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ABSTRACT

Electronic devices became ingrained in our daily lives. It is becoming increasingly

impossible for us to work without the use of electronic devices. For electronics to

function properly and cater to the need of people, verification of the design in it is of

utmost importance. Verification ensures accuracy of design and confirms that design

caters to the specifications.

This project work is about verification of Serial Peripheral Interface design integrated

with AXI4 bus. It is a full duplex, serial interface, used to communicate within short

distances. Speed of this interface is higher than that found in I2C. This interface is

commonly used for communication between the microcontrollers and small peripherals.

Python-based verification environment CoCoTb is used in development of testbenches

for verification of SPI and Verilator is used to perform design simulations.
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CHAPTER 1

VERIFICATION FRAMEWORK

Electronic devices became an imperative a part of our daily lives. Working without

the utilization of electronic devices has grown increasingly challenging. We board a

technologically advanced generation where robots and computing can perform human

tasks with greater ease and efficiency. As the size and complexity of designs increases,

the difficulty to test and verify the design also increases in scope. Day by day, we are

reducing the size of electronics to the smallest conceivable size and hence verification is

now a very important stage in the product development.

1.1 INTRODUCTION TO VERIFICATION

Verification is a technique that checks to see if the design fulfils the criteria and meets the

specifications. The most significant part of the product development stage is verification,

which takes up to 80 percent of the total development time. Verification is carried

out along with design development. Main goal of verification is to ensure functional

correctness before the design is taped out into chip. Verification is a crucial stage because

if a bug is discovered after the chip has been released, it can be very costly. The best

example of the significance of verification is intel floating point bug i.e, Pentium FDIV

bug. Intel announced a pre-tax charge of 475 million dollars against earnings, ostensibly

the total cost associated with replacement of the flawed processors. In 2019, this equates

to 743 million dollars (about 5500 crores).



1.2 TYPES OF VERIFICATION

There are two types of verification testing:

• Directed Verification

• Constrained Random Verification

Each method has its own pros and cons and depending on the design and its specification,

verification engineer should take a call on which type of verification to go with.

1.2.1 Directed Verification

In directed verification, a directed test will be written which has been designed to exercise

specific functionality in the design. In this type of verification, engineers spend good

amount of time to understand the functionality of design and identify different verification

scenarios to cover functionality. Once identification of scenarios is done, directed test

bench architecture is defined. This type of verification with a set of directed tests is

extremely time-consuming and difficult to maintain for more complex designs. Directed

tests only cover cases that the verification team has foreseen by going over specifications,

which might result in costly re-spins. Traditionally, Verification IP(VIP) works in a

directed test environment.

1.2.2 Constrained Random Verification

In constrained random verification, a random scenario is created with certain constraints

which restrict the parameters to values within the specification range to test the design.

Constraint random tests can cover a good number of scenarios and/or multiple

configurations. This methodology provides an efficient method for achieving coverage

targets while also assisting in the detection of corner case issues. Engineers do not need

to write as many test cases since a smaller set of constrained-random scenarios

combined with a few complete random test scenarios is sufficient to meet coverage

targets (functional as well as code coverage).

2



1.3 VERIFICATION FLOW

Figure 1.1: Verification Flow

1.3.1 Testplan Development

A test plan is a road map for carrying out verification. To develop a testplan, you’ll need

a thorough understanding of the design specifications. A test plan is a document that

outlines the features to be tested, how to test each feature, and the design parameters to

keep in mind while testing each feature. The preparation of a test plan is an essential step

in verification because it directs the entire testing process.

1.3.2 Test Environment

Some of the test environments available are:

• Verilog

• System Verilog

• UVM

• Cocotb

Verilog

Back within the 1990’s, Verilog was the primary language to verify functionality of

styles that were small, not very complex and had less features. Verilog was unable to

match the requirements as design complexity rose.

3



System Verilog

System Verilog, a Hardware Verification Language, is a Verilog extension containing

many such verification features that allow engineers to verify their designs in simulation

utilising complex testbench structures and random stimuli.

UVM

The Universal Verification Methodology(UVM) is a standardized methodology for

verification. It also makes reusing verification components easy.

CoCoTb

CoCoTb is a COroutine based COsimulation TestBench environment for verifying design

RTL using Python.Its free and open source.

1.3.3 Testbench Development

A test case is identified based on the test plan. Then, the testbench is created in our

chosen environment for each test scenario. A testbench basically provides the input

sequence that is needed for the specific test case. The testbench is then run, and the

result is observed. If the results are as expected, the test passes; if they are not, the test is

considered a failure.

4



CHAPTER 2

PROJECT GOAL

The purpose of this project is to create an effective testbench for validating the SPI design

with AXI4 bus in Cocotb environment. For SPI verification, Cocotb and Verilator are

employed. Other goal is to integrate the design with the Verification IP in SV based

environment and run a sample test on it to get a comparision between the SV based

Verification and Cocotb based verification. The following objectives help to attain the

goal:

• Understanding the SPI architecture and design specifications.

• Understanding the open source verification resources such as Cocotb, Verilator
and Coverage driven verification.

• Connect the components of the testbench to the design under test.

• Understanding the Verification IP interface.

• Connect the Verification IP to the design under test and developing a sample test
to run.



CHAPTER 3

DESIGN SPECIFICATIONS

The goal of this project work is to verify the functionality of the Serial Peripheral

Interface integrated with AXI4 bus.

3.1 INTRODUCTION TO SPI

The Serial Peripheral Interface (SPI) is a short-distance synchronous serial communication

interface specification. This interface bus is commonly used to send data between

microcontrollers and small peripherals such as sensors, ADCs, DACs, SRAM, shift

registers and others. It uses separate clock and data lines, along with a select line

to choose the device we want to communicate with. The speed of the bus range is

substantially higher than that found in I2C; speeds up to 80 MHz are not uncommon. A

master-slave architecture is used by SPI devices to communicate in full duplex mode.

Sometimes SPI is called a four-wire serial bus. Since SPI is a "synchronous" data bus, it

means that it uses separate lines for data and a "clock" that keeps both sides in perfect

sync.

3.2 SPI DESIGN FEATURES

The design under verification SPI has the following features:

• The output enables of NCS and SCLK decides whether they are generated by the
SPI controller or received from the device connected to the controller.

• LSB/MSB first transmission can be programmed.

• The length of the bit stream to be transferred or received can be programmed.

• 32-level receive and transmit FIFO is provided to reduce servicing overhead.



• 32-bit memory mapped tx and rx registers are used to enqueue and dequeue data
to and from FIFO respectively.

• Delayed transmit control i.e, setup and hold time for slave can be achieved.

• Required bit rate can be achieved by programming the prescaller register.

• Supports four clock modes - the idle state of SCLK and the edge at which output
has to be transmitted can be varied.

• Five communication statuses are available - busy, transmit enable, receive not
enable, FIFO thresholds and overrun.

• FIFO statuses like empty, quad, half and full levels are provided in FIFO status
register and interrupts can also be generated for these events.

3.3 INTERFACE

The SPI bus specifies four logic signals:

• SCLK

• MOSI(Master Out Slave In) : Data output from master

• MISO(Master In Slave Out) : Data ouput from slave

• NCS(Chip Select) : Active low output from master

SCLK

SCLK stands for Serial Clock. This signal is the clock pulse which synchronizes data

transmission. This is output from master.

MOSI

MOSI stands for Master Out Slave In. This signal is data output from master. It is used

for transfer of data from master to slave.

MISO

MISO stands for Master In Slave Out. This signal is data output from slave. It is used for

transfer of data from slave to master.

8



NCS

NCS is Chip Select Signal. N means negative to indicate that the signal is active low

signal. This signal is used by master to select the device for communication. It is slave

select output from master.

Figure 3.1: SPI Communication with one Master and one Slave

MOSI and MISO on a master connects to MISO and MOSI on a slave respectively. NCS

is used instead of an addressing concept and has the same functionality as chip select

signal in general.

To start SPI communication, the master must send the clock signal and enable the NCS

signal to choose the slave. Since NCS is an active low signal, the master must send a

logic 0 on this signal to select the slave. Because SPI is a full-duplex interface, both

the master and slave can send data via the MOSI and MISO channels at the same time.

During SPI communication, the data is simultaneously transmitted (shifted out serially

onto the MOSI) and received (the data on the bus MISO is sampled). The SCLK signal

is used to synchronise data shifting and sampling.

3.4 SERIAL CLOCK CONFIGURATION

By providing a precise choice of clock phase and clock polarity, the SPI interface allows

the user to sample and/or shift data on the rising or falling edge of the clock.
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Table 3.1: The different combinations of CPHA, CPOL and the edge used to input/output
the data

CPHA CPOL Edge to input/output data

0 0

In idle state, SCLK is 0. Data to be
transmitted is sent out on falling edge
of SCLK and data to be received is
sampled on rising edge of SCLK.

0 1

In idle state, SCLK is 1. Data to be
transmitted is sent out on falling edge
of SCLK and data to be received is
sampled on rising edge of SCLK.

1 0

In idle state, SCLK is 0. Data to be
transmitted is sent out on rising edge
of SCLK and data to be received is
sampled on falling edge of SCLK.

1 1

In idle state, SCLK is 1. Data to be
transmitted is sent out on rising edge
of SCLK and data to be received is
sampled on falling edge of SCLK.

3.4.1 Clock Phase and Clock Polarity

The clock phase and polarity can be chosen by the master. During the idle state, the

CPOL bit controls the polarity of the clock signal. The idle state is defined as the time

when NCS is high at the start of transmission and transitions to low at the end. The

CPHA bit selects the clock phase. Depending on the CPHA bit, the rising or falling

clock edge is used to input/output the data. Table 3.1 shows the various combinations of

CPHA and CPOL, as well as the edges that are utilised to transmit and receive data.

Figure 3.2 through Figure 3.5 show examples of communication in four different CPHA,

CPOL configurations in SPI. The data is displayed on the MOSI and MISO lines in these

examples. The dotted green line indicates the start and end of the SPI transaction, orange

indicates the edge at which data is received, and the edge at which data is transmitted is

indicated in blue.
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SCLK Configuration 1: CPHA=0, CPOL=0

Figure 3.2 shows the timing diagram for SPI transaction when CPHA=0 and CPOL=0.

The clock polarity is 0 in this mode, indicating that the clock signal’s idle condition is

low. In this mode, the clock phase is 0, indicating that data is sampled on the rising edge

of the SCLK signal (shown by the orange dotted line), and data is transmitted on the

falling edge (shown by the dotted blue line).

Figure 3.2: SPI Transaction with CPHA=0 and CPOL=0

SCLK Configuration 2: CPHA=0, CPOL=1

Figure 3.3 shows the timing diagram for SPI transaction when CPHA=0 and CPOL=1.

The clock polarity is 1 in this mode, indicating that the clock signal’s idle state is high.

In this mode, the clock phase is 0, indicating that data is sampled on the rising edge of

the SCLK signal (shown by the orange dotted line), and data is transmitted on the falling

edge (shown by the dotted blue line).

SCLK Configuration 3: CPHA=1, CPOL=0

Figure 3.4 shows the timing diagram for SPI transaction when CPHA=1 and CPOL=0.

The clock polarity is 0 in this mode, indicating that the clock signal’s idle condition is

low. In this mode, the clock phase is 1, indicating that data is sampled on the falling

edge of the SCLK signal (shown by the orange dotted line), and data is transmitted on

the rising edge (shown by the dotted blue line).
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Figure 3.3: SPI Transaction with CPHA=0 and CPOL=1

Figure 3.4: SPI Transaction with CPHA=1 and CPOL=0

SCLK Configuration 4: CPHA=1, CPOL=1

Figure 3.5 shows the timing diagram for SPI transaction when CPHA=1 and CPOL=1.

The clock polarity is 1 in this mode, indicating that the clock signal’s idle state is high.

In this mode, the clock phase is 1, indicating that data is sampled on the falling edge of

the SCLK signal (shown by the orange dotted line), and data is transmitted on the rising

edge (shown by the dotted blue line).
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Figure 3.5: SPI Transaction with CPHA=1 and CPOL=1

3.5 COMMUNICATION MODES

SPI has four possible communication modes:

• Only Transmit Mode

• Only Receive Mode

• Transmit and Immediate Receive Mode(Half Duplex)

• Simultaneous Transmit and Receive Mode(Full Duplex)

3.6 CONFIGURATION REGISTERS

SPI has the following configuration registers :

• Communication Control Register

• Clock Control Register

• Transmit Data Register

• Receive Data Register

• Interrupt Enable Register

• FIFO Status Register

• Communication Status Register

• Input Qualification Control Register
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Table 3.2: Offset address and access permission about each SPI register

SPI Register Name Offset Address Size Access
Permission

Communication Control
Register ‘h00 32 bits Read and Write

Clock Control Register ‘h04 32 bits Read and Write
Transmit Data Register ‘h08 32 bits Read and Write
Receive Data Register ‘h0C 32 bits Read and Write
Interrupt Enable
Register ‘h10 16 bits Read and Write

FIFO Status Register ‘h14 8 bits Read only
Communication Status
Register ‘h18 16 bits Read only

Input Qualification
Control Register ‘h1C 3 bits Read and Write

3.6.1 Communication Control Register

Communication control register is a 32-bit register used to enable SPI communication,

to make SPI module act as master or slave, to set LSB/MSB first transmission, to set the

communication mode , to set the number of bits to be transmitted/received and to enable

SCLK,MISO,MOSI,NCS pins act as output or input. This register is described in table

3.3 .

Reset Value = 0x02C00000

3.6.2 Clock Control Register

Clock control register is a 32-bit register used to set the clock polarity and clock phase,

set a prescaler value to achieve the desired bit rate, to set slave select active to transmit

begin delay and transmit end to slave select disable delay. This register is described in

table 3.4 .

Reset Value = 0x00000000
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Table 3.3: Communication Control Register Field Descriptions

Bit Field Description
31-26 Reserved Reads return 0 and writes have no effect.

25 OUTENMOSI
Output enable for MOSI pin.
0 = MOSI will be an input pin.
1 = MOSI will be an output pin.

24 OUTENMISO
Output enable for MISO pin.
0 = MISO will be an input pin.
1 = MISO will be an output pin.

23 OUTENSCLK
Output enable for SCLK pin.
0 = SCLK will be an input pin.
1 = SCLK will be an output pin.

22 OUTENCS
Output enable for NCS pin.
0 = NCS will be an input pin.
1 = NCS will be an output pin.

21-14 TOTALBITSRX Total number of bits to be received. The values
vary from 0 to 32.

13-6 TOTALBITSTX Total number of bits to be transmitted. The
values vary from 0 to 32.

5-4 COMMMODE

SPI Communication Mode.
00 - Only Transmit Mode.
01 - Only Receive Mode.
10 - Transmit and Immediate Receive Mode(Half
Duplex).
11 - Simultaneous Transmit and Receive
Mode(Full Duplex).

3 IMMRX

Immediate Receive.
0 = Immediate response is not needed from
the slave immediately after the transmission of
command.
1 = Immediate response is needed from the slave
immediately after the transmission of command.

2 LSBFIRST

LSB or MSB first.
0 = Data is transmitted or received with MSB
first.
1 = Data is transmitted or received with LSB
first.

1 ENABLE
SPI Enable. This bit enables the SPI transfers.
0 = SPI communication is disabled.
1 = SPI communication is enabled.

0 MASTER
SPI Master. This bit enables master mode.
0 = SPI module acts as slave.
1 = SPI module acts as master.
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Table 3.4: Clock Control Register Field Descriptions

Bit Field Description
31-26 Reserved Reads return 0 and writes have no effect.

25-18 TX2NCSDELAY
Transmit end to slave select disable delay. It is
the hold time for the slave device. It takes values
from 0 to 255 indicating 0 to 255 SCLK cycles.

17-10 NCS2TXDELAY

Slave select active to transmit begin delay. It
is the setup time for the slave device. It takes
values from 0 to 255 indicating 0 to 255 SCLK
cycles.

9-2 PRESCALER

These bits sets the prescaler value. Internal
clock frequency is divided by the prescaler value
to attain required bit rate. It is a 8-bit value and
hence can provide maximum of 255 different
data rates.
Required Bit Rate = Internal clock
frequency/(Prescaler value+1)

1 CLKPHASE

This bit gives the clock offset at which the data
to be transmitted or received.
0 = SPI receives data in the first clock transition.
1 = SPI receives data in the second clock
transition.

0 CLKPOLARITY This bit holds the value of SCLK in idle state.

3.6.3 Transmit Data Register

Transmit data register can be a 32-bit register or 16-bit register or 8-bit register which is

used to hold the data which is to be transmitted.

3.6.4 Receieve Data Register

Receive data register can be a 32-bit register or 16-bit register or 8-bit register which is

used to hold the data which is received.

3.6.5 Interrupt Enable Register

Interrupt enable register is a 32-bit register used to enable TX FIFO and RX FIFO

interrupts - interrupts are sent when FIFO is empty, 1/4th full, half-full or full and when

overrun occurs. This register is described in table 3.5 and table 3.6 .

Reset Value = 0x00000000
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3.6.6 FIFO Status Register

FIFO status register is a 8-bit register used to know the status of TX FIFO and RX FIFO.

Each bit of this register will be set according to the status of TX and RX FIFO i.e, empty

or quarter-full or half-full or full. This register is described in table 3.7 .

Reset Value = 0x00

3.6.7 Communication Status Register

Communication Status Register is a 8-bit register used to enable SPI transmission and

SPI receive, used to know the status of communication and number of entries in FIFO.

This register is described in table 3.8 .

Reset Value = 0x0004

3.6.8 Input Qualification Control Register

FIFO status register is a 3-bit register used to enable input qualification control in case of

receive mode.

Reset Value = 0
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Table 3.5: Interrupt Enable Register Field Descriptions

Bit Field Description
15-9 Reserved Reads return 0 and writes have no effect.

8 RXFIFOOVERRUNERREN

Overrun occurs when the received data
cannot be enqueued because the RX FIFO
is full.
0 = Overrun interrupt is not sent to PLIC.
1 = Overrun interrupt is sent to PLIC.

7 RXFIFOFULLINTREN

RX FIFO full interrupt enable.
0 = RX FIFO full interrupt is not sent to
PLIC.
1 = RX FIFO full interrupt i.e, when RX
FIFO is full(has 32 entries), interrupt is
sent to PLIC.

6 RXFIFOHALFINTREN

RX FIFO half interrupt enable.
0 = RX FIFO half interrupt is not sent to
PLIC.
1 = RX FIFO half interrupt i.e, when RX
FIFO is half full(has 16 entries), interrupt
is sent to PLIC.

5 RXFIFOQUADINTREN

RX FIFO quad interrupt enable.
0 = RX FIFO quad interrupt is not sent to
PLIC.
1 = RX FIFO quad interrupt i.e, when RX
FIFO is quad full(has 8 entries), interrupt
is sent to PLIC.

4 RXFIFOEMPTYINTREN

RX FIFO empty interrupt enable.
0 = RX FIFO empty interrupt is not sent
to PLIC.
1 = RX FIFO empty interrupt i.e, when RX
FIFO is empty(has 0 entries), interrupt is
sent to PLIC.

3 TXFIFOFULLINTREN

TX FIFO full interrupt enable.
0 = TX FIFO full interrupt is not sent to
PLIC.
1 = TX FIFO full interrupt i.e, when TX
FIFO is full(has 32 entries), interrupt is
sent to PLIC.
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Table 3.6: Interrupt Enable Register Field Descriptions Cont.

Bit Field Description

2 TXFIFOHALFINTREN

TX FIFO half interrupt enable.
0 = TX FIFO half interrupt is not sent to
PLIC.
1 = TX FIFO half interrupt i.e, when TX
FIFO is half full(has 16 entries), interrupt
is sent to PLIC.

1 TXFIFOQUADINTREN

TX FIFO quad interrupt enable.
0 = TX FIFO quad interrupt is not sent to
PLIC.
1 = TX FIFO quad interrupt i.e, when TX
FIFO is quad full(has 8 entries), interrupt
is sent to PLIC.

0 TXFIFOEMPTYINTREN

TX FIFO empty interrupt enable.
0 = TX FIFO empty interrupt is not sent
to PLIC.
1 = TX FIFO empty interrupt i.e, when TX
FIFO is empty(has 0 entries), interrupt is
sent to PLIC.

3.7 CONFIGURATION OF SPI

To start the SPI transmit or receive, we need to configure the SPI configuration registers

as per our requirements in a prescribed order. In this section, we will look into how to

configure SPI for transmit and receive.

3.7.1 SPI Transmission

To transmit data, we have to :

1. First, write the data to be transmitted into the transmit data register. Since data bus
width is 32 bits according to the specification, if we want to transmit more than 32
bits then we have to write multiple times into the transmit data register and every
write will push the contents into the TX FIFO.

2. Next, we have to write into the clock control register as per our specifications.

3. Then, as per our requirement, we have to write into the interrupt enable register.

4. Then , we have to write into the input qualification control register as per our
criteria.
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Table 3.7: FIFO Status Register Field Descriptions

Bit Field Description

7 RXFIFOFULL
RX FIFO full status bit.
0 = RX FIFO is not full.
1 = RX FIFO is full(has 32 entries).

6 RXFIFOHALF
RX FIFO half status bit.
0 = RX FIFO is not half full.
1 = RX FIFO is half full(has 16 entries).

5 RXFIFOQUAD
RX FIFO quad status bit
0 = RX FIFO is not quad full.
1 = RX FIFO is quad full(has 8 entries).

4 RXFIFOEMPTY
RX FIFO empty status bit.
0 = RX FIFO is not empty.
1 = RX FIFO is empty(has 0 entries).

3 TXFIFOFULL
TX FIFO full status bit.
0 = TX FIFO is not full.
1 = TX FIFO is full(has 32 entries).

2 TXFIFOHALF
TX FIFO half status bit.
0 = TX FIFO is not half full.
1 = TX FIFO is half full(has 16 entries).

1 TXFIFOQUAD
TX FIFO quad status bit.
0 = TX FIFO is not quad full.
1 = TX FIFO is quad full(has 8 entries).

0 TXFIFOEMPTY
TX FIFO empty status bit.
0 = TX FIFO is not empty.
1 = TX FIFO is empty(has 0 entries).

5. Lastly, we have to write into the communication control register accordingly and
enable SPI transmit.

3.7.2 SPI Receive

To receive data, we have to :

1. First, we have to write into the clock control register as per our criteria.

2. Then, as per our requirement, we have to write into the interrupt enable register.

3. Next , we have to write into the input qualification control register as per our
requirement.

4. Now, we have to write into the communication control register accordingly and
enable SPI receive.
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5. The received data will be available in the receive data register. Since data bus
width is 32 bits according to the specification, if we want to receive more than 32
bits then we have to read multiple times from the receive data register and every
read will pop the contents from the RX FIFO.

3.8 OPERATION

SPI can operate as a master or as a slave.

3.8.1 SPI Master Mode

As soon as SPI communication is enabled via communication control register, the

following happens sequentially,

1. After one cycle, slave select signal NCS goes low.

2. In the next cycle, SCLK counter starts and upcounts till prescale value. The SCLK
signal value inverts or remains the same depending on the clock phase and clock
polarity set in the clock control register. This SCLK signal generation happens
throughout the SPI transaction.

3. If any setup delay set is set in the clock control register, SCLK signal is not sent as
output till the setup delay is met. If there is no setup delay, SCLK signal will be
sent as output immediately in the next cycle after NCS signal goes low.

4. Once the setup delay is met, transmit from the controller happens when SCLK
counter is zero and that value is held till the counter reaches the prescaler value.

5. The controller reads an input value when SCLK counter is equal to half the
prescaler value.

6. Only transmit, only receive, transmit and immediate receive or simultaneous
transmit and receive happens based on the communication mode set in the
communication control register.

7. The transmit/receive/ both transmit and receive continues till the number of bits
to be transmitted or the number of bits to be received is done according to the
configuration in the communication control register.

8. Once the transmit - receive is done, the SCLK signal stops but NCS signal will go
high only after the hold delay is met according to the configuration in the clock
control register. This completes the SPI transaction and SPI enable signal will
also be reset to zero. To start the next transaction we need to configure the SPI
configuration registers accordingly again.

21



3.8.2 SPI Slave Mode

Slave mode is similar to the master mode except that NCS signal and SCLK signal will

be received from the SPI device connected to the controller. The SPI enable signal is

expected to be set before the NCS signal goes low and once the NCS signal goes low, the

SPI state changes happens same as in master mode i.e, SPI enable signal can be changed

to SPI enable bit. In slave mode, SCLK counter will not be used, instead the rising or

falling edge is detected and transmit and receive edge is computed. Once the NCS signal

goes high, SPI enable signal is reset by the controller.

3.9 SPI DUT BLOCK DIAGRAM

Fig 3.6 shows the block diagram of the design under test in this project i.e, SPI.

Figure 3.6: Block Diagram of the SPI DUT
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Table 3.8: Communication Status Register

Bit Field Description

7 OVERRUN
This bit is set when RX FIFO is full(has
32 entries) and there is a write to the RX
data register.

6-5 RXFIFO

RX FIFO Level.
00 - RX FIFO is empty.
01 - RX FIFO is quad full.
10 - RX FIFO is half full.
11 - RX FIFO is full.

4-3 TXFIFO

TX FIFO Level.
00 - TX FIFO is empty.
01 - TX FIFO is quad full.
10 - TX FIFO is half full.
11 - TX FIFO is full.

2 RXNE

Receiver Not Enable.
When this is reset(0), the data is being
received. Once the receive operation starts
this bit will be reset and after completion
of receive operation this bit will be set.

1 TXE

Transmitter Enable.
When this is set(1), the data is being
transmitted. Once transmit operation starts
this bit will be set and after completion of
reset operation this bit will be reset. Reset
value is 0.

0 BUSY

SPI Busy.
1 = SPI communication is being carried
out.
0 = SPI is in Idle state.
When NCS goes low, this bit will be set
and when NCS goes high this bit will be
reset. Reset value is 0.
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CHAPTER 4

TESTPLAN

Table 4.1: Test plan for Verification of SPI-1

Features Sub-Features Testplan

MOSI OUTPUT
ENABLE REGISTER Reserved

1. Set this to 1 and check if
output is being transmitted or
not.
2. Set this to 0 and check if
data is being received or not.

MISO OUTPUT
ENABLE REGISTER

1 bit register storing the MISO
pin’s output enable. If set,
output is transmitted through
this pin else it is read from this
pin. Reset value is 0.

1. Set this to 1 and check if
output is being transmitted or
not.
2. Set this to 0 and check if
data is being received or not.

NCS OUTPUT
ENABLE REGISTER

1 bit register storing the
NCS pin’s output enable. If
set, the controller generates
NCS(Master mode) else NCS
is expected from the SPI
device(Slave mode). Reset
value is 1.

1. Set this to 1 and check
if NCS is being internally
generated or not.
2. Set this to 0 and check if
NCS is being received or not.

SCLK OUTPUT
ENABLE REGISTER

1 bit register storing the
SCLK pin’s output enable. If
set, the controller generates
the SCLK(Master mode) else
SCLK is expected from
the SPI device(Slave mode).
Reset value is 1.

1. Set this to 1 and check
if SCLK is being internally
generated or not.
2. Set this to 0 and check
if SCLK is being received or
not."



Table 4.2: Test plan for Verification of SPI-2

Features Sub-Features Testplan

TOTAL BIT
TX REGISTER

8 bit register storing the
total number of bits to
be transmitted in a SPI
transaction. Reset value is 0.

1. Assign a random number
to this register (less than 32 as
data bus is only 32 bits wide
to perform data transfer in a
single transaction) and check if
the number of bits transmitted
is matching the value stored by
this register.
2.Assign a random number to
this register (greater than 32
as data bus is only 32 bits
wide to perform data transfter
in mutiple transactions) and
check if the number of bits
transmitted is matching the
value stored by this register.

TOTAL BIT
RX REGISTER

8 bit register storing the total
number of bits to be received
in a SPI transaction. Reset
value is 0.

Assign a random number to
this register and check if the
number of bits received is
matching the value stored by
this register.

COMM MODE
REGISTER

2 bit register stroring the
communication mode of the
SPI transaction. 00 indicates
only transmit mode, 01
indicates only receive mode,
10 indicates transmit and
immediate receive mode and
11 indicates transmit and
receive mode. Reset value is
0.

1. Set this to 00 and confirm
that transmission is going on
and nothing is being received.
2. Set this to 01 and confirm
that receiving is going on and
nothing is being transmitted.
3. Set this to 10 and
confirm that receiving happens
only after completion of
transmission.
4. Set this to 11 and see if both
transmission and receiving are
happening simultaneously."

LSBFIRST REGISTER

1 bit register storing whether
the SPI transaction is LSB first.
If set, it means LSB first else it
means MSB first. Reset value
is 0.

1. Set this to 1 and check if
LSB is first.
2. Set this to 0 and check if
MSB is first."

SPI EN REGISTER

1 bit register storing the SPI
enable control. Once this bit
is set, the SPI transaction will
start and it will be reset at the
end of SPI transaction. Reset
value is 0.

1. Set this to 1 and see if SPI
transaction starts.
2. Also check that this bit
should be 0 after completion
of the transaction."
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Table 4.3: Test plan for Verification of SPI-3

Features Sub-Features Testplan

T CS DELAY
REGISTER

8 bit register storing the hold
delay. Reset value is 0.

Store a random value in this
register and check that NCS
goes high only after this delay..

CS T DELAY
REGISTER

8 bit register storing the setup
delay. Reset value is 0.

Store a random value in this
register and check that SCLK
is sent only after this delay.

PRESCALLER
REGISTER

8 bit register storing the
prescaller value of the SCLK.
Reset value is 0.

Store a random value in this
register and check that SCLK
generation only happens after
the SCLK counter counts till
prescaller value.

CLK PHASE
REGISTER

1 bit register storing the clock
phase. Reset value is 0.

Store a random value and
check for sclk inversion.

CLK POLARITY
REGISTER

1 bit register storing the clock
polarity. Reset value is 0.

Store a random value and
check for sclk inversion.

TX DATA REGISTER

32 bit register storing the data
to be transmitted. This register
is written by the AXI write
request and once written the
data is transffered to TX FIFO.
Reset value is 0.

Check that AXI write request
properly writes data to this
register and also that the data is
being transferred to TX FIFO.

RX DATA REGISTER

32 bit register storing the data
to be received. This register is
read by the AXI read request.
The data is written from the
RX FIFO. Reset value is 0.

Check that data is properly
written from RX FIFO to this
register and AXI read request
reads this data.

RX OVER RUN ERR
INTR ERR REGISTER

1 bit register storing overrun
interrupt enable bit. Overrun
occurs when the received data
cannot be enqueued because
the RX FIFO is full. When
set, ovverrun interrupt is sent
to PLIC. Reset value is 0.

Store 32 entries into RX FIFO
and enable this bit. Check
that overrun interrupt is sent
to PLIC.

RX FIFO FULL INTR
EN REGISTER

1 bit register storing RX FIFO
full interrupt enable bit. When
set, interrupt is sent to PLIC
when RX FIFO is full i.e, 32
entries. Reset value is 0.

Store 32 entries into RX FIFO
and enable this bit. Check that
RX FIFO full interrupt is sent
to PLIC.

RX FIFO HALF INTR
EN REGISTER

1 bit register storing RX
FIFO half interrupt enable bit.
When set, interrupt is sent to
PLIC when RX FIFO is half-
full i.e, 16 entries. Reset value
is 0.

Store 16 entries into RX FIFO
and enable this bit. Check that
RX FIFO half interrupt is sent
to PLIC.
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Table 4.4: Test plan for Verification of SPI-4

Features Sub-Features Testplan

RX FIFO QUAD INTR
EN REGISTER

1 bit register storing RX FIFO
full interrupt enable bit. When
set, interrupt is sent to PLIC
when RX FIFO has 8 entries.
Reset value is 0.

Store 8 entries into RX FIFO
and enable this bit. Check that
RX FIFO quad interrupt is sent
to PLIC.

RX FIFO EMPTY
INTR EN REGISTER

1 bit register storing RX FIFO
full interrupt enable bit. When
set, interrupt is sent to PLIC
when RX FIFO is empty.
Reset value is 0.

Store 0 entries into RX FIFO
and enable this bit. Check that
RX FIFO empty interrupt is
sent to PLIC.

TX FIFO FULL INTR
EN REGISTER

1 bit register storing TX FIFO
full interrupt enable bit. When
set, interrupt is sent to PLIC
when TX FIFO is full i.e, 32
entries. Reset value is 0.

Store 32 entries into TX FIFO
and enable this bit. Check that
TX FIFO full interrupt is sent
to PLIC.

TX FIFO HALF INTR
EN REGISTER

1 bit register storing TX
FIFO half interrupt enable bit.
When set, interrupt is sent to
PLIC when TX FIFO is half-
full i.e, 16 entries. Reset value
is 0.

Store 16 entries into TX FIFO
and enable this bit. Check that
TX FIFO half interrupt is sent
to PLIC.

TX FIFO QUAD INTR
EN REGISTER

1 bit register storing TX FIFO
full interrupt enable bit. When
set, interrupt is sent to PLIC
when TX FIFO has 8 entries.
Reset value is 0.

Store 8 entries into TX FIFO
and enable this bit. Check that
TX FIFO quad interrupt is sent
to PLIC.

TX FIFO EMPTY
INTR EN REGISTER

1 bit register storing TX FIFO
full interrupt enable bit. When
set, interrupt is sent to PLIC
when TX FIFO is empty.
Reset value is 0.

Store 0 entries into TX FIFO
and enable this bit. Check that
TX FIFO empty interrupt is
sent to PLIC.

OVER RUN
REGISTER

1 bit register storing overrun
bit. When there is an overrun
during receive operation, this
bit will be set. Reset value is
0.

Store 32 entries in RX FIFO
and perform one more receive
operation. Check that this bit
should be set.
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Table 4.5: Test plan for Verification of SPI-5

Features Sub-Features Testplan

RX FIFO TH
REGISTER

2 bit register storing RX FIFO
threshold bits to know the
number of entires in the RX
FIFO. Reset value is 0.

Set random number of entries
in RX FIFO and check if no of
entries<8,
rg_rx_fifo_th=0,
if no of entries is 8-15 then
rg_rx_fifo_th=1,
if no of entries is 16-23 then
rg_rx_fifo_th=2
and if no of entries>24 then
rg_rx_fifo_th = 3.

TX FIFO TH
REGISTER

2 bit register storing TX FIFO
threshold bits to know the
number of entires in the TX
FIFO. Reset value is 0.

Set random number of entries
in TX FIFO and check if no
of entries<8, rg_tx_fifo_th=0,
if no of entries is 8-15
then rg_tx_fifo_th=1, if no
of entries is 16-23 then
rg_tx_fifo_th=2 and if no of
entries>24 then rg_tx_fifo_th
= 3.

RXNE REGISTER

1 bit register storing receive
not enable bit. Once
the receive operation starts
this bit will be reset and
after completion of receive
operation this bit will be set.
Reset value is 1.

Check that when receive
operation starts this bit should
be 1 and after completion of
receive this should be 0.

TXE REGISTER

1 bit register storing transmit
enable bit. Once transmit
operation starts this bit will
be set and after completion of
transmit operation this bit will
be reset. Reset value is 0.

Check that when transmit
operation starts this bit should
be 1 and after completion of
transmission this should be 0.

BUSY REGISTER

1 bit register storing SPI busy
bit. When NCS goes low, this
bit will be set and when NCS
goes high this bit will be reset.
Reset value is 0.

Check that after NCS goes
low this bit sets to indicate
that SPI is busy and a
transmission/receiving is
going on.

RX FIFO FULL
REGISTER

1 bit register storing the RX
FIFO full status bit. This bit
will be set when RX FIFO is
full i.e, 32 entries. Reset value
is 0.

Store 32 values in RX FIFO
and check if this bit is set or
not. Store a random number
of values other than 32 in RX
FIFO and check if this bit is 0
or not.
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Table 4.6: Test plan for Verification of SPI-6

Features Sub-Features Testplan

RX FIFO HALF
REGISTER

1 bit register storing the RX
FIFO half status bit. This bit
will be set when RX FIFO is
half-full i.e, 16 entries. Reset
value is 0.

Store 16 values in TX FIFO
and check if this bit is set or
not. Store a random number
of values other than 16 in TX
FIFO and check if this bit is 0
or not.

RX FIFO QUAD
REGISTER

1 bit register storing the RX
FIFO quad status bit. This bit
will be set when RX FIFO has
8 entries. Reset value is 0.

Store 8 values in RX FIFO
and check if this bit is set or
not. Store a random number of
values in RX FIFO and check
if this bit is 0 or not.

RX FIFO EMPTY
REGISTER

1 bit register storing the RX
FIFO empty status bit. This
bit will be set when RX FIFO
is empty . Reset value is 0.

Store some value in RX FIFO
and check the value of this
bit(should be 0). Empty RX
FIFO and check the value of
this bit(should be 1).

TX FIFO FULL
REGISTER

1 bit register storing the TX
FIFO full status bit. This bit
will be set when TX FIFO is
full i.e, 32 entries. Reset value
is 0.

Store 32 values in TX FIFO
and check if this bit is set or
not. Store a random number
of values other than 32 in TX
FIFO and check if this bit is 0
or not.

TX FIFO HALF
REGISTER

1 bit register storing the TX
FIFO half status bit. This bit
will be set when TX FIFO is
half-full i.e, 16 entries. Reset
value is 0.

Store 16 values in TX FIFO
and check if this bit is set or
not. Store a random number
of values other than 16 in TX
FIFO and check if this bit is 0
or not.

TX FIFO QUAD
REGISTER

1 bit register storing the TX
FIFO quad status bit. This bit
will be set when TX FIFO has
8 entries. Reset value is 0.

Store 8 values in TX FIFO
and check if this bit is set or
not. Store a random number
of values other than 8 in TX
FIFO and check if this bit is 0
or not.

TX FIFO EMPTY
REGISTER

1 bit register storing the TX
FIFO empty status bit. This
bit will be set when TX FIFO
is empty . Reset value is 0.

Store some value in TX FIFO
and check the value of this
bit(should be 0). Empty TX
FIFO and check the value of
this bit(should be 1).

NCS REGISTER

1 bit NCS register. This
register will be set by the
controller in master mode
whereas it will be set from ncs
io input in slave mode. Reset
value is 1.

Set this to 1 and check if
controller is generating NCS
or not. Set this to 0 and check
if NCS is being received or
not.
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Table 4.7: Test plan for Verification of SPI-7

Features Sub-Features Testplan

SCLK REGISTER

1 bit SCLK register. This
register will be set by the
controller in master mode
whereas it will be set from sclk
to input in slave mode. Reset
value is 0.

Set this to 1 and check if
controller is generating SCLK
or not. Set this to 0 and check
if SCLK is being received or
not.

PREV SCLK
REGISTER

1 Bit previous SCLK register.
This register holds the
previous value of sclk register
to detect the edges in slave
mode. Reset value is 0.

Perform two transactions and
see if this register is correctly
getting the sclk.

CLK COUNTER
REGISTER

8 bit clock counter register
used in master mode to
generate SCLK which
continously upcounts till clock
prescale value and resets.
This counting operation will
be active throughout the SPI
transaction. Reset value is 0.

Store a random value in
prescaller register and check
that this register should count
till the prescale value and after
the counter reaches prescale
value SCLK is generated.

TXDATA TO TXFIFO
REGISTER

1 bit register used to enable
the transfer of TX data from
tx_data register to TX FIFO.
When this bit is set, the
contents from TX data is read
and enqueued to TX FIFO.
The ARSIZE/AWSIZE from
AXI read and write request
is used to decide the enqueue
length. Reset value is 0.

Set this bit to 1 and check
the enqueuing of data to
TX FIFO with different
AWSIZE/ARSIZE values.

RXFIFO TO RXDATA
REGISTER

1 bit register used to enable the
transfer of data from RX FIFO
to rx_data register. When
this bit is set, the contents
from RX FIFO is transferred
to rx_data register. The
ARSIZE/AWSIZE from AXI
read and write request is used
to decide the dequeue length.
Reset value is 0.

Set this bit to 1 and check
the dequeuing of data from
RX FIFO with different
AWSIZE/ARSIZE values.

TXFIFO ENQ SIZE
REGISTER

3 bit register used to hold the
AWSIZE from tx_data AXI
write request. This decides
the number of elements that
will be enqueued to TX FIFO.
Reset value is 0.

In above to set different values,
store a random number in this
register.
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Table 4.8: Test plan for Verification of SPI-8

Features Sub-Features Testplan

CURR TX BYTE
REGISTER

8 bit register storing the
current TX byte that is being
transmitted. Reset value is 0.

Simply stores current byte.

CURR RX BYTE
REGISTER

8 bit register storing the
current RX byte that is being
received. Reset value is 0.

Simply stores current byte.

COUNT TX DATA
BITS REGISTER

8 bit register storing the
count of number of TX
bits transmitted in a SPI
transaction. Reset value is 0.

Simply stores count of TX
bits. Check that count is being
stored properly.

COUNT RX DATA
BITS REGISTER

8 bit register storing the count
of number of RX bits received
in a SPI transaction. Reset
value is 0.

Simply stores count of RX
bits. Check that count is being
stored properly.

COUNT TX DATA
REGISTER

3 bit register storing the count
of number of bits transmitted
in the current TX byte. Reset
value is 0.

Simply stores count of TX bits
in current byte. Check that
count is being stored properly.

COUNT RX DATA
REGISTER

3 bit register storing the count
of number of bits transmitted
in the current RX byte. Reset
value is 0.

Simply stores count of RX bits
in current byte. Check that
count is being stored properly.

TRANSMIT DATA
REGISTER

1 bit register storing the
current bit that is being
transmitted. Reset value is 0.

Simply stores the bit.

TRANSMIT STATE
REGISTER

ENUM based register storing
data type transmit_state. This
register stores the transmit
state of the transmitter. Reset
value is IDLE.

Storage register, nothing to
check.

RECEIVE STATE
REGISTER

ENUM based register storing
data receive_state. This
register stores the receive state
of the receiver. Reset value is
IDLE.

Storage register, nothing to
check.

ACTIVE REGISTER

ENUM based register storing
data type spi_state. This
register stores the SPI state.
Reset value is IDLE.

Storage register, nothing to
check.
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CHAPTER 5

TOOLS AND PACKAGES USED

5.1 VERILATOR

Verilator is run with parameters similar to Synopsys’s VCS. It reads the provided Verilog

or SystemVerilog code, does lint checks, and optionally inserts assertion checks and

coverage-analysis points, and then "Verilates" it. Verilator in this project is used for

design simulation and is also used to collect code coverage.

5.2 COCOTB

CoCoTb is COroutine based COsimulation TestBench environment. It is based on

python and is used for System Verilog RTL and HDL verification. It is open-source and

completely free. CoCoTb follows UVM’s design reuse and randomised testing principles,

however it’s written in Python. CoCoTb is provided as a python library.

5.2.1 Advantages of CoCoTb

• Tests are automatically discovered by CoCoTb and hence we need not take the pain
and add a test to regression.

• Python is used for entire verification and has multiple advantages over HDL and
SV. HDL is not suitable for verification of complex designs. SV or UVM can
be used, but along with being powerful languages they are very complicated too.
Python, on the other hand is easy to learn and use, includes a large library of
ready-to-use code which can be re-used and mainly without needing to recompile
the design or exit the simulator GUI, tests can be changed and re-run.

5.2.2 Architecture

A standard simulator is used to execute the design under test (DUT). In the simulator,

it is instantiated as the toplevel. CoCoTb acts as a bridge between the simulator and

Python and employs the Verilog Procedural Interface (VPI) or the VHDL Procedural



Interface(VHPI) for the same. It applies the stimulus to the DUT’s inputs and keeps track

of the output from Python.

Python testbench is nothing but simple python function known as a coroutine. It can

change values in the DUT hierarchy, wait for simulation time to elapse and also keep an

eye on the rising edge and falling edge of the signals.

Figure 5.1: Basic CoCoTb Architecture

5.2.3 Using CoCoTb

To indicate which files to include in simulation, each CoCoTb project requires a Makefile.

Fig 5.2 shows the Makefile used in this project for verification of SPI.

Components of the Makefile are :

• SIM : Sets the simulator to use. In this project, we are using Verilator.

• TOPLEVEL_LANGUAGE : Used to tell the simulator, the top level language
of RTL. This can be Verilog or VHDL. In this project, the toplevel language is
Verilog.

• COCOTB_HDL_TIMEUNIT : Used to set the time unit of the timescale. Time
unit is the unit of measurement for delays and simulation time.
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• COCOTB_HDL_TIMEPRECISION : Used to set the time precision of the
timescale. Time precision defines how delay quantities are rounded off before they
are used in simulation.

• EXPORT PARAM : This is used to set the AXI4 bus parameters in the design.

• COMPILE_ARGS : This is used to provide compile arguments.

• PWD : PWD is the present work directory.

• TOPDIR : This is the top directory and this is passed from the terminal in the run
time.

• VERILOG_SOURCES : This is used to tell the RTL files to include.

• TOPLEVEL : This is used to tell the top level RTL module to instantiate.

• MODULE : This is used to tell which Python testbench to use.

5.2.4 Testbench Structure

Fig 5.3 shows the CoCoTb testbench architecture. We will discuss the testbench

components in detail in this section.

Input Transaction

Input Transaction has the stimulus which has to be driven to the DUT.

CoCoTb Driver

CoCoTb Driver takes in the stimulus from the input transaction and drives it to the DUT.

The driver is in charge of serialising transactions to the interface’s physical pins.

Input Monitor

Input Monitor is responsible for capturing the input signal activity to the DUT. It also

calls the reference model and sends the input information to it.

Output Monitor

Output Monitor is responsible for capturing the output signal activity from the DUT. The

obtained result from DUT taken by the output monitor and sends to the scoreboard.
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Figure 5.2: Makefile used for Verification of SPI

Reference Model

Reference model is a test model of the DUT. It is a golden model that predicts the correct

results from the provided stimulus. This takes in the inputs from the input monitor and

generates the expected data.
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Figure 5.3: CoCoTb Testbench Structure

Scoreboard

Scoreboard checks the design’s functionality. It compares the expected data from the

reference model with the data collected from the output monitor to determine whether or

not the DUT is performing as intended.

5.3 OTHER PYTHON MODULES AND CLASSES

5.3.1 Modules Used

Random

The Random module is employed for generation of random numbers.

Sys

The Sys module provides us with access to system-specific parameters and functions.

Math

The Math module contains a set of methods and constants that can be used to solve

mathematical problems.
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PPrint

Pprint module provides a capability to arbitrary Python data structures.

Logging

Logging module is used to log messages that we want to see.

Yaml

YAML parser and emitter for Python.

OS

OS module provides functions for creating and removing a directory, fetching its contents,

changing and identifying the present directory.

Pytest

PyTest is a testing framework that permits users to write down test codes using Python

programming language.

Itertools

Itertools is a module which implements a number of iterator building blocks.

5.3.2 Classes Used

Coroutine

Coroutine is class from cocotb.decorators. It is a decorator class that allows us to provide

common coroutine mechanisms.

Timer

Timer is a class from cocotb.triggers. cocotb.triggers is a collections of triggers which a

testbench can await. Timer is used to elapse specified simulation time period.

38



RisingEdge

RisingEdge is a class from cocotb.triggers. Fires on the rising fringe of signal, on a

transition from 0 to 1.

FallingEdge

FallingEdge is a class from cocotb.triggers. Fires on the falling fringe of signal, on a

transition from 1 to 0.

BusMonitor

BusMonitor is a class from cocotb_bus.monitors. It is a wrapper providing common

functionality for monitoring buses.

BusDriver

BusDriver is a class from cocotb_bus.drivers. It is a wrapper around common functionality

for buses which have a list of signals, optional_signals, a clock, a name and an entity.

BinaryValue

BinaryValue is a class from cocotb.binary. It is used for representation of values in

binary format.

TestFactory

TestFactory is a class from cocotb.regression. cocotb.regression has all things relating to

regression capabilities. Testfactory is a factory to automatically generate tests.

Scoreboard

Scoreboard is a class from cocotb_bus.scoreboard. It is a generic scoreboarding class.

TestFailure

TestFailure is a class from cocotb.result. It is used to show that test was completed with

severity failure.
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Clock

Clock is a class from cocotb.clock. It is a simple 50-50 duty cycle clock driver.

AxiBus, AxiMaster, AxiRam

AxiBus, AxiMaster, AxiRam are classes from cocotbext.axi. They are the AXI modules.

Cocotb_coverage.coverage

cocotb_coverage.coverage helps us to use functional coverage techniques.
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CHAPTER 6

RESULTS

In this chapter, we will see simulation results for a few test-cases, functional coverage

information and code coverage information.

6.1 TOTAL_BIT_TX

Feature:

8 bit register storing the total number of bits to be transmitted in a SPI transaction.

Testplan:

1. Assign a random number to this register (less than 32 as data bus is only 32 bits
wide to perform data transfer in a single transaction) and check if the number of
bits transmitted is matching the value stored by this register.

2. Assign a random number to this register (greater than 32 as data bus is only 32 bits
wide to perform data transfter in mutiple transactions) and check if the number of
bits transmitted is matching the value stored by this register.

Single Transmit Transaction

Fig 6.1 shows the simulation of testcase for single transaction. As sspi_rg_clk_phase

is 0 and sspi_rg_clk_polarity is 1, data to be transmitted is sent out on rising edge

of io_sclk_out on the io_mosi_out line. sspi_rg_total_bit_tx shows the total number

of bits to be transmitted and the data to be transmitted is stored in sspi_rg_tx_data.

sspi_rg_count_tx_databits counts the bits of data getting transmitted. The data in the

sspi_rg_tx_data register is compared with the data getting transmitted on io_mosi_out

line manually and then verified.

Fig 6.2 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be transmitted in a single transaction( bits to be



Figure 6.1: Simulation for transmit transaction for checking total_bit_tx

transmitted are between 0 and 32).

Functional coverage for total_bit_tx in single transmit transaction = 100 percent

Figure 6.2: Functional coverage for total_bit_tx in single transmit transaction

Two Transmit Transactions

Fig 6.3 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be transmitted in two transactions( bits to be

transmitted are between 33 and 64).

Functional coverage for total_bit_tx in two transmit transactions = 100 percent
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Figure 6.3: Functional coverage for total_bit_tx in two transmit transactions

Three Transmit Transactions

Fig 6.4 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be transmitted in three transactions( bits to be

transmitted are between 65 and 96).

Functional coverage for total_bit_tx in three transmit transactions = 100 percent

Four Transmit Transactions

Fig 6.5 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be transmitted in four transactions( bits to be

transmitted are between 97 and 128).

Functional coverage for total_bit_tx in four transmit transactions = 100 percent

Five Transmit Transactions

Fig 6.6 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be transmitted in five transactions( bits to be

transmitted are between 129 and 160).
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Figure 6.4: Functional coverage for total_bit_tx in three transmit transactions

Figure 6.5: Functional coverage for total_bit_tx in four transmit transactions

Functional coverage for total_bit_tx in five transmit transactions = 100 percent
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Figure 6.6: Functional coverage for total_bit_tx in five transmit transactions

Six Transmit Transactions

Fig 6.7 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be transmitted in six transactions( bits to be

transmitted are between 161 and 192).

Functional coverage for total_bit_tx in six transmit transactions = 100 percent

Seven Transmit Transactions

Fig 6.8 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be transmitted in seven transactions( bits to be

transmitted are between 193 and 224).

Functional coverage for total_bit_tx in seven transmit transactions = 100 percent

Eight Transmit Transactions

Fig 6.9 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be transmitted in eight transactions( bits to be

transmitted are between 224 and 256).
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Figure 6.7: Functional coverage for total_bit_tx in six transmit transactions

Figure 6.8: Functional coverage for total_bit_tx in seven transmit transactions

Functional coverage for total_bit_tx in eight transmit transactions = 100 percent
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Figure 6.9: Functional coverage for total_bit_tx in eight transmit transactions

6.2 TOTAL_BIT_RX

Feature:

8 bit register storing the total number of bits to be received in a SPI transaction.

Testplan:

Assign a random number to this register and check if the number of bits received is

matching the value stored by this register.

Single Receive Transaction

Fig 6.10 shows the simulation of testcase for single receive transaction. As

sspi_rg_clk_phase is 0 and sspi_rg_clk_polarity is 1, data to be received is sampled on

falling edge of io_sclk_out. Data is sampled from io_miso_in_val line.

sspi_rg_total_bit_rx shows the total number of bits to be received and the data received

is stored in sspi_rg_rx_data. The data in the sspi_rg_rx_data register is compared with

the data being received from io_miso_in_val line manually and then verified.

Fig 6.11 shows the functional coverage information for this testcase. The functional
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Figure 6.10: Simulation for receive transaction for checking total_bit_rx

coverage is taken for the total bits to be received in a single transaction( bits to be received

are between 0 and 32).

Functional coverage for total_bit_rx in single receive transaction = 100 percent

Figure 6.11: Functional coverage for total_bit_rx in single receive transaction

Two Receive Transactions

Fig 6.12 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be received in two transactions( bits to be received

are between 33 and 64).
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Functional coverage for total_bit_rx in two receive transactions = 100 percent

Figure 6.12: Functional coverage for total_bit_rx in two receive transactions

Three Receive Transactions

Fig 6.13 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be received in three transactions( bits to be received

are between 65 and 96).

Functional coverage for total_bit_rx in three receive transactions = 100 percent

Four Receive Transactions

Fig 6.14 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be received in four transactions( bits to be received

are between 97 and 128).

Functional coverage for total_bit_rx in four receive transactions = 100 percent

Five Receive Transactions

Fig 6.15 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be received in five transactions( bits to be received
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Figure 6.13: Functional coverage for total_bit_rx in three receive transactions

Figure 6.14: Functional coverage for total_bit_rx in four receive transactions

are between 129 and 160).

Functional coverage for total_bit_rx in five receive transactions = 100 percent
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Figure 6.15: Functional coverage for total_bit_rx in five receive transactions

Six Receive Transactions

Fig 6.16 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be received in six transactions( bits to be received

are between 161 and 192).

Functional coverage for total_bit_rx in six receive transactions = 100 percent

Seven Receive Transactions

Fig 6.17 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be received in seven transactions( bits to be received

are between 193 and 224).

Functional coverage for total_bit_rx in seven receive transactions = 100 percent

Eight Receive Transactions

Fig 6.18 shows the functional coverage information for this testcase. The functional

coverage is taken for the total bits to be received in eight transactions( bits to be received

are between 224 and 256).
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Figure 6.16: Functional coverage for total_bit_rx in six receive transactions

Figure 6.17: Functional coverage for total_bit_rx in seven receive transactions

Functional coverage for total_bit_rx in eight receive transactions = 100 percent
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Figure 6.18: Functional coverage for total_bit_rx in eight receive transactions

6.3 LSBFIRST

Feature:

1 bit register storing whether the SPI transaction is LSB first. If set, it means LSB first

else it means MSB first.

Testplan:

1. Set this to 1 and check if LSB is first getting transmitted/received.

2. Set this to 0 and check if MSB is first getting transmitted/received.

6.3.1 Transmit

LSB First Transmit

Fig 6.19 shows the simulation of testcase for LSB first transmit transaction. As

sspi_rg_lsbfirst is 1, the transmit should start from LSB. A bug is identified here and will

be discussed in detail in the next chapter.
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Figure 6.19: Simulation for checking LSB first transmit transaction

MSB First Transmit

Fig 6.20 shows the simulation of testcase for MSB first transmit transaction. As

sspi_rg_lsbfirst is 0, the transmit should start from MSB.

Figure 6.20: Simulation for checking MSB first transmit transaction

6.3.2 Receive

LSB First Receive

Fig 6.21 shows the simulation of testcase for LSB first receive transaction. As

sspi_rg_lsbfirst is 1, the bits getting received on MISO line should be taken as LSB first.

MSB First Receive

Fig 6.22 shows the simulation of testcase for MSB first receive transaction. As

sspi_rg_lsbfirst is 0, the bits getting received on MISO line should be taken as MSB first.
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Figure 6.21: Simulation for checking LSB first receive transaction

Figure 6.22: Simulation for checking MSB first receive transaction

6.4 SCLK CONFIGURATION

6.4.1 Transmit

CPHA=0 and CPOL=0

Fig 6.23 shows the simulation of testcase for SCLK configuration in transmit mode with

CPHA=0 and CPOL=0. As sspi_rg_clk_phase is 0 and sspi_rg_clk_polarity is 0, in

idle state SCLK is 0 and the bits getting are getting transmitted on every falling edge of

SCLK.

CPHA=0 and CPOL=1

Fig 6.24 shows the simulation of testcase for SCLK configuration in transmit mode with

CPHA=0 and CPOL=1. As sspi_rg_clk_phase is 0 and sspi_rg_clk_polarity is 1, in idle

state SCLK is 1 and the bits getting are getting transmitted on every rising edge of SCLK.

55



Figure 6.23: SCLK configuration in transmit mode with CPHA=0 and CPOL=0

Figure 6.24: SCLK configuration in transmit mode with CPHA=0 and CPOL=1

CPHA=1 and CPOL=0

Fig 6.25 shows the simulation of testcase for SCLK configuration in transmit mode with

CPHA=1 and CPOL=0. As sspi_rg_clk_phase is 1 and sspi_rg_clk_polarity is 0, in idle

state SCLK is 0 and the bits getting are getting transmitted on every rising edge of SCLK.

CPHA=1 and CPOL=1

Fig 6.26 shows the simulation of testcase for SCLK configuration in transmit mode with

CPHA=1 and CPOL=1. As sspi_rg_clk_phase is 1 and sspi_rg_clk_polarity is 1, in

idle state SCLK is 1 and the bits getting are getting transmitted on every falling edge of

SCLK.
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Figure 6.25: SCLK configuration in transmit mode with CPHA=1 and CPOL=0

Figure 6.26: SCLK configuration in transmit mode with CPHA=1 and CPOL=1

6.4.2 Receive

CPHA=0 and CPOL=0

Fig 6.27 shows the simulation of testcase for SCLK configuration in receive mode with

CPHA=0 and CPOL=0. As sspi_rg_clk_phase is 0 and sspi_rg_clk_polarity is 0, in idle

state SCLK is 0 and the bits to be received is getting sampled on every rising edge of

SCLK.

CPHA=0 and CPOL=1

Fig 6.28 shows the simulation of testcase for SCLK configuration in receive mode with

CPHA=0 and CPOL=1. As sspi_rg_clk_phase is 0 and sspi_rg_clk_polarity is 1, in idle

state SCLK is 1 and the bits to be received is getting sampled on every falling edge of

SCLK.

57



Figure 6.27: SCLK configuration in receive mode with CPHA=0 and CPOL=0

Figure 6.28: SCLK configuration in receive mode with CPHA=0 and CPOL=1

CPHA=1 and CPOL=0

Fig 6.29 shows the simulation of testcase for SCLK configuration in receive mode with

CPHA=1 and CPOL=0. As sspi_rg_clk_phase is 1 and sspi_rg_clk_polarity is 0, in idle

state SCLK is 0 and the bits to be received is getting sampled on every falling edge of

SCLK. A bug is identified here in SCLK generation and will be discussed in detail in the

next chapter.

CPHA=1 and CPOL=1

Fig 6.30 shows the simulation of testcase for SCLK configuration in receive mode with

CPHA=1 and CPOL=1. As sspi_rg_clk_phase is 1 and sspi_rg_clk_polarity is 1, in idle

state SCLK is 1 and the bits to be received is getting sampled on every rising edge of

SCLK. A bug is identified here in SCLK generation and will be discussed in detail in the

next chapter.
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Figure 6.29: SCLK configuration in receive mode with CPHA=1 and CPOL=0

Figure 6.30: SCLK configuration in receive mode with CPHA=1 and CPOL=1

6.5 SETUP DELAY

Setup delay is nothing but the delay between NCS going low and the transmit or receive

transaction starting. It is the sspi_rg_cs_t_delay register configured using clock control

register.

Fig 6.31 and 6.32 shows the simulation of testcase for setup delay in transmit mode. Fig

6.31 shows the time when NCS is going low and fig 6.32 shows the time when transmit

is starting. A bug is identified here and will be discussed in detail in the next chapter.

Fig 6.33 shows the functional coverage information for the above testcase. The functional

coverage is taken for sspi_rg_cs_t_delay register in 32 bins. Each bin has 32 values.
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Figure 6.31: Simulation for setup delay indicating time when NCS is going low in
transmit mode.

Figure 6.32: Simulation for setup delay indicating time when transmit is starting

6.6 HOLD DELAY

Hold delay is nothing but the delay between the transmit or receive transaction ending

and the NCS going high. It is the sspi_rg_t_cs_delay register configured using clock

control register.

Fig 6.34 and 6.35 shows the simulation of testcase for hold delay in transmit mode. Fig

6.34 shows the time when transmit is ending and fig 6.35 shows the time when NCS is

going high.

From the figures we see that transmit is ending at 1610ns and NCS is going high at

1896ns. The sspi_rg_t_cs_delay is 13 and sspi_rg_prescaller is 10. The CLK time period

is 2ns.

Expected delay = (Prescaller+1)*Hold*CLK period = (10+1)*13*2 = 286ns
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Figure 6.33: Functional coverage for sspi_rg_cs_t_delay in transmit mode.

Figure 6.34: Simulation for hold delay indicating time when transmit is ending.

Obtained delay = 1896-1610 = 286ns

Fig 6.36 shows the functional coverage information for the above testcase. The functional

coverage is taken for sspi_rg_t_cs_delay in in transmit mode register in 32 bins. Each

bin has 32 values.
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Figure 6.35: Simulation for setup delay indicating time when NCS is going high in
transmit mode.

Figure 6.36: Functional coverage for sspi_rg_t_cs_delay in transmit mode.

6.7 REQUIRED BIT RATE GENERATION - PRESCALLER

Internal clock frequency is divided by the prescaller value to attain the required bit rate.

It is the sspi_rg_prescaller register configured using clock control register. It is a 8-bit

value and hence can provide maximum of 255 different bit rates.

Required Bit Rate = Internal clock frequency/(Prescaler value+1)

So as per this,

Time period of SCLK = Time period of internal clock * (Prescaler value+1)

62



6.7.1 Transmit

Fig 6.37 and 6.38 shows the simulation of testcase for prescaller value in transmit mode.

Fig 6.37 shows the one edge of SCLK and fig 6.38 shows the other edge of SCLK.

Figure 6.37: Simulation showing one edge of SCLK for required bit rate generation in
transmit mode.

Figure 6.38: Simulation showing other edge of SCLK for required bit rate generation in
transmit mode.

From the figures we see that one edge is at 670ns and other edge is at 950ns. The

sspi_rg_prescaller is 69 and internal clock time period is 4ns.

Expected time period = Time period of internal clock * (Prescaler value+1) = (69+1)*4

= 280ns

Obtained delay = 950-670 = 280ns

Fig 6.39 shows the functional coverage information for the above testcase. The functional

coverage is taken for sspi_rg_prescaller register in transmit mode in 32 bins. Each bin

has 32 values.
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Figure 6.39: Functional coverage for sspi_rg_prescaller in transmit mode.

6.7.2 Receive

Fig 6.40 and 6.41 shows the simulation of testcase for prescaller value in receive mode.

Fig 6.40 shows the one edge of SCLK and fig 6.41 shows the other edge of SCLK.

Figure 6.40: Simulation showing one edge of SCLK for required bit rate generation in
receive mode.

From the figures we see that one edge is at 426ns and other edge is at 478ns. The

sspi_rg_prescaller is 12 and internal clock time period is 4ns.

Expected time period = Internal clock period * (Prescaler value+1) = (12+1)*4 = 52ns

Obtained delay = 478-426 = 52ns
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Figure 6.41: Simulation showing other edge of SCLK for required bit rate generation in
receive mode.

Fig 6.42 shows the functional coverage information for the above testcase. The functional

coverage is taken for sspi_rg_prescaller register in transmit mode in 32 bins. Each bin

has 32 values.

Figure 6.42: Functional coverage for sspi_rg_prescaller in receive mode.
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6.8 CODE COVERAGE

This project has achieved a code coverage of 92.8 percent as shown in fig 6.43.

Figure 6.43: Code Coverage acheived.
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CHAPTER 7

DESIGN MISMATCHES, BUGS AND CHALLENGES

In this chapter we will discuss the design mismatches found, bugs in the design which

were found out during the verification and the challenges faced during verification.

7.1 DESIGN MISMATCHES

7.1.1 LSB First Transmit Mode Mismatch

Fig 7.1 shows the simulation of testcase for LSB first transmit transaction. As

sspi_rg_lsbfirst is 1, the transmit should start from LSB.

Figure 7.1: Simulation for checking LSB first transmit transaction

sspi_rg_total_bit_tx is 24 which means we are transmitting 24 bits. The transmit data in

sspi_rg_txdata is EC149C84 (in Hex) and 1110 1100 0001 0100 1001 1100 1000 0100

(in Binary). So, the expected order of transmission on the io_mosi_out line is 0, 0, 1, 0,

0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0 i.e, from bit[0] to bit[23].

Since, sspi_rg_clk_phase is 0 and sspi_rg_clk_polarity is 1, data is getting transmitted

for every rising edge of io_sclk_out. From the waveform if we see, the order in which

bits are getting transmitted is 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1.

Expected and obtained are not matching. Data is getting transmitted byte by byte and



this is the mismatch. Data is getting transmitted as bit[24] to bit[31] first, then bit[16] to

bit[23] next and then bit[8] to bit[15].

7.1.2 Setup Delay Mismatch

Setup delay is nothing but the delay between NCS going low and the transmit or receive

transaction starting. It is the sspi_rg_cs_t_delay register configured using clock control

register.

Transmit Mode

Fig 7.2 and 7.3 shows the simulation of testcase for setup delay in transmit mode. Fig

7.2 shows the time when NCS is going low and fig 7.3 shows the time when transmit is

starting.

Figure 7.2: Simulation for setup delay indicating time when NCS is going low in transmit
mode.

Figure 7.3: Simulation for setup delay indicating time when transmit is starting

From the figures we see that NCS is going low at 341ns and transmit is starting at 813ns.

68



Table 7.1: Different cases of extra delay in transmit mode

Prescaller Setup Expected Delay Obtained Delay Difference
1 148 931-333=598 148*2*2=592 6
2 65 731-333=398 65*3*2=390 8
3 185 1821-333=1488 185*4*2=1480 8
4 24 583-333=250 24*5*2=240 10
5 235 3163-333=2830 235*6*2=2820 10
6 115 1955-333=1622 115*7*2=1610 12
7 197 3497-333=3164 197*8*2=3152 12
8 61 1445-333=1112 61*9*2=1098 14
9 146 3267-333=2934 146*10*2=2920 14
10 35 1119-333=786 35*11*2=770 16
11 85 2389-333=2056 85*12*2=2040 16
12 48 1599-333=1266 48*13*2=1248 18
13 105 3291-333=2958 105*14*2=2940 18
14 172 5513-333=5180 172*15*2=5160 20
15 246 8225-333=7892 246*16*2=7872 20

The sspi_rg_cs_t_delay is 19 and sspi_rg_prescaller is 11. The CLK time period is 2ns.

Expected delay = (Prescaller+1)*Hold*CLK period = (11+1)*19*2 = 456ns

Obtained delay = 1896-1610 = 472ns

Expected and obtained delays are not matching. There is an extra delay.Few more cases

are given in the table 7.1 .

The setup delay is applicable only for transmit data and is applicable only in master

mode. The slave will see only the clock mode and edges as it is not aware of set up

time etc. There may be delays based on system clock period, AXI latencies when SPI is

enabled. Until it affects the transmission and reception from other side, we can ignore

the additional delay. For all the cases in table 7.1, the additional delay is not affecting the

transmission and hence can be ignored.
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7.2 BUGS IDENTIFIED

7.2.1 SCLK Edge Bug

CPHA=0 and CPOL=1

Transmit

Fig 7.4 shows the simulation of testcase for transmit only mode with SCLK configuration

as CPHA=0 and CPOL=1.

Figure 7.4: Transmit only mode simulation with CPHA=0 and CPOL=1

As CPHA=0 and CPOL=1, in idle state SCLK should be high and data should be

transmitted on every falling edge of SCLK. In the simulation if we see, data is getting

transmitted on every rising edge of SCLK. This is the bug. It is raised and fixed.

Receive

Fig 7.5 shows the simulation of testcase for receive only mode with SCLK configuration

as CPHA=0 and CPOL=1.

Figure 7.5: Receive only mode simulation with CPHA=0 and CPOL=1
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As CPHA=0 and CPOL=1, in idle state SCLK should be high and data to be received

should be sampled on every rising edge of SCLK. If the data is sampled on every rising

edge of SCLK, the rx_data should be E01F0000 and if the data is sampled on every

falling edge of SCLK, the rx_data should be C81B0000. In the simulation we can see

that the sspi_rx_data has C81B0000 which means that the data got sampled on every

falling edge. This is the bug. It is raised and fixed.

CPHA=1 and CPOL=1

Transmit

Fig 7.6 shows the simulation of testcase for transmit only mode with SCLK configuration

as CPHA=1 and CPOL=1.

Figure 7.6: Transmit only mode simulation with CPHA=1 and CPOL=1

As CPHA=1 and CPOL=1, in idle state SCLK should be high and data should be

transmitted on every rising edge of SCLK. In the simulation if we see, data is getting

transmitted on every falling edge of SCLK. This is the bug. It is raised and fixed.

Receive

Fig 7.7 shows the simulation of testcase for receive only mode with SCLK configuration

as CPHA=1 and CPOL=1.

As CPHA=1 and CPOL=1, in idle state SCLK should be high and data to be received

should be sampled on every falling edge of SCLK. If the data is sampled on every falling

edge of SCLK, the rx_data should be DB990000 and if the data is sampled on every
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Figure 7.7: Receive only mode simulation with CPHA=1 and CPOL=1

rising edge of SCLK, the rx_data should be F3510000. In the simulation we can see that

the sspi_rx_data has F3510000 which means that the data got sampled on every rising

edge. This is the bug. It is raised and fixed.

7.2.2 Receive Mode SCLK Generation Bug

CPHA=1 and CPOL=0

Fig 7.8 shows the simulation of testcase for SCLK configuration in receive mode with

CPHA=1 and CPOL=0.

Figure 7.8: SCLK configuration in receive mode with CPHA=1 and CPOL=0

In the waveform we can see that the first pulse of SCLK is not of 50 percent duty cycle.

To understand it in much details, let us see two cases, one is odd prescaller value and

other is even prescaller value.

Case 1: Say the prescaller value is 112 internal clock time period is 2ns which means

expected time period of SCLK is ((112+1)*2 = 226ns). What we get from the waveforms
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is that, in the first pulse, SCLK is HIGH for 226ns and LOW for 112ns. From second

pulse onwards, SCLK is HIGH for 114ns and LOW for 112ns.

Case 2: Say the prescaller value is 31 and internal clock time period is 4ns which means

expected time period of SCLK is ((31+1)*4 = 128ns). What we get from the waveforms

is that, in the first pulse, SCLK is HIGH for 128ns and LOW for 64ns. From second

pulse onwards, SCLK is HIGH for 64ns and LOW for 64ns.

For the first SCLK pulse, SCLK is HIGH for the time of one expected time period

duration of SCLK and LOW for the time of half of expected time period duration of

SCLK. This is the bug. It is raised and fixed in IISU. Issue number: 155.

CPHA=1 and CPOL=1

Fig 7.9 shows the simulation of testcase for SCLK configuration in receive mode with

CPHA=1 and CPOL=1.

Figure 7.9: SCLK configuration in receive mode with CPHA=1 and CPOL=1

In the waveform we can see that the first pulse of SCLK is not of 50 percent duty cycle.

To understand it in much details, let us see two cases, one is odd prescaller value and

other is even prescaller value.

Case 1: Say the prescaller value is 99 and internal clock time period is 4ns which means

expected time period of SCLK is ((99+1)*4 = 400ns). What we get from the waveforms

is that, in the first pulse, SCLK is LOW for 400ns and HIGH for 200ns. From second

pulse onwards, SCLK is HIGH for 200ns and HIGH for 200ns.

Case 2: Say the prescaller value is 207 and internal clock time period is 2ns which means
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expected time period of SCLK is ((207+1)*2 = 416ns). What we get from the waveforms

is that, in the first pulse, SCLK is LOW for 416ns and HIGH for 208ns. From second

pulse onwards, SCLK is LOW for 208ns and HIGH for 208ns.

For the first SCLK pulse, SCLK is HIGH for the time of one expected time period

duration of SCLK and LOW for the time of half of expected time period duration of

SCLK. This is the bug. It is raised and fixed in IISU. Issue number: 155.

7.2.3 RX FIFO Popping Bug

Fig 7.10 shows the simulation of testcase for RX FIFO popping issue in receive mode.

Figure 7.10: Simulation of testcase for RX FIFO popping bug.

In the waveform we can see that we are performing a receive operation of 128 bits.

Initially RX FIFO is empty and hence sspi_rg_rx_fifo_empty is 1. After 8 bits are

sampled, the first push happens to RX FIFO and hence sspi_rg_rx_fifo_empty now

becomes 1. Similarly, after 64 bits are sampled, RX FIFO will have 8 entries and hence

sspi_rg_rx_fifo_quad is 1 to indicate that RX FIFO is 1/4th full. After 128 bits are

sampled, RX FIFO will have 16 entries and hence sspi_rg_rx_fifo_half is 1 to indicate

that RX FIFO is 1/2 full. sspi_rg_rxfifo_to_rxdata is a signal which when goes to 1

means that data is being transferred into sspi_rg_rx_data. According to the specifications

and the comments in design code, when the signal sspi_rg_rxfifo_to_rxdata is asserted,

data should be copied from FIFO to the rx_data register but the data should not be popped

out from FIFO.
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In the waveforms we can see that whenever the signal sspi_rg_rxfifo_to_rxdata is asserted,

data is popping out from the FIFO and is getting transferred into the rx_data register.

This is the bug. It is raised and fixed in IISU. Issue number: 155.

7.2.4 Overrun Bug

Fig 7.11 shows the simulation of testcase for overrun issue in receive mode. Overrun

occurs when when the receiver FIFO is full and there is a write to receive data register.

Figure 7.11: Simulation of testcase for overrun bug.

In this testcase, we are first performing a receive of 255 bits. After this receive, we can

see that the RX FIFO is full. Then again we are performing a receive of 32 bits. Overrun

should now get asserted because after the RX FIFO is full we are again trying to write to

the receive data register. But in the waveforms we can see that the signal sspi_r_over_run

is 0.

Fig 7.12 shows the simulation of the same testcase and it focuses on the last read operation

from the communication status register.

On reading from communication status register we see that the communication status

register has the value of 8181 (1000 0001 1000 0001). Communication status register is

a 16-bit register whose bit[7] corresponds to the overrun bit. From 8181 we get the bit[7]

is 1 which means there is an overrun. The issue here is that the configuration register is

showing overrun occurs but the internal overrun register is not getting asserted. This is
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Figure 7.12: Simulation of testcase for overrun bug showing read from communication
status register.

the bug. It is raised and fixed in IISU. Issue number: 156.

7.3 CHALLENGES

One of the major challenge in this project is verification in slave mode. The problem

is to verify slave mode configuration, we need one master and one slave. If we make

two instances of design and connect them via top module, problem is writing to the

registers. We have only AXI Master instance and we dont have any AXI slave instance.

So this can’t be done. I also tried to use only one instance, configure in slave mode

and give NCS, SCLK externally. But even this didn’t work. One more possibility is to

use the cocotb-spi but then I will not be able to see waveforms and I’m verifying using

waveforms only. So this also can’t be done. Other challenge is that for some testcases,

the input configurations were not proper in the documentation. So I had to go through

the entire design code and figure out the input configuration needed for that particular

testcase.
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CHAPTER 8

COMPARISION BETWEEN SV BASED AND COCOTB
BASED VERIFICATION

In this chapter we will see an analysis of Verification of SPI using Verification IP( SV

based) and Verification of SPI Using CoCoTb.

8.1 SETUP

Setup and installation of VIP is a complicated process. CoCoTb and Verilator is to install

and setup. Also, VIP is accessible through a paid license which is costly. CoCoTb is

open-source and completely free.

8.2 DESIGN SPECIFICATIONS

VIP is designed for specific design specifications. We have to make additional changes

as required to use it for our design. Some specifications of our design may not be present

in VIP and hence we can’t test the design properly. Using CoCoTb we can test any design

as there is no bound of design specifications. In this case, our design has an AXI bus

whereas the design based on which the VIP is designed doesnt have any AXI bus. So the

AXI integration and testing using VIP is very challenging and complicated.

8.3 TESTPLAN

One of the major advantages of verification using VIP is that the testplan is already

designed and it comes along with VIP. The verification engineer doesnt have to take the

pain to go through the design specifications and design a testplan manually. In CoCoTb

based verification, the verification engineer first needs a thorough understanding of

the design specifications. It has to be done very carefully as its a very crucial step in



verification because it directs the entire process of verification.

8.4 TESTBENCH DEVELOPMENT

Another advantage of verification using VIP is that the testbench for each testcase is

already developed. The verification engineer just needs to make some changes, configure,

enable and run the testbench. But if we want to change any testbench more as per our

design specifications, it is again a very complicated process as the testbenches are not

straight forward and have many classes which are very interdependent to many other

codes. In CoCoTb based verification, the verification engineer has to develop the entire

testbench from scratch based on the testcase.

8.5 COVERAGE

In CoCoTb based verification, we can get the functional coverage using CoCoTb by

simply adding bins and code coverage can be obtained from verilator. Getting coverage

in CoCoTb based verification is pretty simple and straight-forward, whereas in SV based

verification using VIP, coverage is a bit complicated. There are many parameters which

we need to understand and configure for obtaining coverage.
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CHAPTER 9

CONCLUSION

CoCoTb and Verilator were used to successfully verify the Serial Peripheral Interface.

Python was used to create all of the testbenches. The correctness of the design was

validated by manually comparing DUT output data with expected data according to the

specifications using waveforms. To achieve good coverage, constrained random input

generation was used. In an SV-based environment, the design was also integrated with

the SPI Verification IP and a sample test was done on it.

9.1 FUTURE WORK

• Verification of SPI in slave mode.

• As the code coverage is 92.7 percent, we can still try to increase it more by adding
some more tests. Verification in slave mode will definitely increase the coverage
by a significant amount.

• Bugs should be resolved from the design end and then re-verify the buggy testcases.

• Verification of SPI using the Verification IP.

• Although this project verified almost the entire SPI, verification in this project is
done manually and hence takes a lot of time. This can be improved by making it
automatic using assertions and then can be used in regressions.
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