
Deep Learning Based Radio Signal Classification and
Detection of Modulation Schemes.

PROJECT REPORT

Submitted by

RASHMI PRAJAPATI

in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

Department Of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUNE 2022

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

2022

CERTIFICATE

This is to certify that this thesis (or project report) entitled “Deep Learning
Based Radio Signal Classification and Detection of Modulation Scheme
used At the Transmitter” submitted by RASHMI PRAJAPATI to the In-
dian Institute of Technology Madras, for the award of the degree of Masters of
Technology is a bona fide record of the research work done by him under my su-
pervision. The contents of this thesis (or project report), in full or in parts, have
not been submitted to any other Institute or University for the award of any degree
or diploma..

Dr. T. G. Venkatesh
Research Guide

Associate Professor
Department of Electrical Engineering

IIT Madras 600036

Acknowledgment

First and foremost, I would like to express my deepest gratitude to my guide, Dr.
T G Venkatesh, Associate Professor, Department of Electrical Engineering, IIT
Madras, for providing me an opportunity to work under him. I would like to ex-
press my deepest appreciation for his patience, valuable feedback, suggestions and
motivations.

I convey my sincere gratitude to Rohan Desai, MS Scholar, IIT Madras, for
all his suggestions and support during the entire course of the project. Throughout
the course of the project he offered immense help and provided valuable suggestions
which helped me in completing this project.

I would like to extend my appreciation to all my friends and for their help and
support in completing my project successfully.

Contents

1 Introduction 3
1.1 Introduction to Automatic Modulation Classification 3
1.2 Aim and Motivation . 4
1.3 Outline Of Report . 5

2 Literature survey 7

3 Dataset and Preprocessing 9
3.1 Dataset Information . 9
3.2 Data Preprocessing . 10

3.2.1 Packages and Libraries . 10
3.2.2 Loading the dataset . 12
3.2.3 Conversion into Numpy array 12
3.2.4 Encoding into onehot vector 12
3.2.5 Train test split . 13
3.2.6 Compiling the Model . 13
3.2.7 Training the Model . 14
3.2.8 Testing/Evaluating the Model 14
3.2.9 Training Parameters . 14

3.2.10 Performance Metrics . 15

4 Convolutional Neural Network 16
4.1 Convolutional Layer . 16

4.1.1 The 2D Convolution layer . 19
4.1.2 The Dilated Convolution . 21
4.1.3 Asymmetric Convolution . 22
4.1.4 Transposed Convolution . 23

4.2 Pooling Layer . 25
4.2.1 Max Pooling : . 25
4.2.2 Average pooling : . 27
4.2.3 Global Average pooling : 28

4.3 Padding Layer . 29
4.4 Dropout Layer . 31
4.5 Fully connected Layer . 32
4.6 Activation function . 32
4.7 Batch normalization . 33

5 Benchmark Models 35
5.1 VGG Model Architecture . 35
5.2 RanNet Architecture . 36

6 Hybrid Model Architectures and Results 40
6.1 ENet Architecture: . 40

6.1.1 Architecture . 44
6.1.2 Result . 47

6.2 Hybrid1 Architecture . 51
6.2.1 RanNet with VGG . 51
6.2.2 Architecture . 52
6.2.3 Results . 53

6.3 Hybrid2 architecture . 57
6.3.1 Architecture . 59
6.3.2 Results . 60

6.4 Hybrid3 architecture . 64
6.4.1 Architecture . 65
6.4.2 Results . 66

List of Figures

3.1 Packages and Libraries . 11

4.1 Convolution operation[1] . 17
4.2 Example of kernel filter[1] . 18
4.3 3x3 Convolution kernels with dilation rate as 1,2 and 3[2] 21
4.4 Asymmetric Convolution[3] . 22
4.5 Transposed Convolution . 24
4.6 Maxpooling operation . 26
4.7 Averagepooling operation . 27
4.8 Global Averagepooling layer[4] . 28
4.9 ReLU and PReLU Activation function[[5]] 33

5.1 Skip Connection . 38

6.1 Enet Architecture Structure Base[6] 41
6.2 Dilation convolution filter . 42
6.3 Confusion matrix for SNR=-6db . 47
6.4 Confusion matrix for SNR=6db . 48
6.5 Confusion matrix for SNR=18db . 49
6.6 RanNet,VGG,ENet architecture Accuracy v/s SNR 50
6.7 Confusion matrix for SNR=-6db(Hybrid1) 53
6.8 Confusion matrix for SNR=6db(Hybrid1) 54

6.9 Confusion matrix for SNR=18db(Hybrid1) 55
6.10 Architecture accuracy v/s SNR(Hybrid1) 56
6.11 X Block[[7]] . 58
6.12 Confusion matrix for SNR=-6db(Hybrid2) 60
6.13 Confusion matrix for SNR=6db(Hybrid2) 61
6.14 Confusion matrix for SNR=18db(Hybrid2) 62
6.15 Accuracy v/s SNR(Hybrid2) . 63
6.16 Confusion matrix for SNR=-6db(Hybrid3) 66
6.17 Confusion matrix for SNR=6db(Hybrid3) 67
6.18 Confusion matrix for SNR=18db(Hybrid3) 68
6.19 Accuracy v/s SNR(Hybrid3) . 69
6.20 Accuracy v/s SNR for all proposed models 70

List of Tables

3.1 Onehot Vector Example . 13
3.2 Confusion Matrix . 15

4.1 Hyperparameters used in our model 34

6.1 Comparison Matrix of RanNet,VGGNet and ENet 43
6.2 ENet Model Architecture . 46
6.3 Comparison Matrix of RanNet,VGGNet,Hybrid1 Architecture 51
6.4 Hybrid 1 Model Architecture . 52
6.5 Comparison Matrix of RanNet,VGGNet,Hybrid2 Architecture 57
6.6 Hybrid 2 Model Architecture . 59
6.7 Comparison Matrix of RanNet,VGGNet,Hybrid3 Architecture 64
6.8 Hybrid 3 Model Architecture . 65

Deep Learning Based Automatic Modulation Classification

Department of Electrical Engineering, IIT Madras 1

Abstract
Automatic Modulation Classification(AMC) is a technique used in the physical
layer of wireless communication systems to identify the modulation coding schemes
at the receiver end. In this case, the receiver need not know what modulation
scheme the transmitter uses. Deep learning algorithms like Convolution Neural
Networks(CNN), Residual Neural Networks, and Attention mechanism based im-
plementations are currently the most popular solutions to AMC. This work presents
three hybrid deep learning architectures that combine the benchmark architectures
like VGG [8] and RanNet [9]. The new hybrid model combines Residual blocks
with cascaded Chained Residual Pooling blocks and serial Convolution and pooling
blocks. The models were trained on the RadioML 2016 dataset, which has ten mod-
ulation schemes. We compared the hybrid models with the baseline architectures,
where the new hybrid architecture outperformed VGG. We found the hybrid model’s
overall accuracy at 18dB of SNR to be 87.6%.

Chapter 1

Introduction

1.1 Introduction to Automatic Modulation Clas-

sification

Deep Learning is a subdivision of Machine Learning that deals with the study of
neural networks, that comes under computer vision. Computer vision is a domain
where the computer learns to perform as efficient as human vision. Deep learning
are widely used in application in communication system. One of the Application
of deep learning in communication system is Automatic Modulation Classification.
Automatic Modulation classification (AMC) which detects/identifies the modulation
signal coming at the receiver from transmitter in wireless communication system.
The Automatic modulation classification (AMC) is a fundamental signal processing
technique that eventually improves the spectrum utilization efficiency by identify-
ing modulation signals. Deep learning algorithms like convolution neural network,
Residual neural network overcomes the drawback of traditional approach of AMC.

3

Deep Learning Based Automatic Modulation Classification

Even Under the presence of channel fading and channel noises deep learning is able
to learn characteristic of radio signals and do modulation recognition which improves
the classification performance. Over the years technology has been enhanced and
more approaches have been made in this field. Automatic modulation classification
incorporate Deep learning algorithms because it is a progressive way to detect and
extract rich features from modulation signals that in-turns increases classification
accuracy.

The AMC Automatic modulation classification use the radio signal having modu-
lation information for classification. In this work RadioML dataset with 10 different
modulation signals along with various SNR vlues is used and More Automatic mod-
ulation classification algorithms have been proposed.
A convolution neural network in deep learning is center of attraction in this field
because they were specially designed for image data processing. Many model ar-
chitectures have been introduced ResNet, MobileNet, RanNet, VGGNet and many
more for modulation classification of radio signals to realise a close proximity to
real time data. With increment in number of layers it makes a model more efficient
and accurate but on the other hand it increases the size of the model. The struggle
of making deep network to extract more diverse features while keeping the model
compact in size, many architectures have been proposed and we are also trying to
do the same.

1.2 Aim and Motivation

Aim of the project is to find appropriate deep neural network architecture for auto-
matic modulation classification with advanced designs of convolution neural network
for different data types of incoming radio signals from transmitter.
Find out the performance of the proposed architectures and compare their perfor-
mance with existing ones.

Department of Electrical Engineering, IIT Madras 4

Deep Learning Based Automatic Modulation Classification

• Check the existing architecture’s accuracy and tabulate it.

• Build a new hybrid model based architecture which can outperforms the indi-
vidual ones.

• Refer a block from RefineNet architecture combined it with RanNet architec-
ture. try out variations and got the results.

• Tabulate the results of all the hybrid model combinations and conclude their
performance based on accuracy

The interest of this project lied to build a different and new architecture that can
outperform the existing architectures in terms of modulation classification accuracy
for radio signals. So we have use two model architectures which is our benchmark
model architectures. The two benchmark models are VGGNet[8], RanNet[9]. Used
chained residual convolution block from RefineNet model architecture and tried
something new to attain better performance in terms of accuracy.

1.3 Outline Of Report

Chapter 1 contains the introduction to the topic and the motivation for the
project. Chapter 2 contains the information about the Dataset that we have used
and the procedure to get the data ready for applying to the model. In Chapter 3
we have provided the brief introduction about convolution neural network and the
layers used in the network and in the architectures that we are trying to build.

Chapter 4 includes the literature survey regarding the existing research in this
topic and the novel ideas that have been put forward in the field of classification with
machine learning algorithms and Deep learning algorithms. Chapter 5 has a de-
tailed description of two benchmark models that we have used which are VGGNet[8]
and RaNNet[9].This chapter also includes ENet and all the proposed new Hybrid

Department of Electrical Engineering, IIT Madras 5

Deep Learning Based Automatic Modulation Classification

model architecture’s explanation and their results. The report in the end is sum-
marised by conclusion and results of this work along with the future scope to extend
the domain of this work.

Department of Electrical Engineering, IIT Madras 6

Chapter 2

Literature survey

This section provides a quick overview of approaches has been made on the Auto-
matic Modulation Classification of modulation signals over the years on RML2016
dataset starting from developing algorithms for machine learning and deep learning
in the field of classification.

Jungmin Kwon has explained the automatic network data classification based on
several machine learning algorithms that are deployed to classify real network traffic
data. Since data contains the part which needs to be deliver to receiver and the part
for network maintenance in real network. Thus several machine learning algorithms
have been adopted to identify actual real network traffic data and analyse it in two
different target network scenarios[10]. Machine learning algorithm has its limitation.
Hence in his next paper Jungmin Kwon has proposed DNN Deep neural network
for automatic network data classification and ensure that it has better performance
than the machine learning algorithms as it can extract features based on artificial
neural networks from data[11].
With improvment in technologies over the years image classfication Vibhakar Man-
sotra has proposed Deep learning model that do FUNDUS image classification and

7

Deep Learning Based Automatic Modulation Classification

detection easily with greater accuracy using transfer learning[12].
Jung Ho Lee is disscussing automatic modulation classification in various SNR env-
iornment using convolution neural network. This research shows performance of the
proposed feature image-based method is better than the constellation image-based
method[13].
A new feature set is proposed by Jie Li and , Qingda Meng which combines statistical
and spectral feature uses support vector machines (SVMs) and error correcting out-
put codes (ECOC), for automatic digital modulation classification (MC). Method
proposed is efficient in low Signal-to-noise ratio and needs fewer training data[14].
Thien Huynh-The proposed a cost efficient convolution neural network MC-Net ar-
chitecture for automatic modulation classification having skip connection to preserve
more initially residual information. In the experiments, MCNet reaches the overall
classification accuracy of over 93% at 20 dB SNR for RML2018 dataset[15]. The
paper by SEUNG-HWAN KIM and others proposes a novel convolutional neural
network architecture for AMC. A bottleneck and asymmetric convolution structure
are employed in the proposed model, which can reduce the computational complex-
ity. the proposed model not only saves the trainable parameters by more than 67%
but also reduces the prediction time for a signal by more than 54.4% compared
with those of MCNet[14]. Duona Zhang proposes a heterogeneous deep model fu-
sion (HDMF) method to solve the problem of automatic modulation classification.
(1) a convolutional neural network (CNN) and long short-term memory (LSTM)
are combined by two different ways ; (2) a large database, including eleven types
of single-carrier modulation signal with various SNR values with noises and fading
channel. As experiment results modified classifiers based on the fusion model in
serial and parallel modes are of great benefit to improving classification accuracy
when the SNR is from 0 dB to 20 dB[16].

RanNet neural network architecture incorporated multiple advanced blocks such
as attention module and skip connection that has been used to extract diversified
features. Role of these block is to strengthen relevent features and weakens irrelevant
features[9].

Department of Electrical Engineering, IIT Madras 8

Chapter 3

Dataset and Preprocessing

3.1 Dataset Information

The Dataset that have been used for processing is ’RML2016.10b.dat’ RadioML
dataset. It contains sample values of 10 different modulation schemes (’PAM4’,
’QAM64’, ’CPFSK’, ’AM-DSB’, ’BPSK’, ’8PSK’, ’GFSK’, ’QPSK’, ’WBFM’, ’QAM16’)
and 20 different SNR values which varies from -20db to +18 db (in even numbers).
The signal transmitted from the transmitter having continuos waveforms of different
modulation schemes has been transformed into discrete signals and and matrix have
been created. The modulation signal is encoded into labels and then converted into
onehot vector that is either 0 or 1. It will make the columns same as number of
modulation and for each raw one element will be 1 coresspondingto that modulation
signal. These 200 examples, each is 6000 samples long and each sample includes 128
real and imaginary sample points.
We divide or seperate the data into X and Y matrix. Where Y matrix includes all
modulation signals along with SNR values. Y matrix will have the shape (200 x 2).

9

Deep Learning Based Automatic Modulation Classification

X matrix includes sample points corresponding to the pair of modulation signal and
SNR value. Shape of X matrix will be = (200 x 6000 x 2 x 128). So the Data used
for processing has shape (200 x 6000 x 2 x 128).

In our project, we use free GPUs from Google Colab (colaboratory). The deep
learning frameworks that we use are from Tensorflow and Keras API. The graphs
are plotted with the help of Matplotlib and seaborn heatmaps.

3.2 Data Preprocessing

Data preprocessing is the zeroth step in the deep learning workflow : to customize
raw data in a way the network can accept and operate on. This includes resizing of
image to match the input size of an input layer, enhance or diminish certain features
to avoid bias etc. The following steps explain the process of data preprocessing.

3.2.1 Packages and Libraries

Various packages and libraries are available to aid different operations. These pack-
ages/libraries are simply a set of dedicated instructions that help achieve a certain
objective. The following libraries have been imported and used in our case.

Import imports the whole library. from import only imports specific members
of the library. Numpy, Pandas and Theano are common libraries that have been
imported for this project. Pandas allows data manipulation and analysis. Numpy
provides the ability to handle lists in an efficient way apart from its typical use
of efficient multi-dimensional container of generic data. Theano helps to define,
optimize, and evaluate mathematical expressions, especially with multidimensional
arrays.
Matplotlib and Seaborn are libraries that help in data visualisation and graphical
representation of results. Seaborn is based on the matplotlib framework, better
suited to handle Panda dataframes. Scikitlearn is a machine learning library fea-

Department of Electrical Engineering, IIT Madras 10

Deep Learning Based Automatic Modulation Classification

Figure 3.1: Packages and Libraries

turing classifcation, regression and clustering algorithms including support-vector
machines, support-vector classifier etc. We here import the SVC member from the
library. Keras and Tensorflow are most widely used open source libraries providing
Python interfaces for training and testing artificial neural networks. Although their
scope and usage is wide, their particular focus is on training deep neural networks.
Importing activations includes all activation functions that are used in our archi-
tecture. accuracy score and confusion matrix is to evaluate accuracy and to plot
matrix of true and predicted class that helps recogninzing true and false prediction
percentage for each class. Library pickle is used to load the .dat file dataset. Library
plot model is to plot the block diagram of model.

We use these frameworks to import basic amenities of a convolutional neu-
ral network such as convolutional layers (conv2D, Maxpooling2D, Zeropadding2D,
Conv2DTranspose, UpSampling2D), optimiziers (Adam), regularizers etc. These li-

Department of Electrical Engineering, IIT Madras 11

Deep Learning Based Automatic Modulation Classification

braries coupled with basic Python programming give shape to our Convolutional
Neural Network.

3.2.2 Loading the dataset

Our dataset is in a .dat file called RML2016.10b.dat. We use the following syntax
to load our dataset: data = pickle.load(f,encoding=’latin-1’)

3.2.3 Conversion into Numpy array

Numpy arrays are compact and faster than Python lists. An array consumes lesser
memory and is easier to operate on. NumPy uses much less memory to store the data
and provides the freedom of specifying data types. Example: X = np.array(X)
converts a variable X into a numpy array. Also, the NumPy library has many built
in algebraic and other functions that make it easier to manipulate numpy arrays
compared to lists for which things might have to written from scratch.

3.2.4 Encoding into onehot vector

Most Deep learning algorithms or machine learning tools requires preparing the data
before it can fit into the model. It will require categorical data values to convert into
binary values. Each categorical values will be converted into categorical columns
and the entries to those columns will be 0 and 1. For example we have data ’red’,
’green’, ’blue’ that will be first encoded into categorical values as 1, 2, 3 ,that will
be converted into a 3 digit vector each as [1,0,0],[0,1,0],[0,0,1] repectively.
So this one hot encoding is used to do better classification prediction. For our
dataset the modulation signals will be converted into categorical values first then
one hot encoding. So the Y Matrix for our dataset will have a matrix with 10
columns (number of classes=10)

Department of Electrical Engineering, IIT Madras 12

Deep Learning Based Automatic Modulation Classification

Type Red onehot Blue onehot Green onehot
Red 1 0 0
Blue 0 1 0

Green 0 0 1

Table 3.1: Onehot Vector Example

After one hot encoding the matrix we got will be a diagonal matrix.

3.2.5 Train test split

A dataset has to be split into train and test sets to evaluate how accurate our model
is performing. The train set fits the model and statistics of the train set a known.
The test set is used solely for prediction purposes. For the purpose of this project,
we have used 30% data for test purposes while 70% data is used for train purposes.
The following is a syntax to obtain the train test split using scikitlearn library:

sklearn.model selection.train test split(*arrays, test size=None,
train size=None, random state=None, shuffle=True, stratify=None)

3.2.6 Compiling the Model

Compiling a model defines loss function, optimizer and metrics. For our model
compilation these hyper parameters have following specifications. It does not effect
the weights the model learns so we can compile a model as many times as we want.

model.compile(loss=’categorical crossentropy’,
optimizer=’adam’,metrics=[’accuracy’])

Department of Electrical Engineering, IIT Madras 13

Deep Learning Based Automatic Modulation Classification

Optimization is an important process in machine learning that compares the pre-
diction and the loss function to optimise the input weights. In our project, the
model is using Adam Optimizer from keras.
After compilation model needs to be trained that is done by model.fit.
metrics: A list of metrics that the model will evaluate during training and testing.

3.2.7 Training the Model

Model is trained using model.fit for a fixed number of epochs. Ephochs = iteration
on the dataset. For our model we took number of epochs as 30. Model training API
used here is model.fit.

3.2.8 Testing/Evaluating the Model

For testing the designed deep learning model, model.evaluate is used. The API call
returns the values of Categorical Cross-entropy Loss and the Accuracy of the model.

3.2.9 Training Parameters

Batch Size - The number of training samples used in a single iteration is referred
to as batch size. The batch size in our case is 128.

Epoch: - An epoch is a term used to refer to one passing of the entire training
dataset by the algorithm. Datasets are grouped in number of batches (see above
point) especially when the amount of data is very large. The term iteration is also
used sometimes. It is referred to the passing of one batch of the dataset.

Department of Electrical Engineering, IIT Madras 14

Deep Learning Based Automatic Modulation Classification

3.2.10 Performance Metrics

Confusion matrix
Confusion matrix give the idea about how good the model is at predicting the
classes. The matrix shows when the model is confused and when it is able to make
prediction. When the model has good classification accuracy ,confusion matrix will
have elements mostly in diagonal position depicts that classes are being classified
correctly.
The importance of confusion matrix is that we are able to identify which class are
misclassified and which one are correctly classified with a number when we have a
overall model classification accuracy.
It can be applied ti binary classification as well as multiclass-classification. For bi-
nary classification confusion matrix is :
In this confusion matrix receives values counts from true and predicted values. The

Predicted class
Negative Positive

Actual Negative TN FP
Positive FN TP

Table 3.2: Confusion Matrix

terms are:
TN = True Negative, negative examples classified accurately.
TP = True Positive, positive examples classified accurately.
FN = False Negative,Actual positive examples that are classified as negative.
FP = False Positive, Actual negative examples classified as positive.

Accuracy
Classification Accuracy of a model is given as:

Accuracy = TN + TP

TN + TP + FN + FP
(3.2.1)

Department of Electrical Engineering, IIT Madras 15

Chapter 4

Convolutional Neural Network

Convolutional neural network also known as CNN or ConvNet is a class of artificial
neural network used for image processing and visualizing.It is the most common deep
learning architecture for image recognition tasks.CNN is neural network designed to
learn spatial features though backpropogation. The network uses multiple building
blocks, such as convolution layers, pooling layers, and fully connected layers.

4.1 Convolutional Layer

In convolution layer, convolution operation is applied to the input and the result
is passed to the next layer.Convolution combine all pixels in a receptive field into
one value.The receptive field is area of our filter. Convolution will reduce the image
size and combine all the information in the field into one pixel when applied to an
image.The convolution operation is done with the help of filters. Filters are used to
analyze the impact of nearby pixels.
Convolution operation : We take a filter of specified size and move that filter

16

Deep Learning Based Automatic Modulation Classification

across the image from top left to bottom right and it will do the operation that
includes matrix multiplication and addition of the results onto the feature map.Using
a convolution operation, the filter is used to calculate a value for each point on the
image.
On our input, we perform numerous convolutions, each using a different filter.Various
feature maps are created as a result.In the end, all the feature maps are put together
as the final output of convolution layer.
Translation invariance is introduced as well as parameter sharing in these filters.

Figure 4.1: Convolution operation[1]

Department of Electrical Engineering, IIT Madras 17

Deep Learning Based Automatic Modulation Classification

Filter : A network will learn different types of features and its very unlikely for
a network to learn same features.We randomly specify filter values when we build
the network, which continuously update themselves as it is trained.
These filters are used for extracting different kind of features such as edge detection,
sharpening of an image, brightening of an image, contrast of an image etc.
some example of filters or kernels are given below:

Figure 4.2: Example of kernel filter[1]

Department of Electrical Engineering, IIT Madras 18

Deep Learning Based Automatic Modulation Classification

The feature maps generated for each filter are created after the filters have passed
over the image.Then, the image is processed through an activation function, which
determines whether or not certain features are present at a given location in im-
age.As network goes deeper and deeper we can do a lot of things such as add more
filtering layers and creating more feature maps.

It is possible to use different kinds of convolutions based on the type of problem
we are trying to solve and the kind of feature we are looking to learn.
Parameter Calculation for Convolution layer : The learnable parameters for
a convolution layer can be calculated as = [(shape of width of kernel * shape
of height of the kernel * number of input channels to the layer) + 1] *
Output channels.

4.1.1 The 2D Convolution layer

The most common type of convolution is 2D convolution, generally abbreviated as
conv2d. A filter will be slided over the input image with a certain 2D shape to get
the convoluted output. For each point it slides over, the kernel will do the same
procedure, changing a 2D matrix of features into a different 2D matrix of features.
The format of conv2D layer from keras (Keras is a Python-based deep learning API
that runs on top of TensorFlow, a machine learning platform) is as follows:

Conv2D(filters, kernel size, strides=(1,1), padding=”same”)

The parameters used in the convolution layer(conv2D layer) are as follows[17]:
Filter: An integer, the output space’s dimensions (i.e. the number of output filters
in the convolution).

Kernel size: It includes the height and width of the 2D convolution window that
is specified by an integer or a tuple/list of two numbers. To express the same value
for all spatial dimensions, a single integer can be used.

Department of Electrical Engineering, IIT Madras 19

Deep Learning Based Automatic Modulation Classification

Strides: The steps of the convolution along the height and width are specified
by an integer or tuple/list of two numbers. It’s possible to express one value for all
spatial dimensions, and it can be a single integer.
Any stride value not equal to one is incompatible with any dilation rate value not
equal to one.

Padding: There are two options ”valid” or ”same”. ”Valid” denotes NO padding.
”same” padding means raw of zeors and column of zeros will be added to spatial
dimensions of input image such that input shape will be equal to output shape.
It can be left/right or up/down. The output is in same shape as input when
padding=”same” and strides=1.

Data fromat: It’s a string, have two options, ”chennels last”(default) or chennels first.
Inputs with shape (batch size, height, width, channels) go to channels last, while
inputs with shape (batch size, channels, height, width) go to channels first.

Dilation rate: The dilation rate to utilise for dilated convolution is specified by
an integer or a tuple/list of two numbers. It’s possible to express one value for
all spatial dimensions, and it can be a single integer. Currently, specifying any di-
lation rate value not equal to with specifying any stride not equal to is incompatible.

Activation: To use the activation function. If you do not specify anything, no
activation is used. This activation function can be Sigmoid, tanh, ReLU, Leaky
ReLU, PReLU and Softmax.

Kernel initializer: Initializer for the kernel weights matrix. Defaults to ’glorot uniform’.

Department of Electrical Engineering, IIT Madras 20

Deep Learning Based Automatic Modulation Classification

4.1.2 The Dilated Convolution

Dilation convolution simply means inserting zero-values into convolution kernels
and it will increase window size of the filter used for convolution operation without
changing number of weights. Dilated convolution is used to retain large receptive
field and used so that lowering of resolution of input image can be avoided. The
convolution operator is changed to use the filter parameters differently. The dilated
convolution operator can apply the same filter at different ranges using different
dilation factors. This is also known as dilation rate as a hyperparameter of convo-
lution layer. Dilated convolution operation does not involve construction of dilated
filters.
It can be understood with following example:

Figure 4.3: 3x3 Convolution kernels with dilation rate as 1,2 and 3[2]

Department of Electrical Engineering, IIT Madras 21

Deep Learning Based Automatic Modulation Classification

4.1.3 Asymmetric Convolution

Asymmetric convolutions are classified into two types: spatial asymmetric convolu-
tions and depthwise asymmetric convolutions.

In the Enet[6] architecture that we have tried on RML2016 dataset includes spatial
asymmetric convolution, that is primarily concerned with an image’s and kernel’s
spatial dimensions: width and height. A asymmetric spatial convolution operation
divides a kernel into two smaller kernels. For example a 3x3 kernel would be divided
into a 1x3 and 3x1 kernel. So for this convolution multiplication operation will be
less than the original convolution that reduces computational complexity . For this
example total multiplication involved are 6 (3 multiplication each) from as compared
to conventional convolution that has number of multiplication as 9[3].

Figure 4.4: Asymmetric Convolution[3]

Department of Electrical Engineering, IIT Madras 22

Deep Learning Based Automatic Modulation Classification

Number of multiplication involved:
In conventional convolution 64, 3x3 kernel that will move across the input image
having size as 4x4x1 will have total no. of multiplication involved is 64x3x3x4x4 =
9216. Number of kernel are same as number of channels of input image. Consid-
ering no padding and stride length as 1. The 3x3 kernel will have 9 multiplication
everytime and will give out 1 number that results in output shape as (4-3+1=2)
2x2. Whereas in spatial asymmetrix convolution kernel is divided into two small
kernel as 3x1 and 1x3. Each involve number of multiplication; 64x3x1x4x4 = 3072.
So total number of multiplication involved is 6144, that is less than conventional
convolution operation multiplication.
So copmlexity has been reduced, system will run faster. The difference will be sig-
nificant for a large size input image or kenel size.

4.1.4 Transposed Convolution

These convolutions are also referred to as deconvolutions or fractionally strided con-
volutions. A transposed convolutional layer performs a regular convolution while
reversing the spatial transformation. It is opposite of simple convolution. Basic
operation in transposed convolution can be explained with the following example.
It is also known as upsampled convolution, which refers to the task that it is used
to perform, which is to upsample the input feature map[18].
Example with input as a image : Converting a 2x2 feature map/input image into a
3x3 image. A 2x2 feature map needs to be upsampled to a 3x3 feature map. 2x2
feature map has entries as 1,2,3,4. A kernel of size 2x2 which take entries as 5,6,7,8.
Now every element of input feature map will be multiplied with each value of the
kernel. Gives out 4 feature maps some of the elements of the resulting upsampled
feature maps are over-lapping. We simply add the elements of the overlapping po-
sitions to solve this problem.

Department of Electrical Engineering, IIT Madras 23

Deep Learning Based Automatic Modulation Classification

The final upsampled feature map with the required spatial dimensions of 3x3 will
be the output.

Figure 4.5: Transposed Convolution

Department of Electrical Engineering, IIT Madras 24

Deep Learning Based Automatic Modulation Classification

4.2 Pooling Layer

Pooling layer performs pooling operation; which is sliding a kernel/filter of a specified
shape known as pool size over the input image and getting all the features that comes
under the region of coverage of filter.
Input shape of the image is = h ∗ w ∗ c

Output shape after a pooling layer will be = (h − f + 1)/s ∗ (w − f + 1)/s ∗ c

h = Height dimension of input
w = Width dimendion of input
c = Number of input channels
f = Size of the filter
s = Stride length

There are three different types of pooling layers like Max Pooling, Average Pooling
and Global Average Pooling. We discuss them in detail in the following section.

4.2.1 Max Pooling :

In Max Pooling operation, given a input feature map (could be a input image), a
kernel with a specified shape (’pool size’ in the case of pooling layer), will be sliding
over the each channel of the input and getting all the features which are lying in
that particular region of the input feature map. Output of this layer will have most
salient features of the input feature map.

In the Architecture that we have used, Maxpooling2D layer from keras has been
used. The kernel window will be shifted along the input image with stride length
and maximum value from that window of the input image will be picked. That’s how

Department of Electrical Engineering, IIT Madras 25

Deep Learning Based Automatic Modulation Classification

Figure 4.6: Maxpooling operation

entries of the output feature map will be filled. The syntax of the Maxpooling2D
layer is as follows:

MaxPooling2D(pool size=(2,2), strides=2, padding=’same’)

• Pool size: It can be a integer or can be a tuple of two integers. When it
takes a single integer, that will be consider for both dimensions. For example
if pool size is (2,2) the maximum will be taken from the input of this window
shape.

• Stride: Has three possibilities; can be a single integer, tuple of two integers
or None. Stride value defines how pool window moves during the pooling
operation in both dimension for each pooling step. If strides are not defined,
it by default takes the pool size.

• Padding: It can be either ’valid’ or ’same’. ’valid’ means there is no padding.
’same’ results in the padding which gives the output that has same dimen-
sion as input, and ’same’ will do padding evenly in each side of the input
image/tensor.
If its a ’valid’ padding, output shape will be = ((input shape - pool size)/s +
1)
If its a ’same’ padding, output shape will be = ((input shape - 1)/s + 1), it
keeps the output shape same as the input shape.Here s = stride length.

Department of Electrical Engineering, IIT Madras 26

Deep Learning Based Automatic Modulation Classification

• Data format: Its a string; can be either ’channels first’ or ’channels last’. It
depicts the arrangement of dimensions of the input. input = (number of rows,
number of columns, number of channels)
output = (number of pooled rows, number of pooled columns, number of
channels)
When data format is ’channels last’;
input = (number of channels, number of rows, number of columns)
output = (number of channels, number of pooled rows, number of pooled
columns)
pooled rows/columns means the shape we are getting as a output from the
pooling layer.

4.2.2 Average pooling :

In Average pooling it will give the average of the elements that are present in the
window of the input feature map covered by the pool. Like maxpooling gives maxi-
mum number of the particular window of the input image, Average pooling operation
will give the average of that window.

Figure 4.7: Averagepooling operation

Department of Electrical Engineering, IIT Madras 27

Deep Learning Based Automatic Modulation Classification

Avgpooling2D layer from keras has been used. The window of the kernel/filter
shifted along every dimension of the input image by strides. The syntax of the Av-
eragepooling2D layer is as follows:

AveragePooling2D(pool size=(2, 2), strides=None, padding=”valid”,
data format=None)

The Argument explanation of average pooling layer is same as maxpooling layer.

4.2.3 Global Average pooling :

Global average pooling layer takes average of entire input window of size h x w
(height and width of input image) for each channel, where input image shape is h
* w * c, and gives output as 1*1*c. This is equal to do the average pooling with a
filter of size h * w.
A fully connected layer can be replaced with the global average pooling layer.
Likewise, a Global Maxpooling can also be done.

Figure 4.8: Global Averagepooling layer[4]

Syntax for Global Average Pooling layer is as follows:

Department of Electrical Engineering, IIT Madras 28

Deep Learning Based Automatic Modulation Classification

GlobalAveragePooling2D(data format=None, keepdims=False)

• Data format: Its a string; can be either ’channels first’ or ’channels last’. It
depicts the arrangement of dimensions of the input. If its a channels first, it
corresponds to input shape of (channels, height, width) whereas for channels last
the input shape is (height, width, channels). By default it takes ’channels last’.

• Keepdims: It is boolean, will have either ’True’ or ’False’.If it is ’False’
(default), spatial dimension will be eliminated. And if it is ’True’ spatial
dimension will be retained with length 1.
If the input image has shape = (batch size, number of rows, number of columns,
number of channels). Now if
Keepdims = ’True’, output shape = (batch size, number of channels)
Keepdims = ’False’:

– if data format = ’channels last’ : output shape = (batch size,1,1,number
of channels)

– if data format = ’channels first’ : output shape = (batch size, num-
ber of channels, 1, 1).

The pooling layer has no learnable parameters.

4.3 Padding Layer

Padding in convolution neural network is adding number of pixels in input image
when it is being convolved with the kernel.
Need of padding : While doing convolution operation input image shape shrinks
by a factor that depends on the filter size. For example a image of 6x6 being con-
volved with filter size of 3x3, with stride=1 gives a output shape 4x4.

Department of Electrical Engineering, IIT Madras 29

Deep Learning Based Automatic Modulation Classification

• This shrinking of the input shape might effect the network when use a multiple
convolution operation.

• When the filter size increases, then there will be restriction on using the num-
ber of convolution layers, If input shape is 6x6 and kernel size 5x5, only two
convolution layers can be applied.

• For the edge pixels, full filter cannot be slided, hence full convolution can not
be done. So the information at edges is being lost.

That’s why is Padding is required.
Convolution operation :

(n ∗ n) ∗ (f ∗ f) = (n − f + 1) ∗ (n − f + 1) (4.3.1)

So the Padding used to keep the output shape same as input shape. The padding
will increase the length and width of the input. If we add one row at top and one at
bottom, similarly adding columns at left and right side of the input image tensor,
that will make the input shape as 8x8 and now if we convolve it with the same ker-
nel/filter size of 3x3, will give the output shape as 6x6. So essentially it is keeping
the output shape same as input shape.
There are two types padding can be done in convolution neural network:

• Same: Same padding in convolution layer will add enough number of pixels
to the input image tensor at the edges so that the shape of output will be
equal to the input shape.
By what factor padding needs to be done each side of image entirely depends
on the filter size. When filter size is odd, number of pixel needs be added to
each side can be calculated as:

P = (F − 1)/2 (4.3.2)

Department of Electrical Engineering, IIT Madras 30

Deep Learning Based Automatic Modulation Classification

Because we want to distribute the pixels on each side of input image that’s
why divided by 2 is done.

• Valid: Valid padding means while convolution, filter is applied only to valid
pixels of the image. So it is eventually original image. Thus Valid padding
means no padding.

4.4 Dropout Layer

Dropout layer is also one of the most important characteristics of convolution neural
network. This layer act as a mask by which some neurons from the incoming layer
towards the next layer has been dropped out and other are free to pass to the next
layer.
The Dropout layer randomly sets input units to 0 with a dropout rate between 0
to 1 at each step during training time, which prevent overfitting. Other inputs are
scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged. Without
presence of these layers, first batch of training sample will effect the learning. So
this layer prevent learning of features that appear only in later samples.

Dropout(rate, noise shape=None, seed=None)

Rate: Fraction of the input units to drop.
Noise shape: 1D integer tensor representing the shape of the binary dropout mask
that will be multiplied with the input. For instance, if your inputs have shape (batch
size, timesteps, features) and you want the dropout mask to be the same for all
timesteps, you can use noise shape=(batch size, 1, features).
seed: A Python integer to use as random seed.

Department of Electrical Engineering, IIT Madras 31

Deep Learning Based Automatic Modulation Classification

4.5 Fully connected Layer

In a convolution neural network, the fully connected layer is the last layer after which
an activation is used. The Flatten layer gives an output as a 1-D vector which is
being fed to the fully connected layer, also called the ”Hidden Layer.”
Fully connected layers in neural networks are those in which all of the inputs from
one layer are connected to every activation unit in the following layer. The final
few layers of most popular machine learning models are full connected layers that
compile the data extracted by previous layers to form the final output. It takes the
second most time, after the Convolution Layer.

4.6 Activation function

Acts as a transfer fucntion that maps the output value in betwen 0 to 1 or -1 to 1.
There are two type of activation function:
1. Linear Activation function
2. Non-linear Activation function
In neural network architecture that we are using in our project are using non-linear
activation functions. It makes it easy for the model to generalize or adapt with
variety of data and to differentiate between the output.

• Sigmoid activation function :This function is also called the logistic func-
tion. Regardless of the input, the function always outputs a value between
0 and 1. This function passes very large values of the input to be output as
1 and very small or negative values to be output as 0. The sigmoid activa-
tion is an ideal activation function or suitable activation function for binary
classification but inappropriate for multiclass classification because it requires
multinomial probability distribution.

• ReLU activation function : Rectified linear activation unit is a piece-wise
linear activation unit that passes through the input to the output when its

Department of Electrical Engineering, IIT Madras 32

Deep Learning Based Automatic Modulation Classification

positive and otherwise output is zero.

Since all the negative values are becoming zero, it decreases the ability of model
to train data properly. The function and its derivative both are monotonic.

• PReLU activation function : Parameterized ReLU modifies the traditional
rectified unit by introducing a parameter by which input gets multiplied for
negative values of the input and gives the output, positive values remain the-
same.

Figure 4.9: ReLU and PReLU Activation function[[5]]

4.7 Batch normalization

It is the layer used in convolution neural network that normalizes its input. Batch-
normalization is done between the layers. Batch normalisation employs a transfor-
mation that keeps the mean output close to 0 and the standard deviation of the
output close to 1[19].

Department of Electrical Engineering, IIT Madras 33

Deep Learning Based Automatic Modulation Classification

Hyperparameters used for our models: While building the architecture and
training the model, the hyperparameters are used in our project are as follows:

Serial Number Hyperparameters Specification
1 Optimizer used Adam
2 loss categorical crossentropy
3 Number of epochs 30
4 Steps per epochs 1000
5 Batch size 128
6 X train data size (630000, 2, 128)
7 Y train data size (630000, 10)
8 Dropout rates 0.1,0.01,0.3
9 Activation function ReLU,PReLU

Table 4.1: Hyperparameters used in our model

In our project we are working on RML2016 RadioML data-set that has 10 mod-
ulation signals and have a data shape of (200x6000x2x128). Since for our model
architecture we are training the dataset from -10db to +18db, having shape =
(150x6000x2x128), and has been reshaped to (90000,128,2) according to the model
requirements.
By applying train and test split with a factor of 0.3. Hence train data shape =
(63000,128,2).

Department of Electrical Engineering, IIT Madras 34

Chapter 5

Benchmark Models

5.1 VGG Model Architecture

The VGGNet Architecture[8] contains convolutional layers (Conv2D layers), A max-
pooling layer and a zeropadding layer is added with the specifications given in the
architecture below.

• Input: For ’RML2016.10b.dat’ RadioML dataset, input shape to the archi-
tecture is (4x128x1).We have included different waveform components (e.g.,
inphase, quadrature, amplitude, phase) as the input data of network by de-
composing complex envelope samples of modulation signals.(RANNET,ref)

• Convolution layers: Convolution layer in VGG uses filter/kernel size of (1,5)
that still captures up/down and left/right. The convolution stride is fixed at
1 pixel to preserve the spatial resolution after convolution. No. of filters used
in each convolution layer is 64.

35

Deep Learning Based Automatic Modulation Classification

• Hidden layers: In the VGG network all the hidden layers use ReLU acti-
vation function,which reduces training time. ReLU stands for rectified linear
unit activation function, it is a piecewise linear function that passes the input
to output when positive; otherwise, the output is zero.

• Fully Connected layers: The VGG architecture has two fully connected
layers out of which one has 128 channels and the last one has 10 channels,one
for each class of the modulation signal.

Classification Accuracy = 84% for 18db SNR. Total number of parameters used
= 186,570

5.2 RanNet Architecture

The RanNet architecture is an efficient deep network with a novel CNN architec-
ture,has been designed to learn modulation pattern in the training stage automat-
ically and to classify the modulation schemes of incoming signals in the prediction
stage.

• Input:The architecture starts with the input layer of size (2,256,1). We re-
shape the inputs to add more number of Ranblocks in the architecture. The
original input layer size is (4,128,1), where 128 is the number of discrete sam-
ples of signal frames in the RadioML 2016 dataset.
The Network includes two kind of processing blocks, FeaBlock and Ran-
Block.The role of these Blocks are Extraction of coarse and fine radio signals
from the network body.

• PreBlock : The block is structured as follows:
Cascade connection of two convolution units, where each unit comprises of a a
convolution layer, a batch normalization (bn) layer and a rectified linear unit
(relu) layer. To Computes coarse features from input signals based on their

Department of Electrical Engineering, IIT Madras 36

Deep Learning Based Automatic Modulation Classification

local correlations, convolution layers of this block has a specific kernel size of
(4,7) and (1,7) with stride size of 2.
In order to reduce network sensitivity and accelerate network training conver-
gence, the bn layer is adopted.
A dropout layer prevents overfitting in the network.

• RanBlock : This Block consists of two sub-blocks, FeaBlock and Attention
module.In RanBlock, attention connection and skip connection are performed
using element-wise multiplication and element-wise addition, respectively.

FeaBlock : Multiple convolutional units are arranged in parallel structure
to extract fine features. Each unit is specified by a different 1-D convolution
layer using small filter sizes which are 1x1, 1x3, 1x5 to enhance feature diver-
sity.A depth-wise concatenation (concat) layer is used to gather outcomes of
convolution layer to concatenate feature maps along the channel dimension.
A sophisticated structural connection incorporating attention connection and
skip connection is proposed to improve the learning efficiency of fine features
in Ran-Blocks.

Attention module : To strengthen relevant features and deteriorate ir-
relevant features simultaneously, we build an attention module that calculates
attention values.The module has global average pooling (GAP) layer, convolu-
tion layers, activation layer with sigmoid function and element-wise multiplica-
tion (mult) to perform attention connection.Using the gap layer, we calculate
the global features of FeaBlock, which are then processed by 1x1 convolutional
layers and a mult layer to compute channel attention values. Multiplicity of
chain rule derivatives can cause the informative gradient to decrease as the
network deepens, leading to insignificant updates to the initial layers.To solve
this issue a Skip connection inspired by residual block in ResNet is adopted
so that it will not degrade the performance of classification module.

Department of Electrical Engineering, IIT Madras 37

Deep Learning Based Automatic Modulation Classification

Figure 5.1: Skip Connection

Skip connection : While training deep neural networks, the performance
of the model drops down with the increase in depth of the architecture. This
is known as the degradation problem. This can be reduced with skip connec-
tion as feature loss can be . The neural network with skip connections has
a smoother loss surface, resulting in faster convergence. An example of Skip
connection used in residual block of ResNet architecture is as follows:

Department of Electrical Engineering, IIT Madras 38

Deep Learning Based Automatic Modulation Classification

There are eight convolutional layers, after each is a max pooling layer added,
and a dropout layers in the end with the dropout rate of 0.3 added to prevent
overfitting.After that, there are two dense layers, with 128 and 10 units respectively
(10 is the number of classes for classification). The batch size is 128
No. of epochs is 35 and the Optimizer is Adam. The Model is trained for -10db to
18db and tested on each SNR values
Classification Accuracy = 84% for 18db SNR.
Total number of parameters used = 186,570

(a) VGG Architecture Accuracy v/s SNR (b) RANNET Architecture Accuracy v/s
SNR

Department of Electrical Engineering, IIT Madras 39

Chapter 6

Hybrid Model Architectures and
Results

6.1 ENet Architecture:
The ENet (Efficient Neural Network) Architecture is a Deep neural network archi-
tecture, that is created for applications where it requires minimal delay-time while
processing a computer data in presence of a network connection.
We have tried to train the ENet Architecture model on the RML2016 RadioML
dataset, that contains 10 modulation schemes and 20 different values of SNR’s (-
20db to +18db, only even values).
The data shape in the dataset = (200x6000x2x128)
We have trained the model for SNR values from -10db to +18db, (including all mod-
ulation signals).So it takes only those value from the dataset to train the model.That
is (150x6000x2x128).After pre processing of the the dataset, it has been reshaped
to (900000, 64, 8).
The Structure of the architecture :
The network is divided into many stages.A view of ResNet is adopted, which has one
single main branch and a side branch with combination of convolution layers.Both
main and side branch will be merged with an element-wise addition.

• Initial: Initial block of the architecture contains one maxpooling layer and
one convolution layer. That will do downsampling of the input, reduce the
dimension by a factor of 2 using specified size of kernel and pool size.
Input to this layer is (64, 8, 1).
Output of initial block = (32, 4, 1)

40

Deep Learning Based Automatic Modulation Classification

(a) Initial block

(b) Bottleneck

Figure 6.1: Enet Architecture Structure Base[6]

• Downsampling Bottleneck: In this bottleneck side branch have three con-
volution layers. Two with kernel size of (1x1) and one main convolution layer
with kernel size (3x3). In downsampling the main convolution layer has a
stride length of 2. And in main branch a maxpooling layer with pool size 2x2
is added to do the work. Reduction of full feature map resolution will have
loss of spatial information. So every downsampling should have equally strong
upsampling.
For every downsampling block input tensor dimensions will go down by a factor
of 2.

• Asymmetric Bottleneck: Asymmetric block means the main convolution
layer in side branch is using asymmetric covolution.A (5,5) filter is decomposed
to two small filters with kernel size of (1,5) and (5,1) one after another to re-
duce number of parameters and computation required. To balance out the
dimensions a Zeropadding layer (padding=(0,16)) is added before the asym-
metric convolution layer of filter 1x5

Department of Electrical Engineering, IIT Madras 41

Deep Learning Based Automatic Modulation Classification

• Upsampling Bottleneck: This block is having a upsampling layer in the
main branch to gain the spatial dimensions that reduced because of the down-
sampling. For this purpose we are using UpSampling2D layer from Keras that
will upsample the dimension of input.

• Dilated Bottleneck: Dilated convolution used to capture or extract more
information, after output from each convolution operation, without increasing
the number of parameters of kernel. The architecture is using dilation rate
for this block is 2,4,8,16. That will be applied to only main convolution layer
having kernel size as 3x3 and stride=1. Because stride value =1 will only be
compatible with dilation rate not equal to 1.

Figure 6.2: Dilation convolution filter

Department of Electrical Engineering, IIT Madras 42

Deep Learning Based Automatic Modulation Classification

• Fully connected layer: This part of the architecture is called as classifica-
tion part of the model, where classification happens. A transpose convolution
operation is performed to make the shape same as input tensor dimension,
with number of output filter equal to the number of classes in dataset. A
Globalaveragepooling and Softmax activation function all together will com-
plete the classification operation.
The final ouput have shape = (None,10) = (batch size, number of channels)

Tabulating the results from ENet with comparison with Benchmark models:

Model Accuracy at 18db(%) Learnable parameter
RanNet 88.96 114746
VGG 84.7 186570
ENet 67.73 136148

Table 6.1: Comparison Matrix of RanNet,VGGNet and ENet

Department of Electrical Engineering, IIT Madras 43

Deep Learning Based Automatic Modulation Classification

6.1.1 Architecture
The Enet architecture description including all significant layers with output shape
is given below:

Name Type Description Output Shape Parameters used
Main branch

Initial 1)maxpool2D(pool=(2,2) stride=2) (None,32,4,1) 210
Side branch

2)conv2D(15,3,stride=1) (None, 32, 4, 15)
a)concatenate(1,2) (None, 32, 4, 16)

Main branch
Bottleneck1.0 Downsampling 1)maxpool2D(pool=(2,2) stride=2) (None,16, 2, 16) 3512

2)Zeropadding2D((0,16), data format=’channels first’) (None,16, 2, 48)
a)concatenate(1,2) (None, 16, 2, 64)

Side branch
conv2D(4,(1,1),stride=1,p=’valid’) (None, 32, 4, 4)
conv2D(4,(3,3),stride=2,p=’same’) (None, 16, 2, 4)

b)conv2D(64,(1,1),stride=1,p=’valid’) (None, 16, 2, 64)
Add(a,b) (None, 16, 2, 64)

Side branch
Bottleneck1.1 conv2D(16,(1,1),stride=1,p=’valid’) (None, 32, 4, 4) 7904

conv2D(16,(3,3),stride=2,p=’same’) (None, 16, 2, 4)
conv2D(64,(1,1),stride=1,p=’valid’) (None, 16, 2, 64)

Side branch
Bottleneck1.2 conv2D(16,(1,1),stride=1,p=’valid’) (None, 32, 4, 4) 7904

conv2D(16,(3,3),stride=2,p=’same’) (None, 16, 2, 4)
conv2D(64,(1,1),stride=1,p=’valid’) (None, 16, 2, 64)

Side branch
Bottleneck1.3 conv2D(16,(1,1),stride=1,p=’valid’) (None, 32, 4, 4) 7904

conv2D(16,(3,3),stride=2,p=’same’) (None, 16, 2, 4)
conv2D(64,(1,1),stride=1,p=’valid’) (None, 16, 2, 64)

Side branch
Bottleneck1.4 conv2D(16,(1,1),stride=1,p=’valid’) (None, 32, 4, 4) 7904

conv2D(16,(3,3),stride=2,p=’same’) (None, 16, 2, 4)
conv2D(64,(1,1),stride=1,p=’valid’) (None, 16, 2, 64)

Main branch
Bottleneck2.0 Downsampling 1)maxpool2D(pool=(2,2) stride=2) (None,8, 1, 64) 2776

2)Zeropadding2D((0,0), data format=’channels first’) (None,8, 1, 64)
a)concatenate(1,2) (None, 8, 1, 128)

Side branch
conv2D(4,(1,1),stride=1,p=’valid’) (None, 16, 2, 4) 2776
conv2D(4,(3,3),stride=2,p=’same’) (None, 8, 1, 4)

b)conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)
Add(a,b) (None, 8, 1, 128)

Side branch
Bottleneck2.1 conv2D(16,(1,1),stride=1,p=’valid’) (None, 8, 1, 16) 8480

conv2D(16,(3,3),stride=2,p=’same’) (None, 8, 1, 16)
conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)

Department of Electrical Engineering, IIT Madras 44

Deep Learning Based Automatic Modulation Classification

Name Type Description Output Shape Parameters used
Side branch

Bottleneck2.2 Dilated 2 conv2D(16,(1,1),stride=1,p=’valid’) (None, 8, 1, 16) 8480
conv2D(16,(3,3),stride=2,p=’same’,dilation=2) (None, 8, 1, 16)

conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)
Side branch

Bottleneck2.3 Asymmetric conv2D(16,(1,1),stride=1,p=’valid’) (None, 8, 1, 16) 8752
Zeropadding2D(padding=(0,2)) (None,8, 5, 16)

conv2D(16,(1,5),stride=1,p=’valid’) (None, 8, 1, 16)
Zeropadding2D(padding=(2,0)) (None,12, 1, 16)

conv2D(16,(5,1),stride=1,p=’valid’) (None, 8, 1, 16)
conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)

Main branch
Side branch

Bottleneck2.4 Dilated 4 conv2D(16,(1,1),stride=1,p=’valid’) (None, 8, 1, 16) 8480
conv2D(16,(3,3),stride=2,p=’same’,dilation=4) (None, 8, 1, 16)

conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)
Side branch

Bottleneck2.5 conv2D(16,(1,1),stride=1,p=’valid’) (None, 8, 1, 16) 8480
conv2D(16,(3,3),stride=2,p=’same’) (None, 8, 1, 16)
conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)

Side branch
Bottleneck2.6 Dilated 8 conv2D(16,(1,1),stride=1,p=’valid’) (None, 8, 1, 16) 8480

conv2D(16,(3,3),stride=2,p=’same’,dilation=8) (None, 8, 1, 16)
conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)

Side branch
Bottleneck2.7 Asymmetric conv2D(16,(1,1),stride=1,p=’valid’) (None, 8, 1, 16) 8752

Zeropadding2D(padding=(0,2)) (None,8, 5, 16)
conv2D(16,(1,5),stride=1,p=’valid’) (None, 8, 1, 16)

Zeropadding2D(padding=(2,0)) (None,12, 1, 16)
conv2D(16,(5,1),stride=1,p=’valid’) (None, 8, 1, 16)
conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)

Side branch
Bottleneck2.8 Dilated 8 conv2D(16,(1,1),stride=1,p=’valid’) (None, 8, 1, 16) 8480

conv2D(16,(3,3),stride=2,p=’same’,dilation=16) (None, 8, 1, 16)
conv2D(128,(1,1),stride=1,p=’valid’) (None, 8, 1, 128)

Main branch
Bottleneck3.0 Upsampling conv2D(16,(1,1),stride=1,p=’valid’) (None,8, 1, 64) 11736

a)UpSampling2D(size=(2, 2)) (None, 16, 2, 64)
Side branch

Conv2DTranspose(4,1,stride=1,p=’valid’) (None, 8, 1, 4)
Conv2DTranspose(4,3,stride=2,p=’same’,outpadding=1) (None, 16, 2, 4)

b)Conv2DTranspose(64,1,stride=1,p=’valid’) (None, 16, 2, 64)
Add(a,b) (None, 16, 2, 64)

Side branch
Bottleneck3.1 conv2D(4,(1,1),stride=1,p=’valid’) (None, 16, 2, 4) 3320

conv2D(4,(3,3),stride=2,p=’same’) (None, 16, 2, 4)
conv2D(64,(1,1),stride=1,p=’valid’) (None, 16, 2, 64)

Department of Electrical Engineering, IIT Madras 45

Deep Learning Based Automatic Modulation Classification

Name Type Description Output Shape Parameters used
Side branch

Bottleneck3.2 conv2D(4,(1,1),stride=1,p=’valid’) (None, 16, 2, 4)) 3320
conv2D(4,(3,3),stride=2,p=’same’) (None, 16, 2, 4))
conv2D(64,(1,1),stride=1,p=’valid’) (None, 16, 2, 64))

Main branch
Bottleneck4.0 Upsampling conv2D(16,(1,1),stride=1,p=’valid’) (None, 16, 2, 16) 4312

a)UpSampling2D(size=(2, 2)) (None, 32, 4, 16)
Side branch

Conv2DTranspose(4,1,stride=1,p=’valid’) (None, 16, 2, 4)
Conv2DTranspose(4,3,stride=2,p=’same’,outpadding=1) (None, 32, 4, 4)

b)Conv2DTranspose(16,1,stride=1,p=’valid’) (None, 32, 4, 16)
Add(a,b) (None, 32, 4, 16)

Side branch
Bottleneck4.1 conv2D(4,(1,1),stride=1,p=’valid’) (None, 32, 4, 4) 8480

conv2D(4,(3,3),stride=2,p=’same’) (None, 32, 4, 4)
conv2D(16,(1,1),stride=1,p=’valid’) (None, 32, 4, 16)

Conv2DTranspose(4,1,stride=1,p=’valid’) (None, 64, 8, 10) 1450
FC GlobalAveragePooling2D (None, 10)

Softmax (None, 10)

Table 6.2: ENet Model Architecture

Department of Electrical Engineering, IIT Madras 46

Deep Learning Based Automatic Modulation Classification

6.1.2 Result

Figure 6.3: Confusion matrix for SNR=-6db

Accuracy at -6db = 22.46%
In confusion matrix most of the classes are predicted false at lower SNR value -6db.
A big part of classes are predicted as QAM64. The Enet model is not functioning
accurately at low SNR value. 8PSK signal has classification accuracy 33%, which is
highest at -6db.

Department of Electrical Engineering, IIT Madras 47

Deep Learning Based Automatic Modulation Classification

Figure 6.4: Confusion matrix for SNR=6db

Accuracy at 6db = 66.38%
In above results we can see that since classification accuracy is not high but ratio of
predicting wrong classes has been reduced at 6db SNR vlue. Although the model is
not sufficient to predict QAM64 and QAM16 accurately.

Department of Electrical Engineering, IIT Madras 48

Deep Learning Based Automatic Modulation Classification

Figure 6.5: Confusion matrix for SNR=18db

Accuracy at 18db = 67.73%
The false prediction accuracy at high SNR value has decreased while for some cases
it increased. Prediction accuracy for QAM64 is also increased.

Department of Electrical Engineering, IIT Madras 49

Deep Learning Based Automatic Modulation Classification

Figure 6.6: RanNet,VGG,ENet architecture Accuracy v/s SNR

The curves shown in figure 6.6 will show the Comparison between accuracy of
the benchmark models and Enet model.
The Enet model following performance curve of VGG below -5db SNR vlaue where
accuracy is around 30%, after that it started deviating. And reached to a maximum
classification accuracy of 67%. It is clearly visible that the experiment of our Enet
architecture on RML2016 dataset is not satisfactory, it is not able to perform as
required. That leads us to try some new model building methods that can perform
nearly accurate as these benchmarks models.

Department of Electrical Engineering, IIT Madras 50

Deep Learning Based Automatic Modulation Classification

6.2 Hybrid1 Architecture

6.2.1 RanNet with VGG
We have tried a new and different approach to merge two different models. The
RanNet neural network architecture had been modified by adding VGG architecture
layers. RanNet architecture is having Ranblocks, we have add convolution layer
along with the maxpooling layer incorporating by a skip connection so that to retain
all the lost features, in between two Ranblock from VGG architecture.
A second convolution layer along with maxpooling with pool size (2,2) is added at
the end of the model. The output shape after all basic layers before flatten layer is
(1,32,64).
The number of parameters for this hybrid arcitecture is = 145322
While number of parameters for RanNet model = 114746
Adding convolution layer will increase the learnable parameters and accuracy also
has been sacrificed a little bit.

Model Accuracy at 18db(%) Learnable parameter
RanNet 88.96 114746
VGG 84.7 186570

Hybrid 1 87.89 145322

Table 6.3: Comparison Matrix of RanNet,VGGNet,Hybrid1 Architecture

Got accuracy for hybrid architecture at 18db= 87.89%

Department of Electrical Engineering, IIT Madras 51

Deep Learning Based Automatic Modulation Classification

6.2.2 Architecture

Layers Description Output Shape Parameters used
Preblock conv(64,(4,7),stride=2) (None, 1, 128, 64) 30848

conv(64,(1,7),stride=2) (None, 1, 64, 64)
Ranblock1 Feablock m)pool((1,2),stride=2) (None, 1, 32, 64) 25472

a)conv(64,(1,3),stride=1) (None, 1, 32, 64)
conv(32,(1,3),stride=1) (None, 1, 32, 32)

b)conv(16,(1,1),stride=1) (None, 1, 32, 16)
c)conv(16,(1,5),stride=1) (None, 1, 32, 16)

X)concatenate(a,b,c) (None, 1, 32, 64)
Attention GAP(keepdims=True) (None,1,1,64) 2448

d)conv(16,(1,1),stride=1) (None,1,1,16)
e)Sigmoid activation function (None,1,1,16)

Multiply(d,e) (None,1,1,16)
f)conv(64,(1,1),stride=1) (None,1,1,64)

g)Sigmoid activation function (None,1,1,64)
h)Multiply(g,X) (None,1,32,64)

i)Add(h,m) (None,1,32,64)
VGG Block j)conv(64,(1,2),stride=1) (None,1,1,16) 8256

k)Zerpadding((0,16)) (None,1,1,16)
l)maxpool((2,2),stride=2) (None,1,1,16)

p)Add(i,l) (None,1,32,64)
Ranblock2 „ (None,1,16,64) 25216
Attention „ (None,1,16,64) 2448

Reshape((4,4,64), input=(1,16,64)) (None,4,4,64)
conv(64,(1,2),stride=1) (None,3,3,64)

Output/FC maxpool((2,2),stride=2) (None,2,2,64) 50634
Flatten (None,256)

Dense(128) (None,128)
Dropout (None,128)

Dense(10) (None,10)
Softmax activation function (None,10)

Table 6.4: Hybrid 1 Model Architecture

Total number of parameters used = 145322
With increment in number of Ranblock model will learn more number of features
but after a certain point it will saturate but complexity of model will increase. Here
we are using only only two Ranblocks.

Department of Electrical Engineering, IIT Madras 52

Deep Learning Based Automatic Modulation Classification

6.2.3 Results

Figure 6.7: Confusion matrix for SNR=-6db(Hybrid1)

Accuracy at -6db = 51.32%
The results from the the model prediction at low SNR value -6db is shown in the
confusion matrix. PAM4 modulation signal is classified most accurately than other
signals. QAM16 has maximum false prediction percentage. At low SNR value Model
sometimes behave randomly at prediction because of the noise.

Department of Electrical Engineering, IIT Madras 53

Deep Learning Based Automatic Modulation Classification

Figure 6.8: Confusion matrix for SNR=6db(Hybrid1)

Accuracy at 6db = 87.96%
At 6db SNR value model is able to predict classes same as true classes. QAM16
modulation signal is predicted wrong by approximately 50% to QAM64. QPSK and
GFSK also has some

Department of Electrical Engineering, IIT Madras 54

Deep Learning Based Automatic Modulation Classification

Figure 6.9: Confusion matrix for SNR=18db(Hybrid1)

Accuracy at 18db = 87.89%
Confusion matrix shown in the above figure is for 18db. At high SNr value model
is performing

Department of Electrical Engineering, IIT Madras 55

Deep Learning Based Automatic Modulation Classification

Figure 6.10: Architecture accuracy v/s SNR(Hybrid1)

This is a comparison of performance of the proposed model by us with the bench-
mark models that has outperform one the model to a certain extent. This model is
behaving approximately same as the RanNet model with a bit difference.

Department of Electrical Engineering, IIT Madras 56

Deep Learning Based Automatic Modulation Classification

6.3 Hybrid2 architecture
The Next Hybrid model includes a new block called X block. The block involves
convolution layers and their element-wise addition. This block is inspired by one
of the blocks from the RefineNet architecture called as Chain residual pooling.
We have build chained residual convolution block (includes only convolution layers)
that has been named as X block, one ran block and 1 Feablock. In this hybrid
network we have tried adding new block to the RanNet architecture and modified
it to capture background context from a large image.

The X block is built as a chain of multiple convolution blocks. Each convolution
block in X block is having kernel size as 3x3. Output from one convolution block
goes to the next convolution block as its input.
Therefore, the current convolution block is able to re-use the result from the previous
convolution operation and thus access the features from a large region without using
a large pooling window. The output feature maps of all convolution blocks are fused
together with the input feature map through summation of residual connections[7].

Model Accuracy at 18db(%) Learnable parameter
RanNet 88.96 114746
VGG 84.7 186570

Hybrid 2 87.69 209578

Table 6.5: Comparison Matrix of RanNet,VGGNet,Hybrid2 Architecture

Department of Electrical Engineering, IIT Madras 57

Deep Learning Based Automatic Modulation Classification

Figure 6.11: X Block[[7]]

Department of Electrical Engineering, IIT Madras 58

Deep Learning Based Automatic Modulation Classification

6.3.1 Architecture

Layers Description Output Shape Parameters used
Preblock conv(64,(4,7),stride=2) (None, 1, 128, 64) 31104

conv(64,(1,7),stride=2) (None, 1, 64, 64)
Ranblock1 Feablock m)pool((1,2),stride=2) (None, 1, 32, 64) 25216

a)conv(64,(1,3),stride=1) (None, 1, 32, 64)
conv(32,(1,3),stride=1) (None, 1, 32, 32)

b)conv(16,(1,1),stride=1) (None, 1, 32, 16)
c)conv(16,(1,5),stride=1) (None, 1, 32, 16)

X)concatenate(a,b,c) (None, 1, 32, 64)
Attention GAP(keepdims=True) (None,1,1,64) 2448

d)conv(16,(1,1),stride=1) (None,1,1,16)
e)Sigmoid activation function (None,1,1,16)

Multiply(d,e) (None,1,1,16)
f)conv(64,(1,1),stride=1) (None,1,1,64)

g)Sigmoid activation function (None,1,1,64)
h)Multiply(g,X) (None,1,32,64)

i)Add(h,m) (None,1,32,64)
X block 1) maxpool((1,2),stride=2) (None,1,16,64) 147712

2)Relu (None,1,16,64)
3)conv(16,(1,2),stride=1) (None,1,16,64)

4)Add(2,3)
5)conv(16,(1,2),stride=1) (None,1,16,64)

6)Add(4,5)
7)conv(16,(1,2),stride=1) (None,1,16,64)

8)Add(6,7)
9)conv(16,(1,2),stride=1) (None,1,16,64)

10)Add(8,9)
Attention „ (None,1,16,64) 2448

FC GlobalAveragepooling (None,64)
Dense(10) (None,10) 650
Softmax (None,10)

Table 6.6: Hybrid 2 Model Architecture

Total number of learn able parameters = 209578

Department of Electrical Engineering, IIT Madras 59

Deep Learning Based Automatic Modulation Classification

6.3.2 Results

Figure 6.12: Confusion matrix for SNR=-6db(Hybrid2)

Accuracy at -6db = 40.78%
The confusion matrix between true class and predicted class depicts at low SNR
value for this hybrid model including a new block called as X block performs 40% ac-
curate. PAM4,QAM16, WBFM also not predicted correctly. Because signal strength
is very low at low SNR values.

Department of Electrical Engineering, IIT Madras 60

Deep Learning Based Automatic Modulation Classification

Figure 6.13: Confusion matrix for SNR=6db(Hybrid2)

Accuracy at +6db = 87.5%
At SNR value = 6db model is able to predict most of the classes accurately, overall
accuracy of the model prediction is 87%. Although QAM16 incorrectly predicted to
QAM64 with a percentage 59%.

Department of Electrical Engineering, IIT Madras 61

Deep Learning Based Automatic Modulation Classification

Figure 6.14: Confusion matrix for SNR=18db(Hybrid2)

Accuracy at 18db = 87.69%
At high SNR value 18db classification accuracy of model is high. Some of the
modulation signals is predicted to same as their true classes 100%. Some false
prediction is still there for GFSK,QPSK and QAM16 modulation signals.

Department of Electrical Engineering, IIT Madras 62

Deep Learning Based Automatic Modulation Classification

Figure 6.15: Accuracy v/s SNR(Hybrid2)

The above figure 6.14 shows the characteristic of the Hybrid model along with
the benchmark models. It is clear from the curves that the hybrid architecture
follows the RanNet model after 0db. And before 0db behaves as a average of both
the model. Clearly this model is able to outperform VGGNet. The hybrid model
curve is visible in green colour in above figure.
These are the results obtained while combining one Feablock from RanNet and one
X block.

Department of Electrical Engineering, IIT Madras 63

Deep Learning Based Automatic Modulation Classification

6.4 Hybrid3 architecture
The Hybrid architecture is made by using RanNet architecture incorporating with
X block. The RanNet architecture’s block Feablock is replaced with X block and all
rest layers will remain the same. We have use two Ranblocks each having a X block
instead of Feablock. With increase in number of blocks, number of parameters also
increases that inturns increase the complexity of the model. So we can not use more
blocks so as to increase accuracy, because after certain point classification accuracy
saturates.

Model Accuracy at 18db(%) Learn able parameter
RanNet 88.96 114746
VGG 84.7 186570

Hybrid 3 81.32 332074

Table 6.7: Comparison Matrix of RanNet,VGGNet,Hybrid3 Architecture

Department of Electrical Engineering, IIT Madras 64

Deep Learning Based Automatic Modulation Classification

6.4.1 Architecture

Layers Description Output Shape Parameters used
Preblock conv(64,(4,7),stride=2) (None, 1, 128, 64) 31104

conv(64,(1,7),stride=2) (None, 1, 64, 64)
X block 1) maxpool((1,2),stride=2) (None,1,16,64) 147712

2)Relu (None,1,16,64)
3)conv(16,(1,2),stride=1) (None,1,16,64)

4)Add(2,3)
5)conv(16,(1,2),stride=1) (None,1,16,64)

6)Add(4,5)
7)conv(16,(1,2),stride=1) (None,1,16,64)

8)Add(6,7)
9)conv(16,(1,2),stride=1) (None,1,16,64)

10)Add(8,9)
Attention GAP(keepdims=True) (None,1,1,64) 2448

d)conv(16,(1,1),stride=1) (None,1,1,16)
e)Sigmoid activation function (None,1,1,16)

Multiply(d,e) (None,1,1,16)
f)conv(64,(1,1),stride=1) (None,1,1,64)

g)Sigmoid activation function (None,1,1,64)
h)Multiply(g,X) (None,1,32,64)

i)Add(h,m) (None,1,32,64)
X block 1) maxpool((1,2),stride=2) (None,1,16,64) 147712

2)Relu (None,1,16,64)
3)conv(16,(1,2),stride=1) (None,1,16,64)

4)Add(2,3)
5)conv(16,(1,2),stride=1) (None,1,16,64)

6)Add(4,5)
7)conv(16,(1,2),stride=1) (None,1,16,64)

8)Add(6,7)
9)conv(16,(1,2),stride=1) (None,1,16,64)

10)Add(8,9)
Attention „ (None,1,16,64) 2448

FC GlobalAveragepooling (None,64)
Dense(10) (None,10) 650
Softmax (None,10)

Table 6.8: Hybrid 3 Model Architecture

Total number of learnable parameters = 332074

Department of Electrical Engineering, IIT Madras 65

Deep Learning Based Automatic Modulation Classification

6.4.2 Results

Figure 6.16: Confusion matrix for SNR=-6db(Hybrid3)

Accuracy at -6db = 44.19%
The result from the above confusion matrix shows that the some of modulation
signal have not being classified accurately, their classification accuracy is very less.
QAM64 has been wrongly predicted as QAM16 and accurate result percentage for
this is less than the false prediction. 8BPSK classified accurate to some extent at
low SNR value -6db.

Department of Electrical Engineering, IIT Madras 66

Deep Learning Based Automatic Modulation Classification

Figure 6.17: Confusion matrix for SNR=6db(Hybrid3)

Accuracy at +6db = 81.23%
At 6db the model is able to predict most of the classes more accurately comparatively
at low SNR values. The percentage by which QAM64 is predicted false as QAM16
at 6db is 43%. QAM16 also predicted false by 25% as QAM64. There has been
some discrepancy on prediction of GFSK and QPSK also.

Department of Electrical Engineering, IIT Madras 67

Deep Learning Based Automatic Modulation Classification

Figure 6.18: Confusion matrix for SNR=18db(Hybrid3)

Accuracy at 18db = 81.32% At high SNR value classification accuracy has in-
creased. In comparison with low SNR values model is able to predict true classes at
18db. Declassification occurs in QAM16, QAM64,PAM4,QPSK and GFSK.

Department of Electrical Engineering, IIT Madras 68

Deep Learning Based Automatic Modulation Classification

Figure 6.19: Accuracy v/s SNR(Hybrid3)

In this hybrid architecture model two X blocks have been used in Comparison
with the hybrid 2 model that used one Feablock and one X block. The classification
accuracy for hybrid 3 model is less than the hybrid 2 model. Which means that the
incorporating the new X block is not performing well as required.

Department of Electrical Engineering, IIT Madras 69

Deep Learning Based Automatic Modulation Classification

Tabulation of all the results got so far:

Figure 6.20: Accuracy v/s SNR for all proposed models

Model Accuracy at 18db(%) Learnable Parameters
RanNet 88.96 114746
VGG 84.7 186570
ENet 67.73 136148

Hybrid 1 87.89 145322
Hybrid 2 87.69 209578
Hybrid 3 81.32 332074

Department of Electrical Engineering, IIT Madras 70

Deep Learning Based Automatic Modulation Classification

Conclusion
Deep learning algorithms are being widely used now to identify and classify im-
ages and emulate them with the real life objects. Various architectures have been
proposed regarding this classification and two such models are v and r architectures.

In this work we have developed a new hybrid deep learning architecture from the
benchmark model architectures which are VGGNet and RanNet. The classification
accuracy for this hybrid architecture is 87.6% which is higher than the benchmark
architecture. Several other hybrid models have been proposed which combines two
blocks, residual blocks from RanNet and and chained residual pooling block that
contains only convolution layers. Different combinations of these block have been
proposed in which one hybrid model architecture with one residual block and one X
are used. In block (chained residual pooling block) the classification accuracy that
is obtained is 87.8%. Another hybrid model with two X blocks show an accuracy
81.32%. Further this work is concluded with future scope that can used to further
this work and develop new models.

Future scope of this work

• Other different benchmark models can be used to form new set of hybrid
models

• Using data augmentation on data set we can increase the accuracy of this
hybrid model.

Department of Electrical Engineering, IIT Madras 71

Bibliography

[1] M. Stewart, “Simple introduction to convolutional neural net-
works,” Jul 2020. [Online]. Available: https://towardsdatascience.com/
simple-introduction-to-convolutional-neural-networks-cdf8d3077bac

[2] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”
2015. [Online]. Available: https://arxiv.org/abs/1511.07122

[3] C.-F. Wang, “A basic introduction to separable convolu-
tions,” Aug 2018. [Online]. Available: https://towardsdatascience.com/
a-basic-introduction-to-separable-convolutions-b99ec3102728

[4] “2d global average pooling: Peltarion platform.” [On-
line]. Available: https://peltarion.com/knowledge-center/documentation/
modeling-view/build-an-ai-model/blocks/global-average-pooling-2d

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), 2015, pp. 1026–1034.

[6] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural
network architecture for real-time semantic segmentation,” 2016. [Online].
Available: https://arxiv.org/abs/1606.02147

[7] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5168–5177.

[8] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio
signal classification,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 1, pp. 168–179, 2018.

72

https://towardsdatascience.com/simple- introduction-to-convolutional-neural-networks-cdf8d3077bac
https://towardsdatascience.com/simple- introduction-to-convolutional-neural-networks-cdf8d3077bac
https://arxiv.org/abs/1511.07122
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/global-average-pooling-2d
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/global-average-pooling-2d
https://arxiv.org/abs/1606.02147

Deep Learning Based Automatic Modulation Classification

[9] T. Huynh-The, Q.-V. Pham, T.-V. Nguyen, T. T. Nguyen, D. B. d. Costa,
and D.-S. Kim, “Rannet: Learning residual-attention structure in cnns for au-
tomatic modulation classification,” IEEE Wireless Communications Letters,
vol. 11, no. 6, pp. 1243–1247, 2022.

[10] J. Kwon, D. Jung, and H. Park, “Traffic data classification using machine
learning algorithms in sdn networks,” in 2020 International Conference on
Information and Communication Technology Convergence (ICTC), 2020, pp.
1031–1033.

[11] J. Kwon, J. Lee, M. Yu, and H. Park, “Automatic classification of network traffic
data based on deep learning in onos platform,” in 2020 International Conference
on Information and Communication Technology Convergence (ICTC), 2020, pp.
1028–1030.

[12] A. Bali and V. Mansotra, “Deep learning-based techniques for the automatic
classification of fundus images: A comparative study,” in 2021 3rd International
Conference on Advances in Computing, Communication Control and Network-
ing (ICAC3N), 2021, pp. 351–359.

[13] J. H. Lee, K.-Y. Kim, and Y. Shin, “Feature image-based automatic modulation
classification method using cnn algorithm,” in 2019 International Conference
on Artificial Intelligence in Information and Communication (ICAIIC), 2019,
pp. 1–4.

[14] J. Li, Q. Meng, G. Zhang, Y. Sun, L. Qiu, and W. Ma, “Automatic modula-
tion classification using support vector machines and error correcting output
codes,” in 2017 IEEE 2nd Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC), 2017, pp. 60–63.

[15] T. Huynh-The, C.-H. Hua, Q.-V. Pham, and D.-S. Kim, “Mcnet: An efficient
cnn architecture for robust automatic modulation classification,” IEEE Com-
munications Letters, vol. 24, no. 4, pp. 811–815, 2020.

[16] D. Zhang, W. Ding, B. Zhang, C. Xie, H. Li, C. Liu, and J. Han, “Automatic
modulation classification based on deep learning for unmanned aerial vehicles,”
Sensors, vol. 18, no. 3, p. 924, 2018.

[17] K. Team, “Keras documentation: Conv2d layer.” [Online]. Available:
https://keras.io/api/layers/convolution layers/convolution2d/

Department of Electrical Engineering, IIT Madras 73

https://keras.io/api/layers/convolution_layers/convolution2d/

Deep Learning Based Automatic Modulation Classification

[18] D. Mishra, “Transposed convolution demystified,” Jul
2021. [Online]. Available: https://towardsdatascience.com/
transposed-convolution-demystified-84ca81b4baba

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in International conference on machine
learning. PMLR, 2015, pp. 448–456.

Department of Electrical Engineering, IIT Madras 74

https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba
https://towardsdatascience.com/transposed-convolution-demystified-84ca81b4baba

	Introduction
	Introduction to Automatic Modulation Classification
	Aim and Motivation
	Outline Of Report

	Literature survey
	Dataset and Preprocessing
	Dataset Information
	Data Preprocessing
	Packages and Libraries
	Loading the dataset
	Conversion into Numpy array
	Encoding into onehot vector
	Train test split
	Compiling the Model
	Training the Model
	Testing/Evaluating the Model
	Training Parameters
	Performance Metrics

	Convolutional Neural Network
	Convolutional Layer
	The 2D Convolution layer
	The Dilated Convolution
	Asymmetric Convolution
	Transposed Convolution

	Pooling Layer
	Max Pooling :
	Average pooling :
	Global Average pooling :

	Padding Layer
	Dropout Layer
	Fully connected Layer
	Activation function
	Batch normalization

	Benchmark Models
	VGG Model Architecture
	RanNet Architecture

	Hybrid Model Architectures and Results
	ENet Architecture:
	Architecture
	Result

	Hybrid1 Architecture
	RanNet with VGG
	Architecture
	Results

	Hybrid2 architecture
	Architecture
	Results

	Hybrid3 architecture
	Architecture
	Results

