Evaluation of Approximate Adders using BDDs and
satisfiability

A Project Report

submitted by

NAVANEETH A

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

June 2021

THESIS CERTIFICATE

This is to certify that the project report titled Evaluation of Approximate Adders
using BDDs and satisfiability, submitted by Navaneeth A, to the Indian Institute of
Technology, Madras, for the award of the degree of Master of Technology, is a bona
fide record of the research work done by him under my supervision. The contents of this
thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Prof Vinita Vasudevan
Research Guide

Professor

Dept. of Electrical Engineering
I[I'T-Madras, 600 036

Place: Chennai

Date: June 26, 2021

ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my project guide Prof. Vinita Vasude-
van for the continuous support of my MTech Project. This work would not have been
completed without the suggestions from ma’am.

Also I would like to thank Koneru Basava Naga Girish for helping me setup the remote
system and Janaki M for providing the vpn access and helping me install the required

packages in the remote system. I thank my parents and sister for all their support.

ABSTRACT

This work evaluates various approximate adders. The approximate adders are designed
by modifying the accurate adder design in order to obtain improvements in power con-
sumption, area and the delay. The approximate adders are used in the applications
which require high speed, power efficiency, and also can tolerate error. Applications in
image processing such as Image smoothing and canny-edge detection are implemented
in Python by replacing accurate adders by approximate adders.

To compare the performance of approximate adders various approaches for the error
calculations are used. Characterizing an approximate adder by performing error cal-
culation using all possible input combinations is a time consuming job. Monte-carlo
simulations takes a small number of inputs from the set of all possible input combina-
tions to calculate errors. As the Monte-carlo simulations does not guarantee accurate
values, methods such as Binary Decision Diagrams(BDDs) and satisfiability are used
to for the exact error analysis. Methods to compute exact errors are implemented in
Python and compared the results with Monte-carlo simulations. The exact values of
error metrics such as Mean absolute error(MAE) and Mean squared error(MSE) are
found for various approximate adders when the probability of occurrence of a bit(static

probability) is not 0.5.

il

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i
ABSTRACT jii
LIST OF TABLES viii
LIST OF FIGURES xi
ABBREVIATIONS xiii
1 INTRODUCTION 1
1.1 Motivation 1

1.2 Objective e 1

2 Review of Approximate Adders 3
2.1 Error Tolerant Adder (ETA) 3
2.1.1 Typel (ETAl) 3

212 Type2(ETA2) 4

2.2 Lower-part OR Adder (LOA) 5

2.3 Approximate Mirror Adders Lo 5
231 Typel (AMAL). o 6

232 Type2 (AMA2). e 6

233 Type3(AMA3). o 7

234 Typed (AMA4) 7

235 TypeS(AMAS). o o 9

2.4 Approximate XOR/XNOR basedadder 9
24.1 Approximate XOR-based adder (AXA1l) 10

2.4.2 Approximate XNOR-based adder (AXA2) 10

24.3 Approximate XNOR-based adder (AXA3) 11

2.5 Approximate Carry Skip Adder 12

2.6 Consistent Carry Approximate Adder (CCA)

Applications of approximate adders

3.1

3.2

Image smoothing

3.1.1 Gaussian Filter
3.1.2 Results
Canny Edge Detector
3.2.1 Edge Detection
3.2.2 Results after gradient filter

Adder Comparison

4.1

4.2

4.3
4.4

Error Metrics

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7

Error Rate (ER)
Error Distance (ED) . . .

Hamming Distance (HD) .

Mean Hamming Distance MHD)

Mean Absolute Error MAE)

Worst-case arithmetic error (WCE)

Mean Squared Error (MSE)

Error Metrics computation

4.2.1
422
4.2.3

4.2.4

PyEDA

Binary Decision Diagram and Boolean Satisfiability

Miter circuit

Computation of the Error Metrics using satisfiability(Vasicek,

2019) . ..o

Computation of Error Metrics - Simplified Algorithm(Vasicek,

2019) ..o

Modification and Results

4.4.1
442
443
4.4.4
4.4.5

Mean Absolute Error . . .
Mean Squared Error . . .
Worst-case error
ErrorRate

Time take for computation

12

15
15
15
17
22
22
23

27
27
27
27
28
28
28
28
29
29
29
29

30

32
33
34
34
46
57
58
59

2.1
22
23
24
2.5
2.6
2.7
2.8
2.9
2.10

4.1
4.2
4.3
4.4
45
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

LIST OF TABLES

Truth Table for Mirror Adder
Truth Table for AMA1
Truth Table for AMA2,
Truth Table for AMA3
Truth Table for AMA4
When S =AandCopy = A
When S =BandC,,;, = A
Truth Table for AXA1
Truth Table for A XA2,
Truth Table for A XA3

MAE for 10 bit LOA with 5 bitapprox.
MAE for 10 bit ETA1 with 5 bitapprox.
MAE for 10 bit AMAS with S bitapprox.
MAE for 10 bit AMA4 with 5 bitapprox.
MAE for 10 bit AMA3 with S bitapprox.
MAE for 10 bit AMA2 with 5 bitapprox.
MAE for 10 bit AMA1 with S bitapprox.
MAE for 10 bit AXA1 with 5 bitapprox.
MAE for 10 bit AXA2 with 5 bitapprox.
MAE for 10 bit AXA3 with 5 bitapprox.
MAE for 16 bit LOA with 10 bitapprox.
MAE for 16 bit ETA1 with 10 bitapprox.
MAE for 16 bit AMAS with 10 bitapprox.
MAE for 16 bit AMA4 with 10 bit approx.
MAE for 16 bit AMA3 with 10 bitapprox.
MAE for 16 bit AMA2 with 10 bitapprox.
MAE for 16 bit AMA1 with 10 bitapprox.

vii

O O o0 o0 3 O W

10
11
11

34
35
35
36
36
37
37
38
38
39
41
41
42
42
43
43
44

4.18
4.19
4.20
421
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
431
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46

MAE for 16 bit AXA1 with 10 bit approx.
MAE for 16 bit AXA2 with 10 bit approx.
MAE for 16 bit AXA3 with 10 bit approx.
MSE for 10 bit LOA with 5 bit approx.
MSE for 10 bit ETA1 with 5 bit approx.
MSE for 10 bit AMAS with 5 bit approx.
MSE for 10 bit AMA4 with 5 bit approx.
MSE for 10 bit AMA3 with 5 bit approx.
MSE for 10 bit AMA2 with 5 bit approx.
MSE for 10 bit AMA1 with 5 bit approx.
MSE for 10 bit AXA1 with 5 bit approx.
MSE for 10 bit AXA2 with 5 bit approx.
MSE for 10 bit AXA3 with 5 bit approx.
MSE for 16 bit LOA with 10 bit approx.
MSE for 16 bit ETA1 with 10 bit approx.
MSE for 16 bit AMAS with 10 bit approx.
MSE for 16 bit AMA4 with 10 bit approx.
MSE for 16 bit AMA3 with 10 bit approx.
MSE for 16 bit AMA2 with 10 bit approx.
MSE for 16 bit AMA1 with 10 bit approx.
MSE for 16 bit AXA1 with 10 bit approx.
MSE for 16 bit AXA2 with 10 bit approx.
MSE for 16 bit AXA3 with 10 bit approx.
WCE for 10 bit adder with 5 bit approximate bits . .
WCE for 16 bit adder with 10 bit approximate bits . .
ER for 10 bit adder with 5 bit approximate bits . . .
ER for 16 bit adder with 10 bit approximate bits . . .

Time taken for 16 bit adder with 10 approximate bits

Time taken for 16 bit adder with 10 approximate bits

viii

44
45
45
46
46
47
47
48
48
49
49
50
50
52
52
53
53
54
54
55
55
56
56
57
57
58
58
59
59

LIST OF FIGURES

2.1 Workingof ETAT.
2.2 disadvantage of ETA'1
23 ETA2 . . e
24 ETA2m e
25 LOA . . e
2.6 Conventional Mirror Adder,
27 AMAL . .
28 AMA2 . . e
29 AMA3 . e
2.10 AMA4 . . . e
2.11 Accurate full adder with 10 transistors
212 AXAL . e
213 AXA2 . e
214 AXA3 . e
215 CSA . . e
216 CCA e

3.1 3x3BOXfilter
3.2 Gaussian kernels Example
3.3 3 x 3 Gaussian filter implementation witho =1
3.4 5 x 5 Gaussian filter implementationoc =1.4
3.5 ETAI1 Gaussian filter, PSNR=293100dB
3.6 ETA2 Gaussian Filter, PSNR=28.7048dB
3.7 AMAI1 Gaussian filter, PSNR =28.2628dB
3.8 AMA?2 Gaussian Filter, PSNR=354950dB
3.9 AMA3 Gaussian filter, PSNR=31.5288dB
3.10 AMAA4 Gaussian Filter, PSNR=34.3298dB
3.11 AMAS Gaussian filter, PSNR=35.5404dB

X

O o0 0 9 N U B B W W

[S S S e
W N = = O

15
16
16
17
17
17
18
18
18
18
18

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
341
3.42
3.43

CSA Gaussian Filter,

PSNR=28.5429dB

CCA-0O Gaussian filter, PSNR =27.6150dB

CCA-1 Gaussian Filter, PSNR =27.4202dB

LOA Gaussian filter,

PSNR =35.6971dB

AXAI1 Gaussian Filter, PSNR=354191dB

AXA?2 Gaussian filter, PSNR =34.3604dB

AXA3 Gaussian Filter, PSNR=30.1345dB

ETA1 Gaussian filter, PSNR =29.2185dB

ETA?2 Gaussian Filter, PSNR =28.0433dB

AMA1 Gaussian filte

r, PSNR=335836dB

AMA?2 Gaussian Filter, PSNR=332358dB

AMAZ3 Gaussian filte

r, PSNR=34.0434dB

AMAA4 Gaussian Filter, PSNR =33.0829dB

AMAS Gaussian filte
CSA Gaussian Filter,
LOA Gaussian filter,

r, PSNR=33.1825dB
PSNR =27.8665dB
PSNR=33.2448dB

AXA1 Gaussian Filter, PSNR=33.3785dB

AXA?2 Gaussian filter, PSNR =33.0235dB

AXA3 Gaussian Filter, PSNR=30.800dB.

Sobeloperator L L

Gradient filter implementation

ETA1 gradient filter
ETA2 gradient filter
AMATI gradient filter
AMA? gradient filter
AMA3 gradient filter
AMAA4 gradient filter
AMAS gradient filter
AXAT1 gradient filter
AXA?2 gradient filter
AXA3 gradient filter
LOA gradient filter

18
19
19
19
19
19
19
20
20
20
20
20
20
21
21
21
21
21
21
23
23
24
24
24
24
24
24
25
25
25
25
25

344 CSA gradientfilter
345 CCAO gradient filter

346 CCAIl gradientfilter

4.1
4.2
4.3
4.4

Miter Circuits for analysis of a) error rate b)average hamming distance
Miter Circuits for analysis of a) Absolute ED b)ED c) Squared ED .
Variation of MAE with static probability - 10 bit adder 5 bit apprx. .
Variation of MSE with static probability - 10 bit adder 5 bit apprx

xi

25
26
26

30

39
51

MSB
LSB
RCA
ETA
AMA
AXA
LOA
CSA
CCA
MAE
MSE
WCE
ED
MED
ER
BDD

ABBREVIATIONS

Most Significant Bit

Least Significant Bit

Ripple Carry Adder

Error Tolerant Adder

Approximate Mirror Adder
Approximate Xor/Xnor based adder
Lower-part OR Adder
Approximate carry skip adder
Consistent carry approximate adder
Mean Absolute Error

Mean Squared Error

Worst Case Error

Error Distance

Mean Error Distance

Error Rate

Binary Decision Diagram

Xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation

In this time period the demands of a high speed, power efficient processing systems are
increasing. As the number and the complexity of the computation increases day by day,
the power usage by the respective processing units also increases proportionally. De-
pending on the application, we can implement several methods to reduce power usage
by these processors by compromising the output.

For applications such as image processing which does not require an accurate result
since human eye can not differentiate small errors, approximate circuits can be intro-
duced. Approximate circuits are designed by slightly modifying the accurate circuits,
thus introducing an error. Use of approximate circuits results in lower energy, lower
area or improvement in the delay.

Some adders, such as two-part segmented adders are designed for low power consump-
tion through circuit modification. In some other adders the carry is allowed to propagate
only few bits so that the critical path delay is reduced.

So if the accurate circuit is replaced with approximate circuit and the whole system is
run at the same frequency, the supply voltage can be reduced, thus the power consump-

tion get reduced.

1.2 Objective

The approximate adders are designed by modifying different accurate adder circuits.
Depending on the accurate adder design which is used to design the approximate adder,

approximate adders are divided into groups.

1. Segmented adders divide the inputs into blocks and does addition in each block
depending on the design.

2. Carry select adders are also similar to segmented adders, but several signals are
commonly used between the bits inside a particular block.

3. Approximate full adders are modification of a full adder design by removing the
transistors from the full adder design.

The objective of this project is to find different types of approximate adders and
implement these designs in Python. Analyze the adders using Monte-carlo simulations
to find the errors such as Mean absolute error(MAE), Mean squared error(MSE) etc.
Find applications of these approximate circuits and implement them in Python.

Use Binary Decision Diagram (BDD) and satisfiability for the exact analysis of these
approximate circuits. Find exact values of MAE, MSE, WCE, ER and compare them
with Monte-carlo simulations. Also find these error metrics when the probability of

occurrence of a bit(static probability) is not 0.5 .

CHAPTER 2

Review of Approximate Adders

2.1 Error Tolerant Adder (ETA)

2.1.1 Type 1 (ETA1)

In the Error Tolerant Adder type 1(Zhu et al., 2009) the inputs are divided into two
parts; accurate part and approximate part. The accurate part consists of the higher order
bits in the input whereas the approximate part contains the remaining lower order bits
in the input. In the accurate part normal addition is carried out using carry-in as 0. Also
the addition is carried out from the LSB of accurate part to the MSB of the accurate part.

In the approximate part, the addition

operation is carried out from the MSB of

. 10110011510051g1010+
the approximate part to the LSB of the ap- 01101001/00010011
proximate part. The addition carried out 10001110 051 00i1i1111
is a half-adder addition. The addition op- 5
Accurate i Inaccurate
eration is carried out till there is an input
combination of ’1,1” for the half adder. Figure 2.1: Working of ETA 1

From that bit onwards, till the LSB, all

bits are made to one. This process eliminates the carry propagation path in the ap-
proximate part of the adder. Both approximate and accurate additions are carried out
simultaneously so that the time taken for the computation get reduced.

If we fix the number of approximate

bits for a particular application, then for 0000000000001:1:01+ (13
. ‘ ‘ 00000000000001i110 (6
the inputs having lower magnitude, ETA1 000000000000 10i0i11 (19)

is less accurate because the addition op- 00000000000001111 (15)
E—
eration is happening only in the approx-

imate part. So the ETA1 yield a result Figure 2.2: disadvantage of ETA 1

which is far from the correct value.

2.1.2 Type 2 (ETA2)

Error Tolerant Adder type 2(Zhu et al., 2009) is a segmented adder, so it does not elim-
inate the carry propagation path entirely. N bit adder is divided to M blocks, where
M > 2.

Each block contains N/M bits. Each

block has a carry generation and sum Ao A e
B‘VJNB\‘i Bvij~B\'ﬂ
generation. Carry generation is done by i L i L
. . . . Carry Carry
considering carry-in as zero ie; the carry GTEM i Generator }1
generation does not depend on the pre- ‘ Sum \ Sum
Generator Generator
vious blocks. Carry generated from the
., Svi~5 S -8

. N 2N
N Mg NS

g|=

i" block is propagated to the (i + 1)
block. so, the carry propagation path only Figure 2.3: ETA 2

includes one carry generation block and one sum generation block instead of propagat-
ing along the entire adder structure. The carry propagation length is 2N/M. For the first

sum generation block, the carry-in is considered as zero.

Type 2m (ETA 2m)

In the MSB of the ETA2 adder, the output depends only on the bits in the previous

block, so ETA2 can give less accuracy if the number of bits in the input is higher.

So the ETA2 is modified(Zhu et al.,

Ay~ Ay Ay~ Ay Ay~ Ay A~ A
By~ By By~ By By~ B Bis~ B

2009) to give better accuracy. Three

blocks which are producing MSBs in 2:2 CLA CLA CLA

the result are allowed to propagate the Il Il i 1L *
RCA [+ [RCA | [RCA [+ [RCA ‘

carry. ie; these blocks are cascaded. so, JT JT JT JL JT

iy S BNH B8 S5
The carry propagation path includes three
Figure 2.4: ETA 2m
carry generation blocks and one sum gen-

eration block.

2.2 Lower-part OR Adder (LOA)

Lower-part OR adder(Mahdiani et al.,
2010) also divides the inputs into accurate
and approximate parts. In the approxi-
mate part the addition is carried out by
taking the OR operation of the input bits
from A with the corresponding input bit

from B. The carry-out from the approxi-

mate part to the accurate part is found by the AND operation of MSBs in the approx-

imate part inputs. In the accurate part normal RCA addition is carried out using the

Alkin-1] 4, Cou
Ziﬂ::e 7 s[kin-1]
Blk:n-1]
X S—
Alk-11
A[0:k-1] - f\‘j‘]D_‘
Blk-1]
il - -
B[Ok-l] 7 IAB]@ S[Ok 1]
B[O1

Figure 2.5: LOA

carry out from approximate part as the carry in.

2.3 Approximate Mirror Adders

Approximate mirror adders(Gupta et al., 2013) are modification of the conventional 24-
FETs Mirror adders. MOSFETSs are removed from the conventional Mirror adders in
such a way that it ensures there is no direct path from VDD/GND to the Cout or Sum.

This method is chosen because the mirror adder is not based on complementary CMOS

logic.

VDD

[

A4 B B4|f A B4||:J Cin 4 j|FB

{ 4L A b-cu

A o t{ L JFonm

A B B A B[om— JFa
T

o

Figure 2.6: Conventional Mirror Adder

A | B | Cin | S | Cout
01010 010
0011 110
0O|11]0 110
011 011
11010 110
1 (01 0|1
1 (110 0|1
1 |11 1|1
Table 2.1: Truth Table for

Mirror Adder

2.3.1 Type 1 (AMA1)

This design has eight fewer transistors compared to the conventional mirror adder. Here

the sum and carry are defined as

Cout = ABCzn + ABCTZTL + ABCZ’VZ + ABCTm

VDD
AT T
VDD
[A 4 E ﬁ \j F Cin
Cin Cont Sum’ A B Cln S COUt
~ont _{) 0 () 0 O O
. de 001 [1]0
010 01
A [Iﬁ Cin] JFa 0 1111 011
Ll 1 1 1010 0|0
s 1 0|1 01
1 11110 01
- L1t [1]1
Figure 2.7: AMA1 Table 2.2: Truth Table for
AMAL

There is one error in the Cout output and two errors in the Sum.

2.32 Type 2 (AMA2)

For the sum bit in the conventional mirror adder, for six out of 8 combinations, it is
equal to the complement of the carry out bit. so, for AMA?2 carry out is found accurately
where sum is approximated to the complement of the carry out. In the design a buffer

is included between C” , and sum to reduce the capacitance at the sum node.

S = Cout
Couwt = AB + ABC,,, + ABC,,

VDD A | B |Cin | S | Cout
0100 10
ﬁ 001 |1]0
cin Cont’ S 0110 110
t(0111 0|1
I 1 0|0 110
i ﬂ 101 |01
1110 01
1|11 01

Figure 2.8: AMA2 Table 2.3: Truth Table for
AMA?2

There is no error in the Cout output but there are two errors in the Sum.

2.33 Type 3 (AMA3)

This adder is a combination of AMA1 and AMA2. Carry out is approximately calcu-
lated using the equation for AMA1 and Sum is approximated as the complement of the

Cout.

S = Cout
Cout = ABCzn + ABCTzn + ABCzn + ABCTm

There is one error in the Cout output and three errors in the Sum.

234 Type 4 (AMA4)

For six out of the eight combinations the Cout is equal to the input A. Also for six out of

the eight combinations Cout is equal to input B. For this adder the Cout is approximated

7

A |B|Cin| S | Cout
. 0 [0]0 o
A ﬁ 001 |1]0
Cin Cout’ _{ Sum’ 0 1 0 0 1
L 0 (11 01
T 1100 10
A - 1101 01
- 111 01
Figure 2.9: AMA3 Table 2.4: Truth Table for
AMA3
to input A. Sum is calculated using the equation used for AMAI.
Cout =A
. A | B |Cin | S | Cout
0(0|0 010
001 10
010 0 0
011 10
11010 0 1
1101 011
1110 011
1|11 1|1
Figure 2.10: AMA4 Table 2.5: Truth Table for
AMA4

There are two errors in the Cout output and three errors in the Sum.

8

2.3.5 Type 5 (AMAS)

In this adder one more error is introduced to the Sum compared to the AMA4. Carry
out is approximated similar to the AMA4 (C,,; = A). Sum is also approximated to one

of the inputs. so there are two combinations; S = Aor S = B

A | B | Cin| S | Cout A | B |Cin | S | Cout
0010 00 0010 00
0011 0|0 001 0|0
0110 0|0 0O|11]0 10
011 010 011 1[0
11010 111 11010 0|1
1 10 |1 1|1 1 10 |1 01
11110 1|1 1 (110 11
1|11 1|1 1 |11 1|1

Table 2.6: When S = A Table2.7: When S = B
andC,,, = A andC,, = A

When Sum and C,,; are equal, the number of combinations where actual values are

produced for both Sum and C,,,; are only two. But when they are different it is four.

Sum = B

C(out =A

There are 2 errors in the C,,,; and four errors in the Sum.

2.4 Approximate XOR/XNOR based adder

The approximate XOR/XNOR based
adders(Yang et al., 2013) are modifi-
cations of the 10-transistor full adders.

There are one approximate XOR-based

adder (AXA 1) and two approximate
XNOR-based adders (AXA2 & AXA3)

2.4.1 Approximate XOR-based adder (AXA1)

In this adder the XOR operation is done using an inverter which is connected to first

input and two pass transistors which are connected to second input. There are 4 errors

in both sum and carry out of 8 combinations.

Cout = (A® B)Cy, + AB

DD

= \;
Cin ﬁ
Cout L Cout

Sum

Figure 2.12: AXAl

A | B |Cin| S | Cout
01010 00
01101 110
0110 0|1
011 10
11010 0|1
1 101 10
11110 01
1 (1|1 11
Table 2.8: Truth Table for

2.4.2 Approximate XNOR-based adder (AXA2)

AXAl

This adder consists of 6 transistors. ie; 4 transistors to implement the XNOR operation

and a pass transistor block. Here the sum bit has 4 errors, but carry out is accurate for

all input combinations.

S=A@B
Cout = (A® B)C;, + AB

10

A | B |Cin| S | Cout
01010 10
01101 110
B Cin
B 7?'—’ 010 [Oyo0
Sum Cout
L oo R o
5 A 1101 |01
A B 110 M1
1 (11 111
Figure 2.13: AXA2 Table 2.9: Truth Table for
AXA2

2.4.3 Approximate XNOR-based adder (AXA3)

This adder is the modification of the AXA2. There are two more transistors at the
pass transistor block to increase the accuracy of the sum bit. So four transistors for the
XNOR operation and four transistors for the pass transistor block. So sum bit has two

errors while carry out has no errors.

Cout = (A® B)C,, + AB

VDD GND—
T Sum
A
R ﬁ_ A[B[Cin]|S | Cout
Cin 0 0 0 010
. 0011 110
B Cin
A H) 01,0 JouoO
1 o 011 |01
. % AF L 1 1010 0|0
1 101 01
A B 110 |01
1111 11
Figure 2.14: AXA3 Table 2.10: Truth Table for
AXA3

11

2.5 Approximate Carry Skip Adder

Working of the CSA(Kim et al., 2013) is similar to a Carry Skip Adder (segmented
adder). But, the maximum possible distance a carry can propagate is two blocks. There
are k bits in each block.

There is a carry generation and sum
generation in each block. Carry gener-
ated from (i — 1) block is propagated
to the i’ block and (i + 1) block. Also
carry generated from ' block also propa-
gates to (i+1)"" block and (i+2)"" block.
A multiplexer is used to determine which
carry will be taken as the carry-in of the Figure 2.15: CSA
(i + 1)* block.

03:1 = m(fim + Pli—koci_l

out

k-1

i i
where P;_,., = Hpj
3=0

k-1
and Cyy = gr—1.0 + Yh—2:0Pk—1:0 -+ 90 Hp;
j=0

Where

g; = a;b;, 1s the generate signal

p; = a; ® b;, is the propagate signal

2.6 Consistent Carry Approximate Adder (CCA)

Consistent Carry Approximate Adder(Li and Zhou, 2014) is a segmented adder. The
adder is divided into blocks of size k/2. All the bits in a block share the same carry-in
for the addition operation. So carry propagation is not happening inside a particular
block.

12

In each block there are two sum-
blocks which are having carry-in as 0 and
1 respectively. These sum-blocks are im-
plemented using traditional adders. So
the output sum from the block is chosen
using a multiplexer which is having a se-

lect signal(C;) defined as Figure 2.16: CCA
Ci=(P,+ P_1)SC+ (P, + P_1)G;1

Where P;, G; are propagate and generate signal of the block ¢. SC'is the global spec-
ulative carry. SC can be either 0 or 1. So depending on the value of SC' there are two

consistent carry approximate adders, CCAO and CCALl.

13

CHAPTER 3

Applications of approximate adders

3.1 Image smoothing

3.1.1 Gaussian Filter

When a picture is taken, light fluctuations, sensor noise etc can introduce error in the
image. Image smoothing is a method to reduce the noise in an image. This method
improves the quality of the images.

In the smoothing operation value of the current pixel is replaced by averaging the local
values, because the noise is assumed to be a zero mean Gaussian noise.

The simplest method to do image

smoothing is the use of box filter. All Box filter
weights in the filter are equal. It does the 11111
mean filtering, but it reduces the image 1791111
details. 1]1]1

Figure 3.1: 3x3 BOX filter

So to improve the details of the image, Gaussian filter(Oliveira Julio et al., 2015) is
used. this filter does the image sharpening by doing the weighted averaging. This filter
uses a 2-D Gaussian distribution with mean p = 0.

1 —(m%;y?)
exp 2
2w o2

G(r,y) =

Also the distribution is confined within +3¢

114 7 4|1

5 1 411626 16| 4

ﬁ > 273 | 7|26 41|26 7
> | 1 411626 16| 4

114 7 4|1

3 x 3 Gaussian Kernal 5 x 5 Gaussian Kernal

Figure 3.2: Gaussian kernels Example

These kernels can be implemented using approximate adders.

Approximate Adder (K=4)

-)

Approximate Adder (K=6) {

W
W
B

ouTt

(Oliveira Julio et al., 2015)

Figure 3.3: 3 x 3 Gaussian filter implementation with 0 = 1

In the implementation, the approximate adders which are having similar magnitudes
in the input operands are grouped. Approximate adders which are having higher mag-
nitude input operands are chosen to be less accurate, ie; number of approximate bits
are higher. Approximate adders which are having lower magnitude input operands are
chosen to be more accurate, ie; number of approximate bits are lower. So in the 3 x 3
Gaussian filter implementation, approximate adder with 6 approximate bits are used for
higher magnitude input operands and approximate adder with 4 approximate bits are

used for lower magnitude input operands.

Al A2 A3 A4 A5 A6 AID A7 A8 A9 All A12 Al13 Ald Al5 Al6 A17 Al18 A19 A20 A21A25 A22 A23 24

Approximate Adder (k=3)
=1 Approximate subtractor (k=3)
%] Approximate Adder (k=6)
Approximate Adder (k=8)
Adder

out

(de Oliveira et al., 2016)

Figure 3.4: 5 x 5 Gaussian filter implementation o = 1.4
3.1.2 Results

The adders and filters are implemented in Python. The filters are applied on a 512 x 512
lena image. The image is converted to an array of pixels. Then the Gaussian filter is

applied and converted the filtered array back to an image.

3 x 3 Gaussian filter

Figure 3.5: ETA1 Gaussian Afilter, Figure 3.6: ETA2 Gaussian Filter,
PSNR =29.3100 dB PSNR = 28.7048 dB

17

Figure 3.7: AMA1 Gaussian Afilter, Figure 3.8: AMA2 Gaussian Filter,
PSNR =28.2628 dB PSNR = 35.4950 dB

Figure 3.9: AMA3 Gaussian filter, Figure 3.10: AMA4 Gaussian Filter,
PSNR =31.5288 dB PSNR = 34.3298 dB

Figure 3.11: AMAS Gaussian filter, Figure 3.12: CSA Gaussian Filter,
PSNR = 35.5404 dB PSNR =28.5429 dB

18

Figure 3.13: CCA-0 Gaussian Afilter, Figure 3.14: CCA-1 Gaussian Filter,

PSNR =27.6150 dB PSNR =27.4202 dB
Figure 3.15: LOA Gaussian filter, Figure 3.16: AXA1 Gaussian Filter,
PSNR = 35.6971 dB PSNR =35.4191 dB

Figure 3.17: AXA2 Gaussian filter, Figure 3.18: AXA3 Gaussian Filter,
PSNR = 34.3604 dB PSNR =30.1345 dB

19

5 x 5 Gaussian filter

Figure 3.19: ETA1 Gaussian Afilter, Figure 3.20: ETA2 Gaussian Filter,
PSNR =29.2185 dB PSNR =28.0433 dB

Figure 3.21: AMA1 Gaussian filter, Figure 3.22: AMA2 Gaussian Filter,
PSNR =33.5836 dB PSNR =33.2358 dB

Figure 3.23: AMA3 Gaussian filter, Figure 3.24: AMA4 Gaussian Filter,
PSNR =34.0434 dB PSNR =33.0829 dB

20

Figure 3.25: AMAS Gaussian Afilter, Figure 3.26: CSA Gaussian Filter,

PSNR =33.1825 dB PSNR =27.8665 dB
Figure 3.27: LOA Gaussian Afilter, Figure 3.28: AXA1 Gaussian Filter,

PSNR = 33.2448 dB PSNR =33.3785 dB
Figure 3.29: AXA2 Gaussian Afilter, Figure 3.30: AXA3 Gaussian Filter,

PSNR = 33.0235 dB PSNR = 30.800 dB

21

Conclusion

For the approximate adders ETA2[3.6], AMAI1[3.7], CCAO[3.13], CCA1[3.14] and

CSA[3.12], the value of a pixel after Gaussian filtering is higher than the value ob-

tained when accurate adders are used for the filtering. So the filtered image has more

pixels having a value closer to white.

The approximate adders AMA2[3.8], AMA4[3.10], AMAS5[3.11], AXA1[3.16], AXA2[3.17]

and LOA[3.15] produces a value which is closer to the value obtained when accurate

adders are used for the filtering. So the PSNR values for these adders are higher com-

pared to other approximate adders.

3.2

Canny Edge Detector

3.2.1 Edge Detection

This operation is used to detect the edges in an image. Canny edge detection(de Oliveira

et al.,

1.
2.

2016) is a multi-stage process consisting of 5 steps.

Gaussian Filter - Image smoothing to reduce the noise
Gradient Filter - Detects the edges in the image using Sobel operator

Non Maximum Suppression - Thin the edges which are detected in the previous
step

Double Threshold - Categorize the pixels into strong, weak and non-relevant ac-
cording to the predefined threshold values.

Edge Detection By Hysteresis - groups the pixels from weak pixels to strong/non-
relavant according to it’s neighboring pixels and map the strong pixels to maxi-
mum value and non-relavant pixels to minimum value.

For the first two stages, where filters are used, approximate adders can be used in-

stead of accurate adders to improve the time/power usage for the computation.

For the Gradient filtering operation Sobel operator is used. There are two sobel opera-

tors which are along x and y directions. The mean of the values along x and y is taken

to compute the value of the pixel.

22

1 T
4 0 0 _4_ -2 2
-1 -2 | -1 -1
3 x 3 Vertical derivative 3 x 3 Horizontal derivative

Figure 3.31: Sobel operator

A3 A9 AB A4 Al A7 Al A3 A2 A8 A7 A9

Sub(abs) Sub(abs)

lGx| |Gyl

Approximate Adder (k=4)

Approximate Adder (k=6)

+ Adder

Sub(abs) | Subtractor Absolute

o
c
3

(de Oliveira et al., 2016)

Figure 3.32: Gradient filter implementation

Similar to the Gaussian filter, the adders are categorized according to the magnitude

of input operands. Bit shifting is used instead of multiplication.

3.2.2 Results after gradient filter

The filter is implemented in Python. The output from the Gaussian filter is used as the

input to this program.

23

Figure 3.33: ETA1 gradient filter Figure 3.34: ETA2 gradient filter

Figure 3.35: AMAI1 gradient filter Figure 3.36: AMA?2 gradient filter

Figure 3.37: AMA3 gradient filter Figure 3.38: AMA4 gradient filter

24

Figure 3.39: AMAS gradient filter Figure 3.40: AXA1 gradient filter

Figure 3.41: AXA?2 gradient filter Figure 3.42: AXA3 gradient filter

Figure 3.43: LOA gradient filter Figure 3.44: CSA gradient filter

25

Figure 3.45: CCAO gradient filter Figure 3.46: CCA1 gradient filter

Conclusion

Approximate adders behave similar to the Gaussian filtering. Approximate adders
which produces a value higher than the value obtained when accurate adders are used,
produces a filtered image which has more edges than other approximate adders. These

images have more number of pixels which are closer to white.

26

CHAPTER 4

Adder Comparison

4.1 Error Metrics

To evaluate the accuracy and compare the approximate circuits, different error mea-
sures(Vasicek, 2019)(Jiang et al., 2015) are implemented. Simulation based error mea-

surement is implemented in Python.

4.1.1 Error Rate (ER)

Error rate/ error probability is the measure of probability of occurrence of an error in an
approximate circuit.

For a Monte-carlo simulation error rate is found as

o= Lot 4

where N is the number of simulations. f is the accurate output and f is the approximate
output

For simulation based approach, error rate is found as

Eprob f f 22n Z [[f]]

VxeBn

where n is the number of bits in the input.

4.1.2 Error Distance (ED)

Error distance is the absolute difference between the output from accurate circuit and

output from approximate circuit.

=|f—f]

4.1.3 Hamming Distance (HD)

Hamming distance is the number of bits in a particular approximate output which are
different from the corresponding accurate output.

For an m bit output, hamming distance is

m—1

4.1.4 Mean Hamming Distance (MHD)

Average of hamming distance across all possible input combinations

emna(f, f) = QQHZZfz)& filx

VxeBm™ i=0
4.1.5 Mean Absolute Error (MAE)

Average-case arithmetic error or mean absolute error is the mean of the absolute differ-
ence between the outputs from the accurate circuit and approximate circuit.

For a Monte-carlo simulation MAE is found as

1 n—1
Cmae = _Z |fz - f7,|
n <
1=0

For a simulation based approach, MAE is found as

VmEB"

where nat(f(z)) is the decimal value of f

4.1.6 Worst-case arithmetic error (WCE)

Error magnitude/ worst-case error is the maximum possible error an approximate circuit

can produce.

~

ewee(f, f) = max |nat(f(z)) — nat(f(z))]

VxeBn

28

4.1.7 Mean Squared Error (MSE)

Mean squared error is the mean of sum of squared difference between the accurate

output and approximate output

ol £.1) = g3r 3 (nat(() — mat(f(x)))’

VzeBn

4.2 Error Metrics computation

4.2.1 Binary Decision Diagram and Boolean Satisfiability

Binary Decision Diagrams are rooted, directed acyclic graphs which are used to repre-
sent a Boolean function similar to a binary tree. The BDD are canonical (ROBDD) if
the order of variables is fixed. In the BDD every node is labeled with a variable, and
each node has a high child and low child. The BDD terminate either at 1 or O (leaf
nodes).

Boolean Satisfiability problem, which is applicable to a Boolean function g : B" — B,
is used to find an input assignment a which satisfies the condition g(a) = 1 or inform
there are no such input a exists. Here the assignment a is called satisfiable assignment.
SATOne(g) is a function which finds a single satisfiable assignment.

SATCount(g) is a function which finds the total number possible satisfiable assign-
ments for the function g.

The SATOne and SATCount functions can be obtained using ROBDDs. When a path
is traced from leaf node 1 to the root node, a possible input combination which satisfies

g(a) = 1 can be found. If all such paths are found, we can compute SATCount.

4.2.2 Miter circuit

To compute the difference between the accurate output and the approximate circuit, a
miter circuit is implemented. The miter circuit is represented as a CNF or as an ROBDD

and further analyzed.

29

! i
g €
! f

Figure 4.1: Miter Circuits for analysis of a) error rate b)average hamming distance

f f f
¢ . pr 2
f f f

Figure 4.2: Miter Circuits for analysis of a) Absolute ED b)ED c) Squared ED
(Vasicek, 2019)

4.2.3 Computation of the Error Metrics using satisfiability(Vasicek,
2019)

Error Probability

Eprob f; 2n Z [[f

VzeBn
E (e
VeeBn -

1 ~
— 2TnSATC’0unt (OSYSm filz)® fz(x)>

30

Average Hamming Distance

emna(f, f) = 2% Z (filz) ® fz(@)
VxeBn =0
- > fiw)e ﬁm)
=0 VzeB™
QLRm SATCount(fi(z) & fi(x))

Mean Absolute Error

Let D(z) = |nat(f(x)) — nat(f(z))]
d= nat_l(D)

Then e,,4.(f, f Z D(x

VJJEIB%"

m—1
= Z 2072 . SAT Count(d;)
=0

Mean Squared Error

s 1

m—1 2
emse(f, f) =5 > (_Qm +> 2i6i>
1=0

VzeBn
1

VzeBn \ =0 1,7=0;5>1 1=0

m m—1 m—1
:ﬁ Z (Z 221€i+ Z 21+i+jeiej _ 221+i+m€iem

m m—1
1 A A
~om [Z 2 S AT Count(e;) — Z MG AT Count(e; A ep,)

=0 =0
m—1
+ Z 21+i+jSATCount(ei/\ej)]
i,j=03j>i

31

4.2.4 Computation of Error Metrics - Simplified Algorithm(Vasicek,
2019)

Mean Absolute Error

Algorithm 1: Computation of Mean Absolute Error
Input: approximation miter with signed output (e)

Output: mean absolute error (€,,4.)
¢ < SATCount(ey,), € + ¢
fori € {0,1,....m — 1} do
if c>0 then
‘ €+ €+ 2'SATCount(e; ® en,);
else

‘ € < € + 2'SAT Count(e;);

end
end

return 2~ 2"¢

Mean squared Error

Algorithm 2: Computation of Mean Squared Error
Input: approximation miter with signed output (e)

Output: mean squared error (e4)
€+ 0;

fori € {0,1,...,m} do

¢ < SATCount(e;), € + € + 2%c;
if c>0 then

forjc {i+1,..m}do

c < SATCount(e; A e;);

if j=m then
| ¢c= —c

€ =€+ 2i+j+lc

end

end

return 2~ 2"¢

32

Worst-case arithmetic Error

Algorithm 3: worst-Case Error Analysis
Input: approximation miter with signed output (e)

Output: maximum absolute arithmetic error (€,,c.)
€ < 0, u < true, sgn <— SATOne(e,,) # ¢
d < if sgn then e @ e,, else ¢;
fori € {m —1,m—2,...,0} do
if (v < SATOne(pu N d;)) # ¢ then
P A di
€ e+ 20
end

if d,,,(y) vV SATOne(p A e,,,) then
| e+ e+1

return e

43 PyEDA

The algorithms discussed in the previous section are implemented in Python. For the
implementation an electronic design automation Python library called PyEDA is used.
All the approximate adders which can be divided into accurate and approximate parts
are implemented using PyEDA. Each bit in the inputs to the adders are in the form of
variables. Each bit in the output obtained from these adders are in the form of an ex-
pression. Accurate sum calculation is done using inbuilt method(ripple carry adder) in
the PyEDA.

The output from accurate adder and approximate adders are sign extended to calculate
the miter circuit output. The BDDs are constructed according to the algorithm to calcu-
late error metrics using inbuilt method in PYEDA. An expression can be converted to a
BDD using this method. The BDD constructed is used to find SATCount and SATOne
functions. Using the output from the SATCount and SATOne functions, the algorithms

to calculate the error metrics are implemented.

33

4.4 Modification and Results

In the PyEDA the construction of BDDs takes longer as the number of bits in the input
and the number of approximate bits increases. Hence, for the adders which are in the
form of approximate part and accurate part, the algorithms can be modified so that it
requires only fewer number of BDD constructions for the computation of error metrics.
For an n bit adder with k approximate bits, the approximate sum and approximate sum
are modified as

modified Approximate sum = approximate sum[0:k-1] + carry from approximate part
to accurate part

modified Accurate sum = accurate sum[0:k-1] + carry from (k-1)th bit to (k)th bit
Also the codes are modified to find the error metric when the static probability of the
bits are not 0.5.

The results are done using the algorithms and compared the results with Monte-carlo

simulation.

4.4.1 Mean Absolute Error

10 Bit adder with 5 bit approximate

1. LOA
Monte carlo - 5.877865(Assumes input static probability is 0.5)

| Static Probability | MAE |

| Static Probability | MAE |

0.05 0.0773125 053 € 6323105
0.1 0.307 06 7272
0.15 0.6823125 0.65 77423125
02 1.192 07 7.087
0.25 1.8203125 075 79453135
0.3 2547 08 7552
0.35 3.3473125 0.85 6.7373125
04 4192 50 5.427
0.45 5.0473125 ' '

4 2l 0.95 35423125

Table 4.1: MAE for 10 bit LOA with 5 bit approx.

34

2. ETA1
Monte carlo - 6.333775(Assumes input static probability is 0.5)

| Static Probability | MAE |

| Static Probability | MAE

0.05 0.018927665

0.55 8.04938138
0.10 0.100691148

0.60 9.95207363
0.15 0.280640557

0.65 12.0501803
0.20 0.590539878

0.70 14.3308019
0.25 1.05777836

0.75 16.7793589
0.30 1.70479289

0.80 19.3803403
0.35 2.54871489

0.85 22.1179756
0.40 3.60124457

0.90 24.9767942
0.45 4.86874507 0.95 27 9420499
0.50 6.35253906

Table 4.2: MAE for 10 bit ETA1 with 5 bit approx.

3. AMAS
Monte carlo - 8.003684(Assumes input static probability is 0.5)

Static Probability | MAE | gt b hability | MAE |

0.05 1475 0.55 7.975
0.1 2.8 0.6 73
0.15 3975 0.65 7.475
0.2 5. 07 7
0.25 5875 0.75 6.375
0.3 6.6 08 56
0.35 7175 0.85 4.675
0.4 7.6 0.9 36
0.45 7.875 ' '
05 g 0.95 2.375

Table 4.3: MAE for 10 bit AMAS with 5 bit approx.

35

4. AMA4

Monte carlo - 8.253698(Assumes input static probability is 0.5)

| Static Probability | MAE |

0.05 2.65720632
0.1 4.58919496
0.15 5.98379178
0.2 6.97483919
0.25 7.65776825
0.3 8.10064558
0.35 8.35189641
0.4 8.4456321

0.45 8.40528745
0.5 8.24609375

Table 4.4: MAE for 10 bit AMA4 with 5 bit approx.

5. AMA3

Monte carlo - 8.896184(Assumes input static probability is 0.5)

| Static Probability | MAE |

0.05 27.95651912
0.1 2493868278
0.15 21.98070928
0.2 19.13680712
0.25 16.47842216
0.3 14.08915405
0.35 12.0578917
0.4 10.47086008
0.45 9.4033696

0.5 8.91210938

| Static Probability | MAE
0.55 7.97677267
0.6 7.60072765
0.65 7.11692807
0.7 6.5206212
0.75 5.80396271
0.8 4.95662121
0.85 3.96638273
0.9 2.81974845
0.95 1.50248068
| Static Probability | MAE |
0.55 9.02882029
0.6 9.75611576
0.65 11.06608239
0.7 12.90208161
0.75 15.18388176
0.8 17.81587016
0.85 20.69762172
0.9 23.7355267
0.95 26.85349985

Table 4.5: MAE for 10 bit AMA3 with 5 bit approx.

36

6. AMA2

Monte carlo - 7.377785(Assumes input static probability is 0.5)

| Static Probability | MAE
0.05 27.90330897
0.1 24.81995794
0.15 21.77128551
0.2 18.79873597
0.25 15.96740913
0.3 13.36514544
0.35 11.09685415
0.4 9.27470377
0.45 8.00548825
0.5 7.37695312

7. AMA1

Table 4.6: MAE for 10 bit AMA2 with 5 bit approx.

Monte carlo - 4.560227(Assumes input static probability is 0.5)

| Static Probability | MAE
0.05 2.6460223
0.1 4.50907787
0.15 5.74174338
0.2 6.46199788
0.25 6.76483727
0.3 6.73049488
0.35 6.42989201
0.4 5.92787988
0.45 5.28477582
0.5 4.55664062

| Static Probability | MAE |
0.55 7.44510907
0.6 8.22457078
0.65 9.68373124
0.7 11.74611174
0.75 14.2985096
0.8 17.20559524
0.85 20.32938199
0.9 23.55050109
0.95 26.78645612

| Static Probability | MAE |
0.55 3.79469155
0.6 3.04419348
0.65 2.34312125
0.7 1.72083568
0.75 1.19696617
0.8 0.78064108
0.85 0.4701542
0.9 0.25310027
0.95 0.10695338

Table 4.7: MAE for 10 bit AMA1 with 5 bit approx.

8. AXA1l

Monte carlo - 8.534331(Assumes input static probability is 0.5)

| Static Probability | MAE |

0.05 2.67385366
0.1 4.61297275
0.15 5.98657064
0.2 6.94086451
0.25 7.59164429
0.3 8.02466952
0.35 8.30035322
0.4 8.45991322
0.45 8.53095628
0.5 8.53125

Table 4.8: MAE for 10 bit AXAT1 with 5 bit approx.

9. AXA2

Monte carlo - 10.074008(Assumes input static probability is 0.5)

| Static Probability | MAE |

0.05 25.77913143
0.1 21.93037771
0.15 19.17051921
0.2 17.21740421
0.25 15.80187988
0.3 14.68270261
0.35 13.66158201
04 12.59531131
0.45 11.40239284
0.5 10.0625

| Static Probability | MAE
0.55 8.47017661
0.6 8.34799411
0.65 8.15349693
0.7 7.86091387
0.75 7.42684937
0.8 6.78770688
0.85 5.8572759
0.9 4.52295778
0.95 2.63739541
| Static Probability | MAE |
0.55 8.60834396
0.6 7.11085435
0.65 5.65985548
0.7 4.34344309
0.75 3.2298584
0.8 2.35563653
0.85 1.72299207
0.9 1.30761547
0.95 1.07510814

Table 4.9: MAE for 10 bit AXA?2 with 5 bit approx.

38

10. AXA3
Monte carlo - 8.99608(Assumes input static probability is 0.5)

| Static Probability | MAE |

| Static Probability | MAE |

0.05 2.93718855

0.55 7.60638661
0.1 5.51536036

0.6 6.11228836
0.15 7.68143314

0.65 4.6438888
0.2 9.38314383

0.7 3.31056015
0.25 10.5769043

0.75 2.19213867
0.3 11.2366335

0.8 1.33030134
0.35 11.36183758

0.85 0.72601963
0.4 10.98323927
0.45 10.16460592 09 0.34418903
03 9.0 0.95 0.12506636

Table 4.10: MAE for 10 bit AXA3 with 5 bit approx.

Variation of MAE with static probability

30 T T T T T T
~—— LOA AMA2
ETAL —--- AMAl
AMA5 - AXAL
o5l AMA4 - AXA2 i
AMA3 AXA3
20 - .
<
$15
10 |- 1
5 - -
0 A |

i 1 | - ——
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Static probability

Figure 4.3: Variation of MAE with static probability - 10 bit adder 5 bit apprx.

For the adders as the static probability increases, the chance of occurrence of an

input with higher magnitude increases. As the probability of occurrence of 1 increases,

39

so does the probability that in the accurate sum calculation, the carry from (bit k) to (bit
k+1) becomes 1.

For LOA[4.1] the carry from approximate part to accurate part is O for 3 out of 4 cases.
So this introduces error in the accurate part of the LOA if the actual carry is supposed
to be 1. So as the static probability increases, the error increases, so the MAE increases.
But as the static probability increases beyond a point, the chance of occurrence of (1,1)
input combination at the MSB of the approximate part increases, so the carry from ap-
proximate part to the accurate part becomes 1. Thus reducing the magnitude of error.
Similarly, for ETA1[4.2], there is no carry from approximate part to the accurate part.
Thus, as the static probability increases, the chance of occurrence of higher magnitude
inputs increases, so the chance of occurrence of error in the accurate part of ETA1 in-
creases, so the magnitude of MAE increases.

For smaller static probability, the probability of the input being a smaller magnitude
number becomes higher. So the probability that the carry from approximate part to the
accurate part being a 0 becomes higher. For AMA4[4.4] and AMAS5[4.3], the carry
from approximate part to the accurate part is the k" bit in the first input. So the carry
from approximate part to the accurate part becomes 0 for most cases. So the magni-
tude of error becomes less in the accurate part of the adder. As the static probability
increases, the probability of carry becoming a 1 also increases. So the error increases.
But beyond 0.5, the probability of accurate carry from £ bit to the k+1*" bit becoming
a 1 increases. Similarly, probability of the carry from approximate part to the accurate

part of AMA4/AMAS becoming a 1 also increases. So after 0.5, the error decreases.

40

16 bit adder with 10 bit approximate

1. LOA
Monte carlo - 192.195679(Assumes input static probability is 0.5)

| Static Probability | MAE |

| Static Probability | MAE |

0.05 2.5511125

0.55 215.938112
0.10 10.1278000

0.60 235.828800
0.15 22.5001125

0.65 249.784113
0.20 39.2848000

0.70 255.887800
0.25 59.9453125

0.75 252.070312
0.30 83.7918000

0.80 236.108800
0.35 109.981112

0.85 205.627112
0.40 137.516800

0.90 158.095800
0.45 165.249113 0.95 90.8321125
0.50 191.875000

Table 4.11: MAE for 16 bit LOA with 10 bit approx.

2. ETA1
Monte carlo - 204.608021(Assumes input static probability is 0.5)

| Static Probability | MAE |

| Static Probability | MAE |

0.05 0.27736694

0.55 261.497298
0.10 2.10242626

0.60 325.069232
0.15 6.89711761

0.65 395.082421
0.20 15.9447184

0.70 471.052277
0.25 30.3399915

0.75 552.459990
0.30 50.9552166

0.80 638.775609
0.35 78.4235044

0.85 729.475907
0.40 113.138824

0.90 824.057459
0.45 155.270495 0.95 927 045598
0.50 204.788737

Table 4.12: MAE for 16 bit ETA1 with 10 bit approx.

41

3. AMAS

Monte carlo - 255.706835(Assumes input static probability is 0.5)

| Static Probability | MAE |

0.05 48.595
0.10 92.080
0.15 130.455
0.20 163.720
0.25 191.875
0.30 214.920
0.35 232.855
0.40 245.680
0.45 253.395
0.50 256.000

4. AMA4

| Static Probability | MAE |
0.55 253.495
0.60 245.880
0.65 233.155
0.70 215.320
0.75 192.375
0.80 164.320
0.85 131.155
0.90 92.880
0.95 49.495

Table 4.13: MAE for 16 bit AMAS with 10 bit approx.

Monte carlo - 265.117801(Assumes input static probability is 0.5)

| Static Probability | MAE |
0.05 86.593868
0.10 148.437421
0.15 192.708603
0.20 224.089250
0.25 245.739037
0.30 259.845357
0.35 267.943671
0.40 271.109708
0.45 270.077892
0.50 265.316263
Table 4.14:

| Static Probability | MAE
0.55 257.075634
0.60 245.423934
0.65 230.273073
0.70 211.403656
0.75 188.491918
0.80 161.143041
0.85 128.935358
0.90 91.481167
0.95 48.512015

MAE for 16 bit AMA4 with 10 bit approx.

42

5. AMA3

Monte carlo - 285.24595(Assumes input static probability is 0.5)

’ Static lz)r(;);)ablllty \ 92(?/;1;‘;5140 ‘] Static Probability \ MAE \
0.10 818.953295 8'28 i%ggiigi
0.15 718.573911 T 380 371656
0.20 621.519083 0.70 450.793952
0.25 530.475625 0.75 531 854168
0.30 443791426 0.80 €2 047940
0.35 380.168083 0.85 718291500
0.40 328.219820 0.90 S18. 114367
0.45 295.968517 0.95 910732074
0.50 285.378716 ' :
Table 4.15: MAE for 16 bit AMA3 with 10 bit approx.
6. AMA2
Monte carlo - 239.320233(Assumes input static probability is 0.5)
[Static lz)rg;)abﬂlty | 92(?:13;96 | [Static Probability | MAE |
0.10 818.544323 8'28 igﬁ)zg?gﬁ
0.15 716.957821 0.65 351.195693
0.20 617.037901 0.70 129060545
0.25 520.835050 075 518.623534
0.30 431.605800 0.80 615207150
0.35 353.793114 0.85 715.445800
0.40 292.584550 0.90 817963914
0.45 253.029036 0.5 910 597146
0.50 238.910971 ' '
Table 4.16: MAE for 16 bit AMA2 with 10 bit approx.

43

7. AMA1

Monte carlo - 137.99217(Assumes input static probability is 0.5)

’ Static lz)r(;);)ablllty \ = 1;/([;:;27 ‘] Static Probability \ MAE \

0.10 145.695101 8'23 ;élzﬁﬁiif
0.15 184.502522 T 620388207
0.20 206.777495 070 12 7680184
0.25 215.610035 075 265117004
0.30 213.505355 0.80 44735791
0.35 202.661796 0.85 €57403713
0.40 185.126635 0.90 5 11947597
0.45 162.869562 005 034813864
0.50 137.796412 : '

Table 4.17: MAE for 16 bit AMA1 with 10 bit approx.

8. AXA1
Monte carlo - 273.095917(Assumes input static probability is 0.5)
’ Static lz)r(;);)ablllty \ - 1;/;:::540 ‘] Static Probability \ MAE \

0.10 150.236069 8'23 ﬁéﬁ'ﬁiigg
0.15 193.676976 0.65 264 486930
0.20 223.318303 0.70 756.129948
0.25 243.189753 075 543 045150
0.30 256.235075 0.80 573 149111
0.35 264546600 0.85 193503707
0.40 269.566880 0.90 150.000161
0.45 272.232643 0.95 7 655077
0.50 273.066406 : '

Table 4.18: MAE for 16 bit AXA1 with 10 bit approx.

44

9. AXA2
Monte carlo - 299.627428(Assumes input static probability is 0.5)

| Static Probability | MAE |

| Static Probability | MAE

0.05 845.1588320

0.55 247.489103
0.10 714.154924

0.60 195.981263
0.15 620.395694

0.65 148.132586
0.20 554.210081

0.70 106.351038
0.25 506.180388

0.75 71.8753504
0.30 467.666238

0.80 44.9035278
0.35 431.481454

0.85 24.9823542
0.40 392.578980

0.90 11.4177890
0.45 348.508605 0.95 35672407
0.50 299.416016

Table 4.19: MAE for 16 bit AXA2 with 10 bit approx.

10. AXA3
Monte carlo - 258.41887(Assumes input static probability is 0.5)

| Static Probability | MAE |

| Static Probability | MAE

0.05 96.9168571

0.55 205.890537
0.10 181.897820

0.60 153.873698
0.15 253.002225

0.65 107.015877
0.20 308.155214

0.70 68.5011781
0.25 345.404053

0.75 39.6364768
0.30 363.324706

0.80 20.0834265
0.35 361.535964

0.85 8.3825635
0.40 341.188310

0.90 2.5234197
0.45 305.227550 0.95 03854263
0.50 258.250000

Table 4.20: MAE for 16 bit AXA3 with 10 bit approx.

45

4.4.2 Mean Squared Error

10 bit adder with S bit approximate

1. LOA

Monte carlo - 64.048423(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 0.8503750
0.10 3.376000
0.15 7.500375
0.20 13.096000
0.25 19.984375
0.30 27.936000
0.35 36.670375
0.40 45.856000
0.45 55.110375
0.50 64.000000

Table 4.21: MSE for 10 bit LOA with 5 bit approx.

2. ETA1

Monte carlo - 91.238492(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 0.05909313
0.10 0.46668226
0.15 1.66388787
0.20 4.21260995
0.25 8.78554440
0.30 16.1545775
0.35 27.1778344
0.40 42.7856810
0.45 63.9659936
0.50 91.7490234

| Static Probability | MSE |
0.55 72.040375
0.60 78.696000
0.65 83.380375
0.70 85.4560000
0.75 84.2343750
0.80 78.9760000
0.85 68.8903750
0.90 53.1360000
0.95 30.8203750

| Static Probability | MSE
0.55 127.192185
0.60 171.365096
0.65 225.335183
0.70 290.154161
0.75 366.845641
0.80 456.394128
0.85 559.735586
0.90 677.749727
0.95 811.254102

Table 4.22: MSE for 10 bit ETA1 with 5 bit approx.

46

3. AMAS
Monte carlo - 85.605859(Assumes input static probability is 0.5)

| Static Probability | MSE |

| Static Probability | MSE |

0.05 16.2

0.55 84.7
0.10 30.7

0.60 82.2
0.15 43.5

0.65 78.0
0.20 54.6

0.70 72.1
0.25 64.0

0.75 64.5
0.30 71.7

0.80 55.2
0.35 1.7

0.85 44.2
0.40 82.0

0.90 31.5
0.45 84.6 0.95 71
0.50 85.5

Table 4.23: MSE for 10 bit AMAS with 5 bit approx.

4. AMA4
Monte carlo - 120.784091(Assumes input static probability is 0.5)

| Static Probability | MSE__| [Static Probability | MSE |

0.05 30.859544

0.55 117.156253
0.10 55.856304

0.60 111.393024
0.15 75.826622

0.65 103.482151
0.20 91.485696

0.70 93.458736
0.25 103.429688

0.75 81.398438
0.30 112.140336

0.80 67.447296
0.35 117.992102

0.85 51.854072
0.40 121.261824

0.90 35.005104
0.45 122.140903 0.95 17 461694
0.50 120.750000

Table 4.24: MSE for 10 bit AMA4 with 5 bit approx.

47

5. AMA3

Monte carlo - 138.48023(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 812.996564
0.10 679.128998
0.15 559.498818
0.20 454.257878
0.25 363.607269
0.30 287.792629
0.35 227.094846
0.40 181.816059
0.45 152261543
0.50 138.718750

Table 4.25: MSE for 10 bit AMA3 with 5 bit approx.

6. AMA2

Monte carlo - 112.999564(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 810.076846
0.10 673.435713
0.15 551.048503
0.20 443.001922
0.25 349.497803
0.30 270.842857
0.35 207.429662
0.40 159.710032
0.45 128.161762
0.50 113.250000

| Static Probability | MSE
0.55 141.435204
0.60 160.597293
0.65 196.312175
0.70 248.594952
0.75 317.363129
0.80 402.439903
0.85 503.567273
0.90 620.429097
0.95 752.683156
| Static Probability | MSE
0.55 115.385044
0.60 134.879197
0.65 171.906201
0.70 226.467791
0.75 298.372803
0.80 387.235100
0.85 492.497132
0.90 613.486196
0.95 749.510317

Table 4.26: MSE for 10 bit AMA?2 with 5 bit approx.

48

7. AMA1

Monte carlo - 58.605067(Assumes input static probability is 0.5)

| Static Probability | MSE
0.05 30.700630
0.10 54.665665
0.15 72.092098
0.20 83.327963
0.25 88.880859
0.30 89.412605
0.35 85.719407
0.40 78.698699
0.45 69.305228
0.50 58.500000

Table 4.27: MSE for 10 bit AMAT1 with 5 bit approx.

8. AXA1

Monte carlo - 102.593797(Assumes input static probability is 0.5)

| Static Probability | MSE
0.05 31.328592
0.10 56.161860
0.15 74.446149
0.20 87.088920
0.25 95.276367
0.30 100.137803
0.35 102.621571
0.40 103.480734
0.45 103.297209
0.50 102.500000

| Static Probability | MSE |

0.55 47.196390
0.60 36.208048
0.65 26.203184
0.70 17.669412
0.75 10.892578
0.80 5.951853

0.85 2.731888

0.90 0.950983

0.95 0.201973

| Static Probability | MSE |

0.55 101.356337
0.60 99.933533
0.65 98.043801
0.70 95.193861
0.75 90.565430
0.80 83.051378
0.85 71.365015
0.90 54.226279
0.95 30.608263

Table 4.28: MSE for 10 bit AXA1 with 5 bit approx.

49

9. AXA2

Monte carlo - 186.205952(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 744.655706
0.10 584.588087
0.15 470.180115
0.20 390.932935
0.25 336.847656
0.30 298.902484
0.35 269.534124
0.40 243.025962
0.45 215.720071
0.50 186.000000

10. AXA3

Table 4.29: MSE for 10 bit AXA2 with 5 bit approx.

Monte carlo - 178.479214(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 37.881233
0.10 80.418781
0.15 123.228109
0.20 162.104267
0.25 193.347656
0.30 214.109850
0.35 222.692505
0.40 218.736925
0.45 203.257955
0.50 178.500000

| Static Probability | MSE |

0.55 154.030507
0.60 121.283339
0.65 89.918876
0.70 62.126179
0.75 39.542969
0.80 22.876369
0.85 11.819246
0.90 5.299695

0.95 2.006960

| Static Probability | MSE |

0.55 147.621425
0.60 114242796
0.65 81.920692
0.70 53.628594
0.75 31.335938
0.80 15.772226
0.85 6.441505

0.90 1.909816

0.95 0.320927

Table 4.30: MSE for 10 bit AXA3 with 5 bit approx.

50

Variation of MSE with static probability

900

800

700

600

500

MSE

400

300

200

100

Figure 4.4: Variation of MSE with static probability - 10 bit adder 5 bit apprx

MSE variation with the static probability is similar to the variation of MAE with
static probability. For ETA1[4.22] the MSE value increases as the static probability
increases. For LOA[4.21] the value increases till certain point and decreases after that

point. For AMA4[4.24] and AMAS5[4.23] the value increases till 0.5 and decreases after

that point.

- LOA AMA2
ETAl ———— AMAL
AMAG —-— AXA2
AMA3 AXA3

0.3

0.4

0.5

0.6

Static probability

51

16 bit adder with 10 bit approximate

1. LOA

Monte carlo - 65538.052788(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 871.62798
0.10 3460.29760
0.15 7687.36597
0.20 134217616
0.25 20479.9844
0.30 28626.1056
0.35 37571.7680
0.40 46976.1856
0.45 56446.1440
0.50 65536.0000

Table 4.31: MSE for 16 bit LOA with 10 bit approx.

2. ETA1

Monte carlo - 94142.625488(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 36.85699
0.10 351.66077
0.15 1375.54881
0.20 3698.18895
0.25 8054.97398
0.30 15311.0996
0.35 26443.1697
0.40 42519.0480
0.45 64676.7064
0.50 94102.8120

| Static Probability | MSE
0.55 73747.6820
0.60 80530.6896
0.65 85282.0940
0.70 87346.5376
0.75 86016.2344
0.80 80530.9696
0.85 70078.1000
0.90 53792.5536
0.95 30756.8300
| Static Probability | MSE
0.55 132011.745
0.60 179625.658
0.65 238156.092
0.70 308787.530
0.75 392663.165
0.80 490873.032
0.85 604444.532
0.90 734335.309
0.95 881428.330

Table 4.32: MSE for 16 bit ETA1 with 10 bit approx.

52

3. AMAS

Monte carlo - 87472.094592(Assumes input static probability is 0.5)

| Static Probability | MSE

|

0.05 16602.44
0.10 31457.26
0.15 44564.46
0.20 55924.04
0.25 65536.00
0.30 73400.34
0.35 79517.06
0.40 83886.16
0.45 86507.64
0.50 87381.50

Table 4.33: MSE for 16 bit AMAS with 10 bit approx.

4. AMA4

Monte carlo - 125681.09539(Assumes input static probability is 0.5)

| Static Probability | MSE |
0.05 31627.5207
0.10 57248.7314
0.15 77740.9117
0.20 93858.6906
0.25 106230.961
0.30 115361.681
0.35 121634.559
0.40 125321.629
0.45 126595.711
0.50 125546.750
Table 4.34:

| Static Probability | MSE |
0.55 86507.74
0.60 83886.36
0.65 79517.36
0.70 73400.74
0.75 65536.50
0.80 55924.64
0.85 44565.16
0.90 31458.06
0.95 16603.34

| Static Probability | MSE |
0.55 122202.056
0.60 116550.417
0.65 108570.103
0.70 98260.7590
0.75 85679.1797
0.80 70978.9722
0.85 54454.1052
0.90 36586.3442
0.95 18096.5728

MSE for 16 bit AMA4 with 10 bit approx.

53

5. AMA3
Monte carlo - 141317.738755(Assumes input static probability is 0.5)

| Static Probability | MSE |

| Static Probability | MSE

0.05 880146.951

0.55 150789.424
0.10 729634.752

0.60 179062.381
0.15 595260.431

0.65 226070.509
0.20 477380.518

0.70 291460.929
0.25 376424.355

0.75 374791.707
0.30 292866.913

0.80 475578.422
0.35 227191.314

0.85 593340.419
0.40 179844.534

0.90 727640.453
0.45 151191.742 0.95 278113.599
0.50 141475.929

Table 4.35: MSE for 16 bit AMA3 with 10 bit approx.

6. AMA2
Monte carlo - 116440.565018(Assumes input static probability is 0.5)

| Static Probability | MSE |

| Static Probability | MSE

0.05 879984.186

0.55 126602.883
0.10 728924.475

0.60 157564.543
0.15 593252.021

0.65 208624.973
0.20 473065.987

0.70 278651.228
0.25 368739.161

0.75 366408.321
0.30 280963.153

0.80 470811.508
0.35 210724.954

0.85 591090.135
0.40 159189.640

0.90 726831.622
0.45 127495.518 0.95 277908612
0.50 116507.500

Table 4.36: MSE for 16 bit AMA2 with 10 bit approx.

54

7. AMA1
Monte carlo - 58248.262005(Assumes input static probability is 0.5)

| Static Probability | MSE |

| Static Probability | MSE |

0.05 31461.843

0.55 46562.280
0.10 56000.850

0.60 35323.596
0.15 73805.949

0.65 25221.561
0.20 85217.733

0.70 16726.027
0.25 90742.503

0.75 10083.759
0.30 91054.297

0.80 5326.93204
0.35 86981.091

0.85 2298.95875
0.40 79473.064

0.90 691.64628
0.45 69553.661 0.95 27 76888
0.50 58257.500

Table 4.37: MSE for 16 bit AMA1 with 10 bit approx.

8. AXA1l
Monte carlo - 104851.335645(Assumes input static probability is 0.5)

| Static Probability | MSE |

| Static Probability | MSE |

0.05 32410.885

0.55 104819.156
0.10 58140.145

0.60 104563.686
0.15 76821.780

0.65 103682.097
0.20 89396.026

0.70 101502.729
0.25 97203.302

0.75 97093.739
0.30 101588.753

0.80 89282.459
0.35 103733.106

0.85 76723.921
0.40 104583.034

0.90 58074.174
0.45 104821.964 0.95 39385430
0.50 104857.500

Table 4.38: MSE for 16 bit AXA1 with 10 bit approx.

55

9. AXA2
Monte carlo - 174905.973824(Assumes input static probability is 0.5)

| Static Probability | MSE |

| Static Probability | MSE

0.05 803267.507

0.55 140174.145
0.10 623317.298

0.60 106259.189
0.15 494927.054

0.65 75960.9113
0.20 406369.339

0.70 50963.2388
0.25 346280.404

0.75 31857.0463
0.30 304196.724

0.80 18271.7484
0.35 271248.113

0.85 9274.15417
0.40 240859.092

0.90 3788.71197
0.45 209217.595 0.95 206.79798
0.50 175274.000

Table 4.39: MSE for 16 bit AXA2 with 10 bit approx.

10. AXA3
Monte carlo - 161651.4032(Assumes input static probability is 0.5)

| Static Probability | MSE |

| Static Probability | MSE

0.05 39378.090

0.55 125716.333
0.10 84333.899

0.60 90675.842
0.15 129834.386

0.65 60221.8505
0.20 170882.788

0.70 36437.9259
0.25 202899.440

0.75 19728.7225
0.30 222249.188

0.80 9248.1542
0.35 226832.038

0.85 3510.95516
0.40 216562.668

0.90 923.03438
0.45 193519.493 0.95 10113438
0.50 161603.500

Table 4.40: MSE for 16 bit AXA3 with 10 bit approx.

56

4.4.3 Worst-case error

Worst-case error does not depend on the static probability.

Adder | WCE | Monte-carlo |

LOA 16 16
ETA1 31 31
AMAS 16 16
AMA4 | 31 31
AMA3 31 31
AMA2 | 31 31
AMAL 31 31
AXAl 21 21
AXA2 31 31
AXA3 31 31

Table 4.41: WCE for 10 bit adder with 5 bit approximate bits

Adder | WCE | Monte-carlo |

LOA 512 512
ETA1 | 1023 1023
AMAS | 512 512
AMA4 | 1023 1023
AMA3 | 1023 1023
AMA?2 | 1023 1023
AMAT | 1023 1023
AXAl | 682 682
AXA2 | 1023 1023
AXA3 | 1023 1023

Table 4.42: WCE for 16 bit adder with 10 bit approximate bits

57

4.4.4 Error Rate

Probability of occurrence of an error.

| Adder | ER | Monte-carlo |
LOA | 0.7626953125 0.762548
ETA1 | 0.7626953125 0.76222
AMAS 0.96875 0.968749
AMA4 | 0.9130859375 0.913877
AMA3 | 0.9130859375 0.913673
AMA?2 | 0.7626953125 0.761777
AMAL1 0.7734375 0.774242
AXA1 0.96875 0.968495
AXA2 1.0 1.0
AXA3 0.7734375 0.774396

Table 4.43: ER for 10 bit adder with 5 bit approximate bits

| Adder | ER | Monte-carlo
LOA | 0.94368649 0.943718
ETA1 | 0.94368649 0.943345
AMAS | 0.99902344 0.999038
AMA4 | 0.98956108 0.989658
AMA3 | 0.98956108 0.989608
AMA?2 | 0.94368649 0.943698
AMAL1 | 0.89736938 0.897563
AXA1 | 0.99902344 0.999047
AXA2 1.0 1.0
AXA3 | 0.89736938 0.897338

Table 4.44: ER for 16 bit adder with 10 bit approximate bits

58

4.4.5 Time take for computation

The simulations are done on a 64-bit system with Intel® Core' " i7-7700 processor

having maximum clock frequency of 4200MHz along with 31GB of RAM.

MAE Computation

Adder | Time taken (s) |

AMAS 7193.11
AMAA4 4793.55
AMA?2 10287.35
AMAL1 7439.13
ETA1 4443.88
LOA 4677.37
AXAI 11389.94
AXA2 9358.27
AXA3 7612.77

Table 4.45: Time taken for 16 bit adder with 10 approximate bits

MSE Computation

Adder | Time taken (s) |

AMAS 6639.41
AMAA4 5214.50
AMA3 8000.28
AMA?2 11559.13
AMAI 9200.69
ETA1 6055.76
LOA 4871.58
AXAl 13529.24
AXA2 10642.74
AXA3 10504.45

Table 4.46: Time taken for 16 bit adder with 10 approximate bits

59

10.

REFERENCES

. de Oliveira, J., L. Soares, E. Costa, and S. Bampi, Exploiting approximate adder cir-

cuits for power-efficient gaussian and gradient filters for canny edge detector algorithm.
In 2016 IEEE 7th Latin American Symposium on Circuits Systems (LASCAS). 2016.

Gupta, V., D. Mohapatra, A. Raghunathan, and K. Roy (2013). Low-power digital
signal processing using approximate adders. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 32(1), 124-137.

. Jiang, H., J. Han, and F. Lombardi, A comparative review and evaluation of approx-

imate adders. In Proceedings of the 25th edition on Great Lakes Symposium on VLSI.
2015.

Kim, Y., Y. Zhang, and P. Li, An energy efficient approximate adder with carry skip for
error resilient neuromorphic vlsi systems. In 2013 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). 2013.

. Li, L. and H. Zhou, On error modeling and analysis of approximate adders. In 2014

IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2014.

Mahdiani, H. R., A. Ahmadi, S. M. Fakhraie, and C. Lucas (2010). Bio-inspired
imprecise computational blocks for efficient vlsi implementation of soft-computing ap-

plications. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4), 850—
862.

Oliveira Julio, R., L. B. Soares, E. A. C. Costa, and S. Bampi, Energy-efficient gaus-
sian filter for image processing using approximate adder circuits. In 2015 IEEE Inter-
national Conference on Electronics, Circuits, and Systems (ICECS). 2015.

Vasicek, Z. (2019). Formal methods for exact analysis of approximate circuits. /[EEE
Access, T, 177309-177331.

Yang, Z., A. Jain, J. Liang, J. Han, and F. Lombardi, Approximate xor/xnor-based
adders for inexact computing. In 2013 13th IEEE International Conference on Nan-
otechnology (IEEE-NANO 2013). 2013.

Zhu, N., W. L. Goh, and K. S. Yeo, An enhanced low-power high-speed adder for
error-tolerant application. In Proceedings of the 2009 12th International Symposium on
Integrated Circuits. 2009.

61

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Motivation
	Objective

	Review of Approximate Adders
	Error Tolerant Adder (ETA)
	Type 1 (ETA1)
	Type 2 (ETA2)

	Lower-part OR Adder (LOA)
	Approximate Mirror Adders
	Type 1 (AMA1)
	Type 2 (AMA2)
	Type 3 (AMA3)
	Type 4 (AMA4)
	Type 5 (AMA5)

	Approximate XOR/XNOR based adder
	Approximate XOR-based adder (AXA1)
	Approximate XNOR-based adder (AXA2)
	Approximate XNOR-based adder (AXA3)

	Approximate Carry Skip Adder
	Consistent Carry Approximate Adder (CCA)

	Applications of approximate adders
	Image smoothing
	Gaussian Filter
	Results

	Canny Edge Detector
	Edge Detection
	Results after gradient filter

	Adder Comparison
	Error Metrics
	Error Rate (ER)
	Error Distance (ED)
	Hamming Distance (HD)
	Mean Hamming Distance (MHD)
	Mean Absolute Error (MAE)
	Worst-case arithmetic error (WCE)
	Mean Squared Error (MSE)

	Error Metrics computation
	Binary Decision Diagram and Boolean Satisfiability
	Miter circuit
	Computation of the Error Metrics using satisfiability8930546
	Computation of Error Metrics - Simplified Algorithm8930546

	PyEDA
	Modification and Results
	Mean Absolute Error
	Mean Squared Error
	Worst-case error
	Error Rate
	Time take for computation

