

Overall, this behavior highlights the advantages of the modified L-MMSE-MMV-TISTA

algorithm in handling different user distributions and achieving robust signal recovery in

varying wireless communication scenarios.

Furthermore, the L-MMSE-MMV-TISTA algorithm outperforms the MMSE-MMV-

TISTA algorithm. This can be attributed to the fact that the model Rt = X + Z, which

is used to derive the minimum mean square error (MMSE) denoiser expression in

MMSE-MMV-TISTA, may not accurately capture the true signal and noise components.

Similarly, in TISTA, assumptions are made regarding the residual error at each stage

during the error variance estimation step. These assumptions can introduce inaccuracies

in the estimation process.

In contrast, the neural network-based approach of L-MMSE-MMV-TISTA is able to
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compensate for some of these inaccuracies by learning from the training data. The

network learns the underlying patterns and relationships between the received signals

and the desired signals, allowing it to provide more accurate estimates and improve the

overall performance of the algorithm.

By leveraging the power of deep learning and training on a large dataset, the L-MMSE-

MMV-TISTA algorithm is able to overcome the limitations of the traditional MMSE-

MMV-TISTA approach and achieve better performance in recovering the transmitted

signals.

3.1.1 Users at Fixed Locations

Figure 3.3: 𝑁 = 500, 𝑀 = 4, SNR = 30dB, 𝜌 = 0.5. Users are uniformly located at
800m and 1000m.

Figure 3.3 showcases the outcomes of an experimental setup with specific parameters.

The signal-to-noise ratio (SNR) is fixed at 30 dB, and 𝜌 = 0.5 users at fixed location

800m,1000m. The networks are trained and tested using different activity values of 𝑝

within the range of 0.01 to 0.2.

In this particular case, it is evident that there are only three possible covariance matrices

. To account for this, the network architecture has been modified to accommodate
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these three covariance matrices. Additionally, the received signal with three possible

covariance matrices is applied to the existing MMSE-MMV-TISTA method.

Despite the limited number of covariance matrices, the L-MMSE-MMV-TISTA

algorithm continues to outperform the MMSE-MMV-TISTA algorithm. This suggests

that the modified L-MMSE-MMV-TISTA algorithm, which takes into account the three

covariance matrices, achieves better performance in terms of signal recovery compared

to the MMSE-MMV-TISTA algorithm.

Moreover, the modified algorithms that incorporate the three covariance matrices exhibit

superior performance compared to using only two covariance matrices. This highlights

the importance of considering additional covariance matrices in the network architecture,

as it leads to improved accuracy in estimating and recovering the transmitted signals.

3.1.2 Determining the Optimal Number of Neurons in the Hidden Layer

Figure 3.4: Activity Probability vs Number of Nodes, SNR=30dB, Users are uniformly
located between 500m and 1000m

Figure 3.4 ,3.5 illustrates the results obtained from an experimental setup with specific

parameters. The signal-to-noise ratio (SNR) is set at 30 dB,20dB. The networks are

trained and tested using various activity values of 𝑝 ranging from 0.01 to 0.2. The
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Figure 3.5: Activity Probability vs Number of layers, SNR=20dB, Users are uniformly
located between 500m and 1000m

number of nodes in hidden layer in the network architecture is varied, including options

such as 2, 3, 5, and 10.

From Figures 3.4 and 3.5, it is evident that increasing the number of layers in the network

leads to an improvement in performance. However, it is interesting to note that for 10

nodes in hidden layer, the performance remains similar to that of 5 nodes in hidden layer.

This observation suggests that there is a saturation point beyond which adding more

nodes in hidden layer does not significantly enhance the performance.

Increasing the number of nodes in hidden layer in the network can be seen as an attempt to

approximate all possible covariance matrices by using 2, 3, 5, or 10 covariance matrices.

This approach allows the network to capture more complex relationships and patterns in

the data, leading to improved performance in signal recovery.

3.1.3 NMSE Performance

Figure 3.6 and 3.7 present the results of an experimental setup with specific parameters.

The signal-to-noise ratio (SNR) is held constant at 30 dB for Figure 3.6 and at 20 dB for
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Figure 3.6: 𝑁 = 500, 𝑀 = 4, SNR = 30dB, 𝜌 = 0.5. Users are uniformly located
between 500m and 1000m.

Figure 3.7, while 𝜌 is set to 0.5 in both cases. The networks are trained and tested using

various activity values of 𝑝 ranging from 0.01 to 0.2.

During the training phase, the normalized mean square error (NMSE) is utilized as the

loss function to train the networks. However, during the evaluation or testing phase, the

success of the network recovery is determined based on specific thresholds. For the

SNR=30dB case, the network is considered successful if the NMSE falls below 20 dB.

Similarly, for the SNR=20dB case, the NMSE threshold is set to 15 dB. These thresholds

serve as benchmarks to evaluate the accuracy and effectiveness of the network in signal

recovery.

The obtained results provide clear evidence that the modified L-MMSE-MMV-TISTA

algorithms demonstrate strong performance even in scenarios where there are varying

path losses for each user. This indicates that the network is able to effectively adapt to

different channel conditions and accurately estimate the transmitted signals.

Although the MMSE-MMV-TISTA algorithm may require the same preamble length
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Figure 3.7: 𝑁 = 500, 𝑀 = 4, SNR = 20dB, 𝜌 = 0.5. Users are uniformly located
between 500m and 1000m.

for both scenarios (uniformly distributed users and users at a fixed position) in the

NMSE sense, the probability of error can still vary between the two cases. In the NMSE

(Normalized Mean Squared Error), the existing MMSE-MMV-TISTA method fails to

capture any distinction between equal path loss and unequal path loss scenarios.

3.1.4 Comparing Estimated Error Variance with True Error Variance

Figure 3.8 showcases the estimated error variance 𝜏2 using equation (3.1) and the

empirically estimated values of the true error variance 𝜏2 using equation (3.2).

𝜏2 =
𝑣2
𝑡

𝑁

(
𝑁 +

(
𝛾2
𝑡 − 2𝛾𝑡

)
𝐿

)
+
𝛾2
𝑡 𝜎

2

𝑁
tr
(
WW𝑇

)
(3.1)

𝜏2 =
𝐸 [(𝑟𝑡 − 𝑥)2]

𝑁
(3.2)

The estimator 𝜏2 accurately captures the error variance, providing validation for the

effectiveness of equations (3.1) and supporting our assumptions regarding the residual

errors. It is important to note that the error variance does not exhibit a strictly monotonic

decrease. This non-monotonic behavior can be attributed to the influence of the trainable

parameters {𝛾𝑡}𝑇−1
𝑡=0 . The zigzag pattern observed in the parameters 𝛾𝑡 may impact
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Figure 3.8: estimate 𝜏2 and the true error variance 𝜏2, given the parameters 𝑁 = 500,
𝑀 = 4, and SNR = 30 dB

the shapes of 𝜏2 and 𝜏2. However, despite this nontrivial tendency, the residual error

demonstrates a rapid decrease, indicating successful signal recovery.

Similarly, for the L-MMSE-MMV-TISTA, we plotted the estimated error variance 𝜏2

using equation (3.1) and the empirically estimated values of the true error variance 𝜏2

using equation (3.2). We observed a similar trend as in the MMSE-MMV-TISTA case,

where the estimator 𝜏2 accurately captures the error variance, validating the effectiveness

of equations (3.1) and supporting our assumptions regarding the residual errors. The

non-monotonic behavior of the error variance, influenced by the trainable parameters

{𝛾𝑡}𝑇−1
𝑡=0 ,𝑊ℎ,𝑝, is also observed in the L-MMSE-MMV-TISTA. Despite this nontrivial

tendency, the residual error demonstrates a rapid decrease, indicating successful signal

recovery.
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Figure 3.9: estimate 𝜏2 and the true error variance 𝜏2, given the parameters 𝑁 = 500,
𝑀 = 4, and SNR = 30 dB

3.1.5 Comparing MMSE-MMV-TISTA with Estimated vs. True Path Loss

Figure 3.10,3.11 depicts the estimated path loss versus the true path loss. The signal-

to-noise ratio (SNR) is fixed at 30 dB,20dB, and the parameter 𝜌 is set to 0.5. The

experimental setup involves training and testing different networks using various activity

values of 𝑝 within the range of 0.01 to 0.2. During the training phase, the loss function

employed is the normalized mean square error (NMSE). However, during the evaluation

or testing phase, the success of network recovery is determined based on the probability

of error falling below 0.05 for 30dB,0.1 for 20dB.

In the plot, it is evident that the MMSE-MMV-TISTA algorithm with estimated path

loss performs better compared to the true path loss. This implies that the estimated path

loss values approximate the actual path loss more closely to 1, resulting in improved
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performance for the MMSE-MMV-TISTA algorithm.

On the other hand, the L-MMSE-MMV-TISTA algorithm performs even better than

the MMSE-MMV-TISTA algorithm with estimated path loss. This suggests that the

L-MMSE-MMV-TISTA algorithm has an advantage over the MMSE-MMV-TISTA

algorithm, particularly when it comes to handling estimated path loss values.

Figure 3.10: Comparing MMSE-MMV-TISTA with Estimated Path Loss and True Path
Loss (Fig. 3.1)
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Figure 3.11: Comparing MMSE-MMV-TISTA with Estimated Path Loss and True Path
Loss (Fig. 3.2)
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CHAPTER 4

CONCLUSIONS

The Trainable ISTA (ISTA) algorithm, introduced by Ito et al. (2019), is known for

its strong sparse recovery capabilities, efficient convergence, and fast training process.

In Shiv et al. (2022) developed an extension of ISTA called L-MMSE-MMV-TISTA,

which replaces the MMSE shrinkage function with a model-based neural network. This

neural network can learn an appropriate shrinkage function. However, their approach

considered the shrinkage function to be the same for all users.

In our modification, we addressed the case of different path losses by adapting the

existing algorithm. We varied the number of nodes in hidden layer in the neural network

to better approximate the path loss model. Through our observations, we found that

the modified algorithm works effectively for various path losses. We also noticed that

L-MMSE-MMV-TISTA outperforms MMSE-MMV-TISTA, and it doesn’t require prior

knowledge of the covariance matrix, activity probability, or path loss.

Based on Shiv et al. (2022)’s findings, it is evident that L-MMSE-MMV-TISTA can

reduce the preamble length by 30-40%. In our modified version, incorporating 5 nodes

in hidden layer in the neural network, we achieved even better performance compared to

the existing L-MMSE-MMV-TISTA. Consequently, the modified algorithm also reduces

the preamble length by 30-40%.
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