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Abstract

Dividers and multipliers are basic building blocks for arithmetic and logic units,

digital signal processing applications, microprocessors, micro controllers and other

data processing units. Implementing these blocks in RISC-V specification, which is

open source, provides extra edge over other architectures and it helps in collaborative

research. Verification of these blocks and RISC-V instructions has to be done with

highest quality since any unnoticed bug leads to the wastage of entire chip as well as

time and effort.

CoCoTb (Coroutine Cosimulation based Testbench) , a python based

verification framework has been used to verify the design blocks due to its vast

libraries and easy to learn nature without compromising on quality. The goal of the

project is to verify divider and multiplier blocks using cocotb and hunt for potential

bugs. Work has been done also to verify the RISC-V branch instructions by taking

possible scenarios.
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Chapter 1

INTRODUCTION

1.1 What is design verification?

Design verification means verifying functional or logic correctness of a system.

Design verification is most important step of a chip development cycle and it takes as

it takes as much as 80% of the chip development cycle. The goal is to verify that our

design meets the system specifications. The different approaches in design

verification are logic simulation where detailed functionality and timing of design are

checked by means of simulation. Functional verification where a functional model is

developed that describes the behavioral specification of design without detailed

timing simulation and formal verification where the functionality is checked against a

mathematical model.

In our work, we have done the functional verification of various divider,

multiplier blocks and core verification of RISC-V branch instructions in i-class

processor. Some important metrics in the development of testbench are

1.2 Test plan

Test plan contains the set of features of the design to be verified. Before verification,

it is important to prepare to test plan for all the features we like to verify. After the

development of testbench, test plan can be referred and can check whether a test plan

item has been verified or not. So, it keeps track on features to be verified.

1.3 Coverage

Coverage gives information about how much of the functionality of the design has

been verified. It has to be defined in functional coverage model in testbench code. We

have to specify which values we want to cover for a particular signal. We can also

specify cross coverage between two signals i.e. which set of values should both

signals cover in a cycle. For example, in fulladder each signal is a binary value, but

we need to check cross coverage between the three input signals so that those cover

all the eight possible combinations of inputs.



1.4 Block level verification

Block level verification deals with verifying the design blocks as a whole by driving

the interface signals of the block. Testbenches should be created at the highest level of

abstraction where the design is modelled. For example, the interface signals for a

multiplier block could be a multiplier and multiplicand. Driving values to these

signals and verifying the functionality is called as block level verification. Most of the

als or

wires.

System
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Extract specific
functions

Test plan
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test plan
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Fig. 1.1: Block level verification flow



The testbenches are used in different verification processes to validate the

functionality of the design as it proceeds through increasing levels of refinement and

becomes more detailed.

1.5 Core level verification

RISC-V is a load-store architecture and all the operations are handled on registers.

Only load and store instructions transfer data to and from memory and data must first

be loaded into a register before it can be operated on.

Fig. 1.2: Processor core overview

The instruction to be executed is fetched from instruction memory. Each instruction

has predefined hexadecimal value and it has been stored in instruction memory. The

next instruction to be executed is stored in program counter as shown in figure. After

fetching the instruction, it is decoded by the decoder to its opcode (Ex: add) from its

hexadecimal value. Also, the decoder also decodes the source and destination

registers, immediate values if any are present. Decoder sends source and destination

registers information into a file called register file and opcode information to ALU (if

instruction to be executed is an arithmetic operation). Before performing operation,

source operands has to be loaded into registers and operate on registers, but not

directly load the operands from memory. This is because reading and writing into

memory is costly and time consuming. And in RISC-V, we cannot directly write data

to memory from ALU, instead the data is fed back to a register in register file and

stores into memory by means of store instructions. This is one of the feature of RISC



architectute. Not only ALU operations, the instructions can be of operation on

memory like load and store, branch instructions etc.

Unlike block verification, core verification involves verification of all these

operations whether the instruction is correctly fetched and decoded, whether the

registers are operating correctly, whether load from memory and store to memory are

bits where it stores the

information about source, destination registers and the opcode add itself in those 32

bits. If any of those 32 bits are toggled or shorted to ground then it would not execute

tion. There are 32 registers x0 to

x31 and x0 is always hardwired to zero, there could be a situation that any other

register apart from x0 hardwired to zero where it leads to incorrect processor

operation. Therefore, verification of the core involves verification of all these things

like using all possible registers as source and destination registers and different

scenarios as per the test plan.



Chapter 2

MBOX

Mbox is a name given to the integer multiplier and divider which includes non-

restoring divider, srt radix-2 divider, srt radix-4 divider and pipelined

multiplier. These blocks are implemented as per RISC-V ISA which are termed as M-

extension operations in specification document of RISC-V.

2.1 Non-restoring divider

All the slow division methods are based on standard partial remainder recurrence

equation. It involves choosing the quotient digits from a particular set on each cycle

and number cycles are equal to number of bits in dividend for radix-2 divider and half

of them for radix-4 divider. Generally, in radix-2 dividers, one quotient bit is selected

in each cycle and in radix-4 dividers, two quotient bits are selected. The (j+1)th partial

remainder is given by the equation

Rj+1 = rRj Dqj ------------------------- (1)

Where

r is the radix

Rj is the partial remainder of cycle j

D is the divisor

The radix for the non-restoring divisor is 2 and the quotient digit set is 1, -1.

The initialization starts by taking the first partial remainder as dividend and

multiplication by radix is done by shifting left. So, in non-restoring divisor qj is

always 1 or 1. The steps involved in non-restoring divisor are shown below

Step-

and accumulato



Step-2: Check the MSB (sign bit) of A. It is obviously 0 initially.

Step-3: If sign bit of A is 0, then shift left the contents of AQ (performing

multiplication with radix) and perform A=A+M (from equation). Otherwise perform

A=A-M

Step-4: Check the MSB (sign bit) of A.

Step-

Step- -2. Otherwise

perform the next step

Step-7: If sign bit of A is 1, perform A=A+M. Otherwise leave as it is. Now, the

.

Our non-restoring divider is of 64 bits. Generally, it should take 64 cycles to

produce the result. But it needs extra 3 cycles for processing the sign of the result and

sign of the operands. The type of division whether signed or unsigned and type of

operation whether quotient or remainder is figured out in first clock cycle. If division

f any operand is

negative and sign of result is decided, if signed division, in the second clock cycle.

Non-restoring algorithm is carried out for the next 64 clock cycles, deciding each

quotient digit in each cycle and returns result in the last clock cyc

complement is taken if the result is negative.

2.2 Srt radix-2 divider

Srt radix-2 divider generates one quotient bit per cycle like non-restoring divider, but

this divider has 3 quotient bits to select in each clock cycle, therefore this makes easy

in hardware because the choice zero requires only shifting. Selection of partial

remainders is based on equation (1) above with initial partial remainder is taken as

dividend.

In fractional division, the selection of quotient digits depends on whether the

partial remainder range. If 2Sj, where Sj is the partial remainder in jth cycle, is greater



than or equal to 0.5, then qj, the quotient of jth cycle, is selected as 1 and if it is less

than -0.5, the quotient is selected as -1. If 2Sj is between -0.5 and 0.5, the quotient is

remainder are 01, then quotient bit in that cycle is selected as 1 and if they are 10,

then the quotient bit is selected as -1. And, if two

quotient bit is selected as 0.

Since, our design is a radix-2 divider of 64 bits, at least 64 clock cycles are

required to generate the result producing a quotient bit in each cycle. The type of

division whether signed or unsigned and type of operation whether quotient or

remainder is figured out in first clock cycle. If division is of 32 bits, then sign bits are

complement is taken if any operand is negative and sign of result is decided, dividend

is taken as the first partial remainder in the second clock cycle. Each quotient bit is

selected in each cycle for the next 63 clock cycles from the set {-1,0,1}. The result is

returned in the last

the sign which is decided in the second clock cycle.

2.3 Srt radix-4 divider

Srt radix-4 divider is similar to srt radix-2, but two quotient digits are selected here in

each clock cycle. So, atleast 32 clock cycles are required to generate the 64 bits result.

complement etc. So, this is a fast divider but hardware complexity is more. Two

quotient bits

selected. Then the selection of quotient bit is shown in the table below.

d Range of p q d Range of p q

8 [-12,-7] -2 12 [-18,-10] -2

8 [-6,-3] -1 12 [-10,-4] -1

8 [-2,-1] 0 12 [-4,3] 0

8 [2,5] 1 12 [3,9] 1



8 [6,11] 2 12 [9,17] 2

9 [-14,-8] -2 13 [-19,-11] -2

9 [-7,-3] -1 13 [-10,-4] -1

9 [-3,2] 0 13 [-4,3] 0

9 [2,6] 1 13 [3,9] 1

9 [7,13] 2 13 [10,18] 2

10 [-15,-9] -2 14 [-20,-11] -2

10 [-8,-3] -1 14 [-11,-4] -1

10 [-3,2] 0 14 [-4,3] 0

10 [2,7] 1 14 [3,10] 1

10 [8,14] 2 14 [10,19] 2

11 [-16,-9] -2 15 [-22,-12] -2

11 [-9,-3] -1 15 [-12,-4] -1

11 [-3,2] 0 15 [-5,4] 0

11 [2,8] 1 15 [3,11] 1

11 [8,15] 2 15 [11,21] 2

Table 2.1: Quotient digit selection

It takes upto 38 clock cycles to generate the result. Extra 6 clock cycles for choosing

the type of operation (quotient or remainder) and the type of division(32 bit or 64 bit)

2.4 Four stage pipelined multiplier

Pipelined multiplier helps in computing the result faster than normal multiplier.

result involves calculating partial products which are simply calculated by using AND

gates. The speed of a multiplier lies on how efficiently we are adding partial products

and how efficiently we design the adder that sums the final stage partial products.

Therefore, efficient adder also plays an important role in design of a multiplier.

In this design, the multiplier is pipelined with four stages. It takes multiplier

and divides it into parts of 6 bits and obtain partial products with multiplicand and

finally adds them to get the product.



Chapter 3

RISC-V BRANCH INSTRUCTIONS

3.1 What is RISC-V

RISC-V is an Instruction Set Architecture (ISA) based on Reduced Instruction Set

RISC-V

is open source and free to use.

3.2 I-class processor

I-class is a 64-bit out-of-order processor that targets computing, mobile, storage and

networking platforms. Its key features include aggressive branch prediction,

multithreading, pipelined functional units except divider and square root, non-

blocking cache. Operating frequency of the processor is as high as 1.5-2.5 GHz. It

supports RV64IMAFDC instructions(multiplier/divider, atomic, single and double

precision floating point, compressed).

3.3 Branch instructions

Branch instructions are also called control transfer instructions. These are used to

control transfer to other instructions in the program which are far away,maybe either

backward or forward. These are RV32 instructions i.e instruction length is 32 bits.

The branch instructions bge, blt, beq, bne, bgeu, bltu are named as B-type instructions

and their instruction encoding is as follows

31 25 24 20 19 15 14 12 11 7 6 0

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode

Since there are 32 general purpose registers, 5 bits are required to encode each

register. So, 10 bits are required for two registers of whom values will be compared

for branching. One question is, how long can the execution jump in a program? It

depends on the imm value that we give. Since RISC-V is byte addressable and each

instruction is 32 bits wide, aimm value of 8 corresponds to a jump of two instructions.

But, what if the imm value is odd? It never happens because we are always setting the

LSB of imm to 0 as we can see above. imm value is in signed representation and it is



of 12 bits. So, the execution can jump a memory of 4MB in both forward and

backward direction. There are 6 branch instructions B-type. To differentiate them, we

require 3 bits, so funct3 does that differentiation between branch instructions. Opcode

is same for all branch instructions. All these instructions use PC relative addressing

i.e., jump is relative to program counter.

3.3.1 BGE

Branch greater than or equal to (bge) compares contents in two registers and takes the

target address if value in first register is greater than or equal to value in second

register.

Syntax: bge rs1, rs2, label.

he

same for the coming branch instructions, namely blt, beq, bne, bgeu, bltu.

Usage:

label1: li x1, 2

label2: li x2, 1

bge x1, x2, label1 #branch1

bge x2, x1, label2 #branch2

As shown, above x1 is loaded with 1 and x2 with 2. Since [x1]>[x2] the branch1 will

3.3.2 BLT

Branch less than (blt) compares contents in two registers and takes the target address

if the value in first register is less than the value in second register.

Usage:

label1: li x1, 2

label2: li x2, 1

blt x1, x2, label1 #branch1

blt x2, x1, label2 #branch2



As shown above, x1 is loaded with 1 and x2 with 2. Since [x1]>[x2] the branch1 will

not be taken. So, the branch2 will be taken here and execution jumps to label2.

3.3.3 BEQ

Branch equal to (beq) compares contents in two registers and takes the target address

if value in first register is equal to value in second register.

Usage:

label1: li x1, 2

label2: li x2, -1

beq x1, x2, label1 #branch1

beq x1, x1, label2 #branch2

As shown above, x1 is loaded with 1 and x2 with 2. Since [x1] is not equal to [x2] the

branch1 will not be be taken. Obviously, branch2 will be taken and execution jumps

to label2.

3.3.4 BNE

Branch not equal to (bne) compares contents in two registers and takes the target

address if value in first register is not equal to value in second register.

Usage:

label1: li x1, 2

label2: li x2, 1

bne x1, x2, label1 #branch1

bne x1, x1, label2 #branch2

As shown above, x1 is loaded with 1 and x2 with 2. Since [x1] is not equal to [x2] the

branch1 will be taken and execution jumps to label1.

3.3.5 BGEU

Branch greater than or equal to unsigned (bge) compares contents in two registers and

takes the target address if value in first register is greater than or equal to value in

second register. The difference between bge and bgeu is that, bgeu makes unsigned



comparison between two registers i.e the contents in the registers should unsigned.

While, imm values can still be both signed and unsigned.

Usage:

label1: li x1, 2

label2: li x2, 1

bgeu x1, x2, label1 #branch1

bgeu x2, x1, label2 #branch2

As shown above, x1 is loaded with 1 and x2 with 2. Since [x1]>[x2] the branch1 will

3.3.6 BLTU

Branch less than unsigned (bltu) compares contents in two registers and takes the

target address if the value in first register is less than the value in second register.

Usage:

label1: li x1, 2

label2: li x2, 1

bltu x1, x2, label1 #branch1

bltu x2, x1, label2 #branch2

As shown above, x1 is loaded with 1 and x2 with 2. Since [x1]>[x2] the branch1 will

not be taken. So, the branch2 will be taken here and execution jumps to label2. The

difference between blt and bltu is that, bltu makes unsigned comparison between two

registers i.e the contents in the registers should unsigned. While, imm values can still

be both signed and unsigned.

3.3.7 JAL

Jump and link(JAL) is an unconditional branch instruction. No comparison of

registers to make jumps, so the execution jumps straight to the target address when

using this instruction. So, this instruction can be used to call a function.



31 12 11 7 6 0

imm[20|10:1|11|19:12] rd opcode

Syntax: jal rd, imm

Imm is a 21 bit signed integer where LSB is always set to zero. In RV32 the jump

should always be multiple of 4, since each instruction is 4 bits wide. So, the jump

range is ±1MB. If imm[1:0] is not zero, then it leads to misaligned exception. rd is

destination register and it saves the return address (the address of the next instruction

after jal). Instruction encoding of JAL done based on opcode value and its value is

ince it can be any of the available 32 registers.

Usage:

loop: li x3, 3

addi x4, x3, 1

add x5, x4, x3

jal x1, loop #branch

and x6, x5, x4 #return address

he address

ired to zero.

3.3.8 JALR

Jump and link register (JALR) is an unconditional branch instruction like JAL. It is an

I-format instruction where it has a source register, destination register and an

immediate operand. Unlike all other branch instructions the LSB is not forced to zero.

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

Imm value is a 12 bit signed integer and LSB is not forced to zero. Any misalignment

with memory leads to misalignment exception. rd stores the return address (the



address of the next instruction after jalr). The value of funct3 is 000 and opcode is

1100111.

Syntax: jalr rd, rs1, imm

The target address is calculated not only by using imm but also with the contents in

rs1 register. The effective imm value is [rs1]+imm.

Usage:

loop: li x3, 3

addi x4, x3, 1

add x5, x4, x3

jalr x1, x5, loop #branch

and x6, x5, x4 #return address

contains the target address. It is a psedo instruction for jalr x0, x1, imm, where imm is

0. Along with AUIPC instruction, where it stores the upper 20 bits of PC into a

register, jalr can be used to make long unconditional jumps to anywhere in the

program.

3.3 Running a RISC-V test

First of all, an assembly test code has to be build. Let us consider a simple assembly

test as shown below.

Fig. 3.1: An assembly test



Above shows the simple RISC-V test for beq instruction. RVTEST_CODE_BEGIN

indicates the start of assembly code section and RVTEST_CODE_END indicates the

end of it. TEST_PASSFAIL determines whether the test passed or failed. For some of

the tests, we need to store the data into memory of load data from memory into

registers, we need to add the data for these operations in RVTEST_DATA_BEGIN

section and it allocates the addresses for the data. All these sections and the codes for

their operations are defined in the riscv_test.h and test_macros.h files.

After building the test, we need to run it on a simulator to check whether the

test is passed in the core and we use spike simulator for the same. We need to

generate an elf file to run and test on the spike. Also, we generate disassembly file for

the test which contains the program counter value of each instruction, the

hexadecimal value of the instruction. We can run the elf file on spike and can check

whether it is passing or not. But to check whether it is passing on i-class core or not,

we need to generate a spike dump file which is generated through spike and a rtl

dump file which is generated through i-class core. Obviously, for the test to pass both

the dump files should be identical. To generate rtl dump, we use elf2hex which

The

commands to generate elf, disassembly, spike dump are shown below

Fig. 3.2: Commands and spike debug mode example







Chapter 4

COCOTB

CoCoTb is a coroutine cosimulation based test bench. It is a library in python and it is

implemented using the same. Coroutine is a python feature to implement

asynchronous interfaces and cosimulation is running python from an RTL simulator.

For running the test bench code on the rtl, we need a simulator. CoCoTb supports a

wide variety of simulators and for our designs we use verilator as the simulator.

4.1 Why CoCoTb ?

We know that system verilog with UVM is widely used in industry as

standard verification environment which is licensed while cocotb is open

source and completely free.

UVM has a huge library and is difficult to get started with, while

python is easy to learn.

Python has many inbuilt libraries whose features can be used to build a

test more comprehensively.

Python is more popular

4.2 Some features of CoCoTb

As mentioned earlier there are many features in cocotb which are written in python

which we can call directly while building a test.

4.2.1 Coroutine

Coroutine is a python feature that runs parallel while running a test. It runs

asynchronous with test. It is similar to the always block in verilog which executes as

long as the design runs. So, for example we have to design clock using the coroutine

decorator.

4.2.2 Yield

Yield keyword is used to make the simulation time to pass. I will explain this feature

with example in the next feature.



4.2.3 Timer

Timer is used to pass the simulation time for some amount of time. For example

waits for simulation time to pass for one nano second.

4.2.4 RisingEdge

RisingEdge is used to make simulator wait for rising edge of a signal. For example

4.2.5 FallingEdge

FallingEdge is used to make simulator wait for falling edge of a signal. For example

for the next falling edge occura

4.2.6 ClockCycles

ClockCycles is used to make simulator wait for several postive edge or negative edge

negative clock cycles.

4.3 Simple cocotb test

I will explain how to run a python test using simple full adder example. We need to

write a rtl code for full adder and a python test for it. To run this test we need to have

,top level module in rtl

command in terminal.

Fig. 4.1: verilog code for full adder



Fig. 4.2: Python test bench for full adder

Fig. 4.3: Makefile



Fig. 4.4: Simulated result

The above test is a simple test to get an idea of how to run a cocotb test and have not

used any of high level cocotb components like drivers or monitors. It gives an idea of

how to drive values to rtl signals,how to generate clock and how to use triggers like

Timer and RisingEdge.

4.4 Test bench architecture

To build a comprehensive test for large blocks of design, we need to use the features

of cocotb which makes it easy to build and maintain test. The figure below shows how

cocotb test works

Fig. 4.5: Cocotb test bench framework

DUT is design under test which is the rtl. Verilator is the simulator. We drive inputs

to the dut by means of cocotb test and it can the values in dut hierarchy and dut runs

on a standard simulator as shown above. Cocotb provides Verilog Procedural

Interface(VPI) between rtl simulator and python test



Fig. 4.6: Cocotb test bench architecture

4.4.1 Transaction

Transaction sequences the input values to the driver. We can call it as a sequencer

which sequentially sends inputs to driver. So when we want to drive inputs, we have

4.4.2 Driver

Driver is used to drive values to the inputs of the DUT. As explained above, sequence

of values to be driven will be written in transaction. The parameters of the driver class

contains all the interface signals of the design.

4.4.3 Monitor

Monitor is used to keep track of dut signals. Generally dut signals will have

corresponding enable signals, we have to provide a sampling condition inside the

monitor class such that a particular is to be monitored only when its enable signal

monitored

signals. And to monitor the signals itself, we need to write a coroutine inside the

monitor class which is responsible for, at what points in the simulation to call _recv

function and what transaction values to pass to be stored in the monitors receiving

queue.



4.4.4 DUT

As mentioned earlier, DUT is rtl specification of the design which may be verilog or

vhdl.

4.4.5 Reference model

It is a model which mimics the actual design outputs. In other words, the output signal

values of reference model and that of design should be exactly same. This is a good

place to explain how cocotb test flow works, first of all we drive input values to the

input signals of dut as specified in input transaction. Then the dut generates output

signals which is monitored by output monitor. But how do we know that the

generated output signals are correct ? This is where the reference model comes into

picture. So while driving inputs to the dut, these signals are monitored by input

monitor and we drive these inputs parallelly to the reference model. For example, if

we consider full adder we have to write code for sum and carry in reference model

and make sure that output through reference model is always correct. We get outputs

through design as well as reference model and they should match for the design to be

bug free.

4.4.6 Scoreboard

Scoreboard compares the outputs from design and reference model and fails the test if

both are not same.



Chapter 5

VERIFICATION

5.1 Verification of srt radix-4 divider

Srt radix4 divider performs signed and unsigned division operations for 32 bit and 64-

bit operands based on RISCV specification. It performs DIV, DIVU which are signed

and unsigned RV32 quotient operations and REM, REMU which are signed and

unsigned RV32 remainder operations. Similarly, these operations are named DIVW,

DIVUW, REMW, REMUW in RV64. The outputs are received after every 38 clock

cycles.

5.1.1 Interface of the design

Mainly, the interface consists of dividend, divisor, opcode, funct3,

enable for input signals, clock, reset as inputs. Result and enable signal for

result as output signals. And a flush input signal to flush the division

operation.

Opcode decides whether the operation is 32-bit (RV32) or 64-bit

(RV64). Funct3 is used to choose the type of operation whether it is

remainder or quotient.

5.1.2 Test plan

Test plan
id

Feature Sub
feature

Test plan
Design parameter

div4_1 Inputs 64 bits Randomize these
signals and check
the results.Do cross
coverage for corner

cases

ma_start_divisor,ma_start_dividend

div4_2 Input 4 bits Check for 32bit and
64bit operation

ma_start_opcode

div4_3 Input 3 bits Check the correct
operation is being

executed

ma_start_funct3

div4_4 Input 1 bit Should be driven
high before driving
inputs and monitor

EN_ma_start



inputs when it goes
high

div5_5 Model

output

65 bits Use model to
generate expected

output

expected_output

div5_5 DUT

output

65 bits Verify the
generated DUT

output and compare
with

expected_output.
Monitor when the

valid bit,
mav_result[65]
goes high.

mav_result

Table 5.1: Test plan of srt radix-4 divider

5.1.3 Verification strategy

Randomizations have been done for dividend and divisor and ran long

running tests and checked for bugs and collected coverage for divisor and

dividend.

Also, exclusive tests are written to verify the corner cases and collected

the cross coverage between dividend and divisor.

The opcode and funct3 are covered in individual tests.

Dividend and divisor

the values of dividend and divisor, instead I have run long running tests of

upto 500000 transactions and created bins for the entire range of inputs

and if one input value falls in that range of bin, then it said to be covered.

So, there is a need to check for corner cases and cover all of them. So,

exclusive tests are written for corner cases and collected cross coverage

between dividend and divisor.



5.1.4 Functional Coverage report

Fig. 5.1: Functional Coverage of srt radix-4 divider

The other two dividers are non restoring divider and srt radix-2 divider. The interface

of these two designs is pretty much the same as that of srt radix-4 divider. The output

is received after 67 clock cycles for non restoring divider and it is 66 clock cycles for

srt radix-2 divider. Same test plan and verification strategy as of srt radix-4 divider is

followed for verifying these two dividers.

5.2 Verification of 4 stage pipelined multiplier

Four stage pipelined multiplier implements 64bit multiplication based

on RISCV specifications. It has 4 RV32 operations, MULH

(signed*signed), MULHU (unsigned*unsigned), MULHSU

(signed*unsigned). For these operations the upper 64 bits are placed in



result. MUL operation, where operands can be signed or unsigned places

lower 64 bits in the result.

MULW is an RV64 operation, operands can be signed or unsigned. It

places lower 32bits in the result sign extended to 64bits. The first output is

received after 4 clock cycles and the next outputs are received

continuously at each clock cycle.

5.2.1 Interface of the design

It has a multiplier, multiplicand,word32 that differentiates between RV32 and RV64,

funct3 that decides the operation to be performed, enable input signal. It consists of

output valid signal and output multiplication result signal.

5.2.2 Test plan

Test
plan id

Feature Subfeature Testplan Design parameter

mul_1 Inputs 64 bits Randomize these
signals and check the
results. Do cross

coverage for corner
cases

send_in1,send_in2

mul_2 Input 1 bit Check for 32 bit or 64
bit operation

send_word32

mul_3 Input 3 bits Check the correct
operation is being

executed

send_funct3

mul_4 Enable
Input

1 bit Sample inputs when it
goes high.

EN_send

mul_5 Model
output

64bits Use developed reference
model to generate
expected output

expected_output



mul_6 Output
valid
bit

1 bit Sample DUT output
when it goes high

receive_fst

mul_7 DUT
output

64 bits Verify the generated
DUT output and

compare with expected
output using scoreboard

receive_snd

Table 5.2: Test plan of four stage pipelined multiplier

5.2.3 Verification strategy

Randomizations have been done for multiplier and multiplicand and ran long

running tests for each of the specified 5 operations. Coverage was collected

for multiplier and multiplicand.

Exclusive tests were written to verify corner cases in each of these operations

and collected cross coverage between multiplier and multiplicand. .

Funct3 is covered in each individual test for the operations.

the values of multiplier and multiplicand, instead I have run long running tests

of upto 500000 transactions and created bins for the entire range of inputs and

if one input value falls in that range of bin, then it said to be covered. So, there

is a need to check for corner cases and cover all of them. So, exclusive tests

are written for corner cases and collected cross coverage between multiplier

and multiplicand.



5.2.4 Functional Coverage report

Fig. 5.2: Functional Coverage of four stage pipelined multiplier

5.3 Code Coverage report

Code coverage is a software testing measure that determines the number of lines of

code that are successfully validated throughout a test procedure, which aids in

determining how thoroughly a software is tested. Different tests are written to cover

Below are the HDL code coverage numbers for the multiplier and divider blocks.

Fig. 5.3: Code coverage for non-restoring divider

Fig. 5.4: Code coverage for srt radix-2 divider



Fig. 5.5: Code coverage for srt radix-4 divider

Fig. 5.6: Code coverage for four stage pipelined multiplier

5.4 Verification of RISC-V branch instructions

This is a branch instructions verification of i-class core and all the operations are done

by loading and storing in registers. In RISC-V a register is a 32 bit or 64 bit memory.

For example, we cannot directly multiply two numbers, instead we should load the

operands into two registers and store in one of those two registers or any other

register. Unlike in mbox verification which is a block verification, there are rtl signals

for the operands, this is a core verification and all verify here is whether the registers

are taking the correct values, introducing hazards like read after write(RAW), write

after read(WAR) etc,. Branch instructions have been verified by taking some

scenarios and introducing them in the tests.

5.4.1 Test plan

All the branch instructions are verified by means of adding scenarios to the tests as

below

All possible rs1 registers are used.

All possible rs2 registers are used.

Imm values are positive and negative.

Add back to back branches. One forward branch and one backward branch.

Add consecutive branches. One forward branch and one backward branch.

Add exceptions.



5.4.2 Verification strategy

First of all, we need to use all possible 32 registers as rs1 and rs2. It is not possible to

use them all in one test since we need some registers to load the values of rs1 and rs2.

The input values for rs1 and rs2 which takes part in branch instruction are loaded in

the data section of test. But, we need to run the test for not just one case, but many test

cases. So, we need a register to store the test case count and the execution of the test

stops when its value become zero. Therefore, if we add 10 branches to a test and add

100 test cases, then the test will be running for 1000 branches with different values for

rs1 and rs2 in each cycle.

For each branch instruction, six tests have been developed. Each test has six

registers as rs1 and rs2, so we need six tests in total to cover all the registers for rs1

and rs2. Further, six registers are needed to store the values of rs1 and rs2 and two

registers to work on exceptions. So, nine registers are needed to build the test. As said

earlier, six registers take part in branching as rs1 and rs2. Therefore another 15

registers are available to work on adding random instructions which are used as

source registers in random instructions between branch instructions. And, no rs1 and

rs2 registers have been used as destination registers, since it makes easy to keep track

on tests and also reduces the risk of infinite branching. It is optimal way to build the

tests.

In each test of a branch instruction, for example if we take one test of bge, it

has got 1299 bge instructions. Of which some are back to branches and some are

consecutive branches, it includes both forward and backward branches. Consecutive

branches has rs1 and rs2 reversed i.e. if one instruction has x1 as rs1 and x2 as rs2, the

immediate consecutive branch has x2 as rs1 and x1 as rs2, out of which one is

forward branch and the other is backward branch. 150 test cases have been added to

the tests.



Chapter 6

VERIFICATION CHALLENGES AND BUGS

One of the most successful ways to deliver high-quality designs that work is to avoid

bugs at the design capture stage. Of course, complexity is your adversary, and design

faults are unavoidable, but the best way to avoid costly high-level design/architecture

problems is to validate the design architecture before RTL coding.For finding the

bugs in the design we may employ several kinds of techniques or practices like

building exclusive tests for verifying corner cases, constrained randomization of

inputs, exploring design discontinuities etc.

While building the tests for RISC-V branch instructions, since more than 1000

branch instructions have been added, the challenge lies in keeping track of back to

back branch instructions. Many back to back and consecutive branches are added and

we have to be extra careful while working with registers in back to back branches.

Because, if we add different rs1 and rs2, it forms a infinite branch and test keeps on

executing. It is such that the size of dump files increases rapidly and it is good to keep

a timeout for a test before proceeding to run the entire test. So, in a back to back

branches with one forward and one backward branch, both branch conditions should

be either satisfied or dissatisfied. It seems simple but one should be careful while

developing thousands of branches. In other words, one should be careful while

operating with registers in branch instructions. The tests have been run for all the

branch instructions and no bugs were found currently.

While building tests for multiplier and divider blocks or any other

block level verification, one has to make sure that the reference model should be

accurate and should not be biased towards the design. Of all the tests that were run on

multiplier and divider blocks, all of them were passed except one case in srt radix-2

divider. When dividend is -263 and dividend is 1, the output from design is coming not

as expected while this is passing while running directed test and showing correct

value in waveforms and this is a case to look at.



Chapter 7

SIMULATED RESULTS

Fig. 7.1: Simulated result of non-restoring divider

Fig. 7.2: Simulated result of srt radix-2 divider



Fig. 7.3: Simulated result of srt radix-4 divider

Fig. 7.4: Simulated result of four stage pipelined multiplier



Fig. 7.5: Results of RISC-V branch instructions



Chapter 8

CONCLUSION

Functional verification has been done for multiplier, divider blocks and branch

instructions of i-class core. Cocotb and python has been used for functional

verification of multiplier and divider blocks which is not an industry standard, as of

now. But it is a powerful alternative for UVM and system verilog without

compromising on quality of verification. Reference models have been created for

these blocks to compare the output from models and DUT output. Many

randomizations has been added to input signals to ensure good coverage. Spike, a

RISC-V ISA simulator has been used to simulate the assembly tests of RISC-V. The

spike dump from spike and rtl dump from design have been compared to know

whether the test was passed or not.

8.1 Future Work

For RISC-V branch tests, many number of branch instructions has been added, many

of the instruction has repetitive rs1 and rs2 registers. In each test, 6 registers were

added as rs1 and rs2 i.e. 5 tests to cover all the registers. But in each test, we can

make rs1 and rs2 more random and decrease the repetitions by taking care of back to

back and consecutive branches. More and more test cases can de added to make the

tests very long running. Also a test for jalr has to be added. While in multiplier and

divider blocks verification we can add more randomizations to the input signals.
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