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                                                                             ABSTRACT 

 
 

 

KEYWORDS: SHAKTI class of processors; Modules; FPU; TestFloat 

 

The SHAKTI I-class processor is an open-source processor, based on the RISC-V 

ISA, developed using BSV (Bluespec System Verilog). I-Class is a 64bit superscalar 

out-of-order (OoO) processor. FPU of the I-CLASS processor is not fully designed. 

Some modules need optimization because they don’t satisfy frequency constraints.  

Floating Point division is an integral part of  FPU and in this project work it  is supposed 

to design using the SRT Radix-4 division algorithm for mantissa part of Floating point 

number . 

So we want to use here integer divider for mantissa part of Floating point operands. 

 Integer divider is already developed. Modules were tested against few directed test 

cases. While designing FPU’s main challenging test is some modules are single cycle 

and some are multi-cycles. So it was very hard to use them without any conflict. 

 
In this work, we are working on to develop Floating point divider using Bluespec, the 

Floating Point Unit for I-class, and perform verification of all modules of the FBOX. This 

Floating point divider should work for both single precision and double precision Floating 

point.   According to the operation, it calls the appropriate module. If some modules need 

only one operand then the rest of the two operands are set to zero in the input. There might 

be conflict while calling modules from FPU because modules take the variable number of 

clock cycles. So FPU should get instructions in a conflict-free manner. For verification 

testbench modules are written BSV. Testcases for verification can be generated by 

TestFloat. 
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CHAPTER 1 

 
 
 

 

INTRODUCTION 

 
 
 

 

SHAKTI  is an open-source initiative based on RISC-V ISA to build open-

source production grade processors, complete System on Chips (SoCs), 

development boards. 

 

Over the past few years, the work in the IEEE floating-point standard that needs a 

full accuracy division has developed a great curiosity in the fast division algorithms that 

are appropriate in VLSI microprocessor circuits. The application of these high-speed 

division algorithms is in computer graphics applications, cryptography, and digital sig-

nal processing. The main problem with high-speed division has been that every bit of 

the quotient is found out by the carrying out a bit from a full subtraction or addition 

carry out on the n bit divisor and partial remainder conventionally. The n bit divider has 

a complexity of O(n2). Verification is a process carried out to find out bugs in FBOX 

and fix them if any. As we know a buggy module is useless. Test cases are generated 

by TestFloat by using QEMU as an emulator. FPU accepts a decoded instruction and 

based on operation return the result. 

 

This chapter explains the SHAKTI I-class processor and the Floating Point Unit, 

motivation, the contribution of this work, and the organization of the rest of the report. 

 

 

1.1 Processors 

 

 

SHAKTI class of processors have been broadly categorized into “Base 

Processors”, “Multi-Core Processors” and “Experimental Processors”. The “Base 

Processors” category consists of E-class, C-class, and I-class processors. 

 

The processor design is open-sourced under the BSD-3 License. A brief 

overview of the I-CLASS of the processor is described below. 
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1.1.1 I-class: 
 

 

The I-class is a 64-bit processor that targets the computing, mobile, storage, and 

net-working platforms. Its features include out-of-order execution, multithreading, 

aggressive branch prediction, non-blocking caches, and deep pipeline stages. The 

operational clock frequency of this processor is 1.5-2.5 GHz. SHAKTI I-CLASS not yet 

fabricated. Some issues are arising like timing constraints in FPU, functional 

correctness of some modules, a large number of clock cycles for some modules. Some 

of these issues are resolved and some are yet to be resolved. 
 
 

I Base Integer Instruction Set 
 

M   Standard Extension for Integer Multiplication and Division 
  

A Standard Extension for Atomic Instructions 
 

                           F     Standard Extension for Single-Precision Floating-Point 
 

D      Standard Extension for Double-Precision Floating-Point 
 

C Standard Extension for Compressed Instructions 

Table 1.1: RISC-V ISA extensions in SHAKTI 

 

 

1.2 Motivation 

 

 

The Floating Point Unit is a very important part of any processor. SHAKTI I-

CLASS is using FBOX for Floating-Point operations. So main motto of this 

project has been enhancing the performance during Floating point operation. 

 

• Optimize modules so that the critical path takes lesser time and high 

frequency can be achieved. 

• Working on improving the latency/frequency of Floating Point divider 

• Working on improving the latency/frequency of Floating Point square 

root 

• Rewriting simpler modules to increase performance, timing analysis and 

showing improvements on latency and frequency compared to the 

current modules in Fbox. 
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1.3 Organization of the Report 

 

 

The rest of the report is organized as follows. Chapter 2 states the background, where 

integer divider, Floating point presentation and FBOX are explained. Chapter 3 

presents the details of the implementation of the integer divider, process of floating point 

division and FPU DESIGN. Chapter 4 concludes my work with possible future work. 
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CHAPTER 2 

 
  
 

 

BACKGROUND 

 
 
 

 

In this chapter, we explore the necessary background of implementation. As 

we are using integer division algorithm for mantissa, which is the main operation 

of Floating point division .So here we understand the present implementation of 

integer divider (in section 2.1) and verification of FBOX (in section2.2). Later we 

will discuss about Floating point division representation and then will discuss FPU 

for SHAKTI I-CLASS processor (in sectoin2.3). 

 

 

2.1 Integer Divider 

 

 

Integer divider takes two input and produce one output. Output of divider 

may be defined as: D = M*q + R. Here 

 

• D is Dividend 

 

• M is divisor 

 

• q is quotient 

 

• and R is remainder 
 

 

And R should satisfy following condition 0 R < M. 

 
The division is an iterative process in each iteration if the dividend is greater than 

the divisor then it is subtracted from the dividend. And iterations stop when R < M. In 

each iteration of division one quotient digit is decided. In the implementation section, 

we will discuss the implementation of integer division algorithms. 
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2.2 FBOX verification 

 

 
FBOX have modules to perform floating-point operations. A module, like an object in 

Object-Oriented languages, has a well-defined interface. FBOX modules are not fully 

verified for functional correctness. Some modules have bugs. At present FBOX 

modules are used in the SHAKTI I-CLASS processor. Later after full 

verification, they may be used in other classes as well. Verification involves the 

functional correctness of the module. Verification of FBOX is done by writing 

testbench modules in BSV and test cases are generated by TestFloat. 

 

 

 

2.3 FPU for SHAKTI I-CLASS 

 

 

In the early days’ none of the processors had a built-in floating-point capability. 

If you wanted floating-point processing, you emulated it with software. Needless to 

say, this was slow and it was difficult for the average programmer! Eventually, it 

was decided that there should be hardware floating-point processing. So it was 

decided to build a co-processor (also called a floating-point unit, or FPU) to do the 

floating-point instructions. For the SHAKTI I-CLASS processor, an FPU unit is 

required that performs floating-point operations. 
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2.4 Floating Point Representation   

 

 

In A number representation specifies some way of encoding a number usually a string of 

digits. Floating point representation is similar to scientific notation. Logically, a floating-

point number consists of: 

• A signed (meaning positive or negative) digit string of a given length in a given base 

(or radix). This digit string is referred to as the significand mantissa, or coefficient. 

The length of the significand determines the precision to which numbers can be 

represented. The radix point position is assumed always to be somewhere within the 

significand—often just after or just before the most significant digit, or to the right of 

the rightmost (least significant) digit. This article generally follows the convention that 

the radix point is set just after the most significant (leftmost) digit. 

• A signed integer exponent (also referred to as the characteristic, or scale), which 

modifies the magnitude of the number. 

 

To derive the value of floating-point number, the signified is multiplied by the base raised 

to the power of exponent, equivalent to shifting the radix point from its implied position by 

a number of places equal to the value of the exponent to the right if the exponent is positive 

or to the left if the exponent is negative.  

                        A floating-point number is a rational number, because it can be 

represented as one integer divided by another. The way in which the significand (including 

its sign) and expected are stored in a computer is implementation dependent.  

 

 IEEE 754: Floating Point in modern computers 
 

 

In The IEEE standardized the computer representation for binary floating-point 

numbers in IEEE-754 in 1985. This first standard is followed by almost all modern 

machines. It was revised in 2008. 

 Here we are using two widely used formats for Floating point divider. 

• Single precision (binary 32), usually used to represent the float type in 

the C language. This is binary format that occupies 32 bits (4 bytes) and 

its significand has a precision of 24 bits (about 7 decimals digits). 
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• Double precision (binary 64), usually used to represent the double type 

in the C language family. This is a binary format that occupies 64 bits (8 

bytes) and its significand has a precision of 53 bits (about 16 decimal 

digits). 

  

Type Sign Exponent 
Significand 

field 
Total 
bits 

Exponent 
bias 

Bits 
precision 

Half (IEEE 
754-2008) 

1 5 10 16 15 11 

Single 1 8 23 32 127 24 

Double 1 11 52 64 1023 53 

    Table: 1.2 IEEE-754 Floating point representation 

  

             While the exponent can be positive or negative, in binary formats it is stored as 

an unsigned number that has a fixed "bias" added to it. Values of all 0s in this field are 

reserved for the zeros and subnormal numbers; values of all 1s are reserved for the 

infinities and NaNs. The exponent range for normalized numbers is [−126, 127] for single 

precision, [−1022, 1023] for double. Normalized numbers exclude subnormal values, 

zeros, infinities, and NaNs. 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Half_precision
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/Single_precision
https://en.wikipedia.org/wiki/Double_precision
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                                                           CHAPTER 3 

 

IMPLEMENTATION 

 
 
 

 

In this section, we will understand the implementation of three present 

integer dividers (Non-restoring, SRT radix-2, and SRT radix-4), division 

algorithms of these methods. So that the best of it can be used for floating point 

division (for mantissa part of operands). Then the Floating point division 

process  using BSV(Bluespec System Verilog) with testbench related to it  Then 

we will look at the FPU of I-class. 

 

 

3.1 Integer Divider 

 

 

As we know integer divider takes two operands (dividend and divisor) and 

returns either quotient or remainder. The result is quotient or the remainder 

depends on the type of instruction. Input is always 64bit number and the result 

is also 64bit number. Dividers are implemented using BSV. 

 

 

3.1.1 Non-restoring Divider 
 

 

It is the simplest algorithm for division. It generates one quotient bit at a time 

based on a sign bit of partial remainder. Following is an algorithm for non-restoring 

division: 

            Flow Diagram 
 

               Figure 3.1 shows flow diagram of non-restoring division. Diagram shows there                           

are only two comparison operation, one shift operation and one add/sub operation. 

Register ’A’ contains final remainder, if ’A’ is negative then make it positive by adding 

divisor after all steps. 

 

              Implementation: 
 

   

• 1st clock cycle 
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Algorithm 1 Non Restoring Division Algorithm   

Input: Dividend (64bit integer number), Divisor (64bit integer number), opcode 

and funct3  
Output: Quotient or Remainder (64bit integer number)  

1: procedure START  
2: Initialization : Q = Dividend, M = Divisor, A = 0, n = number of bits in dividend  

3: while N > 0 do  
4: if A < 0 then  
5: Shift left AQ.  
6: A=A+M  
7: else  
8: Shift left AQ.  
9: A=A-M  

10: end if  
11: if A < 0 then  
12: Q[0] = 0  
13: else  
14: Q[1] = 1  
15: end if  
16: N=N-1  
17: end while  
18: if A < 0 then  
19: A=A+M  
20: end if  
21: Register Q contain quotient and A contain remainder  
22: end procedure 

 

 

– Put the dividend and divisor into the registers for next clock cycle. 
 

– Name of operation contains two information: 1st type of division 

(signed or unsigned) and 2nd what to return (quotient or 

remainder). Put the both information into the registers. 
 

– If inputs are 32 bits operands then sign bits are padded. 
 

– Special case (divide by zero, sign overflow...) checked. 

 

• 2nd clock cycle 

 

– In 2nd clock cycle if division is signed and any operand is negative 

then its 2’s complement is taken. After their complement, put the 

dividend and divisor into the registers so later cycles can use them. 

For signed division sign of the result decided in the same clock cycle. 

 
• Next 65 clock cycles  
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                                                Figure 3.1: Flow diagram 
 

 

– Step 2 to 5 of the non-restoring algorithm are performed. In each 

clock cycle, partial remainder and divisor are taken from register 

manipulated and put back into the registers. 

 

• Last clock cycle 

 
– Returns result. According to the type of instruction, the result is decided. It 

may be quotient or remainder and further negative or positive. 

– If the result is negative, then 2’s complement is taken. 
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3.1.2 SRT radix-2 
 

 

Idea: 
 

 

In SRT radix-2 divider initially start with dividend which is treated as partial remainder. 

And in each iteration, one quotient bit is generated. Choose quotient bit such that partial 

remainder remains in some particular range (range depends on base). 

 

Quotient digit selection: 
 

 

s(j−1) - partial remainder at (j − 1)th step 
 

s(j) - partial remainder at jth step  

q-j - quotient digit at jth step. The quotient selection logic diagram shows quotient digit 

 

                         
 

      Figure 3.2: Quotient selection logic[1] 
 

 

Selection for fractional numbers, but the same logic can be applied for integer division. 
 

In SRT radix-2 divider in each iteration quotient bit is selected based on two MSBs. 
 

If two MSBs are 10 at jth step q-j = -1. 
 

If two MSBs are 01 at jth step q-j = 1. 
 

If two MSBs are 11 or 00 at jth step q-j = 0. 
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Implementation: 
 

 

This divider takes the variable number of clock cycles. The number of clock cycles 

depends on the difference between the number of leading zeros in divisor and dividend. If 

the difference is negative, then it takes 2 clock cycles only, because the dividend becomes 

less than the divisor. For using this divider in the pipeline processor, one wrapper is added 

so that every division takes the fixed number of clock cycles. 

 

• 1st clock cycle: 

 

– Put the dividend and divisor into registers for the next clock cycle. 
 

Algorithm 2 SRT radix-2 Algorithm   

Input: Dividend (64bit integer number), Divisor (64bit integer number), opcode 

and funct3  
Output: Quotient or Remainder (64bit integer number)  

1: procedure START  
2: Initialization: S = dividend, d = divisor, q_pos = 0, q_neg = 0, n = number 

of bits in dividend.  
3: while n > 0 do  
4: Generate q(the quotient bit)  
5: S = 2*S - d*q  
6: shift left q_pos and q_neg by one  
7: if q == -1 then  
8: q_neg = q_neg + 1  
9: else  

10: if q == 0 then  

11: q_pos = q_pos + 1  
12: end if  
13: end if  
14: n = n-1  
15: q_pos = q_pos + 1  
16: end while  
17: S contain remainder and Quotient = (q_pos - q_neg)  
18: end procedure 

 

           

– The name of operation contains two information 1st type of division 

(signed or unsigned) and 2nd what to return (quotient or 

remainder). Put both into the registers. 
 

– If inputs are 32 bits operands then sign bits are padded. 
 

– Special case (divide by zero, sign overflow.) checked. 
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•                      2nd clock cycle: 

 

– For signed division complement of negative number is taken. 
 

– Sign information put into the register so that while returning, the 

result for negative complement can be taken of the result. 

– Initially dividend considered as partial remainder. Assume it is s0 

initially and at later cycles it is sj in jth cycle. 

 
• Next 63 clock cycles 

 

– In next 63 clock cycles one quotient bit is decided in each cycle. 

And quotient bit may be {−1, 0, 1}. Assume this bit is q-j. 

 

– For next cycle (j+1) partial remainder becomes sj+1=sj*2 - q-j*divisor. 

 

• Last cycle 

 
– According to the type of instruction, the remainder or quotient is returned. 

 
– For signed division, if the result is negative, then its 2’s complement is taken. 
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3.1.3 SRT radix-4 
 

 

Idea: 
 

 

The idea of SRT radix-4 is similar to SRT radix-2 the only difference is here 2 

bits are generated in each cycle. More number of quotient bits are generated so 

that more number of bits are involved in quotient digit selection logic.  

 

Quotient selection table 
 

 

In table for Figure 3.3 ’b’ is integer value of four MSBs of divisor, ’P’ is integer 

value of six MSBs of partial remainder and q is quotient digit. 

 

 

      Figure 3.3: Quotient selection table [2] 
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Implementation: 
 

 

• 1st clock cycle 

 

– Put the dividend and divisor into the registers for next clock cycle. 
 

– Name of the operation contains two information: first, type of 

division (signed or unsigned) and second, what to return (quotient 

or remainder). Both information are put into registers. 
 

– If the inputs are 32 bits operands then the sign bits are padded. 
 

– Special case (divide by zero, sign overflow.) checked. 
 

– Take two 64 bits register rg_q_pos and rg_q_neg to hold quotient 
digits. 

 

• 2nd clock cycle 
                      – For signed division if any input is negative then take its 2’s complement. 

 
Algorithm 3 SRT radix-4 Algorithm   

Input: Dividend (64bit integer number), Divisor (64bit integer number), opcode 

and funct3  
Output: Quotient or Remainder (64bit integer number)  

1: procedure START  
2: Initialization (rg_p_a = dividend, d = divisor, rg_q_pos, rg_q_neg, n = 0). 

rg_p_a and d are both 64 bits registers. 

3: Left shift d by 64.  
4: Count number of leading zeros in divisor and put in to c.  
5: Left shift rg_p_a and d by c.  
6: while n < 32 do  
7: Select quotient digit q by using quotient digit selection table.  
8: Left shift rg_p_a, rg_q_pos and rg_q_neg by 2.  
9: rg_p_a = rg_p_a - q * d.  

10: if q < 0 then  
11: rg_q_neg = rg_q_neg + a  
12: else  
13: if q > 0 then  

14: rg_q_pos = rg_q_pos + q  
15: end if  
16: end if  
17: n = n+1.  
18: end while  
19: (rg_q_pos - rg_q_neg) have quotient. Left shift rg_p_a by c and it will be 

remainder.  
20: end procedure 
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– Sign of the final answer decided. 

 

• 3rd clock cycle 

 
– Count number of leading zeros in the divisor and put into some register. 

 

• 4th clock cycle 

 

– Take a register rg_p_a of size double of dividend length, and put 

dividend into it. rg_p_a contain partial remainder. 
 

– Left shift rg_p_a and divisor by number of leading zero count of divisor. 

 

• Next 32 cycles 

 

– Left shift q_pos, q_neg and rg_p_a by 2; 
 

– Quotient digit is decided by using table of Figure 3(assume it q). If 

quotient digit is negative then rg_q_neg = rg_q_neg + q. It it is 

positive then rg_q_neg = rg_q_neg + q. 

 

– rg_p_a = rg_p_a - divisor * q. 

 

• Last 3 clock cycles 

 

– Shift back partial remainder. 
 

– If result is negative then take it’s 2’s complement. 
 

 

Basically radix-4 takes 32 clock cycles but some initial initial and final work 

has to be done. So it takes to 39 clock cycles. 
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           3.2 Floating Point Divider  

 

 

As we know integer divider takes two operands (dividend and divisor) and 

returns either quotient or remainder. The result is quotient or the remainder 

depends on the type of instruction. This same algorithm can be used for 

floating-point divider. As SRT radix-4 method is fastest among all three integer 

divider (Non-restoring, SRT radix-2, and SRT radix-4) described here. So the 

SRT Radix-4 method has been used for the mantissa of the given two 

operands. 

  Which is the main part of floating-point division, then taking the difference 

of exponent of the operands provides the exponent of quotient and XNOR  the 

sign bit  of the operands gives sign bit of the resultant quotient.  

 

          3.2.1 Writing BSV testbench 
 

 

Testbench have mainly three things: reading input from testcase file, calling 

appropriate module and check whether module output is same as expected 

output or not. For writing BSV testbench module we have to understand 

interface of modules. Interface of modules of FBOX is as follow: 

– Input 
 

op1 : 32bit for single precision and 64bit for double precision of type 

Floating Point 
 

op2 : 32bit for single precision and 64bit for double precision of type 

Floating Point 
 

Rounding mode: 3bit for founding mode 
 
 
 

– Output valid: one bit information for output is valid or invalid. 
 

value: 32bit for single precision and 64bit for double precision result of 
 

   Type Floating Point 
 

ex: three bit information for exception flags. 
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            3.3 FPU for I-class 
 

 

Stands for "Floating Point Unit." An FPU is a processor or part of a processor that 

performs floating-point calculations. An FPU provides a faster way to handle 

calculations with non-integer numbers. Any mathematical operation, such as addition, 

subtraction, multiplication, or division can be performed by FPU. FPU for SHAKTI I-

CLASS is shown in figure 3.4.  FPU calls modules of FBOX. Modules of FBOX can 

execute operations in a pipelining manner, while FPU is processing some input at that 

time it can accept new input. Modules takes the different number of clock cycles. So 

before feeding instruction to FPU, there must be proper scheduling, because there 

may be a conflict when results are produced. 

 
• Input for FPU: op1, op2, and op3 are three input operands for computation. ’op-

erations’ is of type Fpu_type it is a simple operation. ’funct3’ is rounding mode 

.’use_data’ is of type Usr_data, it has current_rob_id, dest_tag, and pc. 

 
• Output: FPU provides results in each clock cycle. If some valid result is 

available then return it with the valid bit as ’1’ otherwise return ’0’ with the 

valid bit as ’0’. ’ans’ is actual output. ’flags’ are exceptional flags. 

’use_data’ is the same thing as input. 

                                                              

 Figure 3.4: FPU 
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CHAPTER 4 

 
 
 
 

CONCLUSION AND FUTURE SCOPE 

 
 
 
 
 

4.1 Summary of Work Done 

 

 

SHAKTI is an open-source work based on RISC-V ISA. This work revolves around 

Floating Point operations. I have studied the three integer dividers non-restoring, SRT 

radix-2, and SRT radix-4 . Among all three dividers, SRT radix-4 takes fewer clock cycles 

but its implementation is difficult. As SRT Radix-4 integer divider is the fastest among all 

the three divider, So using the SRT radix-4 integer divider algorithm for division of mantissa 

of Floating-point operands   using the BSV. Presently it has some bugs and we are working 

on it. The Floating-point divider can be modified for the square root of floating point in 

future. 
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                                                      APPENDIX  
 
                                                                

TOOL INSTALLATION 

 
 
 
 

 

A.1 Installation of Bluespec Compiler 

 

 

An open-source version of the Bluespec Compiler is available online [4]. By 

in-stalling the open-source Bluespec compiler, one will be able to generate the 

synthesiz-able Verilog compatible with FPGA targets. 

 

• Open a new terminal and move to the Home folder. Copy-paste the 

below com-mands in the terminal and press enter. 
 

sudo apt install ghc libghc-regex-compat-dev libghc-syb-

dev iverilog 
 
 

sudo apt install libghc-old-time-dev libfontconfig1-dev libx11-dev 
 
 

 

sudo apt install libghc-split-dev libxft-dev flex bison libxft-dev 
 
 
 
 

sudo apt install tcl-dev tk-dev libfontconfig1-dev libx11-dev gperf 
 
 
 
 
 

sudo apt install itcl3-dev itk3-dev autoconf git 

 

• Download the repository   

git clone --recursive https://github.com/B-Lang-

org/bsc cd bsc 
 

make PREFIX=/path/to/installation/folder 
 

 

• After you have done the above steps, add the path you have installed the bsc 
 

compiler to your $PATH in the bashrc
˙
 or cshrc˙ 

 
export PATH=$PATH:/path/to/installation/folder/bin  
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A.2 Setup for test cases generation 

 

 

TestFloat and QEMU Both are available on SHAKTI tools.  
 

mkdir /sw_tools 
 

sudo mount 192.168.1.112:/home/rise/sw_tools 

/sw_tools source /sw_tools/qemu.sh 
 

sudo mount 192.168.1.11:/scratch/gitlab-builds/releases /scratch/bb-

releases/ cqemu-riscv64 /scratch/bb-releases/common-

verif/testfloat/testfloat_gen [round-ing_mode] [function] > input.txt 
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