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ABSTRACT

KEYWORDS: ; Composite beams; OAM; Vortex beams; Logic operations.

We design a simple method for the generation of arbitrary composite vortex (CV) beams

using two or more binary fork gratings (BFG). These gratings were computationally

generated by performing logical operations on two or more fork-gratings. The geo-

metrical parameters of BFGs were optimized for the efficient generation of CV beams.

The method was further extended to the generation of CV beams by varying the duty

cycle of the binary fork gratings (BFG). This simple generation method may be useful

to generate complex beam shapes with engineered phase fronts without complicated

interferometry based techniques.
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CHAPTER 1

INTRODUCTION

As long ago as the 1600s, Kepler reasoned that light must carry a linear momentum,

his logic being that the tails of comets always pointed away from the sun. Although all

of light’s momentum and energy properties are encapsulated in Maxwell’s equations, it

wasn’t until 1909 that Poynting used a mechanical analogy to articulate that a circularly

polarized light beam contained an angular momentum that we would now attribute to

the h̄ spin of individual photons as shown in Fig. 1.1. Moving beyond this spin angular

momentum Darwin (grandson of the famous naturalist) pointed out that the conserva-

tion of angular momentum during higher order atomic/molecular transitions required

an optical angular momentum of multiple units of h̄ per photon.

Figure 1.1: Light with linear polarization (left) carries no SAM, whereas right or left
circularly polarized light (right) carries a SAM of ±h̄ per photon.

This additional angular momentum is called “orbital angular momentum” (OAM)

and can be thought to arise simply from the effect of light’s linear momentum acting

off-axis with respect to the center of the optical beam or center of mass of the interacting

object. For many decades it was implicitly assumed that this orbital angular momen-

tum was a rare event, just as high-order transitions are themselves rare (they have low

absorption cross sections).

In 1992 this assumption was overturned when Allen, Woerdman and associates es-

tablished that light beams with helical phase-fronts, described by a transverse phase



structure of exp(ilϕ) , carry an orbital angular momentum equivalent to lh̄ per photon,

i.e. potentially an angular momentum many times greater than the spin of the photon.

An important feature of all beams with helical phase-fronts is that the beam axis marks

a singularity in the optical phase, akin to the time at the north pole! This phase singular-

ity is manifested as a perfect zero in the optical intensity, meaning that OAM-carrying

beams typically have annular intensity cross-sections.

In the 25 years since the ‘92 paper, orbital angular momentum has established itself

as one of the most interesting of optical modes, with relevance to optical manipulation,

imaging, quantum optics, optical communications and elsewhere. More broadly, OAM

has given rise to studies of phase-structured light beams with unique that properties

arise from their phase structure, not their intensity.

1.1 Helical beams: History

Central to the Allen et al. paper is the link it establishes between beams with helical

phase-fronts and orbital angular momentum (OAM). However, these helically-phased

beams had themselves been generated and studied earlier, not least as the examples of

the transverse modes produced from suitably configured laser cavities, or as resulting

from optical vortices. The study of optical vortices (or their acoustic counterpart) with

phase singularities at their center had been also been extensive from the 1970s onwards.

However, in none of these earlier works had any link been made between these features

and the possibility of angular momentum in the beam.

The early work on OAM itself proposed and then implemented the use of cylindrical

lenses to transform the high-order Hermite-Gaussian modes emitted by a conventional

laser into helically-phased Laugerre-Gaussian modes. In addition, the same research

group demonstrated perhaps the most obvious production method for OAM, namely

the insertion into a normal laser beam of a phase plate with a thickness that increased

with azimuthal angle, such that the transmitted beam acquired a transverse phase cross

section of exp(ilϕ).
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Perhaps the most significant work immediately prior to ‘92 relevant to future exper-

iments involving OAM was the generation of helically-phased beams using a diffrac-

tion grating containing an l -pronged fork dislocation in the ruled lines. As shown by

Soskin and associates, an incident plane-waved beam aligned co-axially with this dislo-

cation results in a first-order diffracted beam with helical phase-fronts described again

by exp(ilϕ). It is this use of diffractive optical elements that has been central to many

subsequent studies of phase-structured beam formation and is now common to the vast

majority of modern experiments using OAM. This diffractive-optic approach is made all

the more applicable by the commercial availability of computer addressable, pixelated,

spatial light modulators that can be controlled to act as reconfigurable diffractive optical

elements. Furthermore various algorithms exist for implementing aberration correction

of the SLM devices such that the beams produced are of high optical fidelity.

The majority of SLMs used for studies of OAM are based on the thin films of liquid

crystal whose refractive index can be locally switched by applying an electric field and

hence, if the films are laid over a pixelated electronic array, can be controlled to give

a spatially dependent phase variation to the reflected light. A number of commercial

devices are available capable of diffracting well in excess of 50% of the incident energy

into a desired beam type. It is also possible to use intensity modulators based on digital

micro-mirrors to create diffractive optical components. Although the diffraction effi-

ciency of these digital micro-mirror devices (DMD) is much lower than an SLM, their

low-cost and much higherspeed performance offer capabilities that the liquid crystal

devices cannot match.

Strictly speaking the design of a diffractive optical element is only correct for one

operating wavelength, so if a broad-band or a white-light beam is desired, a different

technique is required. However, diffractive elements remain a possibility providing that

an additional element is incorporated to compensate for their angular dispersion, such

elements can be a compensation prism or an additional grating. Alternatively bespoke

optical elements can use Fresnel reflections, or similar, to introduce a spatially depen-

dent phase shift, allowing the generation of white-light vortex beams.
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Beyond phase structuring alone, it is possible to use combinations of SLMs and

waveplates to overlap two orthogonally polarized beams to create generalized vector

vortex beams. This was first achieved with liquid crystal SLMs and more recently with

DMDs.

Various other methods also exist for generating vortex beams using structured ma-

terials. Some of these methods rely upon a spatial dependent geometrical phase delay

that is created using liquid crystal films, carefully oriented using structured surfaces (so

called “q-plates”) or rely on the structured surface itself. Finally the desire to use OAM

on-chip has led to the development of chip-scale sources relying on the vertical emis-

sion from ring waveguides with small slots introduced to act as scattering centers with

a defined and controllable phase relationship.

1.2 Diffractive Optical Elements for Generating Orbital

Angular Momentum

In the 25 years since the recognition of OAM as an optical degree of freedom, OAM

has enabled insights into various wave phenomenon. Although OAM was originally

espoused in terms of optical fields, the related field of phase singularities within wave-

fields has a prehistory which include considerations as to the singularities that might

arise in electron wave functions and, as discussed above, to studies of singularities that

arise in acoustic fields. More generally phase singularities occur whenever three, or

more, plane-waves interfere, an extreme example of which is optical speckle. In optical

speckle each black speck is indeed a phase singularity around which the phase ad-

vances (clockwise or anticlockwise) by 2π. In 3-dimensions, these phase singularities

trace out lines of perfect darkness, fractal in nature, that percolate all of space, creating

topological features comprising loops and even (rarely) knots. However, this intricate

3D structure should not be directly linked to OAM since the fields in the vicinity of

these singularities are super oscillatory, and therefore the associated energy lies in the

space between the singularities and the total angular momentum of a random speckle

pattern averages to zero as the lateral expanse of the speckle increases.
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Optical beams with a helical phase front and an intensity null due to the on-axis

phase singularity are commonly known as vortex beams. The transverse scalar electric

field profile of these beams can be mathematically represented as a product of Gaussian

and Laguerre polynomials and consequently such beams are also known as Laguerre-

Gaussian (LG) beams. The normalised LG functions represent different modes of the

propagating LG beams and form a complete orthonormal basis in the cylindrical co-

ordinate system (r, ψ, z). The radial index p of the beam determines the number of

intensity nulls in the radial direction and the azimuthal index l determines the change

of azimuthal phase ψ = 2π × l around the intensity null. Thus the intensity null is re-

ferred to as optical vortex(OV) and l as its topological charge (TC). Due to their helical

phase fronts these beams possess quantized orbital angular momentum (OAM) with a

magnitude of h̄l, and are also known as OAM beams. OAM renders these beams with

interesting optical and opto-mechanical properties. Such beams have been explored

over the last few decades for applications such as optical manipulation, communica-

tion, imaging, sensing and laser structuring of surfaces.

As an alternative to making complex refractive optics, diffractive optical elements

are readily designed to mimic any refractive element of choice, albeit only at a single

wavelength. A helical phase profile exp(ilϕ) converts a Gaussian laser beam into a he-

lical mode whose wave fronts resemble an l-fold corkscrew, as shown in Fig. 1.2. In

practice, the phase distribution of the desired optical component is typically added to

a linear phase ramp and the sum expressed as modulo 2π. The result is a diffraction

grating that produces the desired beam in the first diffraction order. The components

are effectively holograms of the desired optical element and are thus often referred to

as “computer generated holograms.” To produce helical beams these holograms can be

either the “forked diffraction gratings ", or spiral Fresnel lenses. The technique can

be easily extended to cover both the l and the p of the generated beams. What makes

the holographic approach particularly appealing is the commercial availability of spa-

tial light modulators (SLMs). These are pixellated liquid crystal devices that can be

programmed through the video interface of a computer to act as holograms. Changing

their design is as simple as changing the image displayed by the computer interfacing

the device.
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Figure 1.2: A helical phase profile exp(ilϕ) converts a Gaussian laser beam into a heli-
cal mode whose wave fronts resemble an l-fold corkscrew. In this case l=2.

Computer generation of holograms and their implementation for the generation of

exotic beams is obviously not restricted to pure helical modes; it is a general technique

that can be applied to all complex beam types or their superpositions. However, in

general, the hologram design is more complicated than simply that of a phase mask

alone. Accurate holograms are the complex far-field diffraction patterns of the desired

objects or beams and as such are defined in terms of both their phase and intensity. For

many simple beams it is sufficient to define only the phase, assuming a uniform illu-

mination, and in such cases the far field (Fourier transform) of the hologram is a close

approximation to the target beam. For example, when a forked diffraction grating is il-

luminated with a fundamental Gaussian beam from a conventional laser of radiusw0 the

transmitted beam is a superposition of LG modes all with the same l index. These pre-

dominantly have p = 0, but there is also a small contribution of LG modes with higher p.

However, if precise control over the p of the resulting mode is needed, then it is nec-

essary for the hologram to define both the phase and the intensity of the diffracted light.

Unfortunately, SLMs are designed to modify only one or the other. Various approaches

are possible, including the use of two SLMs in series: the first uses an algorithm such

as Gerchberg–Saxton to create the desired intensity distribution, and the second then

adjusts the phase to that of the target beam. This approach is particularly suited to cases

where the intensity distribution is extremely localized in the hologram plane. For cases

when the situation is less localized, typical of the superpositions between simple modes,

a single SLM technique is possible. For diffracting holograms the efficiency with which

light is diffracted to the first order depends on the depth of the blazing function, which

for maximum efficiency is 2π. Varying this depth over the cross section of the hologram

6



allows the intensity at various positions to be reduced, with any unwanted light being

directed into the zero order. This gives the precise control over both phase and inten-

sity that is required, albeit at a reduction in the overall efficiency. This technique was

used prior to any interest in OAM but has since been used effectively to create many

precise superpositions, including those associated with the generation of vortex lines,

which are themselves linked and knotted, or precise modal measurements in quantum

entanglement.
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CHAPTER 2

OAM GENERATION USING AMPLITUDE

DIFFRACTION GRATING

2.1 Characteristics of Orbital Angular Momentum Modes

Optical beams carrying OAM typically exhibit helical wavefronts. The pitch and hand-

edness of the helix determine the topological charge and type (positive/negative) of the

OAM beam. Various solutions of the Helmholtz wave equation can result in different

kinds of beams that carry OAM. The differences arise based on the geometry or con-

ditions that are used to solve the wave equation. Examples of some of the solutions

with an OAM component are Laguerre– Gaussian (LG) modes, Bessel modes, Mathieu

modes, Ince–Gaussian modes, and hypergeometric- Gaussian modes. The solutions of

the paraxial wave equation in cylindrical coordinates (ρ, ψ, z) have a transverse scalar

electric field given as

LGpl = CLG
lp

(
ρ
√
2

w(z)

)|l|

exp

(
−ρ2

w2(z)

)
LG|l|

p

(
2ρ2

w2(z)

)
exp

(
ilϕ+

ikρ2

2R
− iψG

)
,

(2.1)

with

R =
(z2 + z2R)

z
, (2.2)

kw2 =
2(z2 + z2R)

zR
, (2.3)

ψG = (2p+ |l|+ 1)tan−1(
z

zR
) (2.4)

where CLG
lp is the normalization constant, zR is the Rayleigh range, ψG is the Gouy

phase, w is the beam radius, R is the radius of the spherical wavefront, k = 2π/λ is the



wave number, LG is the Laguerre polynomial, and l and p are the azimuthal and radial

modal numbers. These modes are also called LG modes. The exp(ilϕ) term denotes the

azimuthal phase variation, because of which, the beam exhibits OAM of lh̄ per photon.

The term exp(ikρ2/2R) represents the spherical wavefront structure of the beam. LG

polynomials with variables l and p are orthogonal to each other. Therefore, LG modes

with beam waist w and l and p modal numbers form a complete orthogonal basis set.

An LG beam when superposed with a plane wave of the same wavelength results in

an interference pattern with a fork shaped dislocation. The period of this interference

pattern is determined by the wavelength and the angle of incidence of beams on the

screen/camera. The charge of the fork dislocation in the interference pattern is deter-

mined by the azimuthal index l of the LG beam. The inverse of this, that is, when a

plane wave is incident on a periodic grating with a charge l, the fork dislocation results

in an LG beam of an azimuthal index l. This is one of the most popular methods of

LG beam generation from a plane wave, where a computer generated hologram in the

shape of the interference pattern with a fork dislocation known as fork grating, is used

to obtain an LG beam of index l in the first diffraction order, along with the higher index

beams in the higher diffraction orders. In this work, all the fork gratings are computa-

tionally generated using this interference method.

2.2 Huygen’s Principle

In order to simulate the diffraction orders of a fork grating, Huygens principle was

used, where each pixel (x, y) in the grating was treated as a source of secondary spher-

ical wave. In this method, the resultant amplitude of the spherical wave from any pixel

(x, y) of an amplitude grating is given as the product of the grating’s pixel gray value

(0 to 1) and amplitude of the incident beam, while the phase remains the same as the

incident beam. Similarly, for a phase grating, the phase of the spherical wave at any

pixel is given as the sum of the pixel gray value (0 to 2π) and incident beam phase,

while the amplitude remains the same as that of the incident beam. The electric field at

any pixel (x, y) on the screen at a distance R from the grating of size Nx × Ny pixels,
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was calculated using the superposition of secondary spherical waves from all the pixels

of the grating, as given in Eq. 2.5 post Fresnel correction: multiplication by (−i/λ) and

inclination factor (R/r).

E(x′, y′) =
R

iλ

Nx∑
x=0

Ny∑
y=0

E(x, y)exp(ikr)

r2
(2.5)

where, r =
√
(x− x′)2 + (y − y′)2 +R2 and k = 2π

λ

The electric field E(x, y) for every pixel on the screen was calculated using a Google

Colab Python notebook executed on an online GPU server. The schematic of the sim-

ulation setup is shown in Fig. 2.1. The Grating was illuminated with a plane wave at

an incident angle adjusted to obtain the 1st diffraction order incident normally at the

screen center. This was done to prevent any phase distortion due to the optical path

length difference across the captured cross-section of the diffraction order. The size of

the screen was adjusted to be sufficient to simulate intensity and phase profile of only

the 1st diffraction order. For all the simulations presented here, only amplitude gratings

were used.

Figure 2.1: The simulated optical setup consisting of a BFG in the xy plane centered at
x = 0, y = 0, z = 0, illuminated at an angle such that the 1st diffraction is
incident normal to the screen in the xy plane centered at x = 0, y = 0, z = R.
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Figure 2.2: l=1 Binary grating. Intensity and phase structures of LG modes with az-
imuthal number l = 0.

Figure 2.3: Intensity and phase structures of LG modes with azimuthal number l = 1.

Figure 2.4: Intensity and phase structures of LG modes with azimuthal number l = −1.

Fig. 2.2 shows an amplitude BFG of charge l = 1 and period 0.95 m, in a circular

disc shaped aperture of radius 20 m, along with the corresponding simulated intensity

and the phase profile for an incident wavelength of λ = 633 nm. The obtained intensity

profile was in the shape of a doughnut with an intensity null at the center, which is a well

reported vortex beam intensity profile. The phase profile showed a variation of π to +π

i.e. a total of +2π azimuthal phase variation around the center, thereby confirming the

TC to be +1, however in a spiral shape. This was due to the fact that in the simulation

each grating pixel was assumed to be a point source of a spherical wave, and thus, even

though the grating itself was illuminated by a plane wave, the diffracted beam had an

12



additional spherical phase. The effect of this spherical phase increases with the increase

in R and dominates over the phase response of the fork grating. Therefore, in order to

capture the phase profile of the BFG, shorter R and hence a smaller grating period was

used to demonstrate the design methodology (scaled to 1/100th of the dimensions used

in the experimental section).

2.3 Experimental Setup

The experiment setup diagram adopted is shown in Fig. 2.5, in which we have used

a He–Ne laser(a wavelength of 633 nm) as the light source. The light beam from

the source laser is first attenuated appropriately and then expanded. The expanded

beam(approximately uniform plane beam at the center) is divided by a beam splitter

into two parts:the reflected part and the transmitted part. The transmitted part travels

towards screen or an electronic addressing reflection-type SLM controlled by a com-

puter where the hologram are stored.The light diffracted from the screen or an SLM

contains the optical vortex beams and their conjugate counterparts.The generated vor-

tex beams are recorded on a screen or using a computer-controlled CCD camera,which

is placed at a certain distance from the SLM. And the orbital angular momentum beams

are observed on the screen as shown in Fig. 2.6

Figure 2.5: Schematic of experiment setup. Source; screen; computer; Beam Splitter;
Grating structure; Screen/CCD,charge coupled device.
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Figure 2.6: Experimental result of vortex beams observed on the Screen/CCD for l=1,2.

2.4 Translation of fork dislocation

The centre fork dislocation is moved from left side towards centre as shown in Fig. 2.7

and their respective intensity profiles are observed. Similarly the centre fork dislocation

is moved from centre towards right as shown in Fig. 2.8 and their intensity profiles are

observed. From the intensity plots we can observe that as the fork dislocation is moved

further away from the centre, the magnitude of the intensity of the respective vortex

beam is reducing. And the spot of reduction of intensity depends on the direction of

translation.

Figure 2.7: l=1 Binary grating and Intensity structures of LG modes with the translation
of fork dislocation.
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Figure 2.8: l=1 Binary grating and Intensity structures of LG modes with the translation
of fork dislocation.

The location of the singularity can be controlled by moving the fork dislocation

around in the complex plane. By shifting the beam slightly off the center of the sin-

gularity in the fork hologram, the singularity in the resulting intensity profile moves

off-axis Fig. 2.7 and 2.8. By controlling the horizontal (x0) and vertical (y0) displace-

ment of the singularity in the hologram, the singularity in the intensity profile can be

positioned at any point within the complex plane.

2.5 Variation of Duty cycle in the grating

Now lets vary the duty cycle of the white(1) pixels with respect to the black(0) pixels

in the binary fork grating(BFG).I have varied the duty cycle from 0.1 to 0.9 in steps of

0.1 and observed the intensity plots as shown in Fig. 2.9.
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Figure 2.9: Intensity structures of LG modes with the variation of duty cycle from
10%− 90% in a l=1 Binary grating.

The Intensity of the OAM beams move along the horizontal axis as the duty cycle is

varied as shown in Fig. 2.9. And hence the power at the first order on the screen also is

varying as we change the duty cycle as observed in Fig. 2.10. Henceforth, a Binary fork

grating(BFG) with 50% duty cycle is used because highest peak efficiency is achieved

at this duty cycle.

Figure 2.10: Intensity structures of LG modes with the variation of duty cycle from
10%− 90% in a l=1 Binary grating.
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CHAPTER 3

COMPOSITE BEAMS

The nontrivial behaviors of phase give rise to diverse intriguing phenomena, opening

up the area of singular optics. Optical vortices (known as singular light beams) have

been used in many fields ranging from particle manipulation to quantum information

due to their unique optical properties. The singularity structure of a wavefront plays an

important role in the physical properties of vortex beams.

Unlike a vortex beam with a single singularity, composite vortices with more elabo-

rate singularity distributions are endowed with enhanced capacity and more flexibility,

which have promising applications in multiple optical traps, electromagnetically in-

duced transparency, and quantum computation gate. Currently, such composite vortex

beams (CVBs) are mainly generated based on spatial light modulators (SLMs), which

suffer from large volume, high cost, and low resolution. To keep the pace of device

miniaturization and system integration, tackling these challenges typically associated

with CVBs generation is urgently needed.

Recently, in order to extend their functionalities, vortex beams with structured inten-

sity profiles and multiple intensity nulls have received increased interest. Historically,

the first ever observations of phase vortices were as multiple intensity nulls in the inter-

ference pattern of ultrasound and later, in optics as the interference of multiple Gaussian

beams and speckle patterns generated by lasers. However, these methods cannot gen-

erate composite vortex (CV) beams - structured beams with multiple OVs of different

TCs, which retain their intensity profile during propagation.

An intuitive method for the generation of CV beams is the linear superposition of

two or more LG modes of different indices using interferometric techniques such as

the Mach-Zehnder interferometer. However, for the efficient generation of CV beams,

there are two essential criteria: (i) the constituent beams should be coaxial and (ii) there



should be spatial overlap of their intensity profiles. Meeting these criteria is not straight-

forward using interferometric techniques, as the vortex beams of different charges have

different radii and intensity profiles. Therefore, a method to generate a ‘perfect’ optical

vortex was proposed, where beam radius is independent of the azimuthal charge. Even

so, these methods would require stringent optical alignment for an efficient interference

between the constituent beams.

In order to mitigate the problem of multiple optical path alignment, several meth-

ods involving a single optical element for the coaxial generation of all the constituent

modes were proposed, such as using diffractive optical elements, plasmonic metasur-

faces and holograms on spatial light modulators (SLM) for their applications in high

speed communications, advanced optical manipulators and rotational sensors. These

methods involve complex design processes and algorithms along with the difficulty in

controlling properties of specific constituent modes. Further, since most of these gen-

eration methods are based on the phase profile holograms, they heavily rely on the

properties and limitations of SLM.

Emerging optical metasurfaces have provided unprecedented capabilities to locally

manipulate light’s phase, amplitude, and polarization at subwavelength scale, leading

to the development of novel metasurface devices, including metalenses, multifunctional

devices, polarization-sensitive holograms, vortex beam generators, and polarization

structure generation. Optical metasurfaces have been used to generate vortex beams

and realize the superposition of these beams. These demonstrations prove that metasur-

faces can be used to create complicated singularity structures based on the superposi-

tion of two vortex beams. However, the superposition of multiple vortex beams (three

or more) is needed to engineer the singularity structure of CVBs, which has not been

demonstrated with optical metasurfaces. In addition, unlike SLMs, geometric optical

metasurfaces are sensitive to polarization states of the light, providing a new degree of

freedom to engineer CVBs.
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3.1 Composite Beam Generation using superposition of

two or more beams

The general superposition of multiple LG modes with specific polarization states can

be expressed as

|LG|sup =
N∑
pl,σ

Cple
iδpl |LGpl,σ| (3.1)

where N is the total number of modes for superposition, Cpl and δpl are the am-

plitude coefficient and the initial phase, respectively, and σ is the circular polarization

state. The composite vortex beams are generated for different topological charges as

shown in Fig. 3.1, 3.2 and 3.3.Consider the superposition of two collinear LG beams of

TC l1 and l2, giving rise to the formation of complex amplitude written as(with p = 0):

LGpl = LG0l1 + LG0l2

Figure 3.1: Intensity structures of composite vortex beams generated by combining two
beams (a)l1=-9,l2=-6; (b)l1=-6,l2=5; (c)l1=-9,l2=4.

Similarly superpositioning three and four LG beams, resulting in complex amplitude

written as(with p = 0) and shown in Fig. 3.2and 3.3:

For three beams, LGpl = LG0l1 + LG0l2 + LG0l3

For four beams, LGpl = LG0l1 + LG0l2 + LG0l3 + LG0l4
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Figure 3.2: Intensity structures of composite vortex beams generated by combining two
beams (a)l1=-7,l2=-2,l3=6; (b)l1=-9,l2=-6,l3=-5; (c)l1=-9,l2=-6,l3=7.

Figure 3.3: Intensity structures of composite vortex beams generated by combining
two beams (a)l1=-9,l2=-6,l3=2,l4=9; (b)l1=-9,l2=-6,l3=-3,l4=3; (c)l1=-9,l2=-
6,l3=-5,l4=-2.

3.2 Composite Beam Generation by performing logical

operations on two binary fork gratings

In this section we will be generating composite vortex beams by superposition of two

binary fork gratings of different topological charges. We are doing superposition by

performing logical operations such as AND, OR, NAND and NOR on these gratings.

The binary fork grating is constructed based on white(1) and black(0) pixels which are

binary (0,1), therefore the resultant grating after the logical operations are performed

would also be binary based from Table 3.1.

Table 3.1: Truth table of AND, OR, NOR and NAND logical operations.

A B AND
0 0 0
0 1 0
1 0 0
1 1 1

A B OR
0 0 0
0 1 1
1 0 1
1 1 1

A B NOR
0 0 1
0 1 0
1 0 0
1 1 0

A B NAND
0 0 1
0 1 1
1 0 1
1 1 0
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The composite vortex beams thus generated by performing logical operations on

two gratings of different topological charges is shown in Fig. 3.4, 3.5, 3.6 and 3.7.

Figure 3.4: Grating, Intensity and phase structures of composite vortex beams gener-
ated by ANDing two gratings of charge (a) l1=-6 and l2=5; (b)l1=-6 and
l2=6.
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Figure 3.5: Grating, Intensity and phase structures of composite beams generated by
ORing two gratings of charge (a) l1=-6 and l2=-3; (b)l1=-6 and l2=-4.

Figure 3.6: Grating, Intensity and phase structures of composite vortex beams gener-
ated by NORing two gratings of charge l1=-6 and l2=-2; (b)l1=-6 and l2=1.
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Figure 3.7: Grating, Intensity and phase structures of composite vortex beams gener-
ated by NANDing two gratings of charge (a) l1=-9 and l2=3; (b) l1=-9 and
l2=-4.

This is a simple approach to generating composite vortex beams without needing

any optical LG beams and without worrying about the stringent optical alignment for

an efficient interference between the constituent beams. Because meeting these criteria

is not straightforward using interferometric techniques, as the vortex beams of different

charges have different radii and intensity profiles.

3.2.1 Translation and Rotation

Now we will perform translation (i.e. shift the fork dislocation horizontally) on one

grating and performing logical operation with another grating without translation to

generate composite vortex beams as shown in Fig. 3.8 and 3.9
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Figure 3.8: Grating, Intensity and phase structures of composite vortex beams gener-
ated by ORing translated l2=1 with l1=-2.

Figure 3.9: Grating, Intensity and phase structures of composite vortex beams gener-
ated by ORing translated l2=-2 with l1=2.

Similarly we will perform rotation (i.e. rotate the fork dislocation by 1◦) on one

grating and performing logical operation with another grating without rotation to gen-

erate composite vortex beams. As shown in Fig. 3.10 second grating is rotated by 3◦

with respect to first and ORed to result composite beams. Similarly shown in Fig. 3.11

second grating is rotated by 4◦ with respect to first and ORed to result composite beams.

If we keep increasing the angle of rotation their beam axis may not interfere, resulting

in no output at first order.
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Figure 3.10: Grating, Intensity and phase structures of composite vortex beams gener-
ated by ORing rotated(by 3◦) l2=1 with normal l1=1.

Figure 3.11: Grating, Intensity and phase structures of composite vortex beams gener-
ated by ORing rotated (by 4◦) l2=1 with normal l1=1.

3.3 Composite Beam Generation by performing logical

operations on three binary fork gratings

Similar to previous section, we will now be performing logical operations on a set of

three gratings based on 3-input logic truth tables(8 possible combinations). The com-

plex vortex beams thus generated using three gratings of different topological charges

is shown in Fig. 3.12, 3.13, 3.14 and 3.15
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Figure 3.12: Grating, Intensity and phase structures of composite vortex beams gener-
ated by three gratings; l1=-9 AND l2=-6 AND l3=-3.

Figure 3.13: Grating, Intensity and phase structures of composite beams generated by
three gratings; l1=-9 AND l2=-6 NOR l3=5.

Figure 3.14: Grating, Intensity and phase structures of composite vortex beams gener-
ated by three gratings; l1=-9 NOR l2=-6 OR l3=2.
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Figure 3.15: Grating, Intensity and phase structures of composite vortex beams gener-
ated by three gratings; l1=-9 NOR l2=-6 OR l3=-4.

3.4 Composite Beam Generation by performing logical

operations on four binary fork gratings

Similar to previous section, we will now be performing logical operations on a set of

four gratings based on 4-input logic truth tables(16 posiible combinations). The com-

plex vortex beams thus generated using four gratings of different topological charges is

shown in Fig. 3.16, 3.17, 3.18 and 3.19

Figure 3.16: Grating, Intensity and phase structures of composite vortex beams gener-
ated by four gratings; l1=-9 NOR l2=-6 AND l3=5 OR l4=3.
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Figure 3.17: Grating, Intensity and phase structures of composite beams generated by
four gratings; l1=-9 AND l2=-6 OR l3=-5 OR l4=-3.

Figure 3.18: Grating, Intensity and phase structures of composite vortex beams gener-
ated by four gratings; l1=-9 AND l2=-6 OR l3=-5 OR l4=-3.
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Figure 3.19: Grating, Intensity and phase structures of composite vortex beams gener-
ated by three gratings; l1=-9 NOR l2=-6 OR l3=-4.
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CHAPTER 4

CONCLUSION

We successfully demonstrated various Composite vortex beams in the 1st diffraction

order by performing logical operations on two or more binary fork gratings through

simulation. The geometrical parameters of BFGs were optimized for the efficient gen-

eration of CV beams. The method was further extended to the generation of CV beams

by varying the duty cycle of the binary fork gratings (BFG). This simple generation

method may be useful to generate complex beam shapes with engineered phase fronts

without complicated interferometry based techniques. The proposed CV beam gener-

ation method may have potential applications in diverse fields such as optical micro-

manipulation and optical communication.





APPENDIX A

APPENDIX

Code Used: Reference from Nirjhar Kumar

1 //Import the required modules

2 import torch

3 import matplotlib.pyplot as plt

4 import matplotlib

5 import PIL

6 import numpy as np

7 import random

8 import math

9 import cmath

10 import cv2

11 from scipy.special import comb, factorial

12 from scipy.special import genlaguerre as genlag

13 from scipy.special import eval_genlaguerre as eval_genlag

14 from sklearn import preprocessing as norm

15 from scipy import ndimage

16 from torch.nn.functional import normalize

17 import sys

18 from matplotlib import image

19 from matplotlib import pyplot

20

21

22 class diffraction:

23 size_x_in_m,size_y_in_m,period_x,period_y,Nx,Ny = 0,0,0,0,0,0

24 screen_size_x_in_m,screen_size_y_in_m,improve_fact_x,improve_fact_y

,R,R2 = 0,0,0,0,0,0

25 pre_improvement_screen_size_x_in_pixel,

pre_improvement_screen_size_y_in_pixel = 128,128

26 lambda_m,k = 0,0

27 order_xpos_in_m,order_ypos_in_m = 0,0

28 incidence_theta_x,incidence_theta_y=0,0
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30 def initialize_grating_parameters(self,size_x_in_m = 16.384e-6,

size_y_in_m = 16.384e-6,period_x=800e-9,period_y=800e-9,Nx=512,Ny

=512):

31 self.size_x_in_m = size_x_in_m

32 self.size_y_in_m = size_y_in_m

33 self.period_x=period_x

34 self.period_y=period_y

35 self.Nx = Nx; # No. of pixels in x-dimension

36 self.Ny = Ny; # No. of pixels in y-dimension

37

38 def initialize_screen_parameters(self,screen_size_x_in_m = 204.8e

-6,screen_size_y_in_m = 204.8e-6,improve_fact_x=1,improve_fact_y

=1,R=0.16e-2):

39 self.screen_size_x_in_m = screen_size_x_in_m

40 self.screen_size_y_in_m = screen_size_y_in_m

41

42 self.improve_fact_x = improve_fact_x

43 self.improve_fact_y = improve_fact_y

44

45 self.R=R # distance of screen from gating

46 self.R2=R**2

47

48 def inicident_beam_parameters(self,lambda_m,input_intensity = 1.0,

RI=1):

49 self.lambda_m=lambda_m

50 self.RI=RI

51 self.k=-(2*np.pi)*complex(np.imag(RI),np.real(RI))/lambda_m

52

53 E0_per_pixel= np.sqrt(input_intensity/np.double(self.Nx*self.Ny))

;

54

55 return np.ones([self.Nx,self.Ny])*E0_per_pixel

56

57

58

59 def inicident_LGbeam_intensityNphase(self,lambda_m=632.8e-9,RI=1,

input_intensity = 1.0, p = 0, l = 1, w0 = None, z = 0.0 ,

Dcenter_x_in_m=0.0, Dcenter_y_in_m=0.0):

60 self.lambda_m=lambda_m

61 self.RI=RI
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62 # phase constant: -ik :

63 self.k=(-(2*np.pi)*complex(np.imag(RI),np.real(RI))/lambda_m) #

wavelength of light in vaccuum

64 if w0 is None:

65 w0 = self.size_x_in_m/4; # Beam waist

66

67 zR = self.k*w0**2.0/2; # Calculate the Rayleigh range

68

69 C=np.sqrt(2*factorial(p)/(np.pi*factorial(p+l)))

70 # Setup the cartesian grid for the plot at plane z

71 xx, yy = np.meshgrid(np.linspace(-self.size_x_in_m/2-

Dcenter_x_in_m, self.size_x_in_m/2-Dcenter_x_in_m,self.Nx), np.

linspace(-self.size_y_in_m/2-Dcenter_y_in_m, self.size_y_in_m/2-

Dcenter_y_in_m,self.Ny));

72

73 # Calculate the cylindrical coordinates

74 r = np.sqrt(xx**2 + yy**2);

75 phi = np.arctan2(yy, xx);

76

77 U00 = 1.0/(1 + z/zR) * np.exp(-r**2.0/w0**2/(1 + z/zR));

78 #w = w0 * np.sqrt(1.0 + z**2/zR**2);

79 w= w0 * np.abs(1 + z/zR)

80 R = np.sqrt(2.0)*r/w;

81

82 # Lpl from OT toolbox (Nieminen et al., 2004)

83 Lpl = comb(p+l,p) * np.ones(np.shape(R)); # x = R(r, z).^2

84 for m in range(1, p+1):

85 Lpl = Lpl + (-1.0)**m/factorial(m) * comb(p+l,p-m) * R**(2.0*

m);

86

87 U = C*U00*R**l*Lpl*np.exp(1j*l*phi)*np.exp(-1j*(2*p + l + 1)*np.

arctan(z/np.abs(zR)));

88

89 return np.sqrt(input_intensity/np.double(self.Nx*self.Ny))*U;

90

91

92 def order_at_screen_center(self,order_num_x=1,order_num_y=0):

93 return np.arcsin(order_num_x*self.lambda_m/self.period_x), np.

arcsin(order_num_y*self.lambda_m/self.period_y)

94
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95

96

97

98 # depreciated function. instead use ’design_1D_grating’ (see just

below)

99

100 def design_1D_grating(self,period_in_m=None,

grating_vect_angle_in_rad=0,grating_duty_cycle=0.5,r_in_m=None,

grating_phase_shift_in_rad= 0.0,fork_center_x_in_m=0,

fork_center_y_in_m=0,TC=1,miscellenous_parameter=1):

101 # populate function parameters with None value with values of the

corresponding class variable

102 is_grating_vector_odd_multiple_of_piby2 = np.mod(np.round(2*

grating_vect_angle_in_rad/np.pi),2)

103 if r_in_m is None:

104 r_in_m=self.size_x_in_m/2

105 if period_in_m is None:

106 period_taken_from_class_variable = True

107 if is_grating_vector_odd_multiple_of_piby2:

108 period_in_m=self.period_y

109 else:

110 period_in_m=self.period_x

111 else:

112 period_taken_from_class_variable = False

113

114 if is_grating_vector_odd_multiple_of_piby2:

115 on_pixel_size_in_m=self.size_y_in_m/(grating_duty_cycle*self.Ny

)

116 else:

117 on_pixel_size_in_m=self.size_x_in_m/(grating_duty_cycle*self.Nx

)

118

119 number_of_on_pixel=np.round(period_in_m/on_pixel_size_in_m)

120 period_possible_in_m=number_of_on_pixel*on_pixel_size_in_m

121 if np.abs(period_possible_in_m-period_in_m)/period_in_m > 1e-5:

122 period_in_m=period_possible_in_m

123 if period_taken_from_class_variable:

124 if is_grating_vector_odd_multiple_of_piby2:

125 self.period_y=period_in_m
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126 print(’Warning: class period_y adjusted to: ’,period_in_m,

’ m’)

127 else:

128 self.period_x=period_in_m

129 print(’Warning: class period_x adjusted to: ’,period_in_m,

’ m’)

130 else:

131 print(’Warning: grating period adjusted to: ’,period_in_m, ’

m’)

132

133 # pixel coordinates of the center of the image

134 x0 =int(self.Nx*(fork_center_x_in_m/self.size_x_in_m+0.5));

135 y0 = int(self.Ny*(fork_center_y_in_m/self.size_y_in_m+0.5));

136

137 # determines grating period along a given direction ’

grating_vect_angle_in_rad’

138 x_fringe_density=np.cos(-grating_vect_angle_in_rad)/self.Nx*self.

size_x_in_m/period_in_m

139 y_fringe_density=np.sin(-grating_vect_angle_in_rad)/self.Ny*self.

size_y_in_m/period_in_m

140 # unwraped grating phase profile

141 xr,yr = np. meshgrid (np.arange(self.Nx)-x0,np.arange(self.Ny)-y0

)

142 r=np.sqrt(xr**2+yr**2);

143 phi=np.arctan2(yr,xr)/(2*np.pi);

144 sph = -0*0.1*r*x_fringe_density

145 phi1 = TC*phi + x_fringe_density*(xr)+y_fringe_density*(yr) + sph

+ grating_phase_shift_in_rad/(2*np.pi) +1e-10

146 #phi1 = TC*phi + x_fringe_density*(xr)+y_fringe_density*(yr) +

sph + np.floor(miscellenous_parameter*phi)/miscellenous_parameter*

grating_phase_shift_in_rad/(2*np.pi) +1e-10

147 # change the aperture shape to circular

148 phi1=phi1 * np.where(r>self.Nx*r_in_m/self.size_x_in_m, 0,1)

149 # wraped grating phase profile

150 r1 = np.mod(phi1,1); #phase mod 2 pi in units of 2pi

151 return np.where(r1>=(1-grating_duty_cycle), 1, 0)

152

153

154 def design_1D_grating_empty(self):

155 Ny=self.Ny
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156 Nx=self.Nx

157 C = np.ones([Ny,Nx]);

158 for x in range(Nx):

159 for y in range(Ny):

160 x0 = Nx/2; # coordinates of the center of the image

161 y0 = Ny/2;

162 xr=x-x0;

163 yr=y-y0;

164 r=np.sqrt(xr**2+yr**2); # radial coordinate

165 #if((xr<=Nx/2) or (yr<=Ny/2)):

166 if r<=Nx/2:#aperture:

167 C = C;

168 else:

169 C[y,x]=0

170 return C

171

172 ####angular illumination along x

173 def angular_illumination(self,theta):

174 self.incidence_theta_x=theta[0]

175 self.incidence_theta_y=theta[1]

176 phasex=(2*np.pi*np.sin(self.incidence_theta_x)/self.lambda_m)*np.

linspace(-self.size_x_in_m/2,self.size_x_in_m/2,self.Nx)

177 phasey=(2*np.pi*np.sin(self.incidence_theta_y)/self.lambda_m)*np.

linspace(-self.size_y_in_m/2,self.size_y_in_m/2,self.Ny)

178 phasexx, phaseyy = np.meshgrid(phasex, phasey, sparse=True)

179 C_phase= phasexx+phaseyy

180 return C_phase

181

182

183 def incident_beam_phase_profile(self,TC_inc=0):

184 Ny=self.Ny

185 Nx=self.Nx

186 C2 = np.zeros([Ny,Nx]);

187 for x in range(Nx):

188 #m=m-0.1

189 for y in range(Ny):

190 x0 = Nx/2; # coordinates of the center of the image

191 y0 = Ny/2;

192 xr=x-x0;

193 yr=y-y0;
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194 r=np.sqrt(xr**2+yr**2); # radial coordinate

195 if r<=Nx/2:

196 phi=np.arctan2(yr,xr); # angular coordinate

197 C2[y,x] = TC_inc*phi

198 return C2

199

200 def set_screen_position(self,order_num_x,order_num_y):

201 self.order_xpos_in_m=np.tan(np.arcsin(self.lambda_m*order_num_x/

self.period_x)-self.incidence_theta_x)*self.R

202 self.order_ypos_in_m=np.tan(np.arcsin(self.lambda_m*order_num_y/

self.period_y)-self.incidence_theta_y)*self.R

203 def set_screen_position2(self,order_num_x,order_num_y):

204 self.order_xpos_in_m=np.tan(np.arcsin(self.lambda_m*order_num_x/

self.period_x))*self.R

205 self.order_ypos_in_m=np.tan(np.arcsin(self.lambda_m*order_num_y/

self.period_y))*self.R

206 def set_screen_position3(self,order_num_x,order_num_y,n1=1,n2=1):

207 self.order_xpos_in_m=np.tan(np.arcsin(self.lambda_m*order_num_x/

self.period_x)-np.arcsin((n1/n2)*np.sin(self.incidence_theta_x)))*

self.R

208 self.order_ypos_in_m=np.tan(np.arcsin(self.lambda_m*order_num_y/

self.period_y)-np.arcsin((n1/n2)*np.sin(self.incidence_theta_y)))*

self.R

209 def set_screen_position4(self,order_num_x,order_num_y):

210 self.order_xpos_in_m=np.tan(-self.incidence_theta_x)*self.R

211 self.order_ypos_in_m=np.tan(-self.incidence_theta_y)*self.R

212 def set_screen_position5(self,t1=16e-4,t2=16e-4,incidence_theta

=(0,0)):

213 self.order_xpos_in_m=np.tan(-((t1+t2)/t2)*np.tan(incidence_theta

[0]))*self.R

214 self.order_ypos_in_m=np.tan(-((t1+t2)/t2)*np.tan(incidence_theta

[1]))*self.R

215

216 def run_huygens_construct(self,C_amp,C_phase,C_grating,

grating_type=’amplitude grating’, lambda_m=500e-9, RI=1):

217 self.lambda_m = lambda_m

218 self.RI = RI

219 self.k=(-(2*np.pi)*complex(np.imag(RI),np.real(RI))/lambda_m)

220 if (grating_type==’amplitude grating’):
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221 C=C_grating*C_amp#*np.exp(self.R*np.real(self.k)) # grating and

amplitude multiplied togather to create a single matrix for

amplitude modulation

222 else:

223 C=C_amp#*np.exp(self.R*np.real(self.k))

224 C_phase=C_phase+C_grating*np.pi

225

226 #Grating vector mesh:

227 g_division_fact_x =int(C.shape[0]/128)

228 g_division_fact_y =int(C.shape[1]/128)

229

230 grating_split_x=np.linspace(-0.5,0.5,1+g_division_fact_x)*self.

size_x_in_m

231 grating_split_y=np.linspace(-0.5,0.5,1+g_division_fact_y)*self.

size_y_in_m

232

233 grating_p_split_x=(np.linspace(0,1,1+g_division_fact_x)*C.shape

[0]).astype(’int’)

234 grating_p_split_y=(np.linspace(0,1,1+g_division_fact_y)*C.shape

[1]).astype(’int’)

235

236 screen_size_x_in_pixel = self.

pre_improvement_screen_size_x_in_pixel

237 screen_size_y_in_pixel = self.

pre_improvement_screen_size_y_in_pixel

238

239 screen_split_x=np.linspace(-0.5,0.5,1+self.improve_fact_x)*self.

screen_size_x_in_m

240 screen_split_y=np.linspace(-0.5,0.5,1+self.improve_fact_y)*self.

screen_size_y_in_m

241

242 #Screen vector mesh:

243 pf= torch.zeros(screen_size_x_in_pixel*self.improve_fact_x,0,

device=cuda)

244 for r_unit in range(self.improve_fact_x):

245 S_x_vec=torch.linspace(self.order_xpos_in_m+screen_split_x[

r_unit],self.order_xpos_in_m+screen_split_x[r_unit+1],

screen_size_x_in_pixel,device=cuda)

246 pf_y= torch.zeros(0,screen_size_y_in_pixel).to(cuda)

247 for c_unit in range(self.improve_fact_y):
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248 S_y_vec=torch.linspace(self.order_ypos_in_m+screen_split_y[

c_unit],self.order_ypos_in_m+screen_split_y[c_unit+1],

screen_size_y_in_pixel,device=cuda)

249 S_vec=torch.zeros((S_x_vec.size()[0],S_y_vec.size()[0])).to(

cuda)

250

251 S_vec=S_y_vec.view(S_y_vec.size()[0],1)*1j + S_vec

252 S_vec=(S_x_vec + S_vec)

253

254 fp_unit= torch.zeros( S_x_vec.size()[0]*S_y_vec.size()[0],1,

device=cuda)

255 for gr_unit in range(g_division_fact_x):

256 G_x_vec=torch.linspace(grating_split_x[gr_unit],

grating_split_x[gr_unit+1],int(C.shape[0]/g_division_fact_x),

device=cuda)

257 for gc_unit in range(g_division_fact_y):

258 G_y_vec=torch.linspace(grating_split_y[gc_unit],

grating_split_y[gc_unit+1],int(C.shape[1]/g_division_fact_y),

device=cuda)

259 G_vec=torch.zeros((G_x_vec.size()[0],G_y_vec.size()[0]),

device=cuda)

260

261 G_vec=G_y_vec.view(G_y_vec.size()[0],1)*1j + G_vec

262 G_vec=(G_x_vec + G_vec)

263

264 E0=torch.polar(torch.tensor(C[grating_p_split_y[gc_unit]:

grating_p_split_y[gc_unit+1],grating_p_split_x[gr_unit]:

grating_p_split_x[gr_unit+1]],dtype=torch.float,device=cuda),torch

.tensor(C_phase[grating_p_split_y[gc_unit]:grating_p_split_y[

gc_unit+1],grating_p_split_x[gr_unit]:grating_p_split_x[gr_unit

+1]],dtype=torch.float,device=cuda))

265

266 #Calculate optical path from each point on the grating to

each point on the screen:

267 path_diff2 = torch.zeros((S_x_vec.size()[0]*S_y_vec.size

()[0],G_x_vec.size()[0]*G_y_vec.size()[0]),device=cuda)

268 path_diff2=path_diff2+G_vec.view(1,G_x_vec.size()[0]*

G_y_vec.size()[0])

269 path_diff2=path_diff2-S_vec.view(S_x_vec.size()[0]*

S_y_vec.size()[0],1)
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270 path_diff2=path_diff2*path_diff2.conj()+self.R2

271 #print(self.k)

272 intk=torch.sqrt(path_diff2)

273 #print("intk = ",intk)

274 path_diff2=torch.exp(intk*self.k)/path_diff2

275 #path_diff2=torch.exp(intk*np.imag(self.k)*1j)/path_diff2

276

277 #print("intk1j = ",intk/1j)

278 #print("path_diff21j =", torch.exp(intk/1j))

279 #print("path_diff2 =", path_diff2)

280

281 #Calculate the diffractio n pattern:

282

283 E0=(E0.reshape(G_x_vec.size()[0]*G_y_vec.size()[0],1))

284 #E0=(E0.reshape(G_x_vec.size()[0]*G_y_vec.size()[0],1))*

torch.exp(intk*np.real(self.k))

285 #fp_unit=fp_unit-1j*self.R*torch.mm(path_diff2,E0)/self.

lambda_m

286 fp_unit=fp_unit-1j*self.R*torch.mm(path_diff2,E0)*self.RI

/self.lambda_m

287

288 pf_y= torch.cat(( pf_y,fp_unit.view(S_x_vec.size()[0],

S_y_vec.size()[0]) ),0)

289 pf= torch.cat(( pf,pf_y ),1)

290 return pf.to(cpu).numpy()

291

292

293

294

295

296

297 def plot_inputs(self,input_beam_amplitude,input_beam_phase,grating,

img_file_name_prefix=’binary’):

298 print("Input: ")

299 suffix=’_grating’

300 image_type=’.jpg’

301 screen_size_x_in_pixel=self.Nx

302 screen_size_y_in_pixel=self.Ny

303 fig = plt.figure(figsize=(10, 10)) # set the height and width in

inches
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304

305 # plot input beam Intensity profile

306 plt.subplot(1,3,1)

307 input_beam_amplitude[0,0]=0

308 plt.imshow(input_beam_amplitude, interpolation=’nearest’)#,cmap=’

hot’)

309 plt.colorbar(fraction=0.045)

310

311

312 # plot input beam Phase profile

313 plt.subplot(1,3,2)

314 plt.imshow(input_beam_phase,cmap=’jet’)

315 plt.colorbar(fraction=0.045)

316

317 # input grating

318 plt.subplot(1,3,3)

319 plt.imshow(grating,cmap=’gray’)

320 # save as image

321 matplotlib.image.imsave(img_file_name_prefix+suffix+image_type,

grating, cmap=’gray’)

322

323 # setting subplots’ title

324 ax_list = fig.axes

325 ax_list[0].set_title(’Incident_beam_intensity_profile’)

326 ax_list[2].set_title(’Incident_beam_phase_profile’)

327 ax_list[4].set_title(img_file_name_prefix+suffix)

328

329 plt.show()

330

331 def plot_inputs_grat(self,grating1,grating2,gratinge,

img_file_name_prefix=’binary’):

332 print("Input: ")

333 suffix=’_grating’

334 image_type=’.jpg’

335 screen_size_x_in_pixel=self.Nx

336 screen_size_y_in_pixel=self.Ny

337 fig = plt.figure(figsize=(10, 10)) # set the height and width in

inches

338

339 # plot input beam Intensity profile
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340 plt.subplot(1,3,1)

341 plt.imshow(grating1,cmap=’gray’)

342

343 # save as image

344 matplotlib.image.imsave(img_file_name_prefix+suffix+image_type,

grating1, cmap=’gray’)

345

346

347 # plot input beam Phase profile

348 plt.subplot(1,3,2)

349 plt.imshow(grating2,cmap=’gray’)

350 # save as image

351 matplotlib.image.imsave(img_file_name_prefix+suffix+image_type,

grating2, cmap=’gray’)

352

353 # input grating

354 plt.subplot(1,3,3)

355 plt.imshow(gratinge,cmap=’gray’)

356 # save as image

357 matplotlib.image.imsave(img_file_name_prefix+suffix+image_type,

gratinge, cmap=’gray’)

358

359 # setting subplots’ title

360 ax_list = fig.axes

361 ax_list[0].set_title(’Grating_1’)

362 ax_list[1].set_title(’Grating_2’)

363 ax_list[2].set_title("Equi_Gratiing")

364

365 plt.show()

366

367

368 def plot_grating(self,grating,fig_handle= None,

img_file_name_prefix=’binary’,image_type=’.bmp’,cmap=’gray’):

369 if fig_handle is None:

370 fig_handle = plt.figure(figsize=(10, 10)) # set the height and

width in inches

371 print("Input: ")

372 suffix=’_grating’

373 screen_size_x_in_pixel=self.Nx

374 screen_size_y_in_pixel=self.Ny
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375

376 plt.imshow(grating,cmap = cmap)

377 # save as image

378 if image_type is not ’.’:

379 matplotlib.image.imsave(img_file_name_prefix+suffix+image_type,

grating, cmap = cmap)

380 if fig_handle is None:

381 plt.show()

382

383

384

385 def plot_outputs(self,diffraction_pattern,img_file_name_prefix=’1

stOrder’,intensity_plot_clim_min=None,intensity_plot_clim_max=None

):

386 print("Output: ")

387 suffix_ip=’_intensity_profile’

388 suffix_pp=’_phase_profile’

389 image_type=’.jpg’

390 fig = plt.figure(figsize=(10, 10)) # set the height and width in

inches

391

392 # plot output Intensity Profile

393 plt.subplot(1,3,1)

394 plt.imshow(np.abs(diffraction_pattern))##’viridis’,cmap=’copper’

395 plt.colorbar(fraction=0.045)

396

397 # plot output Phase Profile

398 plt.subplot(1,3,3)

399 plt.imshow(np.angle(diffraction_pattern),cmap=’jet’) # cmap= ’

twilight’,cmap=’jet’

400 plt.colorbar(fraction=0.045)

401

402

403 #

404 d1=diffraction()

405 Nx=512

406 Ny=512

407 wavelength=633e-9 #633e-9

408 period = 950e-9 #950

409 size_x_in_m = 40e-6
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410 size_y_in_m = 40e-6

411 screen_size_x_in_m = 1.0e-4 #2.7e-4

412 screen_size_y_in_m = 1.0e-4

413

414 #tcs=[-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7]

415 #tcs

=[-16,-15,-14,-13,-12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

416 #tcs=[-2,-1,0,1,2]

417 dc=0.5#dc1=[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

418 D_order_num=1

419 d1.initialize_grating_parameters(size_x_in_m ,size_y_in_m ,period_x=

period,period_y=period,Nx=Nx,Ny=Ny)

420 d1.initialize_screen_parameters(screen_size_x_in_m ,

screen_size_y_in_m ,improve_fact_x=1,improve_fact_y=1,R=(1000e-6))

421

422 for thet1 in [0]:#range(0,360,5):

423

424 for thet2 in [0]:#range(10,180,10):

425

426 for tc1 in [1]:

427

428 for tc1 in [1]:

429

430 #Initializing gratings, Incident beams

431 grating1=d1.design_1D_grating(TC=tc1,grating_duty_cycle=dc,

grating_vect_angle_in_rad=np.deg2rad(0),grating_phase_shift_in_rad

=np.deg2rad(0))

432 #grating2=d1.design_1D_grating(TC=tc2,

grating_vect_angle_in_rad=np.deg2rad(thet1),

grating_phase_shift_in_rad=np.deg2rad(thet2))

433

434 input_beam_amplitude=d1.inicident_beam_parameters(lambda_m=

wavelength)

435 #input_beam_amplitude=d1.inicident_LGbeam_intensityNphase(

lambda_m=wavelength)

436 input_beam_phase=d1.angular_illumination(d1.

order_at_screen_center(D_order_num,0))

437

438 #Grating logical operations
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439 gratinge=grating1

440 #gratinge=np.logical_or(grating1,grating2)

441 #gratinge=np.logical_not(np.logical_and(grating1,grating2))

442 print("tca=",tc1,"tc1=",tc1," dc=",dc,"operation=OR-OR","

grating_vect_angle=",thet1,"grating_phase_shift=",0)

443 for x in range(Nx):

444 for y in range(Ny):

445 x0 = Nx/2; # coordinates of the center of the image

446 y0 = Ny/2;

447 xr=x-x0;

448 yr=y-y0;

449 r=np.sqrt(xr**2+yr**2); # radial coordinate

450 #if((xr<=Nx/2) or (yr<=Ny/2)):

451 if r<=Nx/2:#aperture:

452 gratinge = gratinge;

453 else:

454 gratinge[y,x]=0

455

456

457

458 d1.plot_inputs(input_beam_amplitude,input_beam_phase,gratinge

)

459

460 if (1):

461 d1.set_screen_position(order_num_x=D_order_num,order_num_y

=0)

462 #print(d1.set_screen_position(order_num_x=D_order_num,

order_num_y=0))

463

464 diffraction_pattern=d1.run_huygens_construct3(

input_beam_amplitude,input_beam_phase,gratinge,’amplitude grating’

)

465

466

467

468 d1.plot_outputs(diffraction_pattern)

469

470 P_out=np.sum((np.abs(diffraction_pattern)**2)*((

screen_size_x_in_m/128)**2))##(size_x)**2)

471 print(P_out)
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472 #I_op=(((np.abs(diffraction_pattern)(size_x)2)2))(

screen1_size/128)**2

473 P_in=np.sum((np.abs(input_beam_amplitude)**2)*((size_x_in_m

/512)**2))

474 #Efficiency

475

476 Eff = ((P_out/P_in))*100

477 print("P_out=",P_out,"P_in=",P_in,"Eff%=",Eff)

Listing A.1: Python code for CVB Generation
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