Performance of different Cache Coherence Protocols
on different Multi-core Architecture Systems

PROJECT REPORT

Submitted by
V. KALAVATHI

in partial fulfillment of the requirements
for the award of the degree of

MASTER OF TECHNOLOGY

Department Of Electrical Engineering
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUNE 2022

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS
2022

CERTIFICATE

This is to certify that this thesis (or project report) entitled “Performance
of different Cache Coherence Protocols on different Multi-core
Architecture Systems” submitted by V. KALVATHI to the Indian In-
stitute of Technology Madras, for the award of the degree of Masters of
Technology is a bonafide record of the research work done by him under
my supervision. The contents of this thesis (or project report), in full or in
parts, have not been submitted to any other Institute or University for the
award of any degree or diploma..

Dr. T. G. Venkatesh
Project Guide
Associate Professor

Department of Electrical Engineering
1T Madras 6000356

Acknowledgment

First and foremost, I would like to express my deepest gratitude to my
guide, Dr. T G Venkatesh, Associate Professor, Department of Electrical
Engineering, II'T Madras, for providing me an opportunity to work under
him. I would like to express my deepest appreciation for his patience, valu-
able feed backs, suggestions and motivations.

I convey my sincere gratitude to Shubhang Pandey, MS Scholar, IIT
Madras, for all his suggestions and support during the entire course of the
project. Throughout the course of the project he offered immense help and
provided valuable suggestions which helped me in completing this project.

I would like to extend my appreciation to all my friends and for their help
and support in completing my project successfully.

Abstract

The gap between the performance of the processor and the performance of
the main memory is often known as the Memory Wall. To mitigate this gap,
caches have been introduced as the on-chip memory, which holds the most
relevant data closer to the processor for faster access. The processors evolved
from one powerful core to multiple smaller cores, and the concept of mul-
tithreading came into existence. Multiple levels of caches were introduced,
which could be kept as either private to the cores, partially shared among
a few cores, or completely shared. Therefore, it became essential to keep
the cores coherent. For some time now, numerous protocols have evolved to
address the cache coherence problem.

This report discusses three important cache coherence protocols: MSI,
MESI, and MESIF. We model these Cache Coherence Protocols as a Markov
Chain Model and measure the optimality of these protocols with respect to a
standard measure called Average Memory Access Time (AMAT). Out of var-
ious methods of finding the AMAT, we choose the Markov Model to make
the analysis and compare the value obtained with the conventional model
of AMAT calculation. The simulations are done using the Sniper simula-
tor, compatible with x86 ISA, and the PARSEC and SPLASH2 benchmarks
suite, namely Blackscholes, Bodytrack, Cholesky, FFT, Radix and Vips are
used. The report also performs a detailed study of the performance of cache
coherence protocol with varying associativity and block sizes.

Contents

(1.2 Aim of the project|
(1.3 Outline of Report|

[2 Background|

2.1 Introduction of Cache memory|.

[2.1.1 Types of Cache Misses|

[2.2 Principle of locality|

[2.5 Cache mapping techniques|

2.6 MSI PROTOCOL

[4.3.1 Average Missrate of all benchmarks for core 4f

[4.3.2 Average Missrate of all benchmarks for core 8§

4.3.3 Average Missrate of all benchmarks for core 12[. 22

[4.3.4 Average Missrate of all benchmarks for core 16[. 23

[4.3.5 Average Missrate for variation of L2,L.3 associativity [

| keeping L1 associativityas 4| 24
[4.3.6 Average Missrate for variation of [L2,1.3 associativity [

[keeping L1 associativity as & 25
[4.3.7 Average Missrate for variation of L2.1.3 associativity |

| keeping L1 associativity as 16[. 26
[4.3.8 Average Missrate for variation of L2, 1.3 cache size keep- [

| ing the L1 cachesizeas 32| 27
[4.3.9 Average Missrate for variation ot L.2,1.3 cache size keep- |

| ing the L1 cachesizeas 32 28
[4.3.10 Average Missrate for variation of L.2,1.3 cache size keep- [

| ing the L1 cachesizeas 64 30
[5 Analytical Modeling| 32
[b.1 State diagram of MESI protocol 32
h.2 Probabilitieso 35
[>.2.1 Cache hit and miss probabilities| 35

[5.2.2 Probabilities of MESI protocol using Markov model| . . 36

[>.3 Average memory access time:| L. 37
(5.4 Results of Analytical Modelingl 39
.41 Blackscholes benchmark with 4 coresd 39

[5.4.2 Bodytrack benchmark with 4 cores:| 40

[5.4.3 Cholesky benchmark with 4 cores:|. 42

Hb.4.4 FET benchmark with 4 cores: 43

b.4.5 Radix benchmark with 4 cores:] 44

[>.4.6 Vips benchmark with 4 cores:| 45

0.4.7 Blackscholes benchmark with 8 coresd 46

[5.4.8 Bodytrack benchmark with 8 cores:| 47

[>.4.9 Cholesky benchmark with 8 cores:|. 48

H.4.10 FFT benchmark with 8 cores:l 49

0.4.11 Radix benchmark with 8 cores:d 50

0.4.12 Blackscholes benchmark with 12 coresd 51

[5.4.13 Bodytrack benchmark with 12 cores:| 52

[5.4.14 Cholesky benchmark with 12 cores:| 53

0.4.15 Blackscholes benchmark with 16 coresd 54

[>.4.16 Bodytrack benchmark with 16 cores:| 55

[5.4.17 Cholesky benchmark with 16 cores:|
0.4.18 FIT benchmark with 16 coresd

(5.5 Comparison of AMAT for different benchmarks:|

6 Conclusion|

96

List of Figures

4.1 Average Missrate for cored] 20
4.2 Average Missrate for core§| 21
4.3 Average Missrate for corel2| 22
4.4 Average Missrate for corel6| 23
[4.5 Average Missrate for variation of L2,1.3 associativity keeping |
| L1 associativity as 4|o 24
4.6 Average Missrate for variation of L2.,1.3 associativity keeping [
| L1 associativity as 8| oL 25
4.7 Average Missrate for variation of L2,1.3 associativity keeping [
| L1 associativity as 16| 26
[4.8 Average Missrate for variation of L2,1.3 cache size keeping the |
[L1 cachesizeas 32 28
4.9 Average Missrate for variation of L2, 1.3 cache size keeping the [
[Ll cachesizeas 320 29
[4.10 Average Missrate for variation of L2,1.3 cache size keeping the |
[[[1cachesizeas 64l 31
(5.1 State diagram of MESI protocol 34
[>.2 State diagram of MESI protocol| 39
[>.3 State diagram of MESI protocol| 41
[5.4 State diagram of MESI protocol| 42
0.0 AMAT of different benchmarks of core 41. 59
0.6 AMAT of different benchmarks of core 8. 60
b.7 AMAT of different benchmarks of core 12/. 60
b.8 AMAT of different benchmarks of core 161 61

List of Tables

(4.1 Cachesize of L1, .2 and L3 27
(4.2 Cachesize of L1, L2 and L3 29
4.3 Cachesize of L1, L2 and L3 30
b.1 Probabilities of Blackscholes benchmark with 4 cores) 39
(5.2 Probabilities of Bodytrack benchmark with 4 cores| 40
(5.3 Probabilities of Cholesky benchmark with 4 cores| 42
0.4 Probabilities of FI'I' benchmark with 4 coresl. 43
b.5 Probabilities of Radix benchmark with 4 coresl 44
[>.6 Probabilities of Vips benchmark with 4 cores/. 45
[b.7 _Probabilities of benchmark with 4 cores|. 46
(5.8 Probabilities of Bodytrack benchmark with 8 cores| 47
[5.9 Probabilities ot Cholesky benchmark with 8 cores| 48
[5.10 Probabilities of FI'I' benchmark with 8 coresl. 49
b.11 Probabilities of Radix benchmark with &8 coresl 50
b.12 Probabilities 0f Blackscholes benchmark with 12 cores/ 51
[5.13 Probabilities of Bodytrack benchmark with 12 cores| 52
[5.14 Probabilities of Cholesky benchmark with 12 cores|. 53
.15 Probabilities of Blackscholes benchmark with 16 cores/ 54
[5.16 Probabilities ot Bodytrack benchmark with 16 cores| 55
[5.17 Probabilities of Cholesky benchmark with 16 cores|. 56
.18 Probabilities of FI'T" benchmark with 16 coresl 57

Abbreviations

CPU
DRAM
FPGA
1/0
AMAT
MSI
MESI
MESIF

Central Processing Unit

Dynamic Random Access Memory

Field Programmable Gate Array

Input Output

Average Memory Access Time

Modified Shared Invalidate

Modified Exclusive Shared Invalidate
Modified Exclusive Shared Invalidate Forward

Chapter 1

Introduction

Due to the recent advancements in high accuracy and high speed computing,
multi core processors have found an increased importance in recent years.
Coupling this with the fact that performance scaling is difficult in single core
processor further enforces the importance of their multi-core counterparts.
Parallelism obtained due to multi threading allows to use the full potential
of multi core processor in terms of performance improvement with respect to
faster execution, better utilization of the system and lower power consump-
tion. Multi-threading simply refers to using multiple threads present in a
core all at once to run several smaller computations parallelly that may sum
up to a larger calculation being done in a very small amount of time.

The optimal performance of multi-core processor can be levied by utiliz-
ing the cache hierarchy. Although caches provide a faster way of accessing
rudimentary data, the use of shared memory presents a number of chal-
lenges. Multiple caches sharing a single memory may cause huge data traffic,
resulting in a performance bottleneck. Many solutions have been proposed
to this problem, hierarchical clustered cache design being one possible way
out. Grouping cores and their caches in clusters allows the reduction of
network congestion by localising traffic among different hierarchy levels, en-
abling more scope for scalability.

Cache coherence is important for consistent view of memory across all
cores in a shared memory system. For a more diverse set of cores, more so-
phisticated coherence management system is required. In hierarchical clus-
tered design, each cluster may function according to a different coherence

Cache Coherence Protocol

protocol. The design becomes more and more complex with the increase in
such protocols working in tandem.

Private processor caches in a shared memory environment may include
copies of data that are irrelevant in relation to main memory. In such in-
stances, cache coherence takes care of data management and dissemination.
The consistency model of architecture may be violated if there is no coher-
ence. When a private processor cache encounters a store that isn’t visible in
other processors’ local caches, the consistency of the copies of data stored in
the private processor caches is broken. This has an impact on the way pro-
cessors with one another in a shared memory environment. Every processor
should be aware of the load and stores performed by every other processor
for functional correctness and this behaviour is ensured by cache coherence.

AMAT is a well-known measure for assessing system performance of a
computer memory.It uses hit time, miss penalty and the miss rate to mea-
sure the memory performance.To evaluate memory performance, the AMAT
employs hit time, miss penalty, and miss rate. It explains why hits and misses
have differing effects on the memory system’s performance. AMAT can also
be used to several layers of the memory hierarchy in a recursive fashion. It
focuses on how cache misses and locality effect overall performance, and it
allows for a fast comparison of various cache design strategies.

There are conventional methods to find the AMAT but newer approaches
have found importance in recent days. One such approach is the AMAT
calculation using the Markovian Model. Markovian model is a stochastic
model that assumes the future state of a randomly changing system does not
depend on the past state. This analysis is commonly used for the purpose
of forecasting the value of a variable whose predicted value gets influenced
only by the present value and not any other value or state that has occured
prior to the current state. This modeling finds itself of use in calculating and
analyzing the AMAT of multi core processor systems.

1.1 Motivation

The area of chip designing for computer systems has seen an immense growth
in recent years. The tradeoff between performance of the processor and the

Department of Electrical Engineering, ITT Madras 3

Cache Coherence Protocol

main memory is a possible hindrance for this growth. The Cache Coherence
Problem is the problem of keeping multiple local caches synchronized when
any one of the processors update its local copy of data that is shared among
multiple caches. Cache coherence protocols have a tremendous impact on
the performance of distributed and centralized shared memory of a proces-
sor and are required to maintain data consistency in a chip-multiprocessor
system (CMP). Thus, these cache coherence protocols play a major role in
the improvement of the performance of multiprocessor systems. An efficient
cache coherent protocol particularly ensures the updating of processor data,
broadcasting valid data and prevent main memory or other processors from
loading invalid values.

1.2 Aim of the project

In this thesis, we study about the performance of various Cache Coherence
Protocols on various Multi-core Architecture Systems. We discuss about the
miss rates, hit rates of MSI, MESI, MESIF protocols using Sniper simula-
tor. We then find the read hit, read miss, write hit, write miss probabil-
ities of these protocols using two benchmark suites : PARSEC Suite and
SPLASH-2 Suite. After all these calculations, the Average Memory Access
Time (AMAT) is obtained using conventional method. This is followed by
the analytical modeling that is done using the Markov model. From the state
diagram of the MESI protocol, equations such as probabilities of each state
are derived using Markov model. The state transition matrices of MESI pro-
tocol are then derived and the AMAT is calculated using the same Markov
model equations and matrices. The AMAT values obtained from both the
conventional and Markov models are then compared and the difference in
their values are expected to be minimum.

1.3 OQOutline of Report

Chapter 1 gives a brief introduction into the project along with the motiva-
tion behind doing this work and the aim of the project. Chapter 2 presents a
theoretical background on various terms involved in the project across vari-
ous domains ranging from basics of Cache to Cache Coherence protocols and
various mapping techniques. Chapter 3 presents a review of literature en-

Department of Electrical Engineering, IIT Madras 4

Cache Coherence Protocol

compassing a plethora of papers across different topics similar to this work.
It discusses mainly about the papers related to cache coherence, different
benchmarks used to measure the processor performance etc. In Chapter 4,
we discuss the simulation framework. Here, we talk about the simulator used,
the procedure followed for simulation, different simulation results pertaining
to different benchmarks across different number of cores for all the three lev-
els of caches.

Chapter 5 presents the analytical modeling where we discuss various cache
coherence protocols with respect to their state diagrams. We calculate dif-
ferent probabilistic values and a very crucial quantity called the Average
Memory Access Time using two different approaches, the conventional ap-
proach and the Markovian approach. We present a hoard of results of ana-
lytical modeling spread across various benchmarks (Blackscholes, Bodytrack,
Cholesky, FFT, Radix, Vips) and varying number of cores (4,8,12,16). The
AMAT is then compared for different benchmarks taking into consideration
the conventional model as well as the novel Markov Model. Chapter 6 cul-
minates with a conclusion on the different results obtained from the previous
chapters.

Department of Electrical Engineering, ITT Madras 5)

Chapter 2

Background

The performance of the CPU registers have been improved exponentially
from the past 30 years whereas the growth of the memory is improving still
not up to the same growth as that of the CPU. This led to the variation in
the speed of the processor operation. To eliminate that, memory hierarchy
structure was proposed.

* Role of Memory hierarchy: It eliminates the gap between CPU and
the main memory. It has multiple levels of memory and each level of
memory has different sizes and speeds. In memory hierarchy, the fastest
and smallest memories are kept closer to the CPU and the slowest and
largest memory is kept near to the main memory. In between the main
memory and the CPU, we have different level of caches with different
size and speeds and then we have the disk storage next to the main
memory. By the bridging the gap between the main memory and the
CPU, it improves the performance of the processor and decreases the
dependency of the main memory which is slower.

2.1 Introduction of Cache memory

In Computer Architecture, a cache is a component which stores the data
temporarily so that the data can be served faster on a further request. The
data which is stored in the cache is either the result of prior computation or
a copy of data which is stored somewhere else. A cache is small, faster and
act as buffer between the processor and memory. Cache memory improves

Cache Coherence Protocol

the processor overall performance by decreasing the number of time to access
data from the main memory.

o Cache hit: When the data requested by the processor is available in
the cache, then it is called Cache hit.

o Cache miss:When the data requested by the processor is not available
in the cache, then it is called Cache miss.

o Hit rate: It is the total no. of the cache hits to the total no. of the
memory request made to the cache in the given time.

« Miss rate:It is the total no. of cache misses to the total no. of the
memory request made to the cache in the given time.

o Miss penalty: The extra time taken to bring the data required into
the cache from the memory when the miss occurs.

e Line/block: The minimum unit of data which can be either present
or not present in the cache level.

o Cache size: The cache size is the quantity of data that main memory
can only hold . It is the no. of the data i.e stored in each of the block
to the total no. of blocks stored in the cache.

2.1.1 Types of Cache Misses

— Compulsory Misses: It occurs when we miss an address for the
first time and it may not be present in the cache.

— Capacity Misses: When the cache is completely full and we
need to replace the new cache.

— Conflict Misses: This miss happens due to the conflict of the
set index. Suppose when ’x’ data is thrown out from the cache
and when we need the same data again, this miss occurs.

Department of Electrical Engineering, ITT Madras 7

Cache Coherence Protocol

2.2 Principle of locality

Locality of reference is the event in which the processor tends to access
the same set of memory location repeated number of times for a spe-
cific period of time. Also it can be defined as the event in which the
processor tends to access the data whose addresses are near by. They
are 2 types:

o Temporal locality: Temporal locality is the present data i.e being
fetched may be required very shortly. Hence we need to store that data
in the cache so that we can save time instead of searching the same old
data in the main memory.

« Spatial locality: Spatial locality is the data which close to the present
location of the i.e being fetched which can be required very shortly.
Temporal locality is all about the actual memory location which is
being fetched whereas Spatial locality is about near by located memory
locations.

2.3 Cache coherence

Cache coherence is the consistency of shared data which is stored in
multiple local caches. The Cache Coherence Problem arises because we
need to keep the multiple local caches in synchronization so that when
anyone of the processors updates its copy of data which is shared among
the multiple local caches. This problem occurs due to the following
causes:

o Sharing of resourced writable data
o Input-Output activity

o Migration of process

Department of Electrical Engineering, ITT Madras 8

Cache Coherence Protocol

2.4 Cache Write Policies

Caches are used because it stores the data temporarily and data can be
accessed faster when compared to the main memory. But caches have
limited size, so we need to have a proper management polices to access
the data so that we can write, read the data. There are 2 cache write
policies:

o Write through: Here all the write operation are updated simultane-
ously to the cache and the main memory. This process is used when the
write operations are less.This policy is more simpler but it has more
delay as we have to update/write the data to both the locations i.e
cache and main memory. It helps in finding the recovery of data in
case of system failure.

« Write back: Here in this method the data is updated in the cache
every time when change occurs and memory at later time. The data
ishttps://www.overleaf.com/project/6242f9a31fc332993e07568b written
or updated only in the cache and the cache block which is modified is
updated to the main memory only when it’s replaced.

Write back is more preferred because it has better performance. The main
reason to use the cache is to avoid multiple times accessing to the main
memory but whereas in write through policy, it is updated every time to the
main memory. In write back policy, the data is only updated or written to
the main memory when the cache line or cache block is ready to be replaced
or invalidated. Write back saves a lot of bandwidth when compared to the
write through caches.

2.5 Cache mapping techniques

There are different types cache mapping techniques to load the data from
the main memory which are as follows:

e 1. Direct mapping technique
e 2. Set associative mapping technique

o 3. Fully associative mapping technique

Department of Electrical Engineering, ITT Madras 9

Cache Coherence Protocol

e Direct mapping: It maps all block of the main memory only to a
single line of the cache. Say if the line has a data which is taken up
by the main memory and if the new block arrives, the data which is
currently stored in the block will be replaced by the new data. This is
the simplest technique as it requires less hardware. It has 2 fields: Tag
and the Index field. The tag field is saved in the cache and the index is
saved in the main memory. This direct mapping technique behaviour
is proportionate to the hit ratio. As each block of the main memory
maps only to a single line of the cache, so if the new block arrives, the
old block is trashed and if both the blocks are continuously referenced,
the 2 block will be swapped in and out continuously and it leads to the
conflict miss.

e Set associative mapping:This technique is introduced which de-
creases the drawbacks of the previous technique that is direct mapping.
Here instead of a single line, we have set of lines which maps to the
main memory block. Here the main memory block can be mapped to
one of the lines of a particular set. The tag bit is to identify which of
the particular set is used and the main memory block data is stored in
the index address.

o Fully associative mapping:In this technique, any block can be mapped
to any line of the cache. It means that a single cache set with multiple
cache lines. Here the index bit is used to identify which data in the
block is required and the tag is the rest bits. It is much flexible and has
better hit rate than the other mapping techniques. But it takes more
time as we need to search all the cache lines for a particular block in
the cache, as it can be anywhere in the cache.

There are 3 main Cache Coherence Protocols:

2.6 MSI PROTOCOL

MSI protocol is primary cache coherence protocol which is used in the multi
processor system. It has 3 states in which cache can be present. In MSI,
each of the block present in the cache can have one of the 3 following states:

e Modified: Here the block inside the cache is modified. When the data
in the cache is evicted, it has to write the block to the main memory.

Department of Electrical Engineering, IIT Madras 10

Cache Coherence Protocol

o Shared:This state is used for read only in atleast one cache and the
block is unmodified here. Here the cache can remove the data without
writing it to the main memory.

o Invalidate: Here the block is either invalidated or present in the cur-
rent cache and it must be retrieve the data either from main memory
or the other cache if the block has to be saved in the cache.

2.7 MESI PROTOCOL

MESI protocol is the more widely used cache coherence protocol. It is an in-
validate based cache coherence protocol and supports write back. This MESI
protocol decreases the number of times the main memory access compared
to the MSI protocol. It has a dirty state present which shows that the data
present in the cache is unlike from the main memory. It has 4 states:

o Modified: The cache block here is exclusively available just in the
current cache and it has been modified. Hence the copy present in the
main memory becomes old.

o Exclusive: Here the data in the block is present only in this cache
and not present in any other caches of the core. So, therefore the copy
present in the main memory is same as the cache block.

» Shared: Here the copy of the cache block/line may be present in
other caches. This state is clean and it has the same copy as the main
memory.

 Invalidate:It means the data present in the cache block/line is invalid.
It may be due to the copy of the data in that local cache is not the
most new one, ans so it is invalid to use it.

2.8 MESIF PROTOCOL

The MESIF protocol has 5 states and the first 4 states(M, E, S, I) are same
as of the MESI protocol. It has 1 special state called forward state, which is
the more special form of the shared state. If anyone of the cache holds a line
in the shared state, then other cache holds the line in the forward state.

Department of Electrical Engineering, IIT Madras 11

Cache Coherence Protocol

A cache line request received by multiple caches holding a line in the S
state will be operated inefficiently in a system of caches using the MESI pro-
tocol. It could be satisfied from slow main memory, or it could be satisfied
from all sharing caches, deluging the requestor with redundant responses. A
cache line request will only be decided to respond to by the cache holding
the line in the F state in a system of caches using the MESIF protocol.

The major difference from the previous protocol is that whenever the read
request for a copy of the line occurs, it always goes the cache in the F state.
When it satisfy the read request from the memory, then only the cache enters
in the shared state.

Department of Electrical Engineering, IIT Madras 12

Chapter 3

Literature survey

This section provides a quick overview of the literature on Cache coherence
protocols.The following are of some of the literature that discusses about the
need of the cache coherence protocols and their advantages, disadvantages.

In today’s computing world, multicore processors are gaining traction.
Cache coherent memory is implemented in all multicore processors. To avoid
cache incoherence, a variety of techniques can be used. Joshi discussed the
Cache miss rate, traffic, execution time, energy, and average memory ac-
cess time are all common parameters that affect cache coherency. And also
discovered a need for a scalable cache coherence technique that was less com-
plex and had better values for common parameters [1].John L. Hennesy and
David explained about the Memory hierarchy design and level parallelism of
Computer Architecture with a quantitative approach [2].

Cache coherence problem cannot be solved by just using only write-
through or write back without cache coherence protocol, so to keep the cache
consistency, protocols must be used [3]. Al-Waisi explained about the com-
parision of Invalidation-based protocol (MSI, MESI protocol). and Update-
based protocol (Dragon, Firefly protocol), a)The states available in each pro-
tocol, b)Energy consumption of each protocol and their misses, ¢)Bandwidth
and d)how the processors works for each protocol [4]. The literature explains
the performance analysis of cache replacement policies using simulations on
a variety of benchmarks, as well as some of the recent advances in cache
design to improve memory management unit access time, latency, and en-
ergy consumption. According to the results of this survey, processor speeds

13

Cache Coherence Protocol

are increasing faster than memory latency is decreasing, so eliminating cache
misses is critical for overall processor performance [5].Vakil-Ghahani et al.
proposed a new replacement policy which utilises of the relationship be-
tween the reciprocal of hit counts and the block’s reuse distance [6]. The
snoopy bus cache coherence protocols using 3-state, 4-state and 5-state are
designed and implemented using the write-invalidate approach in a shared
memory dual processor system [7].Jang proposed a cache design for larger
last-level caches, so that even with high granularity, good performance can
be achieved [8].Sun [9] presents a survey to estimate the impact of the shared
data and a directory based MESI protocol using write-update approach. Ti-
wari focused on multi-core processor coherence techniques. The results of
the Snoopy coherence method simulation are examined in terms of block
size, cache size, and associativity. Also, as we move from MI, MESI, and
MOESTI in Directory coherence technique, performance improves [10]. The
paper gives an insight on the variations of associativity affecting the miss
ratio. The paper discusses using simulations of alternative caches to remove
the causes of miss. |11]

Michael et. al. have explained with detail about the Nehalem Processor
and Nehalem Platform Architecture |12]. Mithil explains about the perfor-
mance of cache coherence protocols with 4 different benchmarks [13].The
paper describes both the hardware and software in detail, allowing for a va-
riety of accuracy and simulation performance trade-offs, as well as interval
simulation, and explains why the Sniper is an important tool in the ar-
chitect’s toolset for modelling high performance multi-core and many-core
systems [14]. There are 2 types of benchmark suites. They are PARSEC
benchmark suite and the other is SPLASH-2 benchmark suite [15]. PAR-
SEC (Princeton Application Repository for Shared-Memory Computers) is
a benchmark suite for Chip-Multiprocessor studies. The benchmark suite is
varied of working set, locality, data sharing, synchronisation, off-chip traf-
fic, parallelization, as well as their communication-to-computation ratio are
illustrated in this paper by Christian Bienia, Jaswinder, Sanjeev and Kai
Li [6]. Steven has detaily explained about the SPLASH-2 suite and the
need of the benchmark suite.The paper describs how the characteristics scale
with key application and machine parameters and defined the programmes
along several based on behavioral axes [16]. In this study,Christian Bienia,
Jaswinder, Sanjeev and Kai Li compared the SPLASH-2 and PARSEC bench-
mark suites seeing what differences and similarities exist between the two

Department of Electrical Engineering, IIT Madras 14

Cache Coherence Protocol

pairs of programmes. On Chip-Multiprocessors, we assess the suites for re-
dundancy and overlap using standard statistical methods and machine learn-

ing (CMPs). PARSEC workloads are fundamentally different from SPLASH-
2 benchmarks, according to our research [17].

The solution of linear time varying fractional order systems is discussed
in this paper by Zhang, Yuanwei. The state transformation matrix of linear
time varying fractional order systems is developed [18]. Using state transi-
tion matrix inequalities, sufficient conditions for stochastic admissibility are
proposed [19].The model was tested against simulations using the multi-core
simulator Sniper with the PARSEC and SPLASH benchmark suites, and the
study presents an analytical method to find the miss rate of L2cache for
various configurations with regard to L1 cache [20]. Balakrishnan gives the
idea about the least recently used bits and optimize the cache block using
invalidation policy [21]. The paper gives the details about the analytical
modeling of the locality and caches and also explained about the probability
of the cache hit of each stack [22]. Harper gives the details on the number of
array references in the programs, rather than the actual number of memory
accesses, and explained the affect of the prediction rate set associative cache
of the analytical modeling [23].

Department of Electrical Engineering, ITT Madras 15

Chapter 4

Simulation Framework and
Results

In this chapter, we will be discussing about the simulator used and the bench-
marks used to configure MSI, MESI and MESIF protocols. We will then
discuss about the results obtained of different benchmarks for MSI, MESI
and MESIF protocols.

4.1 Simulator used

Sniper is an x86 simulator which provides next generation, parallel, high
speed and accuracy. This simulator is build on the graphite infrastructure
and the interval core model which provides fast and accurate simulation.
This multi core simulator also permits a range of flexible simulation options
for different heterogeneous and homogeneous multi core architectures. It also
provides to perform the timing simulation for both the multi threaded and
multi programmed workloads ans shared memory applications which runs 10
to 100 cores with high speed when compared with other simulators. This
simulator is core model which is build on the interval simulation which pro-
vides faster simulation and evaluation duration. Sniper is a multi-socket
Intel core2, Nehalem system which provides the average prediction errors
which are less than 25% with a speed upto several Million instruction per
second(MIPS). The simulator is used for uncore and system level studies
which provides more detail rather than the one IPC models. This interval
core models allows the CPI stacks generation, that gives the number of cycles

16

Cache Coherence Protocol

lost because of the different characteristics of the system. It provides char-
acteristics such as branch predictor, cache hierarchy which leads for a better
understanding of how each component effect on the system performance.

In addition to these features, it has few different benchmarks suits in
the study. The quantitative foundation of computer architecture research is
benchmarking. The only way to accurately measure performance is to look at
how long it takes for a programm to run.They are SPLASH-2 and PARSEC.
The SPLASH-2 has Cholesky, FFT and Radix benchmarks whereas PARSEC
has Blackscholes, Bodytrack and Vips benchmarks.

4.1.1 SPLASH-2 benchmark:

SPLASH-2(Stanford ParalleL. Applications for SHared memory) is a suite of
parallel programs written for cache coherent shared address spaced machines
[16]. Their work is based on two main goals - quantitative characterization
of SPLASH-2 programs in terms of fundamental properties and assist people
using the set of programs to make out a meaningful and informed conclusion
out of it.

Limitations: It consists of a small number of programs and does not
provide broad enough covering of science or engineering domain. It is not
implemented for optimal interaction with modern memory system charac-
teristics like long cache lines, high latency, physically distributed memory
ete.

Expansions to overcome limitations: It contains wide range of com-
putational and engineering problems, uses better algorithms and implemen-
tations and have a more architecturally aware structure.

4 axes to consider while choosing experimental parameters to understand
shared address space programs:

o speedup and load balancing

« working sets

e communication to computation ratios and traffic requirements
» spatial locality issues

Despite being a flexible and fairly useful benchmark suite, it still has a some
limitations. Its program collection has an affinity towards High-Performance

Department of Electrical Engineering, IIT Madras 17

Cache Coherence Protocol

Computing and graphics programs. This limits it from including paralleliza-
tion models such as the pipeline model which are widely used in other areas.
This led to exploration of new benchmark suites, PARSEC being one of them.

4.1.2 PARSEC benchmark:

Bienia et. al described about PARSEC (Princeton Application Repository
for Shared Memory Computers) [24]. PARSEC is a benchmark package
for analysing Chip-Multiprocessors (CMPs). Previous multiprocessor bench-
marks focused on high-performance computing applications and used a re-
stricted variety of synchronisation methods.It encompasses new applications
in recognition, mining, and synthesis (RMS), as well as system applications
that emulate large-scale multi-threaded commercial programs. The require-
ments of a benchmark suite according to this paper are as follows:

o Multi-threaded Applications

« Emerging Workloads

o Diversity

o Employ State-of-the-Art Techniques

e Support Research

4.2 Simulation Procedure

The detailed procedure for the simulations are given as follows for different
benchmarks and different core setups (core 4, 8, 12 and 16).

o We first open the Sniper simulator and open the configurations Ne-
halem and Gainestown.

« We then select the desired protocol (MSI, MESI, MESIF) in Nehalem
and then select the required cache size and associativity of L1, L2 and
L3 caches.

e We launch the UBUNTU terminal through which we consequently
launch the Sniper simulator and go into the benchmarks and run it.
For example to run a benchmark named blackscholes for core 4 using
the following command:

Department of Electrical Engineering, IIT Madras 18

Cache Coherence Protocol

— ./run-sniper -p parsec-blackscholes -i small -n 4 -¢ gainestown

e The output is obtained in sim.out in the benchmarks file which is
present in the Sniper folder.

o The required results are skimmed out of a large number of other values
for eg. miss rates of caches.

o We then run the following command to get the detailed information
like store misses, total stores, load misses, total loads etc. of all the
caches.

— “/sniper /tools/dumpstats.py > output.txt

After obtaining the values following the above procedure, we can calculate the
required probabilities that are needed to find the probabilities of each state
of MESI protocol and AMAT. We can make the graphs that are required are
shown in the upcoming sections, with a detailed inference of the same.

4.3 Simulation Results

We ran the simulations of different benchmarks such as Blackscholes, Body-
track, Cholesky, Vips, Radix and FFT and plotted the miss rates for all these
benchmarks for core 4, core 8, core 12 and core 16 setups.

Department of Electrical Engineering, IIT Madras 19

Cache Coherence Protocol

4.3.1 Average Missrate of all benchmarks for core 4
[
£ 2100
a o
5 EI‘ 80 1
b
54 °
: g
= (]
b2 2
= E
: &
g0 <
0‘00\95 \.‘60% * ‘@ﬁ.‘* o\e"-’** \l“Qs O“O\Beﬁ‘i\"ac’% & ‘66ﬁ°\99*‘ sl‘\Q'5
) 05 N\) o N\
b\ao‘& © [,o\a‘* w Q
Bencharks Benchmarks
250
Q
S
m40’
-l
B30
2
S20f
(]
@
=10
o
Z 0

Benchmarks

Figure 4.1: Average Missrate for

cored

Radix has a higher miss rate than other benchmarks for 1D cache while
FFT has higher miss rate for L2 and L3 caches [24]. Bodytrack has an overall
lower miss rate as compared to the other benchmarks.

Department of Electrical Engineering, IIT Madras

20

Cache Coherence Protocol

4.3.2 Average Missrate of all benchmarks for core 8

[
£ 2100
Q o
06 g
o ~ 80
- |
5 4 G
o 60
e &
E —
2, @ 40
= =
. n 20
= 2
<° <
S N L N ook
o“"\e 6‘!“60 « @ o\eg‘d o“o\e s‘ﬁ“aﬂ « @ o\egvs
ao‘(*g 0° o™ ac,‘lg o0 o™
¥ o
Bencharks Benchmarks

o
=
9 60r
o
e}
4
‘s 40 -
o
E
©
jid
B 20f
=
g
< 0
S N wh
G‘(\o\e «° @ o “o\eg\t»‘;
S
o w ©
o
Benchmarks

Figure 4.2: Average Missrate for core8

As we progress from core 4 to core 8, there is a very minute change in the
miss rate. This can allow us to conclude that using 8 core is more beneficial
than its 4 core counterpart.

Department of Electrical Engineering, IIT Madras 21

Cache Coherence Protocol

4.3.3 Average Missrate of all benchmarks for core 12

@
<10 270
© e il
o~
- -l
| 50
5 6 s
@ 240
g E30
s 2 - 20
o 2
2 0 Z 10 I [l
N 3 N N}
e oF 20 oF
5"‘(‘0 o8 “ ‘<\°\e 5 o “ ‘<\°\e
‘o\.ac.% o < ‘o\,ac,% o <
Bencharks Benchmarks

[=2]
o

(2]
o

S
=]

w
(=]

[\
(=]

Avg. Missrate of L3 cache
)

“o\egv:i
(9

S o
50“0\6 &‘“'a

o ©°

e

Benchmarks

Figure 4.3: Average Missrate for corel2

As we go from core 8 to core 12, the miss rates of L2 cache in Blackscholes
benchmark increases drastically whereas the other benchmarks still maintain
more or less the same miss rate values. So to calculate the miss rates for core
12, it is recommended to use benchmarks other than blackscholes.

Department of Electrical Engineering, IIT Madras 22

Cache Coherence Protocol

4.3.4 Average Missrate of all benchmarks for core 16

[
£ 2100
: :
06 b
..E N 8o
w—
G4 °
2 % 60
d i
w2 0
= = 40 II II
: o
=]
z° <
¢ N \ N \
0 &ﬂ"‘c' « o o\eq"d w0 &@c’ « o o\eq’v"
b\ao‘(*g 0° o™ o ac,‘lg o0 o™
Bencharks Benchmarks

i

N
=]

Avg. Missrate of L3 cache
'y
o

5e° ‘.ao“‘ @ R
o g’t < o
oo B

o

Benchmarks

Figure 4.4: Average Missrate for corel6

When we go from core 12 to core 16, the miss rates of all the benchmarks
remain more or less the same. In a day to day operation where heavy com-
putation is desired, we can use the higher core processor that gives the same
miss rate as its low core counterpart.

Department of Electrical Engineering, IIT Madras 23

Cache Coherence Protocol

4.3.5 Average Missrate for variation of L2,L.3 associa-
tivity keeping L1 associativity as 4

The indices for A, B and C are 4, 8 and 16 respectively. This means AAA
represents 4, 4, 4 associativity of L1D, L.2 and L3. By this logic ABA will be
4, 8, 4 associativity of L1D, L.2 and L3 and ABC will be 4, 8, 16 associativity
of L1D, L2 and L3 and so on.

w
o

o7 o e
E g
ge g
a o 25
5° 3
=4 ‘s 20
2 E
w3 =
2 & 15
02 =
: 1 o
2 2
<o 5
Y X L o R L2 O Y 2 L oF R oL RO
W T T T
Blackscholes bencharks Blackscholes benchmarks

-]
=]

]
S u

2]
=]

o
(o]

Avg. Missrate of L3 cache
-2}
(5]

(2]
o

TP O o @ oY PR
LA R S

Blackscholes benchmarks

Figure 4.5: Average Missrate for variation of L2,1.3 associativity keeping L1
associativity as 4

Associativity used in the caches to store the data and address the memory
word. The MESI protocol has an advantage over the MSI protocol in that
if the current cache is in the Exclusive state, it can silently drop the cache
block without having to perform the costly writeback operation. The MESI
protocol ensures that the processor always has the most current value. So
when the miss rate of MSI and MESI is less or more the same, we go for the
MESI protocol as it has few advantages over MSI.

Department of Electrical Engineering, IIT Madras 24

Cache Coherence Protocol

4.3.6 Average Missrate for variation of L2,L.3 associa-
tivity keeping L1 associativity as 8

The indices for A, B and C are 4, 8 and 16 respectively. This means BAA
represents 8, 4, 4 associativity of L1D, L2 and L3. By this logic BAC will be
8, 4, 16 associativity of L1D, L2 and L3 and BAB will be 8, 4, 8 associativity
of L1D, L2 and L3 and so on.

w
w
o

=

N

n
N
]

- N
- n
(3] (=]

o

o
-
o

Avg. Missrate of L1D cache
&
Avg. Missrate of L2 cache

o
(3]

Lol RO o R ol o P QO U . 2 0 % 2 O
F ¥ F P X F L F X F R FF
Blackscholes bencharks Blackscholes benchmarks

=]
=]

~
w

~
o

[=2]
=]

(3]
(5]

Avg. Missrate of L3 cache
(=2
(1]

(2]
(=]

QL O QV'QQQ & X XL

v.
¥ F X I F &
Blackscholes benchmarks

Figure 4.6: Average Missrate for variation of L2,1.3 associativity keeping L1
associativity as 8

When we go from associativity of L1 from 4 to 8, the miss rate of L1
decreases to almost half and the L2 and L3 miss rate remain almost the
same. Based on the requirements, we can use the required associativity.

Department of Electrical Engineering, ITT Madras 25

Cache Coherence Protocol

4.3.7 Average Missrate for variation of L2,L.3 associa-
tivity keeping L1 associativity as 16

The indices for A, B and C are 4, 8 and 16 respectively. This means CAA
represents 16, 4, 4 associativity of L1D, L2 and L3. By this logic CAC will
be 16, 4, 16 associativity of L1D, L2 and L3 and CAB will be 16, 4, 8 asso-
ciativity of L1D, L2 and L3 and so on.

© 3, e 30 e
E E
©
G 23 825
S 2 3
5 %5 20
o 1.5 ..‘“a’,
5 5 15
8 1 &
=05 =10
o @
z 2
< 0 5
T R L ov R LR L ¥ 2 Lo R LR L
FFFTFEFEEE FFFFTFFEEE
Blackscholes bencharks . Blackscholes benchmarks

=]
(=]

|

~
(5]

~
(=]

[=2]
(=]

o
(]

Avg. Missrate of L3 cache
(=]
(4.}

(2]
=]

(]

Y @ O o L
FFFEFE

v 0 O
& & F

Blackscholes benchmarks

Figure 4.7: Average Missrate for variation of L2,1.3 associativity keeping L1
associativity as 16

When we go from associativity of L1 from 8 to 16 and varying L.2 and L3,
the miss rates almost remains the same. So we can use the more associativity
of caches as the miss rates are same for lower associativity Upon moving from
8 to 16, the miss rates remain the same.

Department of Electrical Engineering, IIT Madras 26

Cache Coherence Protocol

4.3.8 Average Missrate for variation of L2,LL3 cache

size keeping the L1 cache size as 32

The following table gives the size of the L1, L2 and L3 cache size for the

following graph.

Cache size | L1 | L2 | L3
1 32 | 64 | 1024
2 32 | 64 | 2048
3 32 | 64 | 4096
4 32 | 64 | 8192
5 32 | 128 | 1024
6 32 | 128 | 2048
7 32 | 128 | 4096
8 32 | 128 | 8192

Table 4.1: Cache size of L1, L2 and L3

When the cache size of L2 and L3 changes keeping L1 as same size, the
miss rate of L1 of MSI and MESI protocol are almost same whereas the L2
and L3 missrates of MSI and MESI protocols varies. The miss rate of MESI
decreases when compared to the MSI protocol. So as the cache size increases,
it is better to go for MESI protocol over MSI.

Department of Electrical Engineering, IIT Madras

27

Cache Coherence Protocol

w
©o
o

4
"

N
0
o

-

Min. Missrate of L2
~ ~
o o

o
i

Average Missrate of L1D
&
[=2]
[3,]

(=]
[=2]
o

1 2 3 4 5 6 7 8
Bencharks Benchmarks

©
o

4

~
o

Min. Missrate of L3
[=2] [=2]
o (3]

3,
(3]

a
o

1 2 3 4 5 6 7 8
Benchmarks

Figure 4.8: Average Missrate for variation of L.2,1.3 cache size keeping the L1
cache size as 32

4.3.9 Average Missrate for variation of L2,LL3 cache
size keeping the L1 cache size as 32

The following table gives the size of the L1, L2 and L3 cache size for the
following graph.

When the cache size of L2 and L3 changes keeping L1 as same size, the
miss rate of L1 of MSI and MESI protocol are almost same whereas the L2
and L3 missrates of MSI and MESI protocols varies a lot. The miss rate of
MESI decreases drastically when compared to the MSI protocol. So as the
cache size increases, MESI protocol is best compared to MSI.

Department of Electrical Engineering, IIT Madras 28

Cache Coherence Protocol

Cache size | L1 | L2 L3
9 32 | 256 | 4096
10 32 | 256 | 8192
11 32 | 512 | 4096
12 32 | 512 | 8192
13 32 | 1024 | 4096
14 32 | 1024 | 8192

Table 4.2: Cache size of L1, L2 and L3

3 ‘ : ‘ ‘ ‘ : 100
8 5
3 2.5 1 -
5 G 80
L o
g’ g
(2]
g 15 2 60t
= =
= ®
o 17 g
g g 40
@051 >
> <
<
0 20
9 10 1" 12 13 14 9 10 1" 12 13 14
Bencharks Benchmarks

80

|

~
(3]

Average Missrate of L3
~
o

[=2]
(3]

9 10 11 12 13 14
Benchmarks

Figure 4.9: Average Missrate for variation of L.2,1.3 cache size keeping the L1
cache size as 32

Department of Electrical Engineering, IIT Madras 29

Cache Coherence Protocol

4.3.10 Average Missrate for variation of L2,LL3 cache

size keeping the L1 cache size as 64

The following table gives the size of the L1, L2 and L3 cache size for the
following graph. When the cache size of 1.2 and L3 changes keeping L1 as

Cache size | L1 | L2 L3
15 64 | 128 | 4096
16 64 | 128 | 8192
17 64 | 256 | 4096
18 64 | 256 | 8192
19 64 | 512 | 4096
20 64 | 512 | 8192
21 64 | 1024 | 4096
22 64 | 1024 | 8192

Table 4.3: Cache size of L1, L2 and L3

same size, the miss rate of L1 of MSI and MESI protocol are almost same
as the previous case whereas the L2 and L3 missrates of MSI and MESI
protocols varies. The miss rate of MESI protocol decreases as the cache size

increases.

Department of Electrical Engineering, IIT Madras

30

Cache Coherence Protocol

3 100
o .
25 1 |
% 5
] 2r L
d
%15 8
= =
g 1)
g 5
o L >
z 0.5 x
15 16 17 18 19 20 21 22 15 16 17 18 19 20 21 22
Bencharks Benchmarks
85
% 80
k]
@ 75
o
570
n
=65
[£]
o
© 60
g
& 55
50

15 16 17 18 19 20 21 22
Benchmarks

Figure 4.10: Average Missrate for variation of L2,L.3 cache size keeping the
L1 cache size as 64

Department of Electrical Engineering, IIT Madras 31

Chapter 5

Analytical Modeling

In this chapter, we will be solving the probabilities of cache hit, cache miss,
read and write ratio. Using the Markov model, we will be solving the prob-
abilities of each state of MESI protocol.

5.1 State diagram of MESI protocol

For the model, let us assume that RH be the Read hit of the cache and the
RH occurs when the cache block is either in modified, shared or exclusive
state. When the read operation of the cache occurs, it’s stays in the same
state as shown below in[5.4] It stays in the same state as long as the block is
recent and so it is valid to read the same. If the block is in the shared state,
then all the shared blocks are constant and memory read will not modify the
content of the block. so therefore, it’s not necessary to modify the state of
the shared blocks that are present in other cores [25].

When the block is not present in the cache, then it means the state as invalid.
Let RM be the Read miss, and When the block is in the invalid state, it is
same as the cache miss of the read operation. To fulfil a read, the invalid block
must be fetched from main memory and placed in the shared or exclusive
states. Before doing so, the processor sends a message to the snoop bus
called SHR(Snoop hit on a read). The other caches snoop the message and,
depending on the state of the cache block, perform one of the following
activities.

« Exclusive: One of the local caches has an exclusive cache block (mul-
tiple cache blocks cannot be in exclusive state). When the processor

32

Cache Coherence Protocol

(which has that block in exclusive state) hears SHR, it replies by indi-
cating that it shares the block and changes the state of its block from
exclusive to shared. The starting processor will then perform a block
read operation, which will alter the block’s state from invalid to shared.

o Shared: The block is in the shared state in one or more caches. Hear-
ing SHR, all of those processors send a signal to the originating pro-
cessor which indicates that they are sharing the block. The initiating
processor reads the block and changes the state from invalid to shared
because the main memory copy is valid.

o Modified: In one of the local caches, one cache block has been modi-
fied (multiple cache blocks cannot be in modified state). The respond-
ing CPU sends a signal to the initiating processor when it hears the
SHR, instructing it to try the read operation again later. The initiating
processor stays in an invalid state and tries to read again later. Mean-
while, the responding processor changes the block’s block status from
modified to shared and updates the main memory copy of the block.

Because no other processor has a copy of this block, the SHR receives no
signal. So the processor reads the block and updates the state to exclusive
state.

Let us consider WH be the write hit of the cache and it occurs when the
block is present in the cache. Write hit occurs either in Modified, Exclusive
or Shared state. The block enters to the invalid state when write miss(WH)
occurs.

o Exclusive: The block is only available to the beginning processor. The
initiating processor just writes the block and switches the state from
exclusive to modified.

o Modified: The block is exclusive to the initiating processor, but it is
modified. The initiating processor simply writes the block and saves
the state as the modified state.

o Shared: The block exists in one or more shared copies. A signal called
invalidate transaction is sent by the processor. The processor with the
shared block understand that the processor’s plan to change the data
when it receives this signal and those processors invalidate their blocks.
And then the block is modified by the initiating processor, and the
status is changed to modified.

Department of Electrical Engineering, ITT Madras 33

Cache Coherence Protocol

invalid ’
SHR

Exclusive

Figure 5.1: State diagram of MESI protocol

If the block is not available in the local cache, it is called write miss and is
denoted as WM. When the block isn’t in the local cache, it must be read
from main memory and modified from there.

o Modified: After invalidating the block, the responding processor writes
it back into main memory. After that, the initiating processor reads
the block, writes it, and update it as modified state.

o Shared or Exclusive: No response will be send back. The other
caches, on the other hand, invalidate their blocks since the initiating

processor will modify them.
The equations that follow in the next section are derived from the above

state diagram [5.4] .

Department of Electrical Engineering, IIT Madras 34

Cache Coherence Protocol

5.2 Probabilities

In the following sections, the probabilities of cache hit, cache miss, MESI
protocols are derived.

5.2.1 Cache hit and miss probabilities

Let N be the number of cores in a multiprocessor system. Py and P,; are
the hit ratio and miss ratio probability respectively.

Py+Py=1 (5.1)

Total no. of cache hits

Py (5.2)

- Total no. of cache hits+ Total no. of cache misses

Total no. of cache misses

Py — 5.3
M Total no. of cache hits+ Total no. of cache misses (5-3)

The read hit, write hit probabilities can be denoted by Pryg and Py .

Read hits
Pri = Total number of Reads (5-4)
Write hits
Py = .
WH ™ Total number of Writes (5:5)
Read misses
Pryv = Total number of Reads (5.6)
Write misses
P = .
WM ™ Total number of Writes (5.7)
Total number of Reads = Read hits + Read misses (5.8)
Total number of Writes = Write hits + Write misses (5.9)
Pry+ Pry =1 (510)
Pyvg+Pwy =1 (5.11)

Department of Electrical Engineering, ITT Madras 35

Cache Coherence Protocol

5.2.2 Probabilities of MESI protocol using Markov model

If the probability of being in modified state, exclusive state, shared state and
invalid state are denoted by mys, mg, mg and 7y respectively, their individual
probabilities can be calculated by the equations given below by deriving it
from the above state diagram [5.4

P P B P P

map = ot mar b Ty g s — (N = Dy (5.12)
P P,
WE:O+%WE+O+%(N—1)7U (5.13)
Pry Pry Pry Pry

=7 .14
TS N TN+ N g+ N TS+ N T (5.14)

P P P P
T = %HWM+ %HWE+ %HWMJF ZMW} (5.15)

State transition probability matrix:

The probabilities of changing from one state to another in a single time unit
are given by the state transition probability matrix of a Markov chain.

We know that the transition probability matrix P can be defined from the
above equations as:

(Pru+Pwir) 0 Pry Py
N N N
D i S D
| 0 TR
Py g (N—l) Pry (N—l) PR]WN_l) Pry
N N N N

With the notion that sum of all the probabilities is equal to 1:
Zm =1
i

i.e myt+rp+rgtrr=1 (5.16)

Department of Electrical Engineering, ITT Madras 36

Cache Coherence Protocol

Adding the second, third and fourth terms in equation 5.1:

P P P
TV =]]szﬂM"i‘ %H(WM—i-?TE—i-?Ts)-i—%(N—l)?U (5.17)
Putting the value obtained eq. 5.5 we get
P P P
= %mﬁ%(l — 1) +$(N—)7 (5.18)

Similarly the other probabilities can be solved in similar manner and as a
result, we get the following equations:

Pru Pry

TR = N g+ N (N—l)ﬂ'] (519)
P P

mg= %(1 —)+ %m (5.20)
P P

m = %(1 —)+ ;Mm (5.21)

5.3 Average memory access time:

The average time a processor needs to wait for memory every load or store
instruction is known as average memory access time (AMAT). Every access
is either a success or a failure. If the cache misses, the processor searches
main memory for the data.

Let hr1 be the cache hit of Levell cache(L1), and mp; be the cache miss of
L1. We define T,; as Level 1 cache access time upon a cache hit and T,
as the miss penalty of L1 cache i.e after a cache miss, it’s time to access the
value. As a result, the average memory access time (AMAT) is as follows:

AMAT of L1 cache = (cache hit of L1 x L1 access time) (5.22)
+ (cache miss of L1 x miss penalty of L1)
= (h1 X Tea) + (mp1 X Tina)

Let hrs be the cache hit of Level2 cache(L2), and mps be the cache miss of
L2. We define T, as L2 cache access time upon a cache hit and 7T,,2 as the

Department of Electrical Engineering, ITT Madras 37

Cache Coherence Protocol

miss penalty of L2 cache.
AMAT of L2 cache = (cache hit of L2 x L2 access time) (5.23)
+ (cache miss of 1.2 X miss penalty of 1.2)
= (hr2 X Te2) + (mp2 X Tin2)

Miss penalty of L1 cache = (cache hit of L2 x L2 access time) (5.24)
+ (cache miss of L2 x miss penalty of L2)
= (hr2 x Te2) + (mr2 X Tin2)
Similarly let us define hpg as the cache hit of Level3 cache(L3), and mp3 be

the cache miss of L3. We define T,.3 as L.3 cache access time upon a cache
hit and 7T},3 as the miss penalty of L3 cache.

Miss penalty of L2 cache = (cache hit of L3 x L3 access time) (5.25)
+ (cache miss of L3 x miss penalty of L3)
= (hr3 x Te3) + (mp3 X Ting)

Miss penalty of L3 cache = Main memory access time (5.26)

The following equations are derived from MESI protocol and Markov
based model as shown below:

Cache hit =y +7g +7g (5.27)

Cache miss = 7y (5.28)

As said before, AMAT is defined as the hit time + (miss ratio * miss
penalty).From the state diagram of MESI protocol as explained above ,
we can define AMAT as:
AMAT of L1 cache = ((mpr + 7 +7g) x L2 access time) (5.29)
+ ((1 —7y) x (L2 access time
+miss penalty of L2 cache) x (1+mys))
=((mp+7p+7ms) xTe)
+((L—=m1) X (Teo+Tm2) X (14+7r))

AMAT of L2 cache = (cache hit x L2 access time) (5.30)
+ (cache miss x miss penalty of L2 x (1+my/))
= (hpa X Te2) + (mp2 X Tina < (1 +7ar))

Department of Electrical Engineering, ITT Madras 38

Cache Coherence Protocol

5.4 Results of Analytical Modeling

The following results are obtained using the analytical modeling formulas

and values obtained using the Sniper simulator.

5.4.1 Blackscholes benchmark with 4 cores:

Probability | Values
P 0.9824
Pyo 0.74355
P 0.25645
Pus 0.6616
Pro 0.96966
Pru 0.03033
Pwn 0.94207

Pw 0.0579

Table 5.1: Probabilities of Blackscholes benchmark with 4 cores

We can reconfigure the state diagram of MESI protocol to arrive at the

following Blackscholes benchmark specfic state diagram.

= 0.96%66

Invalid
SHR = 0.96966

SHR = 086866

= 00578

Exclusive

RH = 0.96866

Figure 5.2: State diagram of MESI protocol

Department of Electrical Engineering, IIT Madras

39

Cache Coherence Protocol

And from the values obtained from the above table, we can define State

transition probability matrix as:

0.04779 0
p_ 0.2355175 0.242415
~10.2355175 0

0.24241

0.242415
0.242415

0.2355175
0.2355175
0.2355175

0.7065525 0.0227475 0.0227475 0.0075825

my = 0.4962795, g = 0.05758804, g = 0.22244855, 17 = 0.21864666

And by solving we get

AMAT of L1 cache using tradtional method = 4.1926
AMAT of L2 cache using tradtional method = 14.9436

AMAT of L2 cache using Markov model = 17.68587

5.4.2 Bodytrack benchmark with 4 cores:

Probability | values
P 0.7899
Pro 0.6469
Paro 0.35303
Pus 0.5126
Pry 0.9305
Pru 0.069497
Pwr 0.5756
Pw s 0.4243

Table 5.2: Probabilities of Bodytrack benchmark with 4 cores

Department of Electrical Engineering, IIT Madras

40

Cache Coherence Protocol

RMI = 0.069467

Invalid y ’
AR SHR = 0.9305

Exclusive

RH = 0.9305

Figure 5.3: State diagram of MESI protocol

State transition probability matrix as:

0.376525 0 0.232625 0.1439
P 0.1439 0.232625 0.232625 0.1439
| 0.1439 0 0.232625 0.1439

0.4317 0.05212275 0.05212275 0.01737425

myr = 0.37713057, m = 0.13524958, mg = 0.26219889, 77 = 0.19535402
And by solving we get

AMAT of L1 cache using tradtional method = 6.88572

AMAT of L2 cache using tradtional method = 18.349

AMAT of L2 cache using Markov model = 16.234

Department of Electrical Engineering, IIT Madras

Cache Coherence Protocol

5.4.3 Cholesky benchmark with 4 cores:

Probability | values
Pm 0.985925
Pro 0.710425
P 0,38035
Pps 0.61965
Pro 0.62456
Pru 0.375
Pwn 0.16907
Pw s 0.8309

Table 5.3: Probabilities of Cholesky benchmark with 4 cores

invalid ,
SHR = 0.6245¢

Exclusive

RH = 0.62456

Figure 5.4: State diagram of MESI protocol

Department of Electrical Engineering, IIT Madras

42

Cache Coherence Protocol

State transition probability matrix as:

0.1984075 0. 0.15614
p_ 0.0422675 0.15614 0.15614
~10.0422675 0. 0.15614

0.1268025 0.28158 0.28158

0.0422675

0.0422675

0.0422675
0.09386

T = 0.212912, 7 = 0.217856, g = 0.274991, 77 = 0.21968

And by solving we get

AMAT of L1 cache using tradtional method = 4.1973
AMAT of L2 cache using tradtional method = 18.0197

AMAT of L2 cache using Markov model = 15.436

5.4.4 FFT benchmark with 4 cores:

Probability | Values
P 0.7989
Pro 0.04605
Py 0.95395
Pps 0.5126
Pry 0.01878
Pru 0.98121
Pwm 0.000005
Pw 0.9999

Table 5.4: Probabilities of FFT benchmark with 4 cores

State transition probability matrix as:

4.968755¢ — 03 0

P= 11 2550006 — 06 0

4.967500e — 03
1.255000e — 06 4.967500e — 03 4.967500e — 03
4.967500e — 03
3.765000e — 06 7.350975e¢ — 01 7.350975e — 01

1.255000e — 06
1.255000e — 06
1.255000e — 06
2.450325¢ — 01

my = 0.06834831, mp = 0.28489013, mg = 0.28631409, 71 = 0.29311493

Department of Electrical Engineering, IIT Madras

43

Cache Coherence Protocol

And by solving we get

AMAT of L1 cache using tradtional method = 10.427403
AMAT of L2 cache using tradtional method =35.9612
AMAT of L2 cache using Markov model =16.800316

5.4.5 Radix benchmark with 4 cores:

Probability | Values
Pm 0.93875
Pro 0.608725
Py 0.391275
Pps 0.532
Pry 0.2053
Pruy 0.7946

Pwa 0.7347
Pw 0.26527

Table 5.5: Probabilities of Radix benchmark with 4 cores

State transition probability matrix as:

0.235 0
p_ 0.183675 0.0513
~10.183675 0

0.0513
0.0513
0.0513

0.183675
0.183675
0.183675

0.551025 0.596025 0.596025 0.198675

myr = 0.322678, 7 = 0.192718, g = 0.219027, 77 = 0.257908

And by solving we get

AMAT of L1 cache using tradtional method = 6.1059
AMAT of L2 cache using tradtional method = 18.3567
AMAT of L2 cache using Markov model = 17.631192

Department of Electrical Engineering, IIT Madras

44

Cache Coherence Protocol

5.4.6 Vips benchmark with 4 cores:

Probability | Values
P 0.963
Pro 0.34155
P 0.65845
Pus 0.8598
Pry 0.65028
Pru 0.3497
Pwr 0.09711
Pwar 0.9022

Table 5.6: Probabilities of Vips benchmark with 4 cores

State transition probability matrix as:

0.1868475 0 0.16257 0.0242775
P 0.0242775 0.16257 0.16257 0.024277
~10.0242775 0 0.16257 0.024277

0.0728325 0.26229 0.26229 0.08743

my = 0.197661, mp = 0.224887,mg = 0.28107, 77 = 0.210506
And by solving we get

AMAT of L1 cache using tradtional method = 4.7352
AMAT of L2 cache using tradtional method = 23.8706
AMAT of L2 cache using Markov model = 20.72265

Department of Electrical Engineering, IIT Madras

45

Cache Coherence Protocol

5.4.7 Blackscholes benchmark with 8 cores:

Probability | Values
P 0.99355
Pan 0.0064
Pro 0.553775
Paro 0.446225
Pys 0.48965
Pars 0.5103
Pry 0.68107
Pru 0.318922
Pwr 0.4157
Pwar 0.5842

Table 5.7: Probabilities of benchmark with 4 cores

State transition probability matrix as:

0.137096250 0.08513375 0.0519625
0.0519625 0.08513375 0.08513375 0.0519625
0.0519625 0 0.08513375 0.0519625
0.3637375 0.27906375 0.27906375 0.03986625

P—

my = 0.257944, 1 = 0.1972, 1 = 0.2289, 77 = 0.2356
And by solving we get

AMAT of L1 cache using tradtional method = 4.111
AMAT of L2 cache using tradtional method = 21.23291
AMAT of L2 cache using Markov model = 16.6379

Department of Electrical Engineering, IIT Madras

46

Cache Coherence Protocol

5.4.8 Bodytrack benchmark with 8 cores:

Probability | Values
Pm 0.9620875
P 0.4457
Pro 0.83605
Paro 0.16395
Pus 0.920999
Pars 0.0790
Pry 0.91779
Pry 0.08220
Pwn 0.5466

Pw 0.4534

Table 5.8: Probabilities of Bodytrack benchmark with 8 cores

State transition probability matrix as:

0.18304875 0 0.11472375
p_ 0.068325 0.11472375 0.11472375
~ | 0.068325 0 0.11472375

0.478275 0.07193375 0.07193375

0.068325
0.068325
0.068325

0.01027625

my = 0.32035794, 7 = 0.16702118, mg = 0.21303608, 7 = 0.21629485

And by solving we get

AMAT of L1 cache using tradtional method = 4.29576

AMAT of L2 cache using tradtional method = 12.80120

AMAT of L2 cache using Markov model = 14.50938

Department of Electrical Engineering, IIT Madras

47

Cache Coherence Protocol

5.4.9 Cholesky benchmark with 8 cores:

Probability | Values
Pm 0.987375
Pan 0.01262
Pro 0.578875
P 0.421124
Prs 0.6535
Pars 0.3465
Pry 0.5843
Pru 0.4157
Pwn 0.1851

Pw s 0.8149

Table 5.9: Probabilities of Cholesky benchmark with 8 cores

State transition probability matrix as:

0.096175 0 0.0730375
p_ 0.0231375 0.0730375 0.0730375
~10.0231375 0 0.0730375

0.1619625 0.3637375 0.3637375

0.0231375
0.0231375
0.0231375
0.0519625

my = 0.18951681, mp = 0.22525884, mg = 0.24837293, 77 = 0.24024348

And by solving we get

AMAT of L1 cache using tradtional method = 4.19510
AMAT of L2 cache using tradtional method = 19.4535

AMAT of L2 cache using Markov model = 16.36370

Department of Electrical Engineering, IIT Madras

48

Cache Coherence Protocol

5.4.10 FFT benchmark with 8 cores:

Probability | Values
P 0.98
Pan 0.02
Pro 0.02707
Paro 0.97293
Prs 0.5759875
Pars 0.420125
Pry 0.039170
Pry 0.96083
PWH 9.99e-05

Pwar 0.9999

Table 5.10: Probabilities of FFT benchmark with 8 cores

State transition probability matrix as:

4.9087375e — 03 0 4.8962500e — 03 1.2487500e — 05
p_ 1.2487500e — 05 4.8962500e — 03 4.8962500e — 03 1.2487500e — 05
~|1.2487500e — 05 0 4.8962500e — 03 1.2487500e — 05

8.7412500e — 05 8.4072625e¢ — 01 8.4072625¢ —01 1.2010375e — 01

my = 0.07563127, 7 = 0.2946039, mg = 0.29605542, 77 = 0.259218
And by solving we get

AMAT of L1 cache using tradtional method = 4.6318

AMAT of L2 cache using tradtional method = 35.592

AMAT of L2 cache using Markov model = 15.468

Department of Electrical Engineering, IIT Madras

Cache Coherence Protocol

5.4.11 Radix benchmark with 8 cores:

Probability | Values
P 0.9395125
Pan 0.060487
Pro 0.6526375
Paro 0.3473625
Prs 0.3884
Pars 0.611525
Pry 0.5035
Pru 0.4965
Pwr 0.6976
Pwar 0.3024

Table 5.11: Probabilities of Radix benchmark with 8 cores

State transition probability matrix as:

0.1501375 0 0.0629375
p_ 0.0872 0.0629375 0.0629375
| 0.0872 0 0.0629375

0.6104 0.4344375 0.4344375

myr = 0.303157, 7 = 0.19146, 79 = 0.21966, 77 = 0.240

And by solving we get

AMAT of L1 cache using tradtional method = 4.8969

0.0872
0.0872
0.0872

0.0620625

AMAT of L2 cache using tradtional method = 18.8289

AMAT of L2 cache using Markov model = 18.009

Department of Electrical Engineering, IIT Madras

50

Cache Coherence Protocol

5.4.12 Blackscholes benchmark with 12 cores:

Probability | Values
P 0.99625
Pan 0.375
Pro 0.34193
Paro 0.6580
Pys 0.493467
Pars 0.506533
Pry 0.5405
Pru 0.4595
Pwr 0.267
Pwar 0.733

Table 5.12: Probabilities 0f Blackscholes benchmark with 12 cores

State transition probability matrix as:

0.06729167 0 0.04504167 0.02225
P 0.02225 0.04504167 0.04504167 0.02225
| 0.02225 0 0.04504167 0.02225

0.24475 0.42120833 0.42120833 0.03829167

my = 0.195087, 1 = 0.2251, mg = 0.2397, 77 = 0.24585
And by solving we get

AMAT of L1 cache using tradtional method = 4.08804
AMAT of L2 cache using tradtional method = 27.477

AMAT of L2 cache using Markov model = 16.3262

Department of Electrical Engineering, IIT Madras

o1

Cache Coherence Protocol

5.4.13 Bodytrack benchmark with 12 cores:

Probability | Values
Pm 0.9586
Pan 0.041341
Pro 0.86572
P 0.134275
Prs 0.9009
Pars 0.0990
Pry 0.903
Pru 0.097
Pwn 0.536
Pw s 0.464

Table 5.13: Probabilities of Bodytrack benchmark with 12 cores

State transition probability matrix as:

0.11991667 0 0.07525 0.04466667
p_ 0.04466667 0.07525 0.07525 0.04466667
~10.04466667 0 0.07525 0.04466667

0.49133333 0.08891667 0.08891667 0.00808333

my = 0.301768, mp = 0.17054, mg = 0.19778, 77 = 0.22717
And by solving we get

AMAT of L1 cache using tradtional method = 4.2961
AMAT of L2 cache using tradtional method = 11.153
AMAT of L2 cache using Markov model = 14.672

Department of Electrical Engineering, IIT Madras

52

Cache Coherence Protocol

5.4.14 Cholesky benchmark with 12 cores:

Probability | Values
P 0.987709
Pan 0.012291
Pro 0.554325
Paro 0.445675
Pus 0.6158584
Pars 0.3841416
Pry 0.5637
Pru 0.4363
Pwn 0.1922
Pw 0.8078

Table 5.14: Probabilities of Cholesky benchmark with 12 cores

State transition probability matrix as:

0.06299167 0 0.046975 0.01601667
p_ 0.01601667 0.046975 0.046975 0.01601667
~10.01601667 0 0.046975 0.01601667

0.17618333 0.39994167 0.39994167 0.03635833

oy = 0.1815, 7 = 0.2281, mg = 0.2424, 77 = 0.2448
And by solving we get

AMAT of L1 cache using tradtional method = 4.20124
AMAT of L2 cache using tradtional method = 20.3732
AMAT of L2 cache using Markov model = 15.565

Department of Electrical Engineering, IIT Madras

53

Cache Coherence Protocol

5.4.15 Blackscholes benchmark with 16 cores:

Probability | Values
P 0.99735
Pan 0.00265
Pyo 0.2368
Paro 0.7631
Pys 0.5396
Pars 0.460368
Pry 0.454
Pru 0.545
Pwr 0.153
Pwar 0.847

Table 5.15: Probabilities of Blackscholes benchmark with 16 cores

State transition probability matrix as:

0.0379375 0

0.028375

0.0095625 0.028375 0.028375

P=10.0005625 0

0.028375

0.1434375 0.511875 0.511875

0.0095625

0.0095625

0.0095625
0.034125

my = 0.155682, mp = 0.24358, mg = 0.25205, 77 = 0.248718

And by solving we get

AMAT of L1 cache using tradtional method = 4.069
AMAT of L2 cache using tradtional method = 30.0610
AMAT of L2 cache using Markov model = 15.818

Department of Electrical Engineering, IIT Madras

o4

Cache Coherence Protocol

5.4.16 Bodytrack benchmark with 16 cores:

Probability | Values
P 0.9572375
Pan 0.04276
Pro 0.8815
Paro 0.1185
Pus 0.8822
Pars 0.1178
Pry 0.9261
Pry 0.0739
Pwn 0.5378
Pw 0.4622

Table 5.16: Probabilities of Bodytrack benchmark with 16 cores

State transition probability matrix as:

0.09149375 0 0.05788125 0.0336125
p_ 0.0336125 0.05788125 0.05788125 0.0336125
1 0.0336125 0 0.05788125 0.0336125

0.5041875 0.06928125 0.06928125 0.00461875

my = 0.29807, 15 = 0.16845, mg = 0.1883, 77 = 0.23017
And by solving we get

AMAT of L1 cache using tradtional method = 4.29174
AMAT of L2 cache using tradtional method = 10.8163
AMAT of L2 cache using Markov model = 14.341

Department of Electrical Engineering, IIT Madras

Cache Coherence Protocol

5.4.17 Cholesky benchmark with 16 cores:

Probability | Values
P 0.98834
Pan 0.1166
Pyo 0.5378
P 0.4622
Pus 0.5961
Pars 0.4039
Pry 0.5462
Prm 0.4538
Pwn 0.2029
Pw s 0.7974

Table 5.17: Probabilities of Cholesky benchmark with 16 cores

State transition probability matrix as:

0.04681875 0. 0.0341375
P 0.01268125 0.0341375 0.0341375
~10.01268125 0. 0.0341375

0.19021875 0.4254375 0.4254375

0.01268125
0.01268125
0.01268125

0.0283625

7 = 0.178325, 7 = 0.2299, g = 0.2401, 71y = 0.2467

And by solving we get

AMAT of L1 cache using tradtional method = 4.1978
AMAT of L2 cache using tradtional method = 20.9686

AMAT of L2 cache using Markov model = 17.672

Department of Electrical Engineering, IIT Madras

56

Cache Coherence Protocol

5.4.18 FFT benchmark with 16 cores:

Probability | Values
P 0.9797
Pan 0.0203
Pro 0.07598
Paro 0.92401
Pys 0.43951
Pars 0.56049
Pry 0.1091
Prm 0.8909
Pwa 0.0001
Pwar 0.999

Table 5.18: Probabilities of FFT benchmark with 16 cores

State transition probability matrix as:

6.8250000e — 03 0 6.8187500e — 03 6.2500000e — 06
6.2500000e — 06 6.8187500e — 03 6.8187500e — 03 6.2500000e — 06
6.2500000e — 06 06.8187500e — 03 6.2500000e — 06

9.3750000e — 05 8.3521875e —01 8.3521875e —01 5.5681250e — 02

P—

my = 0.083897, mp = 0.292136,mg = 0.29414, 7 = 0.2476
And by solving we get

AMAT of L1 cache using tradtional method = 4.65162
AMAT of L2 cache using tradtional method = 36.0995
AMAT of L2 cache using Markov model = 15.6713

Department of Electrical Engineering, ITT Madras 57

Cache Coherence Protocol

5.4.19 Radix benchmark with 16 cores:

Probability | Values
P 0.9402625
Pan 0.0597375
Pro 0.574975
Paro 0.425025
Prs 0.3433
Pars 0.6567
Pry 0.5835
Pru 0.4165
Pwr 0.5568
Pwar 0.4432

Table 5.19: Probabilities of Radix benchmark with 16 cores

State transition probability matrix as:

0.07126875 0. 0.03646875 0.0348
p_ 0.0348 0.03646875 0.03646875 0.0348
| 0.0348 0. 0.03646875 0.0348

0.522 0.39046875 0.39046875 0.02603125

my = 0.259015, 1 = 0.20135, 7 = 0.21503, 77 = 0.243700
And by solving we get

AMAT of L1 cache using tradtional method = 5.04781
AMAT of L2 cache using tradtional method = 21.5396
AMAT of L2 cache using Markov model = 17.6302

Department of Electrical Engineering, IIT Madras

58

Cache Coherence Protocol

5.5 Comparison of AMAT for different bench-
marks:

T I
. [l Conventional method
Vips I Markov model

Radix a

FFT -

AMAT

Cholesky 5

Bodytrack 5

Blackscholes b

1 | L L L L |
0 5 10 15 20 25 30 35 40
Benchmarks

Figure 5.5: AMAT of different benchmarks of core 4

Markov Model is a new approach used to calculate AMAT. The above
plot very closely compares the Markov Model with the conventional model.
From the previous chapter, we have observed that the FFT benchmark has
higher L2 miss rate while it is less in Markov model. So Markov model is
applicable for all the benchmarks but FFT has deviated a little.

Department of Electrical Engineering, ITT Madras 59

Cache Coherence Protocol

T T T
I Conventional method
N Markov model 1

Radix

FFT

Cholesky

AMAT

Bodytrack

Blackscholes

o 5 10 15 20 25 30 35 40
Benchmarks

Figure 5.6: AMAT of different benchmarks of core 8

When we go from core 4 to core 8, the Markov Model still justifies except
for the FFT benchmark. This can be seen from the (5.6l

[l Conventional method
I Markov model

Cholesky

Bodytrack

AMAT

Blackscholes

L
0 5 10 15 20 25 30
Benchmarks

Figure 5.7: AMAT of different benchmarks of core 12

As we have seen in the previous simulation results, as core increases, the
miss rate of blackscholes increases. So that’s the reason there is a difference
between the AMAT obtained using Conventional method and Markov model
whereas the Markov model is justified for other benchmarks.

Department of Electrical Engineering, ITT Madras 60

Cache Coherence Protocol

I Conventional method
Radix I Markov model 1

Cholesky

AMAT

Bodytrack

Blackscholes

o 5 10 15 20 25 30 35 40
Benchmarks

Figure 5.8: AMAT of different benchmarks of core 16

When the core increases from core 8 to core 16, the blackscholes miss rate
increases and FF'T has higher benchmark for all the cores of L2 cache. So the
markov model is deviated a little here for blackscholes and FFT benchmarks
whereas it is justified for all other benchmarks.

Department of Electrical Engineering, ITT Madras 61

Chapter 6

Conclusion

A number of conclusions can be drawn from the host of simulations that
we have discussed in the report. We have checked the hit and miss rates of
various benchmarks (Blackscholes, Bodytrack, Cholesky, FFT, Radix, Vips)
of different cache coherence protocols (MSI, MESI, MESIF) of different cores
sizes (4, 8, 12, 16), associativity and cache sizes. This led us to the conclusion
that FFT has the highest miss rate for L2 and L3 caches compared to the
other benchmarks. As we move higher from core 4 to core 16, the miss rates
of all benchmarks remain more or less the same, giving us the freedom to use
higher core processors in the day to day operations when available.

When we increase the associativity of L1 from 4 to 16, the miss rates of
MSI and MESI decrease. The remaining two caches (L2 and L3) exhibit no
considerable change. So, we can go for MESI protocol over MSI as it has
various other notable advantages. When we increase the cache size, the miss
rate of MESI decreases marginally compared to MSI. This shows that MESI
is better than MSI as we increase the cache size.

Our main aim was to calculate the AMAT using Markov Model and com-
pare it with the conventional method. The Markov Model is felt appropriate
for all the benchmarks except for FFT, as it has deviated a little. So the
results shows that for calculating AMAT, Markov model can be used.

62

Bibliography

1]

A. D. Joshi and N. Ramasubramanian, “Comparison of significant is-
sues in multicore cache coherence,” in 2015 International Conference on
Green Computing and Internet of Things (ICGCIoT), 2015, pp. 108
112.

J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edi-
tion: A Quantitative Approach, 5th ed. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 2011.

H. Shukur, S. Zeebaree, R. Zebari, O. Ahmed, L. Haji, and D. Ab-
dulqader, “Cache coherence protocols in distributed systems,” Journal
of Applied Science and Technology Trends, vol. 1, no. 3, pp. 92-97, 2020.

Z. Al-Waisi and M. O. Agyeman, “An overview of on-chip cache co-
herence protocols,” in 2017 Intelligent Systems Conference (IntelliSys).
IEEE, 2017, pp. 304-309.

S. Kumar and P. K. Singh, “An overview of modern cache memory and
performance analysis of replacement policies,” in 2016 IEEE Interna-
tional Conference on Engineering and Technology (ICETECH), 2016,
pp. 210-214.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in 2008 Interna-
tional Conference on Parallel Architectures and Compilation Techniques
(PACT), 2008, pp. 72-81.

D. Sam and M. O. Agyeman, “An overview of design space exploration
of cache memory,” in Proceedings of the 2nd International Symposium
on Computer Science and Intelligent Control, 2018, pp. 1-6.

63

Cache Coherence Protocol

8]

[14]

G. Jang and J.-L. Gaudiot, “Data shepherding: A last level cache design
for large scale chips,” in 2019 IEFEE 21st International Conference on
High Performance Computing and Communications; IEEE 17th Inter-
national Conference on Smart City; IEEE 5th International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), 2019, pp. 1920
1927.

S. Sun, H. An, and J. Chen, “Cache coherence method for improving
multi-threaded applications on multicore systems,” in 2014 6th Interna-
tional Conference on Multimedia, Computer Graphics and Broadcasting.
IEEE, 2014, pp. 47-50.

A. Tiwari, “Performance Comparison of Cache Coherence Protocol on
Multi-Core Architecture,” NIT Rourkela, Dissertation 1, 2014, Project
Report.

M. Hill and A. Smith, “Evaluating associativity in cpu caches,” IEFEE
Transactions on Computers, vol. 38, no. 12, pp. 1612-1630, 1989.

M. E. Thomadakis, “The architecture of the nehalem processor and
nehalem-ep smp platforms,” Resource, vol. 3, no. 2, pp. 30-32, 2011.

S. Mittal and Nitin, “A new approach to directory based solution for
cache coherence problem,” in 2014 3rd International Conference on Eco-
friendly Computing and Communication Systems, 2014, pp. 9-13.

T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simula-
tion,” in SC' '11: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, 2011, pp.
1-12.

C. Bienia, Benchmarking modern multiprocessors. Princeton University,
2011.

E. T. J. P. S. Steven Cameron Woo, Moriyoshi Oharat, “The SPLASH-
2 Programs: Characterization and Methodological Considerations,”
Princeton University, Dissertation 1, 2008, Technical Report.

S. Christian Bienia, Jaswinder and K. Li, “PARSEC vs. SPLASH-2:
A Quantitative Comparison of Two Multithreaded Benchmark Suites

Department of Electrical Engineering, IIT Madras 64

Cache Coherence Protocol

on Chip-Multiprocessors,” Princeton University, Dissertation 1, 2008,
Technical Report.

[18] X. Zhang, H. Wang, and Y. Lv, “State transition matrix of linear time
varying fractional order systems,” in 2017 29th Chinese Control And
Decision Conference (CCDC), 2017, pp. 7857-7861.

[19] M. Sun, Y. Wang, G. Li, and W. Zhang, “Stability and stabilization
of discrete-time markov jump singular systems with general uncertain

transition rates,” in 2016 Chinese Control and Decision Conference
(CCDC), 2016, pp. 1819-1823.

[20] J. M. Sabarimuthu and T. Venkatesh, “Analytical miss rate calcula-
tion of 12 cache from the rd profile of 11 cache,” IEEE Transactions on
Computers, vol. 67, no. 1, pp. 9-15, 2017.

[21] G. Balakrishnan and A. Krishna, “Optimizing a cache back invalidation
policy,” Jan. 29 2013, uS Patent 8,364,898.

[22] M. Brehob and R. Enbody, “An analytical model of locality and
caching,” Michigan State University, Department of Computer Science
and Engineering MSU-CSE-99-31, 1999.

23] J. Harper, D. Kerbyson, and G. Nudd, “Analytical modeling of set-
associative cache behavior,” IEEE Transactions on Computers, vol. 48,
no. 10, pp. 1009-1024, 1999.

[24] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th international conference on Parallel architectures and com-
pilation techniques, 2008, pp. 72-81.

[25] T. V. Vincent P.Heuring, Harry F.Jordan, Computer Systems Design
and Architecture, 2nd ed. USA: Pearson, 2008.

Department of Electrical Engineering, ITT Madras 65

	Abbreviations
	Introduction
	Motivation
	Aim of the project
	Outline of Report

	Background
	Introduction of Cache memory
	Types of Cache Misses

	Principle of locality
	Cache coherence
	Cache Write Policies
	Cache mapping techniques
	MSI PROTOCOL
	MESI PROTOCOL
	MESIF PROTOCOL

	Literature survey
	Simulation Framework and Results
	Simulator used
	SPLASH-2 benchmark:
	PARSEC benchmark:

	Simulation Procedure
	Simulation Results
	Average Missrate of all benchmarks for core 4
	Average Missrate of all benchmarks for core 8
	Average Missrate of all benchmarks for core 12
	Average Missrate of all benchmarks for core 16
	Average Missrate for variation of L2,L3 associativity keeping L1 associativity as 4
	Average Missrate for variation of L2,L3 associativity keeping L1 associativity as 8
	Average Missrate for variation of L2,L3 associativity keeping L1 associativity as 16
	Average Missrate for variation of L2,L3 cache size keeping the L1 cache size as 32
	Average Missrate for variation of L2,L3 cache size keeping the L1 cache size as 32
	Average Missrate for variation of L2,L3 cache size keeping the L1 cache size as 64

	Analytical Modeling
	State diagram of MESI protocol
	Probabilities
	Cache hit and miss probabilities
	Probabilities of MESI protocol using Markov model

	Average memory access time:
	Results of Analytical Modeling
	Blackscholes benchmark with 4 cores:
	Bodytrack benchmark with 4 cores:
	Cholesky benchmark with 4 cores:
	FFT benchmark with 4 cores:
	Radix benchmark with 4 cores:
	Vips benchmark with 4 cores:
	Blackscholes benchmark with 8 cores:
	Bodytrack benchmark with 8 cores:
	Cholesky benchmark with 8 cores:
	FFT benchmark with 8 cores:
	Radix benchmark with 8 cores:
	Blackscholes benchmark with 12 cores:
	Bodytrack benchmark with 12 cores:
	Cholesky benchmark with 12 cores:
	Blackscholes benchmark with 16 cores:
	Bodytrack benchmark with 16 cores:
	Cholesky benchmark with 16 cores:
	FFT benchmark with 16 cores:
	Radix benchmark with 16 cores:

	Comparison of AMAT for different benchmarks:

	Conclusion

