
I

PERFORMANCE ENHANCEMENTS FOR
 FLOATING POINT MODULE FOR
 SHAKTI PROCESSOR

A Project Report

Submitted by

PRABHANSH PRATAP (EE19M082)

In partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF

 ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2021

II

APPROVAL SHEET

This thesis entitled PERFORMANCE ENHANCEMENTS FOR FLOATING POINT MODULE

FOR SHAKTI PROCESSOR by Prabhansh Pratap is approved for the Degree of Master of

Technology, Electrical Engineering.

 Examiners:

Supervisor:

Prof. V. Kamakoti
 Dept. of Computer Science & Engineering,

 IIT Madras, 600036.

Date: _____________________________

Place: _____________________________

III

Certificate

This is to certify that the thesis titled PERFORMANCE ENHANCEMENTS FOR

FLOATING POINT MODULE FOR SHAKTI PROCESSOR, submitted by

Prabhansh Pratap to the Indian Institute of Technology, Madras, for the award

of the degree of Master of Technology is a bonafide record of the research work

done by him under my supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any

degree or diploma.

Prof. V. Kamakoti

Project Guide

Professor

Dept. of Computer Science and Engineering

IIT Madras, 600036

Place: Chennai

Date: June 23, 2021

IV

 DECLARATIONS

I declare that this project work titled "PERFORMANCE ENHANCEMENTS FOR

FLOATING POINT MODULE FOR SHAKTI PROCESSOR" submitted in partial fulfilment

for the award of the degree of Master of Technology is a record of original research work

carried out by me under the supervision of Prof. V. Kamakoti, and has not formed the basis

for the award of any degree, diploma, associateship, fellowship, or other titles in this or any

other Institution or University of higher learning. In keeping with the ethical practice in

reporting scientific information, due acknowledgments have been made wherever the

findings of others have been cited.

Prabhansh Pratap

M. Tech

Dept. of Electrical Engineering

IIT Madras, 600036

Date: June 23, 2021

V

ACKNOWLEDGMENTS

 First and foremost, I would like to express my deepest gratitude

to my dear guide Prof. V. Kamakoti for allowing me to undertake research under

him. I would like to express my deepest appreciation for his suggestions and

motivation.

I convey my sincere gratitude to Dr. Nitya Ranganathan for all her suggestions,

patience and support during the entire course of the project. Throughout the

course of project she offered immense help and provided valuable suggestions

which helped me.

 My special thanks go to Shalender Kumar for support during the project work.

 I would like to extend my appreciation to all my friends for their help and

 support during project work.

Prabhansh Pratap

IITM, Chennai.

VI

 ABSTRACT

KEYWORDS: SHAKTI class of processors; Modules; FPU; TestFloat

The SHAKTI I-class processor is an open-source processor, based on the RISC-V

ISA, developed using BSV (Bluespec System Verilog). I-Class is a 64bit superscalar

out-of-order (OoO) processor. FPU of the I-CLASS processor is not fully designed.

Some modules need optimization because they don’t satisfy frequency constraints.

Floating Point division is an integral part of FPU and in this project work it is supposed

to design using the SRT Radix-4 division algorithm for mantissa part of Floating point

number .

So we want to use here integer divider for mantissa part of Floating point operands.

 Integer divider is already developed. Modules were tested against few directed test

cases. While designing FPU’s main challenging test is some modules are single cycle

and some are multi-cycles. So it was very hard to use them without any conflict.

In this work, we are working on to develop Floating point divider using Bluespec, the

Floating Point Unit for I-class, and perform verification of all modules of the FBOX. This

Floating point divider should work for both single precision and double precision Floating

point. According to the operation, it calls the appropriate module. If some modules need

only one operand then the rest of the two operands are set to zero in the input. There might

be conflict while calling modules from FPU because modules take the variable number of

clock cycles. So FPU should get instructions in a conflict-free manner. For verification

testbench modules are written BSV. Testcases for verification can be generated by

TestFloat.

VII

TABLE OF CONTENTS

DECLARATIONS IV

ACKNOWLEDGMENTS V

ABSTRACT VI

LIST OF FIGURES IX

LIST OF TABLES X

1 INTRODUCTION 1

 1.1 Processors . 1

 1.1.1 I-class: . 2

 1.2 Motivation . 2

 1.3 Organization of the Report 3

2 BACKGROUND 4

 2.1 Integer Divider . 4

 2.2 FBOX verification . 5

 2.3 FPU for SHAKTI I-CLASS . 5

 2.4 Floating point Representation 6

3 IMPLEMENTATION 8

 3.1 Integer Divider . 8

 3.1.1 Non-restoring Divider 8

 3.1.2 SRT radix-2 . 11

 3.1.3 SRT radix-4 . 14

 3.2 Floating point Divider ……… 17

 3.2.1 Writing BSV testbench 17

VIII

 3.3 FPU for i-class . 18

4 CONCLUSION AND FUTURE SCOPE 19

 4.1 Summary of Work Done . 19

A TOOL INSTALLATION 20

 A.1 Installation of Bluespec Compiler 20

 A.2 Setup for test cases generation 21

IX

LIST OF FIGURES

3.1 Flow diagram . 10

3.2 Quotient selection logic [1] . 11

3.3 Quotient selection table [2] . 14

3.4 FPU................................. 18

X

LIST OF TABLES

1.1 RISC-VISA.............................. 2

1.2 IEEE-754 Floating point Representation 7

1

CHAPTER 1

INTRODUCTION

SHAKTI is an open-source initiative based on RISC-V ISA to build open-

source production grade processors, complete System on Chips (SoCs),

development boards.

Over the past few years, the work in the IEEE floating-point standard that needs a

full accuracy division has developed a great curiosity in the fast division algorithms that

are appropriate in VLSI microprocessor circuits. The application of these high-speed

division algorithms is in computer graphics applications, cryptography, and digital sig-

nal processing. The main problem with high-speed division has been that every bit of

the quotient is found out by the carrying out a bit from a full subtraction or addition

carry out on the n bit divisor and partial remainder conventionally. The n bit divider has

a complexity of O(n2). Verification is a process carried out to find out bugs in FBOX

and fix them if any. As we know a buggy module is useless. Test cases are generated

by TestFloat by using QEMU as an emulator. FPU accepts a decoded instruction and

based on operation return the result.

This chapter explains the SHAKTI I-class processor and the Floating Point Unit,

motivation, the contribution of this work, and the organization of the rest of the report.

1.1 Processors

SHAKTI class of processors have been broadly categorized into “Base

Processors”, “Multi-Core Processors” and “Experimental Processors”. The “Base

Processors” category consists of E-class, C-class, and I-class processors.

The processor design is open-sourced under the BSD-3 License. A brief

overview of the I-CLASS of the processor is described below.

2

1.1.1 I-class:

The I-class is a 64-bit processor that targets the computing, mobile, storage, and

net-working platforms. Its features include out-of-order execution, multithreading,

aggressive branch prediction, non-blocking caches, and deep pipeline stages. The

operational clock frequency of this processor is 1.5-2.5 GHz. SHAKTI I-CLASS not yet

fabricated. Some issues are arising like timing constraints in FPU, functional

correctness of some modules, a large number of clock cycles for some modules. Some

of these issues are resolved and some are yet to be resolved.

I Base Integer Instruction Set

M Standard Extension for Integer Multiplication and Division

A Standard Extension for Atomic Instructions

 F Standard Extension for Single-Precision Floating-Point

D Standard Extension for Double-Precision Floating-Point

C Standard Extension for Compressed Instructions

Table 1.1: RISC-V ISA extensions in SHAKTI

1.2 Motivation

The Floating Point Unit is a very important part of any processor. SHAKTI I-

CLASS is using FBOX for Floating-Point operations. So main motto of this

project has been enhancing the performance during Floating point operation.

• Optimize modules so that the critical path takes lesser time and high

frequency can be achieved.

• Working on improving the latency/frequency of Floating Point divider

• Working on improving the latency/frequency of Floating Point square

root

• Rewriting simpler modules to increase performance, timing analysis and

showing improvements on latency and frequency compared to the

current modules in Fbox.

3

1.3 Organization of the Report

The rest of the report is organized as follows. Chapter 2 states the background, where

integer divider, Floating point presentation and FBOX are explained. Chapter 3

presents the details of the implementation of the integer divider, process of floating point

division and FPU DESIGN. Chapter 4 concludes my work with possible future work.

4

CHAPTER 2

BACKGROUND

In this chapter, we explore the necessary background of implementation. As

we are using integer division algorithm for mantissa, which is the main operation

of Floating point division .So here we understand the present implementation of

integer divider (in section 2.1) and verification of FBOX (in section2.2). Later we

will discuss about Floating point division representation and then will discuss FPU

for SHAKTI I-CLASS processor (in sectoin2.3).

2.1 Integer Divider

Integer divider takes two input and produce one output. Output of divider

may be defined as: D = M*q + R. Here

• D is Dividend

• M is divisor

• q is quotient

• and R is remainder

And R should satisfy following condition 0 R < M.

The division is an iterative process in each iteration if the dividend is greater than

the divisor then it is subtracted from the dividend. And iterations stop when R < M. In

each iteration of division one quotient digit is decided. In the implementation section,

we will discuss the implementation of integer division algorithms.

5

2.2 FBOX verification

FBOX have modules to perform floating-point operations. A module, like an object in

Object-Oriented languages, has a well-defined interface. FBOX modules are not fully

verified for functional correctness. Some modules have bugs. At present FBOX

modules are used in the SHAKTI I-CLASS processor. Later after full

verification, they may be used in other classes as well. Verification involves the

functional correctness of the module. Verification of FBOX is done by writing

testbench modules in BSV and test cases are generated by TestFloat.

2.3 FPU for SHAKTI I-CLASS

In the early days’ none of the processors had a built-in floating-point capability.

If you wanted floating-point processing, you emulated it with software. Needless to

say, this was slow and it was difficult for the average programmer! Eventually, it

was decided that there should be hardware floating-point processing. So it was

decided to build a co-processor (also called a floating-point unit, or FPU) to do the

floating-point instructions. For the SHAKTI I-CLASS processor, an FPU unit is

required that performs floating-point operations.

6

2.4 Floating Point Representation

In A number representation specifies some way of encoding a number usually a string of

digits. Floating point representation is similar to scientific notation. Logically, a floating-

point number consists of:

• A signed (meaning positive or negative) digit string of a given length in a given base

(or radix). This digit string is referred to as the significand mantissa, or coefficient.

The length of the significand determines the precision to which numbers can be

represented. The radix point position is assumed always to be somewhere within the

significand—often just after or just before the most significant digit, or to the right of

the rightmost (least significant) digit. This article generally follows the convention that

the radix point is set just after the most significant (leftmost) digit.

• A signed integer exponent (also referred to as the characteristic, or scale), which

modifies the magnitude of the number.

To derive the value of floating-point number, the signified is multiplied by the base raised

to the power of exponent, equivalent to shifting the radix point from its implied position by

a number of places equal to the value of the exponent to the right if the exponent is positive

or to the left if the exponent is negative.

 A floating-point number is a rational number, because it can be

represented as one integer divided by another. The way in which the significand (including

its sign) and expected are stored in a computer is implementation dependent.

 IEEE 754: Floating Point in modern computers

In The IEEE standardized the computer representation for binary floating-point

numbers in IEEE-754 in 1985. This first standard is followed by almost all modern

machines. It was revised in 2008.

 Here we are using two widely used formats for Floating point divider.

• Single precision (binary 32), usually used to represent the float type in

the C language. This is binary format that occupies 32 bits (4 bytes) and

its significand has a precision of 24 bits (about 7 decimals digits).

7

• Double precision (binary 64), usually used to represent the double type

in the C language family. This is a binary format that occupies 64 bits (8

bytes) and its significand has a precision of 53 bits (about 16 decimal

digits).

Type Sign Exponent
Significand

field
Total
bits

Exponent
bias

Bits
precision

Half (IEEE
754-2008)

1 5 10 16 15 11

Single 1 8 23 32 127 24

Double 1 11 52 64 1023 53

 Table: 1.2 IEEE-754 Floating point representation

 While the exponent can be positive or negative, in binary formats it is stored as

an unsigned number that has a fixed "bias" added to it. Values of all 0s in this field are

reserved for the zeros and subnormal numbers; values of all 1s are reserved for the

infinities and NaNs. The exponent range for normalized numbers is [−126, 127] for single

precision, [−1022, 1023] for double. Normalized numbers exclude subnormal values,

zeros, infinities, and NaNs.

https://en.wikipedia.org/wiki/Half_precision
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/Single_precision
https://en.wikipedia.org/wiki/Double_precision

8

 CHAPTER 3

IMPLEMENTATION

In this section, we will understand the implementation of three present

integer dividers (Non-restoring, SRT radix-2, and SRT radix-4), division

algorithms of these methods. So that the best of it can be used for floating point

division (for mantissa part of operands). Then the Floating point division

process using BSV(Bluespec System Verilog) with testbench related to it Then

we will look at the FPU of I-class.

3.1 Integer Divider

As we know integer divider takes two operands (dividend and divisor) and

returns either quotient or remainder. The result is quotient or the remainder

depends on the type of instruction. Input is always 64bit number and the result

is also 64bit number. Dividers are implemented using BSV.

3.1.1 Non-restoring Divider

It is the simplest algorithm for division. It generates one quotient bit at a time

based on a sign bit of partial remainder. Following is an algorithm for non-restoring

division:

 Flow Diagram

 Figure 3.1 shows flow diagram of non-restoring division. Diagram shows there

are only two comparison operation, one shift operation and one add/sub operation.

Register ’A’ contains final remainder, if ’A’ is negative then make it positive by adding

divisor after all steps.

 Implementation:

• 1st clock cycle

9

Algorithm 1 Non Restoring Division Algorithm

Input: Dividend (64bit integer number), Divisor (64bit integer number), opcode

and funct3
Output: Quotient or Remainder (64bit integer number)

1: procedure START
2: Initialization : Q = Dividend, M = Divisor, A = 0, n = number of bits in dividend

3: while N > 0 do
4: if A < 0 then
5: Shift left AQ.
6: A=A+M
7: else
8: Shift left AQ.
9: A=A-M

10: end if
11: if A < 0 then
12: Q[0] = 0
13: else
14: Q[1] = 1
15: end if
16: N=N-1
17: end while
18: if A < 0 then
19: A=A+M
20: end if
21: Register Q contain quotient and A contain remainder
22: end procedure

– Put the dividend and divisor into the registers for next clock cycle.

– Name of operation contains two information: 1st type of division

(signed or unsigned) and 2nd what to return (quotient or

remainder). Put the both information into the registers.

– If inputs are 32 bits operands then sign bits are padded.

– Special case (divide by zero, sign overflow...) checked.

• 2nd clock cycle

– In 2nd clock cycle if division is signed and any operand is negative

then its 2’s complement is taken. After their complement, put the

dividend and divisor into the registers so later cycles can use them.

For signed division sign of the result decided in the same clock cycle.

• Next 65 clock cycles

10

 Figure 3.1: Flow diagram

– Step 2 to 5 of the non-restoring algorithm are performed. In each

clock cycle, partial remainder and divisor are taken from register

manipulated and put back into the registers.

• Last clock cycle

– Returns result. According to the type of instruction, the result is decided. It

may be quotient or remainder and further negative or positive.

– If the result is negative, then 2’s complement is taken.

11

3.1.2 SRT radix-2

Idea:

In SRT radix-2 divider initially start with dividend which is treated as partial remainder.

And in each iteration, one quotient bit is generated. Choose quotient bit such that partial

remainder remains in some particular range (range depends on base).

Quotient digit selection:

s(j−1) - partial remainder at (j − 1)th step

s(j) - partial remainder at jth step

q-j - quotient digit at jth step. The quotient selection logic diagram shows quotient digit

 Figure 3.2: Quotient selection logic[1]

Selection for fractional numbers, but the same logic can be applied for integer division.

In SRT radix-2 divider in each iteration quotient bit is selected based on two MSBs.

If two MSBs are 10 at jth step q-j = -1.

If two MSBs are 01 at jth step q-j = 1.

If two MSBs are 11 or 00 at jth step q-j = 0.

12

Implementation:

This divider takes the variable number of clock cycles. The number of clock cycles

depends on the difference between the number of leading zeros in divisor and dividend. If

the difference is negative, then it takes 2 clock cycles only, because the dividend becomes

less than the divisor. For using this divider in the pipeline processor, one wrapper is added

so that every division takes the fixed number of clock cycles.

• 1st clock cycle:

– Put the dividend and divisor into registers for the next clock cycle.

Algorithm 2 SRT radix-2 Algorithm

Input: Dividend (64bit integer number), Divisor (64bit integer number), opcode

and funct3
Output: Quotient or Remainder (64bit integer number)

1: procedure START
2: Initialization: S = dividend, d = divisor, q_pos = 0, q_neg = 0, n = number

of bits in dividend.
3: while n > 0 do
4: Generate q(the quotient bit)
5: S = 2*S - d*q
6: shift left q_pos and q_neg by one
7: if q == -1 then
8: q_neg = q_neg + 1
9: else

10: if q == 0 then

11: q_pos = q_pos + 1
12: end if
13: end if
14: n = n-1
15: q_pos = q_pos + 1
16: end while
17: S contain remainder and Quotient = (q_pos - q_neg)
18: end procedure

– The name of operation contains two information 1st type of division

(signed or unsigned) and 2nd what to return (quotient or

remainder). Put both into the registers.

– If inputs are 32 bits operands then sign bits are padded.

– Special case (divide by zero, sign overflow.) checked.

13

• 2nd clock cycle:

– For signed division complement of negative number is taken.

– Sign information put into the register so that while returning, the

result for negative complement can be taken of the result.

– Initially dividend considered as partial remainder. Assume it is s0

initially and at later cycles it is sj in jth cycle.

• Next 63 clock cycles

– In next 63 clock cycles one quotient bit is decided in each cycle.

And quotient bit may be {−1, 0, 1}. Assume this bit is q-j.

– For next cycle (j+1) partial remainder becomes sj+1=sj*2 - q-j*divisor.

• Last cycle

– According to the type of instruction, the remainder or quotient is returned.

– For signed division, if the result is negative, then its 2’s complement is taken.

14

3.1.3 SRT radix-4

Idea:

The idea of SRT radix-4 is similar to SRT radix-2 the only difference is here 2

bits are generated in each cycle. More number of quotient bits are generated so

that more number of bits are involved in quotient digit selection logic.

Quotient selection table

In table for Figure 3.3 ’b’ is integer value of four MSBs of divisor, ’P’ is integer

value of six MSBs of partial remainder and q is quotient digit.

 Figure 3.3: Quotient selection table [2]

15

Implementation:

• 1st clock cycle

– Put the dividend and divisor into the registers for next clock cycle.

– Name of the operation contains two information: first, type of

division (signed or unsigned) and second, what to return (quotient

or remainder). Both information are put into registers.

– If the inputs are 32 bits operands then the sign bits are padded.

– Special case (divide by zero, sign overflow.) checked.

– Take two 64 bits register rg_q_pos and rg_q_neg to hold quotient
digits.

• 2nd clock cycle
 – For signed division if any input is negative then take its 2’s complement.

Algorithm 3 SRT radix-4 Algorithm

Input: Dividend (64bit integer number), Divisor (64bit integer number), opcode

and funct3
Output: Quotient or Remainder (64bit integer number)

1: procedure START
2: Initialization (rg_p_a = dividend, d = divisor, rg_q_pos, rg_q_neg, n = 0).

rg_p_a and d are both 64 bits registers.

3: Left shift d by 64.
4: Count number of leading zeros in divisor and put in to c.
5: Left shift rg_p_a and d by c.
6: while n < 32 do
7: Select quotient digit q by using quotient digit selection table.
8: Left shift rg_p_a, rg_q_pos and rg_q_neg by 2.
9: rg_p_a = rg_p_a - q * d.

10: if q < 0 then
11: rg_q_neg = rg_q_neg + a
12: else
13: if q > 0 then

14: rg_q_pos = rg_q_pos + q
15: end if
16: end if
17: n = n+1.
18: end while
19: (rg_q_pos - rg_q_neg) have quotient. Left shift rg_p_a by c and it will be

remainder.
20: end procedure

16

– Sign of the final answer decided.

• 3rd clock cycle

– Count number of leading zeros in the divisor and put into some register.

• 4th clock cycle

– Take a register rg_p_a of size double of dividend length, and put

dividend into it. rg_p_a contain partial remainder.

– Left shift rg_p_a and divisor by number of leading zero count of divisor.

• Next 32 cycles

– Left shift q_pos, q_neg and rg_p_a by 2;

– Quotient digit is decided by using table of Figure 3(assume it q). If

quotient digit is negative then rg_q_neg = rg_q_neg + q. It it is

positive then rg_q_neg = rg_q_neg + q.

– rg_p_a = rg_p_a - divisor * q.

• Last 3 clock cycles

– Shift back partial remainder.

– If result is negative then take it’s 2’s complement.

Basically radix-4 takes 32 clock cycles but some initial initial and final work

has to be done. So it takes to 39 clock cycles.

17

 3.2 Floating Point Divider

As we know integer divider takes two operands (dividend and divisor) and

returns either quotient or remainder. The result is quotient or the remainder

depends on the type of instruction. This same algorithm can be used for

floating-point divider. As SRT radix-4 method is fastest among all three integer

divider (Non-restoring, SRT radix-2, and SRT radix-4) described here. So the

SRT Radix-4 method has been used for the mantissa of the given two

operands.

 Which is the main part of floating-point division, then taking the difference

of exponent of the operands provides the exponent of quotient and XNOR the

sign bit of the operands gives sign bit of the resultant quotient.

 3.2.1 Writing BSV testbench

Testbench have mainly three things: reading input from testcase file, calling

appropriate module and check whether module output is same as expected

output or not. For writing BSV testbench module we have to understand

interface of modules. Interface of modules of FBOX is as follow:

– Input

op1 : 32bit for single precision and 64bit for double precision of type

Floating Point

op2 : 32bit for single precision and 64bit for double precision of type

Floating Point

Rounding mode: 3bit for founding mode

– Output valid: one bit information for output is valid or invalid.

value: 32bit for single precision and 64bit for double precision result of

 Type Floating Point

ex: three bit information for exception flags.

18

 3.3 FPU for I-class

Stands for "Floating Point Unit." An FPU is a processor or part of a processor that

performs floating-point calculations. An FPU provides a faster way to handle

calculations with non-integer numbers. Any mathematical operation, such as addition,

subtraction, multiplication, or division can be performed by FPU. FPU for SHAKTI I-

CLASS is shown in figure 3.4. FPU calls modules of FBOX. Modules of FBOX can

execute operations in a pipelining manner, while FPU is processing some input at that

time it can accept new input. Modules takes the different number of clock cycles. So

before feeding instruction to FPU, there must be proper scheduling, because there

may be a conflict when results are produced.

• Input for FPU: op1, op2, and op3 are three input operands for computation. ’op-

erations’ is of type Fpu_type it is a simple operation. ’funct3’ is rounding mode

.’use_data’ is of type Usr_data, it has current_rob_id, dest_tag, and pc.

• Output: FPU provides results in each clock cycle. If some valid result is

available then return it with the valid bit as ’1’ otherwise return ’0’ with the

valid bit as ’0’. ’ans’ is actual output. ’flags’ are exceptional flags.

’use_data’ is the same thing as input.

 Figure 3.4: FPU

19

CHAPTER 4

CONCLUSION AND FUTURE SCOPE

4.1 Summary of Work Done

SHAKTI is an open-source work based on RISC-V ISA. This work revolves around

Floating Point operations. I have studied the three integer dividers non-restoring, SRT

radix-2, and SRT radix-4 . Among all three dividers, SRT radix-4 takes fewer clock cycles

but its implementation is difficult. As SRT Radix-4 integer divider is the fastest among all

the three divider, So using the SRT radix-4 integer divider algorithm for division of mantissa

of Floating-point operands using the BSV. Presently it has some bugs and we are working

on it. The Floating-point divider can be modified for the square root of floating point in

future.

20

 APPENDIX

TOOL INSTALLATION

A.1 Installation of Bluespec Compiler

An open-source version of the Bluespec Compiler is available online [4]. By

in-stalling the open-source Bluespec compiler, one will be able to generate the

synthesiz-able Verilog compatible with FPGA targets.

• Open a new terminal and move to the Home folder. Copy-paste the

below com-mands in the terminal and press enter.

sudo apt install ghc libghc-regex-compat-dev libghc-syb-

dev iverilog

sudo apt install libghc-old-time-dev libfontconfig1-dev libx11-dev

sudo apt install libghc-split-dev libxft-dev flex bison libxft-dev

sudo apt install tcl-dev tk-dev libfontconfig1-dev libx11-dev gperf

sudo apt install itcl3-dev itk3-dev autoconf git

• Download the repository

git clone --recursive https://github.com/B-Lang-

org/bsc cd bsc

make PREFIX=/path/to/installation/folder

• After you have done the above steps, add the path you have installed the bsc

compiler to your $PATH in the bashrc
˙
 or cshrc˙

export PATH=$PATH:/path/to/installation/folder/bin

21

A.2 Setup for test cases generation

TestFloat and QEMU Both are available on SHAKTI tools.

mkdir /sw_tools

sudo mount 192.168.1.112:/home/rise/sw_tools

/sw_tools source /sw_tools/qemu.sh

sudo mount 192.168.1.11:/scratch/gitlab-builds/releases /scratch/bb-

releases/ cqemu-riscv64 /scratch/bb-releases/common-

verif/testfloat/testfloat_gen [round-ing_mode] [function] > input.txt

22

REFERENCES

[1] Behrooz Parhami. Computer Arithmetic.

[2] David Goldberg, Xerox Palo Alto Research Centre. Computer Arithmetic.

Appendix J.

[3] SHAKTI Processor Program Open-source Processor Development

Ecosystem, https://shakti.org.in.

[4] Bluespec Compiler, https://github.com/B-Lang-org/bsc.

https://shakti.org.in/
https://github.com/B-Lang-org/bsc

23

