Composite OAM Beam Decomposition Via

Convolutional Neural Network

A Project Report

submitted by

RAHUL R

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING.
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2022

THESIS CERTIFICATE

This is to certify that the thesis titled Composite OAM Beam Decomposition Via Con-
volutional Neural Network, submitted by RAHUL R, to the Indian Institute of Tech-
nology, Madras, for the award of the degree of Masters of Technology, is a bonafide
record of the research work done by him under our supervision. The contents of this
thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Prof. Dr. Ananth Krishnan
Research Guide
Professor

Dept. of Electrical Engineering
I[I'T-Madras, 600 036

Date: 27th May 2022

Place: Chennai

ACKNOWLEDGEMENTS

Firstly I would like to thank my thesis advisor Dr. Ananth Krishnan for guiding me
throughout this project and motivating me. He has been very encouraging for working
on new ideas and I am grateful for the support which he gave me whenever 1 was in
needed. The door to Prof. Dr. Ananth krishnan office was open whenever I ran into
trouble spot or had a question about my research work.

I am thankful to faculties of Electrical department for the support through out my M.tech
post graduate degree.

Finally, I am thankful to my lab partner Nirjhar for helping me whenever necessary and

guiding me throughout my project.

ABSTRACT

KEYWORDS: O.AM; L.G.Beams.

The Vortex beam carrying Orbital Angular Momentum (O.A.M) has attracted great
attention in optical communication field. Here, decomposition of composite O.A.M
beams into its mode weights and mode phase of L.G Beams was achieved through two
separate Alex-net Architecture. Negative charge was included in generating composite
beam, but there seems to exists another L.G Beams mode set which produces same in-
tensity pattern. New algorithm was developed in order to over come this issue. Radial
charge was also introduced here, At most two L.G beams was combined to produce the
composite beam and was able to accurately reconstruct the image,even when the noise

was added to the original composite beam.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT ii
LIST OF FIGURES| viii
ABBREVIATIONS ix
NOTATION xi
1 _INTRODUCTION 1
(1.1 Laguerre-Gaussian(LG) modes., 1
[L.2 Generation of O.AMbeams) 3
(1.2.1 Forkgrating|. 3

(1.2.2 Optical element:| 3

2 Composite Beam Generation| 5
3 Mirror Charges Correction.| 7
4__Dataset Generation and Noise.| 11
4.1 Differenttypesofnoise] 11
4.1.1 Translation: 11

K12 Yawrotation:] 11

1 Pitch rotation:| oL 11

414 ShotNoise:, 11

4.1.5 PepperNoise:| 12

4.1.6 Gaussian Blur Noise:| 12

4.2 Dataset Generation:l 14

5 ___Normalisation:| 15

6 CNN Architecturel

6.1

Convolution Neural Network Theory|

[6.2 C.N.N Hyper parameter Tuning using Wand b:|

8 CODE

B1

Imports of Librartes:|

[8.2.4 Noise Adding Functions.|

[8.2.5 Expected Output.|

B3

Data-loader for Training and validation Set.|

[8.3.1 Tramimgdataset.|

!

[8.4.2 Loss and Optimiser Functions|

[8.4.3 Defining Training and validation Functions.|

[8.4.4 Training Network.|

17
17
18
20

23

29
29
30
30
30
31
33
38
38
39
40
41
41
44
45
48
51

LIST OF FIGURES

(1.1 Intensity of LGgo.|. o . o o o oo
1.2 Phase of LG, o o o o

(1.3 Intensityof LGos.|. o o o oo

(1.4 Phaseof LGos.|

(1.5 Intensityof LGos.|. o o o o o oo

(1.6 Phaseof LGos.|

(1.7 Fork grating|

(1.8 mtensityof TC=1.|

1.9 Phaseof T.C=1.J.

[3.1 Composite intensity profileofsetl..

[3.2 Composite intensity profileofset2.|.

(3.3 Mirror ChargesCase .|

[3.4 Mirror Charges Case 2.|

(3.5 Mirror Charges Case 3.

4.1 Compositebeam.| Lo

4.2 Translationoft, =¢, =30

4.3 Compositebeam.| L o o

M4 vyawrotationof 45°

4.5 Compositebeam.|,

4.6 pitchrotationof 45%)

4.7 Composite beam.| L L.

4.8 Shotnoiseimage. Lo

4.9 Composite beam.| Lo Lo

.10 peppernoise 1mage.|l e e

@.11 Compositebeam.| L.

4.12 Bluenoisyimage.|.

vii

W W W N NN NN DN

oo

10
10
10

13
13
13
13
13
13
13
13
14
14
14
14

16

6.1

Batch 01 hyper parameter tuning. .|

6.2

Batch 02 hyper parameter tuning. .|

[6.3 Batch 03 hyperparameter tuning..|.

6.3

Loss curve for weights.|

6.6

Loss curve for phase.|

71

Input Composite beam to CNN 1|

72

Reconstructed image 1.|

73

Weights prediction 1|

74

Phase prediction 1.|

73

Input Composite beam to CNN 2.

7.6

Reconstructed image 2.[.

77

Weights prediction 2.

738

Phase prediction2.|

79

Input Composite beam to CNN 3.

(/.10 Reconstructed Image 3.|

(/.11 Weights Prediction3.|

[7.13 Input Composite beam to CNN 4|

(/.14 Reconstructed Image 4.

[7.15 Weights Prediction4.|

[7.17 Input Composite beam to CNN 5|

(/.18 Reconstructed ImageS.|,

[7.19 Weights Prediction 5.|

viii

16

19
19
20
21
21
21

24
24
24
24
25
25
25
25
26
26
26
26
27
27
27
27
28
28
28
28

0.AM
C.N.N
G.P.U
fcl-sz
fc2-sz
S.D.G
convl-sz
convSn2-sz
conv4n3-sz
F.C

C.CD

ABBREVIATIONS

Orbital Angular Momentum

Convolution Neural Network.

Graphical Processing Unit .

Fully connected layer 1 size.

Fully connected layer 2 size.

Stochastic Gradient Descent.

Convolution layer 1 Number of filters.
Convolution layer 5 and 2 Number of filters.
Convolution layer 4 and 3 Number of filters.
Fully connected layer .

Charged Couple Device .

X

A" ~q =T

NOTATION

Mean value of the dataset.
Standard Deviation of the dataset.
Topological charge

Radial Charge

Gaussian Blur sigma value.

xi

CHAPTER 1

INTRODUCTION

In,1992 Allen recognised the light beams with carry azimuthal phase dependence of
exp(il¢) carry an orbital angular momentum where 1 can be a integer value, positive
or negative, Such beams has helical phase fronts. O.A.M has phase singularity running
along the center of the beam. The O.A.M has [azimuthal index goes from —oo to oo
and radial charge p from 0 to oo in steps of 1. Each O.A.M mode consists of [and p

value. This O.A.M modes are orthogonal to each other.

1.1 Laguerre-Gaussian(LG) modes.

The complete basis set of orthogonal modes, for O.A.M carrying beams is given by
Laguerre-Gaussian (LG) Modes set, these mode have amplitude distribution given by

LG,y

LGu(r:0.0) = \| e it [;{3] o) (st) ool
exp {z(gj—fj@] exp [—z’(2p+ 1] + Dtan™? (i)] (1.1)

where the £ radius of the Gaussian term is given by w(z) = w(())[%)]o'5 with
w(0) being the beam waist , zx the Rayleigh range and [—i(2p + | + 1)tdn_1 (i)}
the Gouy phase.
where LLI | (x) is an associated Laguerre polynomial , obtained from the more familiar

Laguerre polynomial by,

06 0.100
05 0.075

0.050
0.4

0.025
0.3 0.000
02 -0.025

-0.050
01

—0.075
00 -0.100

Figure 1.1: Intensity of LGy. Figure 1.2: Phase of LGy.
014 3
012 2
010
1
0.08
i
0.06
-1
o4
0.02 -2
0.00 -3
Figure 1.3: Intensity of LG3. Figure 1.4: Phase of LG3.
012 3
0.10 2
0.08 1
0.06 o
004 -1
0.02 -2
0.00 -3
Figure 1.5: Intensity of LG5s. Figure 1.6: Phase of LG3.

. where [is the azimuthal index and p is the number of radial nodes in the intensity

distribution.

Intensity and phase profile of different O.A.M beams is shown above.

2

30000
25000
20000

15000

I

Figure 1.8: intensity of Figure 1.9: Phase of
Figure 1.7: Fork grating. T.C =1. T.C=1.

1.2 Generation of O.A.M beams.

1.2.1 Fork grating.

Helical phased beams carrying O.A.M is widely generated using forked diffraction.
When a plane wave Gaussian Beam is illuminated onto the fork grating, helically

phased beam is produced in the first diffraction order.

1.2.2 Optical element:
0O.A.M beam can be generated by passing through an optical element with helical sur-
face. Optical thickness of the component increases with azimuthal position accordingly.

N0
2(n —1)

Where n is the refractive index of the medium. But by this method requires extreme

precision in the pitch of the helical path.

CHAPTER 2

Composite Beam Generation

The superimposed Optical field of different Orthogonal O.A.M Beams can be expressed

as

N
U(r,0,¢) = Z an LG (1, 0, ¢l (2.1
n=1

where N is the number of modes, LG;‘Z(T, 0, ¢) is the nt" LG beam eigen mode,
a, are the amplitude and 6,, are phase of each eigen mode, respectively. a2 is the
proportion of the nth eigen mode in the superimposed optical field and satisfies this
expression Zle a? = 1 which is called as mode weight and 6, is called the mode

Phase. Weights to the CNN output is given by
[ay, az, as, ..., an]

and Phase is given by
[917 917 ela [RERE) en}

Here 6 values was a angle from [0, 27| , so by dividing the values of phase by 27 we are

scaling it to [0, 1], which is the output given to the CNN to train the network.

The intensity value of the O.A.M Beam is obtained by I(z,y) = |U(r, 0, ¢)|?

CHAPTER 3

Mirror Charges Correction.

So, Here we have included negative charges to create the composite beam, but it was
found out that there were Same composite beam intensity profile for different charges.
Detailed analysis showed that , if we invert the sign of the Topological charge(/) keeping
the radial charge (p) same ,it was observed that same composite beam was produced
and composite beam intensity pattern seems to change as we change the weights for the
same eigen modes.

Example:

If a composite beam is formed by eigen modes of [/, p] ,
[_27 2]7 [_5’ 1]7 [_17 0]

The mirror charges are

12,2],[5,1],[1,0]

So, Here in this figure we have listed all the possible cases. Maroon and yellow color
signifies the Mirror Charges Set, where Red color signifies where two mirror charges
of different set coinciding. In the case 2 the mirror charges set is itself. So, since there
are two charges set for same composite beam intensity pattern. We need to choose one
charge set out of two and feed it to C.N.N. In order to choose the one we implemented

a rule, choosing the set which obeys the Rule 01:

max(l — p)

Algorithm 01 :

1. For the given set of eigen modes. Mirror charges sets are found out.
2. Rule 01 was applied to all the charges in both of the eigen mode sets.

3. The eigen mode set is chosen, which contains highest value from Rule O1.

&
&

g
g

g
g

0 10 o 10
20 0.8 20 0.8
0.6 0.6
0.4 0.4
0.2 0.2
100 100
0.0 0.0
0 M/ 40 60 80 100 O 20 4 &0 B0 100

Figure 3.1: Composite intensity Figure 3.2: Composite intensity
profile of setl. profile of set2.

Above Figure 3.1 and Figure 3.2 shows the same intensity profile for different
charges.

For the Figure 3.1, the intensity pattern was formed by [/, p|,
[—8,0],[—2,1]
Weights and Phase value of Set 1 is given by.

[0.4500, 0.5500], [0.7600, 0.0000]

For the Figure 3.2, the intensity pattern was formed by [/, p|,
[8,0], [2,1]
Weights and Phase value of Set 2 is given by.

[0.4500, 0.5500], [—0.7600, 0.0000]

Since there is large variation of phase in highest |{| charge, So we tried to maximise
it and as p charges increases the discontinuity in phase profile increase so negative sign

was implemented in order to reduce it in Rule O1.

There seems to be a problem in this case.

Example: Mirror charges set 1 is

[—2,0],[—4,0],[-5,0], 6, 0]

8

Mirror charges set 2 is given by

(2,0],[4,0],[5,0],[—6,0]

Out of this two according to Rule 01 , it will choose Mirror Charge Set 1,Since
weights are used in image reconstruction, that seems to cause a problem. Since,weights

are chosen randomly, let the weights assigned in the above case be

[0.4,0.3,0.29.0.01]

Here the last charge [6, 0Jand[—6, 0] is given low weights. if we reconstruct the image

there was only slight difference in composite beam reconstruction from

[—2,0],[—4,0],[-5,0], 6, 0]

and

[—2,0],[—4,0],[-5,0]

If we can ignore in that case that [6,0] charge is not present then

[2,0],[4,0], [5,0]

set is chosen, which is opposite of

[—2,0], [—4,0],[-5,0],[6,0]

which was chosen. Where both intensity profile looks same. So, in order to get rid of

this we have to include weight as well. the formula becomes (Rule 02:).

maz(l — p + k x weights)

Here k was taken as 100 by trail and error method. By this formula, we can remove
that issue. The mode which gives highest value from the Rule 02 that mode is called as

Principle Mode.

p\l 4l -3 2]
0 0 6] 12| 18| 24
1 1 Jl 132 19| 25 3
2 2 8 14, 20 26| 32 |
3 3 o 15 21| 27| 33
4 4 10| 16 22| 28] 34
5 5 11| 17| 23| 29 35
Figure 3.3: Mirror Charges Case 1.
phl -4 -3 -2 -1 0 1 2 3 4
0 0 6 12| 18| 24| 30 36| 42| 48
1 1 7l 13| 19 31 37| 43 49
2 2 a8 14| 20 32| 38| 44 50|
3 3 9 15 21 33| 39| 45| 51
4 4 10| 18 22 34| 40| 4b| 52
=Y S 11 17| 23| 29| 35| 41| 47 53
Figure 3.4: Mirror Charges Case 2.
Algorithm 02:

we retain that mode set, else invert all the [signs.

value from the Rule 02, is chosen as Principle Mode.

. For the given set of eigen modes, Rule 02 was applied to all the charges.

The highest weight is called as principle mode, if the principle mode is positive

. If the Principle Mode has the value T.C(/)=0 then the Principle Mode is chosen
as the next lowest value and the process is repeated.

If all the mode contains the value /=0, then the same mode is retained, and highest

p\l 4 -3 -2 1 0 1 2 3 4
0 18| 24, 30| 36 43
1 1 713 19| 25| 31| 37| 43| 49
2 2 8 14| 20| 26| 32| 38| 44| 50
3 3 9 15 21| 27| 33| 39| 45 51
4 4, 10| 16| 22| 28| 34| 40| 46| 52
5 5 11| 17| 23| 29| 35| 41| 47| 53

Figure 3.5: Mirror Charges Case 3.

10

CHAPTER 4

Dataset Generation and Noise.

4.1 Different types of noise

In the below example, composite beam was formed by the combination of LGy, and
LGy; with proportional weights of 0.2467 and 0.7533 respectively and phase value was
taken as 0.0 and 0.1788 * 2.

4.1.1 Translation:

For the original Image we added translation of ¢, = ¢, = 30 means from the center
of the image , original image was translated to 30 pixels to right in x direction and y

direction.

4.1.2 Yaw rotation:

If we consider the Cartesian coordinate system, where z axis is out of plane.Then ro-
tation along the y axis rotation of image is yaw direction. so, here for the composite

beam at yaw angle of 45" degree, Original Image was rotated.

4.1.3 Pitch rotation:

If we consider the Cartesian coordinate system, where z axis is out of plane.Then ro-
tation along the x axis rotation of image is pitch direction. so, here for the composite

beam at pitch angle of 45° degree,Original Image was rotated.

4.1.4 Shot Noise:

Shot noise basically arises due to the discrete nature of photons,when signal strength is

low. So,usually obey Poisson distribution. Here we have added the Poisson distribution

noise,from creating the random numbers from from this distribution where mean value

was taken as 0.2.

4.1.5 Pepper Noise:

In some case , Charged couple device (C.C.D) has some dead pixels. where that pixels
all give dark image irrespective whatever the intensity falls on it, that to was considered
here. So here we have taken cut off value as 0.9. For each pixel random number was
generated if that number exceeds the cut-off value 0.9, we assign the value 0 to the pixel
image. So, in this case if cut-off value is 0, then whole image becomes black, but when

cut-off value is equal to 1 then the original image is retained.

4.1.6 Gaussian Blur Noise:

Blur is one such noise which is encountered, so we have added Gaussian noise of o, =
2, So from o, value we can calculate kernel size as (60, + 1) X 60, + 1). In this case
it was 13 x 13 Gaussian kernel which was convolved on to the image in order to create

blur.

12

0.06
0.0&

0.05
0.05

0.04
004

0.03
003

0.02
002

0.01
001

0.00
0.00

Figure 4.2: Translation of ¢, =
Figure 4.1: Composite beam. t, = 30.

0.06 0.06
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
0.00 0.00

Figure 4.3: Composite beam. Figure 4.4: yaw rotation of 45°.
0.06 0.06
0.05 0.05
004 0.04
0.03 0.03
0.02 0.02
0.01 0.01
0.00 0.00
Figure 4.5: Composite beam. Figure 4.6: pitch rotation of 45°.
0.06
0.08
0.05
004 0.06
0.03
0.04
0.02
0.02
0.01
0.00 0.00
Figure 4.7: Composite beam. Figure 4.8: Shot noise image.

13

0.06

0.05

0.04

0.03

0.02

0.01

0.06
0.05
0.04
003
00z
001
0.00

Figure 4.9: Composite beam. Figure 4.10: pepper noise image.

0.06

0.05
0.05

0.04
004

0.03
0.03

0.02
0.02
0.01 0.01
0.00 0.00

Figure 4.11: Composite beam. Figure 4.12: Blue noisy image.

0.00

4.2 Dataset Generation:

Generation of Dataset was done for Topological Charges (/) ranging from -9 to +9.
and Radial Charge (p) ranging from O to 1. Random eigen modes were selected, No of
eigen modes selected were less than or equal 2. Mirror charges correction algorithm was

applied. For the selected eigen modes, Composite Beam Intensity profile was generated.

1. Size of the image was taken as 113 x 113.
2. Wavelength of \ =632.8 nm.
3. Beam waist size of 1mm.

4. The image size was considered as 10mm x 10mm.

Totally 100000 (1 lakh) Training dataset was used and 10000 (10 Thousand) was
used for validation and Testing dataset. For the each composite beam random only
one noise was added to some images and for others there was no noise added. While
generating composite beam the image was scaled to maximum value of 1 by dividing

the each image by the maximum pixel value of that image.

14

CHAPTER 5

Normalisation:

Since the dataset of composite images generated was having different pixels range. we
need to normalisation. The normalisation process was carried out as the mean(y) and
standard deviation(o) of all the pixel value of all images was found out. Then each
pixel value was found as “-* where here x is the pixel value , this was applied for all
the pixel in the image for all the dataset. The figure given below the composite beam
which is given to the CNN. The UN-Normalised images looks saturated, Patterns are
not clearly visible. whereas the Normalised images we can see that pattern are clearly

visible.

200

Figure 5.2: With Normalisation.

16

CHAPTER 6

CNN Architecture

6.1 Convolution Neural Network Theory

Convolution Neural network consists of multiple block of convolution layers, batch nor-
malisation, max pooling, fully connected network. C.N.N has ability to extract features

and update the weights through back propagation algorithm.

A tremendous interest has emerged in deep learning in recent years. The most es-
tablished algorithm used in computer vision in order to classify the images has been
C.N.N. Convolution and max pooling layer usually extracts the features from the image

and F.C network maps the extracted features to find the output.

In order to train CNN we need lot of data, with is computationally expensive, which

results in the use of G.P.U(Graphical precessing units.)

Usually how C.N.N works is image is passed to the convolution neural network,
where initial layers like convolution, max-pooling extracts the important features from
the image. This features is further feed to F.C layers , where it maps to find the output
this process is called forward propagation. By using loss function we will back propa-

gate in order to update the weights such that loss value is minimised.

Convolution for input image is a small matrix of size k is convolved at each pixel
of the image, element wise product was carried out and summed to obtain the output
value for the corresponding position in output matrix.Typically kernel size is around
3x 3,5 x5and 7 x 7. The distance between two consecutive kernel positions is called

as stride. Usually stride value is kept as 1. The process of training the convolution

network is to identify the kernel value for the given training dataset. So, Number of

kernels, kernel size, stride, padding are the hyper parameters.

Activation function defined as where output of the linear function like convolution

passed to non linear activation function like Relu, sigmoid , elu,tanh etc.

Maxpooling defined as where from feature maps, a patches are chosen , where the
maximum value of that patch is chosen. usually patches are taken as size of 2 x 2 and

stride of 2.

6.2 C.N.N Hyper parameter Tuning using Wand b:

Hyper parameter tuning is requires in Neural network because they control the overall
behaviour of the Machine learning model. There are many hyper parameters which
was tuned in our architecture, like Learning rate, weight decay, batch size, No of ker-
nel filters, Size of the kernel filters, Optimiser, number of Fully connected layers , loss
function , Activation functions, Stochastic Gradient descent momentum value, Drop
out value. All the hyper parameters was tuned which would take long time since there
are many possible combinations, So it was divide into 3 batches. For each batch best
hyper parameter value was chosen thus completing all the hyper parameters mentioned
above. Here val accuracy is defined as if the predicted outputs like weights and phase
is accurately classified, if mean output from the CNN is less than other equal to 0.001.
Below 3 plots of hyper parameter tuning is called as Parallel Coordinate Graph each
line represents the Trained CNN and for each of this hyper parameters tuning, training
dataset was taken as 30000 , 6000 for validation and testing dataset. Same dataset was
used for all the batch tuning. Wand-b was used into order tune the hyper parameter of
Alex-net.

For batch 01 , Initial hyper parameters are drop-out value = 0.2, fcl1-sz=4096, fc2-

sz=4096, Activation function = Relu, loss function = MAE(MMean absolute error).

Batch 01:

1. Max number of epochs = [80,70,60,50,40]

18

learning_rate optimizer_name wd_lambda steps train_loss val_loss val_accuracy
0.030 S £ 4.0 3.9

0.028 \ A 28 3.8

0.026 g
0.024
0.022
0.020
0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002
0.000

3.7

Figure 6.1: Batch O1 hyper parameter tuning..

SDG_momentum activation_fun... dropout_val train_loss val_loss val_accuracy
0.90

0.89

0.88

0.87

0.86

0.85

0.84

0.83

0.82

0.81

0.80

Figure 6.2: Batch 02 hyper parameter tuning..

2. Learning rate = [107%,3 * 1072,1073,3 % 1072, 1072]
3. weight decay = [3 * 1074,1107%,3 % 1073, 1 % 1073]

4. optimiser = [’Adam’,’S.D.G’]

From Batch 01 it was found out that optimal one was optimiser = S.D.G(Stochastic

Gradient descent), learning rate = le — 4, weight decay= 10~*

Batch 02:

1. drop out =[0.2,0.3,0.4,0.5,0.6,0.8]
2. S.D.G momentum = [0.9,0.8,0.85]
3. activation function = [Relu, Elu]

19

convl_sz convsn2_sz conv4n3_sz fcl_sz fc2_sz train_loss val_loss val_accuracy

150

140

Figure 6.3: Batch 03 hyperparameter tuning..

All the optimal hyper parameters found from the batch 01 was retained, for Batch

02 hyper parameter tuned and optimal values found out as drop out = 0.5, S.D.G mo-

mentum = 0.9, activation function = Relu.

Hyper parameters from batch 01 and batch 02 was kept same but in batch 03, hyper

parameter tuning was done for Number of kernels in CNN, No of units in F.C network.

Batch 03:

1.

A

convl-sz = [48, 96, 144]
convSn2-sz = [128, 256, 384]
conv4n3-sz = [192, 384, 576]
fcl-sz = [2048, 4096, 6144]
fc2-sz = [2048, 4096, 6144]

Final Optimal values of hyper parameters are dropout = 0.5, fc1-sz = 2048, fc2-sz =

6144, activation function = Relu, optimizer = SDG ,learning rate= 104 weight decay

=10~

4 SDG momentum = 0.9, loss function = MAE , convl-sz = 144, conv5n2-sz =

384, conv4n3-sz = 576. The kernel size at each convolution was separately tuned and

best was chosen, the values are mentioned below.

6.3 Alex-Net:

Hyper parameters tuning was done, optimal values was found out, here Alex-net was

used to predict weights and phase of the composite beam. The weights which was given

20

Net(

(convl): Conv2d(1l, 144, kernel_size=(5, 5), stride=(2, 2))
maxpool): MaxPool2d(kernel_size=3, stride=2, padding=8, dilation=1, ceil mode=False)
conv2): Conv2d(144, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

conv3): Conv2d(384, 576, kernel_size=(3, 3), stride=(1, 1), padding=

bn2):
bn3):
bn4):
bn5):

(1, 1))
convd): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
conv5): Conv2d(576, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1 }
fcl):
fc2):
fc3):

1)
. 1)

Linear(in_features=13824, out_features=2848, bias=True)

Linear(in_features=2848, out_features=6144, bias=True)

Linear(in_features=6144, out_features=38, bias=True)

BatchNorm2d(144, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)
BatchNorm2d(384, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)
BatchNorm2d(576, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)
BatchNorm2d(576, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)
BatchNorm2d(384, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)

fc_bnl): BatchNormld(2848, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)
fc_bn2): BatchNormld(6144, eps=1e-B5, momentum=8.1, affine=True, track_running_stats=True)
fc_bn3): BatchMormld(38, eps=1e-85, momentum=&.1, affine=True, track_running_stats=True)
dropout): Dropout(p=8.5, inplace=False)

(
(
(
(
(
(
(
(
(bnl):
(
(
(
(
(
(
(
(

Figure 6.4: Tuned Alex-net Architecture.

Training and validation loss vs No. of epochs Training and validation loss vs No. of epochs

lass

035
—— Taining loss —— Training loss
Validation loss 0.30 1 Validation loss

0.25

020

loss

epochs epochs

Figure 6.5: Loss curve for weights. Figure 6.6: Loss curve for phase.

to the CNN is [ay, as, ag, ..

.a,]. Since the phase is relative we need to choose a reference

so the Principle Mode was chosen as reference and 0 value was assigned to the phase

value of principle mode. The error in the prediction of the phase is higher than the

weights prediction. Two separate Alex-net with same hyper parameters was used to

predict weights and phase. Sigmoid activation function is used at the output layer for

both weights and phase predictions.

21

CHAPTER 7

Results and Discussion:

Here we have totally 38 eigen modes for creating composite beam [value ranging from
-9 to 9 and p value ranging from O to 1. Order of the composite beam was less than
or equal to 2, only 2 eigen modes were combined at most to generate the composite
beam. This model is able to predict order of composite beam less than or equal to
2. Different value of the noise was introduced in input image in training and testing
dataset. Translation value was taken as t, = ¢, = 45, yaw and pitch angle = 10,
Poisson mean value=0.05 ,pepper noise cut-off value= 0.9, o,=1. As we try to increase
the No. of eigen modes above 50, Adding of the more noise and increasing the order
of the composite beam above two, in all this cases there was increase in error in the
prediction of weights and phase output. Further, As the radial charge increases more
the p = 1 it was found that complex intensity pattern was formed it becomes difficult for
CNN to extract features. All the above dataset was trained to VGG-16 Neural Network
as well, both of them showed same results. Google colab pro + was used to train the
C.N.N, GPU of (Tesla V100-SXM2-16GB). The future scope of this work includes
the increasing in the order of the composite beam, Increasing the no. of eigen modes,

Increasing the in Radial charges p and increase in the noise level in the image.

&

Z

3

0 10

4
20 08

3
0.6

2
1 0.4
0 02

100
0.0
0 20 40 &0 80 100

Figure 7.1: Input Composite beam

to CNN 1. Figure 7.2: Reconstructed image 1.
. Original and predicted weights o original and predicted phase
00 I 00 N N
Figure 7.3: Weights prediction 1. Figure 7.4: Phase prediction 1.

Observation 01: Input Image contains, Noise of Translation of tx=ty=45. Most

part of the signal is missing but our CNN is able to retrieve the Image back.

24

0 10
4
v 20 08
3
= i ; 0
. 0.6
) i 2
A '.. m
1 0.4
' : 80
0 0.2
100
0 0 40 60 80 100
0.0
0 20 40 &0 80 100

Figure 7.5: Input Composite beam

to CNN 2. Figure 7.6: Reconstructed image 2.
. Original and predicted weights o original and predicted phase
00 n 00 a allan 0_n na
Figure 7.7: Weights prediction 2. Figure 7.8: Phase prediction 2.

Observation 02: Input Image contains, Shot Noise of Poisson mean value =0.05.

25

5,

=y

[*]

3

3
3 Z

L=}

10
20 o

a0 20 0.8
40

06

04

100 03
100

0 2 40 & 8 100
0.0
O 2 40 &0 80 100

Figure 7.9: Input Composite beam

to CNN 3. Figure 7.10: Reconstructed Image 3.

. Original and predicted weights o original and predicted phase
E COriginal . Original
3 Predicted [Predicted

08 08

0.4 04

02 02

00 n 00 ﬂnﬂﬂﬂHﬂHﬂHﬂnﬂﬂﬂﬂnﬂ S 1 O O O

o 5 10 15 20 5 30) 0 5 15 20 - 30

Figure 7.11: Weights Prediction 3. Figure 7.12: Phase Prediction 3.

Observation 03: Input Image contains No Noise.

26

[}

=y

[*]

%]

3
3

L=}

o0

0
20 0 10
a0 20 0.8
-

40
&0 ’ 06

\ 60
04
100 02

100

0 0 4 g0 80 100
0 20 4 60 8D 100

Figure 7.13: Input Composite beam

to CNN 4. Figure 7.14: Reconstructed Image 4.
. Original and predicted weights o original and predicted phase
00 00 Nonlfalolafflonnahinlplennpnonnpnnnnpnn
Figure 7.15: Weights Prediction 4. Figure 7.16: Phase Prediction 4.

Observation 04: Input Image contains, Gaussian blur of 0,=1, kernel size of 7 x 7.

27

5
0 10
4
40 08
3
60 3 ne
80 1 0.4
100 0 02
o 20 40 60 B0 100
0.0
. .] 20 40 60 a0 100
Figure 7.17: Input Composite beam
to CNN 5. Figure 7.18: Reconstructed Image 5.
. Original and predicted weights o original and predicted phase
00 00 NonflaofiNoNflonanflafaonposnopnnnnpnonopne
Figure 7.19: Weights Prediction 5. Figure 7.20: Phase Prediction 5.

Observation 05: Input Image contains No Noise.

28

CHAPTER 8

CODE

8.1 Imports of Libraries:

Listing 8.1: Importing libraries 1

import torch, os, os.path as osp

import torch.optim as optim

import torchvision

import torchvision.transforms as transforms
from tqdm import tqdm

import numpy as np

import cv2

from sklearn.metrics import mean_squared_error
import scipy.stats

from scipy.special import comb, factorial, iv, eval_genlaguerre

Listing 8.2: Importing libraries 2

pip install photutils

from photutils.datasets import make_noise_image
import numpy as np

import math

from PIL import Image

import imageio as mp

import cv2

import matplotlib

import matplotlib.pyplot as plt

%matplotlib inline

import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models

from skimage.util import random_noise

8.2 Dataset Generation.

8.2.1 Global variables.

Listing 8.3: Global variables values.

Nx=113

Ny=113

Max_1=9

Min_1=-9

Max_p=1

modes_set_size=(Max_|l-Min_l+1)x(Max_p+1)

operation=["translation","pitch" ,"yaw" ,"shot_noise","pepper_noise"," Gaussian_blur"]

operation_index=[0,1,2,3,4,5]

8.2.2 Pure Mode Field profile.

Listing 8.4: Code to generate LG beams.

def LG_Beams(p = 0,1 = 1,w0 = 2e—3,lamda=632.8¢—-9,z=0.0

,S_hsz=5e—-3,Nx=113,Ny=113):

Setup the cartesian grid for the plot at plane z

XX, yy = torch.meshgrid(torch.linspace(—s_hsz, s_hsz ,Nx)

, torch.linspace(—s_hsz, s_hsz ,Ny));

C=np.sqrt(2xfactorial (p)/(torch.pixfactorial (p+abs(1))))

Calculate the cylindrical coordinates

r_sq = (xx*x%x2 4+ yy*x*x2);

phi = torch.arctan2(yy, xx);

k = 2xtorch.pi/lamda; # Wavenumber of light

zZR = kxwOx%2.0/2; # Calculate the Rayleigh range
#print(zR)
A=1;

w = w0 % np.abs(1.0 + 1jxz/zR);

zeta = 2xr_sq/wkx2

R_inv= z/(z**2+zR*%x2)

#print (R_inv)

Psi = (2%xp + np.abs(l) + 1)xnp.arctan(z/zR)

30

return CxAx(wO/w)x(zetaxxabs(l/2))xtorch.exp(—zeta/2)
np.exp(—1j(kxz+0.5xkxr_sq*R_inv))*np.exp(1j*Psi)

xeval_genlaguerre (p, abs(l), zeta)xtorch.exp(—1j*1xphi)

Listing 8.5: Repository of all the pure mode field profiles.

LG_Beams_dict=torch . zeros ([modes_set_size ,Nx,Ny],dtype = torch.complex128)
count=0
for 11 in range (Min_l1,Max_1+1):
for r in range (Max_p+1):
LG_Beams_dict[count]= LG_Beams(p = r,1 = 11 ,w0 = 1le—-3)

count+=1

8.2.3 Mode Selection Functions.

Listing 8.6: This code is used to select the random mode indices.

def choose_mode_indices (order_lessOrEqual):
#initializing variables
composite_beam_mode_index=torch . Tensor ()
#unique mode set not possible
if (order_lessOrEqual >modes_set_size):

return composite_beam_mode_index

order_of_cb=torch.randint (low=2, high=order_lessOrEqual+1
, size=(1,))
while (order_of_cb >composite_beam_mode_index.size ()[0]):
composite_beam_mode_index=torch.cat ((composite_beam_mode_index
,torch.randint (low=0, high=modes_set_size ,
size=(order_of_cb—composite_beam_mode_index.size ()[0],))))

composite_beam_mode_index = torch.unique(composite_beam_mode_index)

return composite_beam_mode_index

31

Listing 8.7: This code is used to assign weigts to the random modes.

def assign_mode_weights(order ,weight_cutoff=0.005):
weights=torch.square(torch.rand(order))
normalized_weights=weights/torch .sum(weights)
if len(normalized_weights[normalized_weights <=weight_cutoff])==0:
return normalized_weights
else:

return assign_mode_weights(order ,weight_cutoff)

Listing 8.8: Finding mode priority using Rule 02

def assign_mode_priority (mode_indices , mode_weights ,k_value=100):
l=torch. floor (mode_indices/ (Max_p+1))+Min_I
p=torch.remainder (mode_indices ,Max_p+1)

return torch.abs(1l)—p+(k_valuexmode_weights)

Listing 8.9: Finding principle mode indices.

def find_principle_mode_index (mode_indices ,mp,N=1):
pm_index=np.where (mp == mp.max())[0][0]
l=np. floor (mode_indices [pm_index]/ (Max_p+1))+Min_1
if 1==0 and N<=mp.shape [0]
mp[pm_index]=mp.min() —10
return find_principle_mode_index (mode_indices ,mp,N+1)

return pm_index

Listing 8.10: Correcting mirror charges by Algorithm 2.

def correcting_mirror_modes (mode_indices , principle_mode_index):
l=torch. floor (mode_indices[principle_mode_index]/ (Max_p+1))+Min_1I
if 1>=0:
return mode_indices
else
I=torch. floor (mode_indices/ (Max_p+1))+Min_l1
p=torch.remainder (mode_indices ,Max_p+1)

return ((—1—-Min_1)x(Max_p+1)+p).type(torch.int32)

32

Listing 8.11: Assigning Mode phase.

def assign_mode_phase(principle_mode_index , order):
phase=torch.rand (order)
phase[principle_mode_index]=0

return phase

Listing 8.12: Combining all the above functions to one.

def final_mode_indices_weights_and_phase (order_lessOrEqual ,k_value):

mode_indices = choose_mode_indices (order_lessOrEqual)

mode_weights = assign_mode_weights (order=mode_indices.size ()[0])
mode_priority = assign_mode_priority (mode_indices , mode_weights , k_value)
principle_mode_index = find_principle_mode_index (mode_indices , mode_priority)

mode_indices=correcting_mirror_modes (mode_indices , principle_mode_index)

mode_phase=assign_mode_phase (principle_mode_index ,order=mode_indices.size ()[0])

return mode_indices , mode_weights.round(decimals=2),mode_phase.round(decimals=2)

8.2.4 Noise Adding Functions.

Listing 8.13: Yaw and pitch noise function.

def yaw_pitch(max_pitch ,max_yaw,image ,yaw=0,pitch=0,0p=0):
if yaw == 0 and pitch == 0:
p_angle=np.random. uniform (0,1)* max_pitch

y_angle=np.random.uniform (0,1)* max_yaw

elif op == 1 and (yaw != 0 or pitch != 0):
p_angle=pitch
y_angle=0

elif op == 2 and (yaw != 0 or pitch != 0):
p_angle=0

y_angle=yaw

gamma=0
rtheta=math.radians (p_angle)
rphi=math.radians (y_angle)

rgamma=math . radians (gamma)

33

height=image.shape[0]

width=image . shape[1]

d = np.sqrt(height*x2 + widthx*x2)

focal = d / (2 % np.sin(rgamma) if np.sin(rgamma) != 0 else 1)

dz=focal

h=image . shape [0]
w=image . shape[1]

f=focal

dx=0

dy=0

Projection 2D —> 3D matrix

Al = np.array([[l, O, —w/2],[0, 1, =h/2],[0, O, 1],[0, O, 11])

Rotation matrices around the X, Y, and Z axis

RX = np.array ([[1l, O, O, 0],[0, np.cos(rtheta), —np.sin(rtheta), O]
,[0, np.sin(rtheta), np.cos(rtheta), 0],[0, O, O, 1]])

RY = np.array ([[np.cos(rphi), O, —np.sin(rphi), O0],[0, 1, O, O]
.[np.sin(rphi), 0, np.cos(rphi), 0],[0, 0, 0, 1]])

RZ = np.array ([[np.cos(rgamma), —np.sin(rgamma), 0, O],

[np.sin(rgamma), np.cos(rgamma), O, O0],[0, O, 1, O],[0, O, O, 1]])

Composed rotation matrix with (RX, RY, RZ)
np.dot(np.dot(RX, RY), RZ)

Translation matrix

np.array ([[1, O, O, dx],[0, I, O, dy],[0, O, 1, dz],[0, O, O, I]D)

Projection 3D —> 2D matrix
A2 = np.array ([[f, O, w/2, O0],[0, f, h/2, O],[0, O, 1, O]])

Final transformation matrix
homograhy= np.dot(A2, np.dot(T, np.dot(R, Al)))

final_imageyp=cv2.warpPerspective (image, homograhy , (width, height))

return final_imageyp

34

Listing 8.14: Gaussian kernel matrix function.

#Gaussian kernel matrix function.
def gaussian_kernel (sigma):
this code used to find the Gaussian kernel for the given
sigma value of size ANL6xsigma+1]xaNL6xsigma+I1aNL .
if sigma==0:
n=math. ceil (6xsigma+1)
x=int ((n—1)/2)
hmn=np . array ([0])
else:
n=math. ceil (6xsigma+1)
if n%2==0:
n=n+1
else:
n=n
x=int ((n—1)/2)
hmn=[]
for a in range(—x,x+1):
for b in range(—x,x+1):
fn=((2xmath. pi*x(sigmax*2))*x*x —1)xmath.exp(—0.5x((a*x*x2+b*xx2)/(sigmaxx2)))
hmn. append (fn)
hmn=np. array (hmn)

hmn=hmn. reshape (n,n)

return hmn

Listing 8.15: Image translation noise function.

def image_translation(intensity_profile ,max_shifx , max_shify ,shifx=0,shify=0):
if shifx == 0 and shify ==
Trans = np.float32 ([[1,0,int(np.random.uniform(—1,1)*max_shifx)],
[0,1,int(np.random.uniform(—1,1)*max_shify)]])
else:

Trans = np.float32 ([[1,0,shifx],[0,1,shify]])

return cv2.warpAffine(intensity_profile ,Trans ,(Ny,Nx))

35

Listing 8.16: Shot noise function.

def shot_noise(intensity_profile ,max_poisson_mean_value , poisson_mean_value=0):
if poisson_mean_value ==

pmv = np.random.uniform (0,1)* max_poisson_mean_value

else:
pmv = poisson_mean_value
shot_noise_value=make_noise_image ((Nx,Ny), distribution="poisson’, mean = pmv)

shot_noise_value=shot_noise_value/(np.max(shot_noise_value))
shot_noise_value=shot_noise_valuesxnp.max(intensity_profile)

return intensity_profile+shot_noise_value

Listing 8.17: Gaussian blur noise function.

def Gaussian_blur(max_sigma,intensity_profile ,sigma=0):
if sigma ==0
sigma=np.random.randint (low=1, high=max_sigma+1, size=1)
kernel=gaussian_kernel (sigma)
else:
kernel=gaussian_kernel (sigma)

return cv2.filter2D (src=intensity_profile , ddepth=—1, kernel=kernel)

Listing 8.18: pepper noise function.

def pepper_noise(intensity_profile ,max_pepper_l_value ,pepper_l_value=0):
if pepper_l_value ==
plv = np.random.uniform (0,1)* max_pepper_l_value
else:

plv = pepper_l_value

for i in range (Nx):
for j in range(Ny):
probs=np.random.uniform (0,1)
if probs >= plv:
intensity_profile[i,j]=0
else:

intensity_profile[i,j]=intensity_profile[i,]]

return intensity_profile

36

Listing 8.19: Code used to add noise to generated image.

def add_noise(intensity_profilel ,max_sigma, max_shifx , max_shify,
max_pepper_l_value ,max_poisson_mean_value , max_pitch_angle ,max_yaw_angle,
no_of_operations_lessOrEqual=7,shifx=0,shify=0,yaw=0, pitch=0,
poisson_mean_value=0,pepper_Il_value=0,sigma=0):
np.random. shuffle (operation_index)
intensity_profile = intensity_profilel .numpy ()
operation_indices_values = operation_index [0:int(np.random.randint(low=0,
high=no_of_operations_lessOrEqual+1, size=1))]
operation_indices_values=np.sort(np.array (operation_indices_values))

for i in operation_indices_values:

if i==0:
intensity_profile = image_translation(intensity_profile , max_shifx,
max_shify , shifx , shify)
elif i==1:
intensity_profile = yaw_pitch(max_pitch=0,max_yaw=max_yaw_angle,
image=intensity_profile ,yaw=yaw, pitch=pitch ,op=i)
elif i==2:
intensity_profile = yaw_pitch(max_pitch=max_pitch_angle ,max_yaw=0,
image=intensity_profile ,yaw=yaw, pitch=pitch ,op=i)
elif 1==3:
intensity_profile = shot_noise(intensity_profile ,max_poisson_mean_value,
poisson_mean_value)
elif i==4:
intensity_profile = pepper_noise(intensity_profile ,max_pepper_l_value,
pepper_l_value)
elif i==5:

intensity_profile Gaussian_blur (max_sigma, intensity_profile ,sigma)

Zero_matrix = np.zeros(intensity_profile.shape)

intensity_profile = cv2.normalize(intensity_profile , Zero_matrix, 0, 255,
cv2 .NORM_MINMAX)

intensity_profile = intensity_profile.astype(np.uint8)

return torch.tensor(intensity_profile ,dtype=torch.float),operation_indices_values

37

8.2.5 Expected Output.

Listing 8.20: Calculating the outputs to CNN.

def calculate_expected_output(mode_indices ,mode_weights , mode_phase):
CNN_output_given_weight=torch.zeros(modes_set_size)
CNN_output_given_phase=torch.zeros(modes_set_size)
CNN_output_given_weight[mode_indices .numpy ()] = mode_weights
CNN_output_given_phase [mode_indices .numpy ()] = mode_phase

return CNN_output_given_weight , CNN_output_given_phase

Listing 8.21: Code used to generate intensity profile.

def generate_intensity_profile (mode_indices ,mode_weights , mode_phase):
intensity_profile = torch.square(
torch.abs(torch.sum(LG_Beams_dict[mode_indices.numpy ()] =
((mode_weightsxtorch.exp(lj*2xnp. pi*mode_phase)). view
(mode_indices.size ()[0],1,1).repeat(1,Nx,Ny)) ,0)))

return intensity_profile/intensity_profile .max()

8.3 Data-loader for Training and validation Set.

Listing 8.22: Code to find the standard deviation and mean of dataset.

def get_mean_and_std(dataloader):
channels_sum , channels_squared_sum , num_batches = 0, 0, O
for data in dataloader:
Mean over batch, height and width, but not over the channels
channels_sum += torch.mean(data[0], dim=[0,2,3])
channels_squared_sum += torch.mean(data[0]*%2, dim=[0,2,3])

num_batches += 1

mean = channels_sum / num_batches

std = sqrt(E[X"2] — (E[X])"2)

std = (channels_squared_sum / num_batches — mean *x 2) *x 0.5

return mean, std

38

Listing 8.23: API to load the saved dataset file.

def get_dataloader_from_pth(contents , batch_size=4):
dataset = torch.utils.data.TensorDataset(contents[’x’])
dataloader = torch.utils.data.DatalLoader(dataset , batch_size=batch_size ,

shuffle=True, num_workers=2)

#changed by Nirjhar
mean, std=get_mean_and_std (dataloader)

bl

print(’mean_=_ ,mean,’_std_=_",std)

transform = transforms.Compose([transforms.Normalize ([mean],[std])])

dataset = torch.utils.data.TensorDataset(transform (contents[’x’]),
contents[’w’], contents[’p’], contents[’'m’])
dataloader = torch.utils.data.DatalLoader(dataset, batch_size=batch_size ,

shuffle=True, num_workers=2)

print("{} _data_in_loader".format(contents[’x’].size ()[0]))

return dataloader

8.3.1 Training dataset.

Listing 8.24: Code used to generate the dataset

def db_train(training_dataset_length=200):
training_weights_expected_output=torch. zeros(
(training_dataset_length ,modes_set_size))
training_phase_expected_output=torch.zeros(
(training_dataset_length ,modes_set_size))
training_images=torch.zeros ([training_dataset_length ,1 ,Nx,Ny])
for count in range(training_dataset_length):
mode_indices ,mode_weights , mode_phase=final_mode_indices_weights_and_phase
(order_lessOrEqual=2,k_value=100)
imgl=generate_intensity_profile (mode_indices , mode_weights , mode_phase)
training_images [count],operation_indices_values = add_noise
(imgl ,max_sigma=1,max_shifx=45,max_shify=45,max_pepper_l_value=0.9,
max_poisson_mean_value=0.05, max_pitch_angle=10,max_yaw_angle=10,

no_of_operations_lessOrEqual=1,shifx=45,shify=45,yaw=10, pitch=10,

39

poisson_mean_value=0.9,pepper_l_value=0.05,sigma=1)
training_weights_expected_output[count],
training_phase_expected_output[count]=calculate_expected_output
(mode_indices ,mode_weights , mode_phase)

s k)

return {’x’: training_images , 'w’: torch.sqrt(training_weights_expected_output

), ’p’:training_phase_expected_output, ’'m’:

(training_weights_expected_output >0).type (torch. float)}

Listing 8.25: Generating training dataset.

trainloader = get_dataloader_from_pth(db_train(1000), batch_size=64)
torch.cuda.empty_cache ()

mem_report ()

8.3.2 Validation dataset.

Listing 8.26: Generating validation dataset.

valloader = get_dataloader_from_pth(db_train(10000), batch_size=64)

Listing 8.27: This code is used to find out the image seen by the CNN.

def imshow (inp, title=None):
""" Imshow for Tensor."""

inp = inp.numpy (). transpose ((1, 2, 0))

mean = np.array([0.0059])

std = np.array([0.0171])

#inp = std x inp + mean

#inp = np.clip(inp, 0, 1)

plt.figure(figsize=(10, 10))

plt.imshow (inp ,cmap="copper’)

if title is not None:

plt.title (title)

plt.pause(0.001) # pause a bit so that plots are updated

Get a batch of training data

40

inputs , labels_w , labels_p ,labels_m = next(iter(trainloader))

Make a grid from batch

out = torchvision.utils.make_grid(inputs)

#imshow (out, title=[class_names[x] for x in labels_w])
title =[np.where(x > 0.005)[0] for x in labels_w]
title=[x[np.where(x > 0.005)[0]] for x in labels_w]
#[print(x[x > 0.005]) for x in labels_w]
#print(title)

imshow (out)

8.4 C.N.N Training.

8.4.1 C.N.N Architecture

Listing 8.28: Alexnet Architecture to find the weights.

class Net(nn.Module):
def __init__ (self ,dropout_val , fcl_sz,fc2_sz,activation_func ,convl_sz,
conv5n2_sz,conv4n3_sz):

super (Net, self).__init__ ()

self .convl = nn.Conv2d(in_channels=1, out_channels= convl_sz,
kernel_size= 5, stride=2, padding=0)

self . maxpool = nn.MaxPool2d(kernel_size=3, stride=2)

self .conv2 = nn.Conv2d(in_channels=convl_sz, out_channels=conv5n2_sz,

kernel_size=3, stride= 1, padding= 1)

self.conv3 = nn.Conv2d(in_channels=conv5n2_sz, out_channels=conv4n3_sz,
kernel_size=3, stride= 1, padding= 1)

self .conv4 nn.Conv2d(in_channels=conv4n3_sz, out_channels=conv4n3_sz,

kernel_size=3, stride=1, padding=1)

self.conv5 nn.Conv2d(in_channels=conv4n3_sz, out_channels=conv5n2_sz,

kernel_size=3, stride=1, padding=1)

self .fcl = nn.Linear(in_features= conv5n2_szx36, out_features= fcl_sz)
self.fc2 = nn.Linear(in_features= fcl_sz, out_features= fc2_sz)
self.fc3 = nn.Linear(in_features=fc2_sz , out_features=modes_set_size)

41

def

self
self
self
self
self

self
self
self

.bnl = nn.
.bn2 = nn.
.bn3 = nn.
.bn4 = nn.
.bn5 = nn
.fc_bnl =
.fc_bn2 =
.fc_bn3 =

BatchNorm2d (num_features=convl_sz)
BatchNorm2d (num_features=conv5n2_sz)
BatchNorm2d (num_features=conv4n3_sz)

BatchNorm2d (num_features=conv4n3_sz)

.BatchNorm2d (num_features=conv5n2_sz)

nn.BatchNormld (num_features=fcl_sz)
nn.BatchNormld(num_features=fc2_sz)

nn.BatchNormld(num_features=modes_set_size)

Define proportion or neurons to dropout

self.dropout

nn. Dropout(dropout_val)

self.activation_func = activation_func

forward (self ,x):

X =
x = self
x = self.
x = self
x = self.
x = self.
x = self.
x = self
X =
X =
X =
X =
X =
X =
X =
return x

self.activation_func (self.bnl(self.convl(x)))

. maxpool (x)

activation_func (self.bn2(self.conv2(x)))

. maxpool (x)

activation_func (self.bn3(self.conv3(x)))

activation_func (self.bnd4(self.convd(x)))

activation_func (self.bn5(self.conv5(x)))

. maxpool (x)

x.reshape (x.shape[0], —1)

F.leaky_relu(self.fc_bnl(self.fcl(x)))

self.dropout(x)

F.leaky_relu(self.fc_bn2(self.fc2(x)))

self .dropout(x)

self .fc_bn3 (self.fc3(x))

torch .sigmoid(x)

42

Listing 8.29: Alexnet Architecture to find the phase.

class NetP(nn.Module):

def

def

__init__(self ,dropout_val ,fcl_sz ,fc2_sz ,activation_func ,convl_sz,

conv5in2_sz ,conv4n3_sz):

super (NetP, self). __init__ ()

self .convl = nn.Conv2d(in_channels=1,

self

self.

self .

self.

self .

self.

self.
self.

self
self
self
self
self

self .
self.
self .

Define proportion or neurons

kernel_size= 5,

kernel_size=3,

kernel_size=3,

kernel size=3,

kernel_size=3,

out_channels= convl_sz,

stride=2, padding=0)

.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)

conv2 = nn.Conv2d(in_channels=convl_sz, out_channels=conv5n2_sz,
stride= 1, padding= 1)

conv3 = nn.Conv2d(in_channels=conv5n2_sz, out_channels=conv4n3_sz,
stride= 1, padding= 1)

conv4d = nn.Conv2d(in_channels=conv4n3_sz, out_channels=conv4n3_sz,
stride=1, padding=1)

conv5S = nn.Conv2d(in_channels=conv4n3_sz, out_channels=conv5n2_sz,

stride=1, padding=1)

fcl = nn.Linear(in_features= conv5n2_szx*36, out_features= fcl_sz)
fc2 = nn.Linear(in_features= fcl_sz, out_features= fc2_sz)

fc3 = nn.Linear(in_features=fc2_sz , out_features=modes_set_size)
.bnl = nn.BatchNorm2d(num_features=convl_sz)

.bn2 = nn.BatchNorm2d(num_features=conv5n2_sz)

.bn3 = nn.BatchNorm2d(num_features=conv4n3_sz)

.bn4 = nn.BatchNorm2d(num_features=conv4n3_sz)

.bn5 = nn.BatchNorm2d(num_features=conv5n2_sz)

fc_bnl = nn.BatchNormld(num_features=fcl_sz)

fc_bn2 = nn.BatchNormld(num_features=fc2_sz)

fc_bn3 = nn.BatchNormld(num_features=modes_set_size)

self .dropout = nn.Dropout(dropout_val)

self.activation_func = activation_func

forward (self ,x):

X

X =

X =

self
self

self.

self

self.

.activation_func (self.bnl(self
. maxpool (x)
activation_func (self.bn2(self
. maxpool (x)

activation_func (self .bn3(self

43

to dropout

.convl(x)))

.conv2(x)))

.conv3(x)))

x = self.activation_func (self.bnd4(self.convd(x)))
x = self.activation_func (self.bn5(self.conv5(x)))
x = self.maxpool(x)

x = x.reshape(x.shape[0], —1)

x = self.activation_func (self.fc_bnl(self.fcl(x)))
x = self.dropout(x)

x = self.activation_func (self.fc_bn2(self.fc2(x)))
x = self.dropout(x)

X self.fc_bn3(self.fc3(x))

x=torch.sigmoid(x)

return x

8.4.2 Loss and Optimiser Functions

Listing 8.30: Loss functions for weight.

def L1_Loss_w(outputs ,labels_w ,power_value=None):
criterion = nn.L1Loss()

return criterion (outputs, labels_w)

Listing 8.31: Loss functions for phase.

def L1_Loss_p(outputs ,labels_p ,power_value=None):
criterion = nn.L1Loss()

return criterion (outputs, labels_p)

Listing 8.32: Accuracy calculating function.

def accuracy_func (outputs ,labels_w ,power_value=1):
error = (labels_w — outputs.round(decimals=2)).abs()**power_value
#is_correct_prediction=(torch.sum(error,1)<0.001)

is_correct_prediction=(torch.mean(error ,1)<=0.002)

return torch .mean(is_correct_prediction.type(torch.DoubleTensor))

44

8.4.3 Defining Training and validation Functions.

Listing 8.33: Training the network weights.

def train (net,epoch, trainloader , optimizer, loss_func ,loss_power_value):
running_loss = 0.0
for i, data in enumerate(tqdm(trainloader ,disable=True), 0):
get the inputs

inputs ,labels_w ,labels_p ,labels_m =data

if torch.cuda.is_available ():
inputs ,labels_w , labels_p ,labels_m = inputs.cuda(),labels_w.cuda()

, labels_p.cuda(),labels_m.cuda()

zero the parameter gradients

optimizer.zero_grad ()

forward + backward + optimize

outputs = net(inputs)

loss = loss_func (outputs ,labels_w ,loss_power_value)
loss .backward ()

optimizer.step ()

print statistics

running_loss += loss.item ()

running_loss = running_loss / (len(trainloader))
#print ('\nepoch %d training loss: %.3f %
#(epoch + 1, 1000xrunning_lossA[epoch]))

return running_loss

Listing 8.34: Code to performs on the val dataset weights.

def val(net,epoch, valloader ,loss_func ,loss_power_value):

with torch.no_grad ():
running_loss = 0.0
running_accuracy = 0.0
for i, data in enumerate (tqdm(valloader ,disable=True), 0):

get the inputs

45

inputs ,labels_w ,labels_p ,labels_m=data

if torch.cuda.is_available ():
inputs ,labels_w , labels_p ,labels_m = inputs.cuda(),

labels_w.cuda(), labels_p.cuda(),labels_m.cuda()

outputs = net(inputs)
loss = loss_func (outputs ,labels_w ,loss_power_value)
accuracy = accuracy_func(torch.softmax (outputs ,dim=1),labels_w)

print statistics
running_loss += loss.item ()

running_accuracy += accuracy.item ()

running_loss = running_loss / (len(valloader))
running_accuracy = running_accuracy / (len(valloader))
#print ('\nepoch %d validation loss: %.3f %

#(epoch + 1, 1000xVrunning_lossA[epoch]))

return running_loss ,running_accuracy*100

Listing 8.35: Training the network Phase.

def trainP (net,epoch, trainloader, optimizer, loss_func ,h6loss_power_value):
running_loss = 0.0
for i, data in enumerate(tqdm(trainloader ,disable=True), 0):
get the inputs

inputs ,labels_w ,labels_p ,labels_m =data

if torch.cuda.is_available ():
inputs ,labels_w , labels_p ,labels_m = inputs.cuda(),

labels_w.cuda(), labels_p.cuda(),labels_m.cuda()

zero the parameter gradients

optimizer.zero_grad ()

forward + backward + optimize

outputs = net(inputs)

loss = loss_func (outputs ,labels_p ,loss_power_value)
loss .backward ()

optimizer.step ()

46

print statistics

running_loss += loss.item ()

running_loss = running_loss / (len(trainloader))
#print ('\nepoch %d training loss: %.3f %
#(epoch + 1, 1000xrunning_lossA[epoch]))

return running_loss

Listing 8.36: Code to performs on the val dataset phase.

def valP(net,epoch, valloader ,loss_func ,loss_power_value):

with torch.no_grad():
running_loss = 0.0
running_accuracy = 0.0
for i, data in enumerate (tqdm(valloader ,disable=True), 0):
get the inputs

inputs ,labels_w ,labels_p ,labels_m=data

if torch.cuda.is_available ():
inputs ,labels_w , labels_p ,labels_m = inputs.cuda(),

labels_w .cuda(), labels_p.cuda(),labels_m.cuda()

outputs = net(inputs)
loss = loss_func (outputs ,labels_p ,loss_power_value)
accuracy = accuracy_func (outputs ,labels_p)

print statistics
running_loss += loss.item ()

running_accuracy += accuracy.item ()

running_loss = running_loss / (len(valloader))
running_accuracy = running_accuracy / (len(valloader))
#print ('\nepoch %d validation loss: %.3f %

#(epoch + 1, 1000xVrunning_lossA[epoch]))

return running_loss ,running_accuracy*100

47

8.4.4 Training Network.

Listing 8.37: Training of the Weights.

loss_func_list = [L1_Loss_w]

activation_func_list = [F.relu, F.elu]

Max_num_epochs=120
train_lossA= np.empty (Max_num_epochs+1,float)
val_lossA= np.empty(Max_num_epochs+1, float)

val_accuracyA=np.empty (Max_num_epochs+1,float)

def start_training (dropout_val,fcl_sz ,6fc2_sz,activation_func_code,
optimizer_name , learning_rate ,wd_lambda,
SDG_momentum, loss_func_code ,loss_power_value ,

convl_sz,conv5n2_sz ,conv4n3_sz):

loss_func = loss_func_list[loss_func_code]
activation_func = activation_func_list[activation_func_code]
net = Net(dropout_val,fcl_sz,fc2_sz,activation_func ,convl_sz,

conv5n2_sz ,conv4n3_sz)
transfer the model to GPU

if torch.cuda.is_available ():

net = net.cuda()
if (optimizer_name == ’Adam’):
optimizer = optim.Adam(net.parameters(), lr=learning_rate ,
weight_decay=wd_lambda)
elif (optimizer_name == ’SDG’):
optimizer = optim.SGD(net.parameters (), Ir=learning_rate ,
momentum=SDG_momentum, weight_decay=wd_lambda)
Ir_half=2

for epoch in range (Max_num_epochs+1):
if epoch >=100:
if epoch%4==0:
Ir_half=2%1r_half

optimizer = optim.SGD(net.parameters (), lr=learning_rate/lr_half ,

48

momentum=SDG_momentum, weight_decay=wd_lambda)

else:
optimizer = optim.SGD(net.parameters (), lr=learning_rate/lr_half ,
momentum=SDG_momentum, weight_decay=wd_lambda)

train_loss = train (net,epoch, trainloader , optimizer, loss_func,
loss_power_value)

val_loss ,val_accuracy = val(net,epoch, valloader ,loss_func,

loss_power_value)

train_lossA [epoch] = train_loss

val_lossA[epoch] = val_loss

val_accuracyA[epoch] = val_accuracy

wandb.log ({"val_accuracy": val_accuracy ,"val_loss": val_loss,

"train_loss": train_loss ,"steps":epoch})
if (epoch % 2 == 0):
print ("\n_steps {}: ,train_loss_{}, val_loss_{},val_accuracy_{}_ "

.format (epoch, train_loss ,val_loss ,val_accuracy))

return net

Listing 8.38: Training of the Phase.

loss_func_list = [L1_Loss_p]

activation_func_list = [F.relu, F.elu]

Max_num_epochs=100
train_lossA= np.empty (Max_num_epochs+1,float)
val_lossA= np.empty(Max_num_epochs+1,float)

val_accuracyA=np.empty (Max_num_epochs+1,float)

def start_trainingp (dropout_val , fcl_sz,fc2_sz ,activation_func_code,
optimizer_name , learning_rate ,wd_lambda ,SDG_momentum,
loss_func_code ,loss_power_value ,convl_sz,

conv5n2_sz ,conv4n3_sz):

#This fucntion max epochs depends on the learning rate.
#Max_num_epochs=int (np.round(np.loglO(learning_rate),l1)x—20+10)
#Max_num_epochs=40

loss_func = loss_func_list[loss_func_code]

49

activation_func = activation_func_list[activation_func_code]

netp = NetP(dropout_val ,fcl_sz,fc2_sz,activation_func ,convl_sz,
conv5n2_sz ,conv4n3_sz)

transfer the model to GPU

if torch.cuda.is_available ():

netp = netp.cuda()

if (optimizer_name == ’Adam’):
optimizer = optim.Adam(netp.parameters (), lr=learning_rate ,
weight_decay=wd_lambda)
elif (optimizer_name == ’SDG’):
optimizer = optim.SGD(netp.parameters (), lr=Ilearning_rate ,

momentum=SDG_momentum, weight_decay=wd_lambda)

Ir_half=2
for epoch in range (Max_num_epochs+1):
if epoch >=80:
if epoch%4==0:
Ir_half=2x1r_half
optimizer = optim.SGD(netp.parameters (), lr=learning_rate/Ir_half,

momentum=SDG_momentum, weight_decay=wd_lambda)

else:
optimizer = optim.SGD(netp.parameters (), lr=learning_rate/Ir_half,
momentum=SDG_momentum, weight_decay=wd_lambda)
train_loss = trainP (netp ,epoch, trainloader, optimizer, loss_func,
loss_power_value)
val_loss ,val_accuracy = valP(netp,epoch, valloader ,loss_func,
loss_power_value)
train_lossA [epoch] = train_loss
val_lossA[epoch] = val_loss
val_accuracyA[epoch] = val_accuracy
#wandb . log ({ "val_accuracy": val_accuracy,b"val_loss": val_loss ,
"train_loss": train_loss ,"steps":epoch})

if (epoch % 2 == 0):
print("\n_steps{}:_train_loss_{}, val_loss_{},val_accuracy_{}_"

.format (epoch, train_loss ,val_loss ,val_accuracy))

50

return netp

8.4.5 Wand-b

Listing 8.39: Initialising Wand-b

%pip install wandb —q
import wandb

wandb . login ()
entity_name="prg"

project_name="Batchl_tuneNoOfK_run2"

Listing 8.40: Sweep Configurations.

#to add: batch size,

sweep_config = {

method’: ’grid’, #grid, random, bayes
"metric’: |

’name’: ’val_loss’,

“goal’: “minimize’
),
’parameters ' {

“dropout_val’: {

values’: [0.2]

},
“fel_sz’: |
>values’: [4096]
}7
“fc2_sz’: |
>values’: [4096]
}7
>activation_func_code ' : {
>values’: [0]
}?
‘optimizer_name’: {
>values’: [’Adam’ ,’SDG’]
!,

51

"learning_rate *: {
>values’: [le—4, 3e—3, 1le—3, 3e—2, le—2]
).
>wd_lambda’: {
>values’: [3e—4, le—4, 3e—3, le—3]
}s
>SDG_momentum’ : {
values’: [0.9]
}s
>loss_func_code’: {
>values’: [0]
}s
"loss_power_value ' : {

>values’: [2]

}

sweep_id = wandb.sweep(sweep_config, entity="prg", project="Batch3_tunel")

Listing 8.41: Wand b Agent Function.

def wandb_agent_function ():
steps = 0
Default values for hyper—parameters we’re going to sweep over
config_defaults = {
dropout_val’: 0.2,
*fcl_sz’: 4096,
>fc2_sz’: 4096,

>activation_func_code’: O,
optimizer_name’: "Adam",
"learning_rate’: le—3,

>wd_lambda’: le—4,

>’SDG_momentum”’: 0.9,

>loss_func_code’: O,
"loss_power_value’: 2,
>convl_sz’: 96,

conv5Sn2_sz’: 256,

convd4n3_sz’: 384

52

Initialize a new wandb run

wandb. init (entity=entity_name , project=project_name ,config=config_defaults)

Config is a variable that holds and saves hyperparameters and inputs

config = wandb.config

dropout_val = config.dropout_val

fcl_sz = config.fcl_sz

fc2_sz = config.fc2_sz

activation_func_code = config.activation_func_code
optimizer_name = config.optimizer_name
learning_rate = config.learning_rate

wd_lambda = config.wd_lambda

SDG_momentum = config.SDG_momentum
loss_func_code = config.loss_func_code
loss_power_value = config.loss_power_value
convl_sz = config.convl_sz

conv5n2_sz = config.conv5n2_sz

conv4n3_sz = config.conv4n3_sz

Model training here
start_training (dropout_val ,fcl_sz ,fc2_sz ,activation_func_code ,
optimizer_name , learning_rate ,wd_lambda,SDG_momentum,

loss_func_code ,loss_power_value ,convl_sz,conv5n2_sz,conv4n3_sz)

Listing 8.42: Running Wand b.

wandb . agent (sweep_id, wandb_agent_function)

53

LIST OF PAPERS BASED ON THESIS

. Yuan, X.; Xu, Y.; Zhao, R.; Hong, X.; Lu, R.; Feng, X.; Chen, Y.; Zou, J.;
Zhang, C.; Qin, Y.; Zhu, Y. Dual-Output Mode Analysis of Multimode Laguerre-
Gaussian Beams via Deep Learning. Optics 2021, 2, 87-95.

. Z. Wang et al., "Efficient Recognition of the Propagated Orbital Angular Momen-
tum Modes in Turbulences With the Convolutional Neural Network," in IEEE
Photonics Journal, vol. 11, no. 3, pp. 1-14, June 2019, Art no. 7903614, doi:
10.1109/JPHOT.2019.2916207.

. Orbital angular momentum: origins, behavior and applications Alison M. Yaol
and Miles J. Padgett2

. Convolutional neural networks: an overview and application in radiology Rikiya
Yamashital,2 ; Mizuho Nishiol,3 ; Richard Kinh Gian Do2 ; Kaori Togashil

. Timothy Doster and Abbie T. Watnik, "Machine learning approach to OAM beam

demultiplexing via convolutional neural networks," Appl. Opt. 56, 3386-3396
(2017)

. B. S. Freitas, C.J. R. Runge, J. Portugheis, I. de Oliveira and U. Dias, "Optimized
OAM Laguerre-Gauss Alphabets for Demodulation using Machine Learning,"
2020 IEEE 8th International Conference on Photonics (ICP), 2020, pp. 24-25,
doi: 10.1109/I1CP46580.2020.9206470.

. Chenda Lu, Qinghua Tian, Xiangjun Xin, Bo Liu, Qi Zhang, Yongjun Wang,
Feng Tian, Leijing Yang, and Ran Gao, "Jointly recognizing OAM mode and
compensating wavefront distortion using one convolutional neural network," Opt.
Express 28, 37936-37945 (2020).

. W. Xiong et al., "Convolutional Neural Network Assisted Optical Orbital Angular
Momentum Identification of Vortex Beams," in IEEE Access, vol. 8, pp. 193801-
193812, 2020, doi: 10.1109/ACCESS.2020.30291309.

. Identifying orbital angular momentum modes in turbulence with high accuracy
via machine learning RiDong Sunl, Lixin Guol, Mingjian Chengl,2, Jiangting
Lil and Xu Yanl1,Published 12 June 2019

55

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	Laguerre-Gaussian(LG) modes.
	Generation of O.A.M beams.
	Fork grating.
	Optical element:

	Composite Beam Generation
	Mirror Charges Correction.
	Dataset Generation and Noise.
	Different types of noise
	Translation:
	Yaw rotation:
	Pitch rotation:
	Shot Noise:
	Pepper Noise:
	Gaussian Blur Noise:

	Dataset Generation:

	 Normalisation:
	CNN Architecture
	Convolution Neural Network Theory
	C.N.N Hyper parameter Tuning using Wand b:
	Alex-Net:

	Results and Discussion:
	CODE
	Imports of Libraries:
	Dataset Generation.
	Global variables.
	Pure Mode Field profile.
	Mode Selection Functions.
	Noise Adding Functions.
	Expected Output.

	Data-loader for Training and validation Set.
	Training dataset.
	Validation dataset.

	C.N.N Training.
	C.N.N Architecture
	Loss and Optimiser Functions
	Defining Training and validation Functions.
	Training Network.
	Wand-b

