
Performance study of Last Level Cache in Asymmetric
multi core processors

PROJECT REPORT

Submitted by

MURALI DADI

in partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

Department Of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUNE 2021

i

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

2021

CERTIFICATE

This is to certify that this thesis (or project report) entitled “Performance

study of Last Level Cache in Asymmetric multi core processors” sub-

mitted by MURALI DADI to the Indian Institute of Technology Madras, for

the award of the degree of Masters of Technology is a bona fide record of the

research work done by him under my supervision. The contents of this thesis

(or project report), in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma..

Dr. T. G. Venkatesh

Research Guide

Associate Professor

Department of Electrical Engineering

IIT Madras 600036

ii

Acknowledgment

First and foremost, I would like to express my deepest gratitude to my guide,

Dr. T G Venkatesh, Associate Professor, Department of Electrical Engineer-

ing, IIT Madras, for providing me an opportunity to work under him. I would

like to express my deepest appreciation for his patience, valuable feedbacks,

suggestions and motivations.

I convey my sincere gratitude to Shubang Pandey, MS Scholar, IIT Madras

and Aparna Behara, PhD Scholar, IIT Madras, for all their suggestions and sup-

port during the entire course of the project. Throughout the course of the project

they offered immense help and provided valuable suggestions which helped me

in completing this project.

I would like to extend my appreciation to all my friends and for their help

and support in completing my project successfully.

Abstract

The present workloads and applications are highly diversified, demanding solu-

tions that can deal with critical issues such as the Power Wall, Frequency Wall,

and Memory Wall Problem. Asymmetric Multicore Processors (AMP) appear

to be a promising approach for addressing these issues in a wide range of appli-

cations. Because of the heterogeneity in the AMPs, we can see that the different

Cache levels are highly affected by continuous resource allocation and sharing.

This heterogeneity in the AMPs arises either due to varying core frequencies or

execution order (i.e., In-order or out-of-order executions). ARM big.LITTLE,

is an example of such a real-world core. It combines battery-saving and slower

CPU cores(LITTLE) with more powerful and power-hungry cores(big). The per-

formance of L2 and Last Level Cache for several flexible cache architectures for

various AMP configurations is investigated in this thesis. The study examines

parameters such as L2 and L3 miss rates and total On-chip power consumption

for several Multithreaded benchmarks from the Parsec and Splash2 benchmark

suites with medium inputs. It also investigates the effects of different Cache co-

herence protocols and block Replacement strategies on these parameters. Our

study presents an intermediate cache design for AMPs between two extremes

of fully shared L2 and L3 level Caches and fully private L2 and L3 level Cache,

achieving desirable power values with optimal cache miss penalties.

Contents

ABBREVIATIONS ix

1 Introduction 1

1.1 Motivation . 2

1.2 Aim . 2

1.3 Major contribution . 3

1.4 Outline of the report . 3

2 Background 4

2.1 Memory-wall problem . 4

2.2 Memory Hierarchy . 5

2.3 Cache Management polices . 7

2.3.1 Write Policies . 7

2.3.2 Replacement Policies . 8

2.3.3 Mapping Techniques . 9

2.3.4 Cache Misses . 10

2.3.5 Memory access patterns 11

2.4 Multi core Architecture . 12

2.4.1 Symmetric Multi core Architecture 13

2.4.2 Asymmetric Multi core architecture 13

2.5 Cache Coherence . 14

v

2.5.1 Private caches and Shared caches 14

2.5.2 Coherence . 15

2.6 Power . 16

2.6.1 Why Low-power design? 17

3 Literature Review 18

4 Performance Study of Last Level Cache 21

4.1 Study of both associativity and cache size with different replace-

ment policies . 21

4.1.1 Varying the Associativity of cache 23

4.1.2 Varying LLC cache size 24

4.2 Performance trade-off in Asymmetric Multi core Architectures(AMPs) 26

4.2.1 Configuration 5,6 with different coherence protocols . . . 33

4.2.2 Exploring the effect of shared and private caches 34

5 Conclusions and Future Work 39

vi

List of Figures

2.1 Year wise performance improvement in processor and memory

technology . 5

2.2 The memory hierarchy . 6

4.1 Varrying Associativity of cache 25

4.2 Varying LLC cache size . 26

4.3 Cache hierarchy of Nehalem architecture with 4 cores 28

4.4 Performance trade-off in Heterogeneous Multi core Architecture . 32

4.5 Configurations 5,6 with different coherence protocols 34

4.6 Configurations 1,6,9 with LRU replacement policy 35

4.7 Configurations 1,6,9 with MRU Replacement policy 36

4.8 Configuration 1,6,9 with Round Robin Replacement policies . . 37

vii

List of Tables

4.1 Configuration details - 1 . 24

4.2 Configuration details . 29

4.3 L2 and L3 Cache details for different Configurations 30

4.4 L2 cache Miss rate for all configurations 31

4.5 L3 cache Miss rate and Power for all configurations 31

viii

ABBREVIATIONS

LRU Least Recently Used

MRU Most Recently Used

SRRIP Static Re Reference Interval Prediction

DRRIP Dynamic Re Reference Interval Prediction

Config Configuration

CPU Central Processing Unit

DVFS Dynamic Voltage and Frequency Scaling

LLC Last Level Cache

Chapter 1

Introduction

The performance of computational units is increasing every year with an increase

in the number of chips integrated on the same chip. In the high-performance

computing domain, it is highly desirable to have the best computational speed.

But the core computational power is increasing faster than the memory sys-

tem performance, which leads to the Memory-wall problem. Even though

computational-bound problems can be solved, memory-bound problems are ma-

jor issues faced by chip designers because of the poor performance of memory

systems. LLC(Last level cache) of a memory hierarchy has a direct impact

on the performance. When data is not found in the last level cache, it ini-

tiates a transaction to the main memory, which results in both performance

and energy penalties. So it is highly recommended to have an efficient memory

system for providing high-performance capabilities to the computational units.

Such efficiency is mostly depends upon the different cache management policies.

Power consumption is also becoming a major issue in current-generation pro-

cessors. Power-efficient processors are in great demand for various application

domains. Many design techniques like ASIC(Application Specific Integrated

Circuit) design, Custom design, and multi-core design are adopted to reduce

1

LLC Study

power consumption. So many power-related simulation tools Wattch, CACT1,

McPAT(Multi-core power, area, timing) are also introduced to analyze and op-

timize the power. McPAT is an integrated power, area, and Timing tool which

is used to model the dynamic power. McPAT is also modeled to produce inte-

grated solutions for multi-core processor power.

1.1 Motivation

There has been an immense growth in chip designing for computing systems.

The trade-off between performance and power plays a crucial role in this growth.

With the aggressive scaling in IC Technology, power density(w/cm2) is increased

due to an increase in the number of transistors per unit area. Even with high-end

computers, power consumption is a key consideration. In addition, the objec-

tive function(better performance or low power consumption) may also change

depending on the requirements and the operating conditions of a device. For

example, in mobiles, it is important to optimize energy for battery life during

idle periods and to optimize performance during active times. Several processor

design approaches, such as multi-core CPUs, are applied to attain great perfor-

mance and low power consumption. Last level caches are one of the processor’s

resources that significantly impact system performance and energy usage. As a

result, effective handling of last-level caches is required.It’s much more difficult

to deal with multi-core CPUs which shares the resources like L2 and Last Level

caches.

1.2 Aim

In this thesis, we have studied the performance aspects of LLC in both single-

core and multi-core architectures. In single-core architecture, we have studied

the effect of both LLC size and associativity on the system performance. Pri-

marily, the impact of the different replacement policies over the variable size

Department of Electrical Engineering, IIT Madras 2

LLC Study

and associativity is examined. In multi-core architecture, managing the shared

last-level caches is a critical task. Thus we have explored the effect of different

configurations for L2 and last level caches which affects the key system metrics

such as L2 miss rate, L3 miss rate, and total power consumption of a multi-

core architecture. Further in our study, we want to investigate the impact on

the power consumption of an Asymmetric multi-core processor due to different

cores (with different frequencies) and also different order of execution (In order

or out of order).

1.3 Major contribution

As a first step in the thesis, we looked at how size and associativity of Last

Level Cache affect its performance. Later we evaluated the L2 miss rate, L3

miss rate, and total on-chip power consumption of several configurations of a

multicore architecture with 16 cores by changing the L2, L3 level caches from

fully shared among all cores to fully private to each core. Finally, selectively

simulated the three different configurations to enhance the study further.

1.4 Outline of the report

The remainder of this thesis is organized as follows. Initially in Chapter 2, a

brief background is given related to caches, it’s management policies and also

about multi core architectures. Then in Chapter 3 we have discussed about

the literature survey that are related to our work. Later in Chapter 4, the

simulation results for the different configurations is given. Finally in Chapter

5, the conclusion and the future scope related to our study are given.

Department of Electrical Engineering, IIT Madras 3

Chapter 2

Background

This chapter initially reviews the memory-wall problem and then discusses the

caches and their different management strategies. Later we also review the

multi-core architecture and its types. Finally, we study the parameters that

affect the power consumption in an IC(integrated circuit).

2.1 Memory-wall problem

As VLSI technology is improved, we have gone through so many advancements

in IC Design. So we can integrate as many computational units on a single

chip, thus achieving good computational power. However, even if we reached

tremendous speed on computational units, these computations have to be per-

formed on stored memory data. The longer it takes to get data, the slower

the computation goes. So the high-performance computation has always been

very data-hungry. But even today’s fastest storage is slower than the fastest

CPU processing speed, resulting in more memory access latency, leading to

performance degradation. Here memory bandwidth is limiting the instruction

execution rate, which is called a Memory-wall problem. Consider the Fig.2.1

4

LLC Study

which shows improvement in both memory technology and processor technology.

Figure 2.1: Year wise performance improvement in processor and memory tech-
nology

Being able to access an unlimited amount of data with unlimited bandwidth

is the ideal requirement for better processing. A memory hierarchy is used to

bridge the gap between CPU and memory technology, allowing us to access

more data at faster speeds.

2.2 Memory Hierarchy

In memory hierarchy, memory is organized into different levels based on their

size and access latency, as shown in Fig.2.2. The main aim of the Memory

hierarchy is to get more speed using the fastest memory and more capacity

from the bigger memory in the hierarchy.

Department of Electrical Engineering, IIT Madras 5

LLC Study

Figure 2.2: The memory hierarchy

The capacity and cost per bit of registers are high where their access latency

is very low. But the access time of main memory is in order of ms whose capacity

is more. The cache is used to bridge the latency gap between the processor and

main memory, whose access time is shorter than that of the main memory and

can be up to Mega Bytes of size.

Caches are smaller in size but faster in access. And also, We do not want

all the instructions or data to be available at the same time. The cache uses

the principle of locality of reference to get the data that is going to be accessed

many times or in the near future. There are two types of localities, temporal

locality, and spatial locality.

1. Temporal locality of reference : This is a locality in time, which means if

we have referenced to some address/word, there is a high chance that it is

going to be accessed again in the near future. So when CPU is accessing

a memory address, if it is not found in the cache, we should bring this

from the next level of memory to the highest level of caches so that we

Department of Electrical Engineering, IIT Madras 6

LLC Study

can easily access it the next time.

2. Spatial locality of reference : This is a locality in space. It implies when

a memory location is accessed, it is more likely to access additional words

in the region around it. When the CPU misses a location, we must also

move nearby locations to the highest memory level.

Cache hierarchy has to be designed properly so that it requires less access

to the off-chip memory, which takes more time to access data and bring it onto

the chip.

2.3 Cache Management polices

Though caches can be accessed quickly than the main memory, because of the

limited size of the caches, we should use them properly to have its benefits. So

to maintain the most accessible data, proper management policies are required

to read, write, and replace, etc.

2.3.1 Write Policies

Data cache is more complicated because we need to read and also write to the

data cache. There are two different write policies. They are write-through and

write-back.

1. Write-through Cache: When a block is modified, write-through policy

simultaneously updates the corresponding block in the main memory so

that the main memory and cache are consistent. This is more reliable as

it helps in data recovery in case of system failure. But if we have more

number of write operations, it always needs to go to the main memory,

which degrades the entire system performance.

2. Write-back Cache: The write-back policy prevents the changed cache block

from being updated back to the main memory unless it is necessary to do

Department of Electrical Engineering, IIT Madras 7

LLC Study

so. When data of a particular block has to be changed, we only update

the cache memory but not in the main memory. Main memory is updated

only before the eviction of that particular block. If there are many writes

to individual words in a cache block before it is replaced by another, the

write-back policy can help performance.

2.3.2 Replacement Policies

Caches are very small in size. We can’t place all the things that we need at

the same time on the cache. So when new data arrives older data has to be

replaced to make space for the new data. We should choose which block to re-

place(victim block) wisely so that it can’t pollute the cache by eliminating the

most required block or by placing the unnecessary blocks in the cache. Some of

the replacement policies are LRU(Least Recently Used), MRU(Most Recently

Used), Round Robin(FIFO), SRRIP(Static Re-Reference Interval Prediction),

DRRIP(Dynamic Re-Reference Interval Prediction), Random, etc.

1. LRU : The LRU replacement policy usually removes blocks from the cache

that haven’t been accessed in a long time. It predicts a near-immediate re-

reference interval for all cache lines entered into the cache. This strategy

is good for workloads with a greater degree of temporal locality. However,

LRU fails to perform well in cases where the reference occurs in the distant

future. As a result, in such cases, LRU degrades cache by replacing useful

cache blocks.

2. MRU : MRU replaces the most recently used cache block first. It predicts

that there is a high chance of accessing the older data in the near future.

So it eliminates the latest cache block first. Some researchers have found

that for random access patterns and cyclic access patterns, MRU performs

better than LRU due to their tendency to retain older data.

3. Random : Implementation of LRU,MRU and other replacement algo-

Department of Electrical Engineering, IIT Madras 8

LLC Study

rithms is cost effective. We can adopt the Random replacement policy

to save cost and complexity, but it may come at the expense of perfor-

mance. The victim of the Random replacement strategy is chosen at

random from all the cache lines in the set. It does not require any in-

formation about cache line access history. A basic linear feedback shift

register is a straightforward technique to accomplish this.

4. Round Robin : It is also called First In First Out. The Round Robin (or

FIFO) replacement strategy simply replaces the cache lines in sequential

order, starting with the oldest block in the set. The cache evicts the

blocks in the order in which they were added, regardless of how often or

how many times they have been accessed previously. Every cache memory

set comes with a circular counter that refers to the next cache block to be

replaced, and the counter is updated every time a cache miss occurs.

2.3.3 Mapping Techniques

There are different mapping techniques to load the data, which is referenced by

the CPU from main memory to cache memory . They are 1)Direct mapping

2)Set associative mapping 3)Fully associative mapping.

1. Direct mapping : A particular block of main memory can only map to a

single line of the cache in the Direct mapping. When new data comes, any

data that is currently in a block will be replaced. It takes less hardware as

it requires only one tag needs to be checked at a time. There is no need for

any special replacement algorithm in direct-mapped caches. Because the

main memory block can only map to a single cache line, the new incoming

block will always replace the previous block in that line. However, there’s

a high possibility that two or more frequently used main memory blocks

will be mapped to the same cache line, causing useful cache blocks to be

replaced. This is called conflict miss. So in the direct-mapped cache, there

is a chance for conflict misses.

Department of Electrical Engineering, IIT Madras 9

LLC Study

2. Set-associative mapping : In set-associative mapping, instead of a single

cache line, we have a given set of lines where the main memory block

can be mapped to. In general, we have 2,4,8,16 ways of set-associative

mapping. We need to search a given set of tag bits(2,4,8 or 16) for a

particular block. So it takes more hardware and power compared to the

direct mapping. But due to more possible cache lines for each memory

block, conflict misses are reduced.

3. Fully associative mapping : The fully associative cache can be treated

as a single cache set with multiple cache lines. It allows us to place a

memory block in any of the cache lines, allowing us to make full use of the

entire cache. The fully associative cache can have a much better hit rate

than the remaining mapping techniques. But if we want to search for a

particular block in the cache, we need to search all the cache lines since it

can be anywhere in the cache. So it requires much hardware to compare

all the tag bits, which consumes more power. And it also takes more time

to iterate through all the cache lines.

2.3.4 Cache Misses

When the address from which the processor wants to read or write is not present

in the particular level of cache, it is termed as a cache miss. Due to cache miss,

the processor has to wait for a longer time for data as it has to be fetched from

the next level of cache or the main memory. This time is termed as a miss

penalty. Different types of misses are

1. Compulsory Miss : Compulsory misses are known as cold start misses, or

the first reference misses. Every program or application always starts with

empty caches unless proper prefetching techniques are used. As a result,

when the CPU looks for a block in a cache, it misses, which is referred to

as a compulsory miss. These misses occur even in an infinite size cache.

Compulsory misses can not be avoided completely.

Department of Electrical Engineering, IIT Madras 10

LLC Study

2. Capacity Miss : When the program working set is substantially greater

than the cache capacity, capacity misses occur. The cache cannot contain

all the blocks required for a program. When a cache block is replaced

due to shortage of space and is accessed again in the future, it leads to

capacity miss. Since capacity miss occurs due to limited size, it can be

reduced by increasing the cache size. But when cache capacity is more, it

requires more area and takes more access time.

3. Conflict Miss : It is also called collision miss. When multiple blocks

of main memory are mapped to the same cache set, conflict misses occur.

When a cache block is replaced due to conflict, and that block is requested

again in the future, it results in conflict miss. More conflict misses occur

in the direct-mapped cache due to a single possible cache line for each

main memory block, whereas set-associative mapping can reduce conflict

misses. If we increase the degree of the associativity of cache, conflict

misses reduces. Fully associative caches do not have conflict misses due to

the flexibility of placing. But if associativity increases, power consumption

increases. Greater associativity also increases the hit time.

2.3.5 Memory access patterns

The order in which the CPU accesses the main memory is known as memory

access patterns. Common memory access patterns are

1. Recency- friendly access pattern :

(x1,x2, ...,xk−1,xk,xk,xk−1, ...,x2,x1)N , for any k (2.1)

It’s a typical N -times-repeating stack access pattern. The re-reference in-

Department of Electrical Engineering, IIT Madras 11

LLC Study

terval for a recency-friendly access pattern is near-immediate. Thus, the

access pattern benefits from the LRU replacement policy for any value of

K. Other than LRU , any replacement strategy can worsen the perfor-

mance of certain access patterns.

2. Thrashing access patterns :

(x1,x2, ...,xk)N (2.2)

It is accessing a data of length K in a cyclic manner that repeats N times.

The working set fits inside the cache when K is smaller than or equal to

the number of cache blocks in the cache. But if length of the data exceeds

the number of blocks, LRU receives no hits due to cache thrashing.

3. Streaming access patterns :

(x1,x2,x3,x4,xk),k = infinity (2.3)

The access pattern has no locality in its references when the length of

the data is sufficiently large (i.e., K=infinity). Workloads with an infinite

re-reference interval can be considered as streaming access patterns. As

a result, under any replacement strategy, this sort of pattern receives no

cache hits.

4. Mixed access patterns : A mixed access pattern can be treated as work-

loads with some references having a short re-reference interval and some

other references with distant re-reference interval.

2.4 Multi core Architecture

The basic need of a multi-core processor is parallel computing. Time taken is

the main drawback of a single-core processor. So instead of having a single su-

Department of Electrical Engineering, IIT Madras 12

LLC Study

perscalar processor, it is better to have more cores(processing units) on the same

chip. Since we have more cores, we can allocate different applications to differ-

ent cores, which allows better parallel processing and then increases the overall

system’s performance. Multi-core processors are energy efficient. Because these

processors can divide whole work into different cores, which decreases the load

on each core compared to single-core processors. Now it is easier to design multi-

core processors where each core can perform limited operations than designing a

big superscalar processor which can perform all the operations. Though we can

achieve high parallel computing from multi-core processors, the size of the per-

formance increase depends on the number of cores, the level of real concurrency

in the given application, and the use of shared resources. Based on the type of

each core in a multi-core architecture, they are categorized into symmetric and

asymmetric multi-core architectures.

2.4.1 Symmetric Multi core Architecture

Homogeneous cores are also called symmetric cores, where all cores are of the

same type. This means they all have the same type of processing powers, run

at the same frequency, and have the same type of resources like cache size,

associativity, block size, etc.

2.4.2 Asymmetric Multi core architecture

Asymmetric multi-core architectures are also called Heterogeneous multi-core

architectures. Individual cores with varied execution frequencies, cache sizes,

instruction window widths, and other fundamental features(like in-order or out-

of-order) result in heterogeneity among multi-cores. The main reason for hetero-

geneous cores is that this architecture can match different types of applications

or phrases in one application to the best-suited core to meet performance de-

mands. While some applications benefit from the most advanced processors,

others often under-utilize that hardware and suffer performance loss when run

Department of Electrical Engineering, IIT Madras 13

LLC Study

on little aggressive processors. So when we have heterogeneous cores where some

cores with higher capability and other cores with less capability, we can assign

applications to cores accordingly, which can efficiently use the entire system.

2.5 Cache Coherence

When we have more cores, each core needs to have some resources like cache

memory, etc. Based on how cores accessing cache memory, caches are divided

into shared caches and private caches.

2.5.1 Private caches and Shared caches

The private cache is where each core has its own cache memory. Since it is

private to each core, the small size of the cache can accommodate sufficient data,

which gives less access latency. In the case of private caches, there is a chance of

having replicas of the same data. This leads to the under-utilization of the total

net capacity of cache and also reduces the hit rate. Private caches can have lower

bandwidth interconnects. Private caches are advantageous when there is little

data sharing among the cores. When useful cache blocks of a certain core are

evicted due to conflicting references made by other cores sharing the cache, it is

called destructive interference, resulting in cache pollution. However, because

only one core uses the cache, such interference has no effect on performance

when using a private cache.

When all cores have one common cache memory, it is called shared cache.

When we have a shared cache, it must have a bigger cache to avoid capacity

misses. Access latency will be increased due to this bigger cache size. It can

efficiently allocate cache among all the cores by providing a sufficient size to

the required core, giving a better hit rate. Because shared caches must handle

requests from several cores, they require greater bandwidth interconnects. When

there is a large degree of data sharing across cores, a shared cache design is

beneficial. In the case of a shared cache, memory accesses generated by all

Department of Electrical Engineering, IIT Madras 14

LLC Study

cores may cause constructive interference, in which the other cores utilize one

core’s prefetched cache line.

2.5.2 Coherence

When each core of a multi-core processing system has its own cache and shares

another memory system (such as the last level cache, main memory, and so

on), there is a potential that multiple copies of shared data are generated.

Each processor that requested the same block has one copy in its local cache

and another copy in the main memory. When data in one of these blocks is

updated, the other copies must update as well. Cache coherence is the practice

of ensuring that changes in shared data values are propagated to all copies in

the system. Cache coherence intends that two cores must never see different

values for the same cache block.

We need to maintain the consistency of data in all locations. There are

two hardware mechanisms to ensure the coherence of shared data in multi-

core processors. They are directory-based protocols and Bus based(snoopy)

protocols.

I. Bus-based protocols

This is also called snooping. Snooping is a process where each processor observes

all other processor’s read-write requests and keeps the cache blocks coherent. It

changes the cache block state based on the observed actions by a processor on

the bus. There are two kinds of snooping protocols based on managing a local

copy of write operation..

1. Write-invalidate : In a write-invalidate protocol, when a processor writes

to any cached copy, it forces other processors to discard or invalidate their

copies. When a processor writes on a cache block whose copy is also there

in other caches, all other copies of this block are invalidated through bus

snooping. In this case, since the blocks in the other caches are invalidated,

Department of Electrical Engineering, IIT Madras 15

LLC Study

those caches miss that particular block in further accesses. These types of

misses are called coherent misses. This category includes protocols such

as MSI, MESI, MOESI, and MESIF.

2. Write-update : When a processor writes to a shared cache block in the

write-update protocol, all other copies must be updated to reflect the

change. This technique sends write data to all caches on a bus. This pro-

tocol must search for other copies as well as update those blocks, resulting

in more bus traffic than the write-invalidate protocol. Dragon and Firefly

are examples of the write-update protocol.

II. Directory based protocols

. This type of protocol uses a directory that keeps track of where the copies

of each block reside. Caches consult this directory before accessing a block to

ensure coherence. If we want to read or write to a block, we need to make

an explicit request to the directory that tells which other caches have that

particular block. In this case, we don’t have a single point of serialization for

all memory requests. Whenever we send a memory request, it is not visible

to others in the system like in bus-based protocol. Though the latency of the

directory is longer, it uses less bandwidth since messages are point to point

and not broadcast. For this reason, systems with more cores use this type of

coherence protocol. The scalability of snoopy methods is poor due to the use of

broadcasting where directories can be scalable easily.

2.6 Power

In the earlier stages of VLSI, people were concerned about performance, where

power consumption is secondary. But when technology scaling down power con-

sumption has also become the most critical issue. This is because of increasing

transistor count per unit area. Leakage power was also relatively low up to the

Department of Electrical Engineering, IIT Madras 16

LLC Study

100nm technology, but it has grown significantly with the 32nm technology.

2.6.1 Why Low-power design?

First of all packaging and cooling cost of a chip depends upon the amount of

power that chip is consuming. More power consumption leads to more cost.

Due to the integration of more and more transistors on a single small chip

area, power density(w/cm2) is increasing. Mobile phones, laptops, and other

battery-operated devices are in higher demand. Furthermore, the functionality

of these devices is increasing, demanding greater power. As all these devices

are battery-operated, battery life has become a primary concern. When power

consumption is increasing, the temperature of the chip increases more unless

we provide a better cooling mechanism. It is found that every 10-degree rise in

temperature roughly doubles the failure rate. . So to make the chip reliable, we

need to have low power consumption. As a result, low power design has become

an important aspect of VLSI design, in addition to performance.

There are various types of power consumption in the CMOS-based VLSI

chips. They are Dynamic power, short circuit power, leakage power. The power

dissipated when a chip is in the active condition like changing the inputs or

presence of clock signal etc. is called Dynamic power. When inputs are applied,

a lot of charging and discharging occurs at output nodes that consume power.

Dynamic power consumed in a circuit is given by:

PDynamic = α∗V 2
DD ∗fCLK ∗CL (2.4)

where VDD is the supply voltage, fCLK is the frequency of clock, CL- is the

effective load capacitance and α is the switching activity.

So if the clock frequency is increased for better performance, power con-

sumption also increases. This is one of the main key factors behind the growth

of multi-core processors to achieve performance rather than the single-core with

increased clock frequency which consumes more power.

Department of Electrical Engineering, IIT Madras 17

Chapter 3

Literature Review

In this chapter we review the existing literature works related to the last level

cache performance and energy consumption.

In this chapter we review the existing literature works related to the last

level cache performance and energy consumption. Cache memories are often

employed in microprocessors to increase the system performance, and thus these

caches have been the subject of numerous studies. LLC replacement policy is

one of the components of modern processors that significantly affects the off-chip

miss traffic and power consumption. Vakil-Ghahani et al. have suggested a new

replacement policy [1] by taking advantage of the correlation between reciprocal

of hit counts and reuse distance of a block. This policy makes good replacement

decisions based on the remaining number of cache block hits. Peneau et al. have

studied how different last-level cache replacement strategies affect the system

performance, and energy consumption [2].

The asymmetric multi-core architectures are in high demand, and the exist-

ing replacement policies have significant challenges when implemented in Asym-

metric multi-core systems. Ramtake et al. have studied the effect of Associativ-

ity on L1, L2 caches in a multi-core system concerning the cache hit ratio and

18

LLC Study

IPC(Instructions per Cycle) [3]. The latest VLSI chips integrate larger caches

on the chip, and managing such larger cache sizes has considerable overhead.

Jang et al. [4] have suggested a cache design for larger last-level caches, so that

good performance is attained even with high granularity. Anandkumar et al.

have proposed a new hybrid cache replacement strategy for heterogeneous multi-

cores that combines LRU, and LFU replacement policies [5]. Heterogeneity in

a multi-core system can be achieved by changing individual core frequencies,

cache sizes, and other cache parameters. et al. have investigated the benefits of

having various cache sizes in HMPs(Heterogeneous multi-core processors) and

how a scheduling technique can explore such benefits to reduce the overall miss

rate [6].

The last-level cache (LLC) in a modern chip-multiprocessor (CMP) is typi-

cally shared by all the cores. Processors use the shared caches more frequently;

therefore, eviction of the shared data causes more cache misses. Thus, to ef-

ficiently utilize the shared LLC on a CMP, Sato et al. have proposed cache

partitioning to protect the shared data by reducing unnecessary evictions [7] .

This approach separates shared and private data and uses cache partitioning to

give each type of data its own cache space. Several research works have been

done on the partitioning of shared LLC to improve system performance. But

they all miss the heterogeneity in the spatial locality of different applications.

Gupta et al. [8] showed how leveraging spatial locality allows significantly more

effective cache sharing. They have highlighted that when large block size is used,

the cache capacity requirements of many memory-intensive applications can be

dramatically lowered, allowing them to give more capacity to other workloads

effectively. In CMPs(Chip Multi Processors), private LLC provides a better

access latency than shared caches. But more private caches result in replication

of shared data, leading to underutilization of total net capacity of cache, thus

decreasing the overall hit ratio. To handle the above mentioned problem, Yuan

et al. have proposed a new cache management technique that improves the

performance of a CMP using the private Last Level Cache [9].

When we integrate hundreds or thousands of cores on a single chip, it be-

Department of Electrical Engineering, IIT Madras 19

LLC Study

comes very complex and expensive to have an efficient cache coherence protocol

that maintains the consistency of shared data. Kaur et al. have presented a

cache coherency management technique for the non-coherent cache architectures

that uses an automatic parallelizing compiler [10]. The traditional Snoopy-based

coherence protocols are not scalable, and they need much higher bandwidth.

The performance of the shared memory multiprocessors is further increased by

using an efficient method for addressing the cache coherency. Asaduzzaman et

al. have offered a hybrid cache coherence protocol (using snoopy and directory

techniques) with an improved sharer group mechanism [11]. They have used

a directory to check the memory requests, and then the system is updated.

Energy consumption has become one of the most critical issues in computer

architecture. Although caches can significantly boost system performance, they

use a significant amount of overall system power. Chakraborty et al. [12] have

analyzed the effect of LLC on the chip temperature, and they have proposed

a new policy that resizes on-chip LLC at run time so that the leakage power

consumption is reduced. To further reduce the energy dissipation in a cache,

Zhange et al. have proposed a dynamic cache configuration that can tune the

degree of the associativity of a cache between one(direct-mapped), two, and four

called Way concatenations [13]. When establishing cache coherence, the most

important factors to consider are performance, energy, and scalability. Joshi

et al. have investigated the energy requirement and performance of different

snoopy-based and directory-based cache coherence protocols [14].

Department of Electrical Engineering, IIT Madras 20

Chapter 4

Performance Study of Last

Level Cache

In this chapter, we have broadly categorized our study into two folds. One-

fold is to study the variation of both associativity and cache size with different

replacement policies. The other-fold is to check the performance trade-off in

heterogeneous Multi-core architecture.

4.1 Study of both associativity and cache size

with different replacement policies

This section will study the variation of associativity and cache size with different

replacement policies such as LRU, DRRIP, SRRIP, and SHiP. The LRU (Least

Recently Used) policy removes blocks from the cache that haven’t been accessed

in a long time. It consistently anticipates that requested blocks will be re-

referenced in the near future. However, applications whose reference is only

21

LLC Study

made in the distant future perform poorly under LRU. This policy works better

for a recency-friendly access pattern.When we need to deal with a larger working

set (thrashing) or having bursts of references to non-temporal data(scan), we

should go for cache replacement using RRIP(Re-Reference Interval Prediction).

There are two policies based on the RRIP: SRRIP (Static Re-Reference Interval

Prediction) and DRRIP(Dynamic Re-Reference Interval Prediction). The re-

reference interval of blocks is statically predicted by SRRIP to avoid polluting

the cache with blocks of distance reuse intervals. For this, SRRIP assigns a Re-

Reference Prediction Value(RRPV) to each cache block. N bits can represent

RRPV values from 0 to 2N −1 can. Low RRPV value represents near-immediate

re-reference. RRPV of 2N −2 is used to represent long re-reference, and RRPV

of 2N − 1 represents distant re-reference. Because predicting a near-immediate

or distant re-reference at cache insertion time isn’t always reliable, the SRRIP

policy always inserts a new block with a long re-reference interval. RRPV is

set to 0 when it is accessed. Hit promotion(HP) and Frequency promotion(FP)

algorithms are used to update the RRPV of each cache block further. At the

time of eviction, SRRIP looks for a block with RRPV of 2N −1 and replaces it.

SRRIP utilizes the cache inefficiently when the available cache size is

smaller than the re-reference interval of all blocks. It leads to cache thrashing

and no cache hits in such situations. DRRIP is used to prevent this situation as

an extension of SRRIP. We employ Bimodal RRIP (BRRIP) to prevent cache

thrashing, which inserts most cache blocks with a distant RRPV and rarely

inserts new cache blocks with a long RRPV. However, for non-thrashing access

patterns, always using BRRIP can degrade the cache performance. So DRRIP

incorporates set dueling monitors (SDM) to determine which replacement policy

(SRRIP or BRRIP) is most appropriate for the application. By permanently

allocating a few sets of cache lines, an SDM estimates the misses for each given

policy (SRRIP and BRRIP). Then, it selects the winning policy using a single

policy selection counter. Finally, the DRRIP policy takes the winning policy

from the two SDMs and applies it to the remaining cache sets. But in the case

of DRRIP also, the learning phase is done after insertion of the block. The

Department of Electrical Engineering, IIT Madras 22

LLC Study

SHiP (Signature-based Hit Predictor) policy addresses this issue by making

predictions based on the access patterns of each block. SHiP policy aims to

predict whether the insertions by a given signature will receive future hits. If

cache insertions by a particular signature are re-referenced, it is predicted that

future cache insertions by that signature will also be re-referenced. In addition,

if cache insertions by a particular signature do not get subsequent hits, further

insertions by the same signature will not receive any hits. To achieve this,

SHiP uses signature tables based on the memory region references and Program

counter(PC) references. SHiP policy aims to predict whether the insertions by

a given signature will receive future hits. It predicts that if cache insertions by

a given signature are re-referenced, then future cache insertions by the same

signature will again re-referenced. Also, if cache insertions by a given signature

do not receive subsequent hits, then future insertions by the same signature will

again not receive any subsequent hits.

Simulation Setup used: We have used the ChampSim simulator for this

study. The ChampSim is a trace-based simulator that is used in the SecondData

Prefetching Championship and recently used in the Second Cache Replacement

Championship. It is primarily used to design simple multi-core Out-of-order

processors. The typical traces that we use for our simulation are from SPEC

CPU 2006 benchmark suit. The configuration that we used is described in Table

4.1.

Simulation Results:

We broadly categorise the our simulation results as follows:

1. Varrying Associativity of cache

2. Varying LLC cache size

4.1.1 Varying the Associativity of cache

In this section, we fixed the configuration parameters as shown in Table.4.1We

wanted to study the effect of varying associativity of last level cache over the

Department of Electrical Engineering, IIT Madras 23

LLC Study

Parameters Configuration
Number of Cores 1
Benchmark SPEC CPU 2006-gcc
Inclusion Policy Non-Inclusive
Block Size 64 Bytes
Order of Execution Out of Order
L1 size 32KB(I), 32KB(D)
L1 Associtivity 8(D), 8(I)
L2 Size 256KB
L2 Associtivity 8
L3 Size 512KB
L3 Associtivity 16
Off-Chip DRAM size 4096MB

Table 4.1: Configuration details - 1

different replacement policies, and the corresponding plots are given in Fig. 4.1.

We can observe that the hit rate is zero in the case of 1,2,4 ways of associativ-

ity. Because here, we have used synthetic workloads which are designed to test

the worst-case performance. Synthetic workloads have very little temporal and

spatial locality, which leads to more miss rates. After 32 ways of associativity,

all policies are having almost the same hit rate. We know that when the asso-

ciativity of a cache increases, the hit rate also increases due to a reduction in the

conflict misses. So here in the plots, we can observe that the increase in associa-

tivity is leading to a better hit rate. Among all the replacement policies, LRU

and DRRIP replacement policies give better performance even for the lower as-

sociativity with the given workload. For the low degree of associativity(up to 32

ways), SHiP is giving a very poor performance. Wherein in the case of 64 ways

of associativity, it is having better performance than the remaining policies.

4.1.2 Varying LLC cache size

In this section, we have changed the size of the last level cache by fixing the

remaining parameters as shown in Table 4.1. Corresponding simulation results

are shown in Fig.4.2. In all replacement strategies, there were no hits until

the last level cache size of 512KB, as seen in this diagram. LRU replacement

Department of Electrical Engineering, IIT Madras 24

LLC Study

1way 2way 4way 8way 16way 32way 64way

Degree of Associativity of LLC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
L

L
C

 H
it
 r

a
te

(a) LRU Replacement policy

1way 2way 4way 8way 16way 32way 64way

Degree of Associativity of LLC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
L

C
 H

it
 r

a
te

(b) SRRIP Replacement policy

1way 2way 4way 8way 16way 32way 64way

Degree of Associativity of LLC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
L

C
 H

it
 r

a
te

(c) DRRIP Replacement policy

1way 2way 4way 8way 16way 32way 64way

Degree of Associativity of LLC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
L

C
 H

it
 r

a
te

(d) SHiP Replacement policy

Figure 4.1: Varrying Associativity of cache

policy is giving better performance. For the cache size of 2048KB, the SRRIP

policy has the same hit rate as the LRU policy. We can see that SRRIP is

giving better performance than the DRRIP policy. This is maybe because of

the thrashing access pattern of the given workload, where DRRIP dynamically

uses the BRRIP policy over the SRRIP. The SHiP policy is giving very poor

performance throughout the variations in the LLC size. This may be because it

has failed to observe particular access patterns (called signatures) in the given

synthetic workload.

From this part of the study, we observe that an increase in cache size and

degree of associativity improves the hit rate of a cache. But we see that the

improvement in hit rate is not the same in all the cases of replacement policies.

Department of Electrical Engineering, IIT Madras 25

LLC Study

So we can say that cache hit rate not only depends on its parameters like

cache size, associativity, block size, etc. But also depend upon the replacement

policy that we are using and the different memory access patterns that the given

workload follows.

256 512 1024 2048

Size of LLC(KB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

L
L

C
 H

it
 r

a
te

(a) LRU

256 512 1024 2048

Size of LLC(KB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L
L

C
 H

it
 r

a
te

(b) SRRIP

256 512 1024 2048

Size of LLC(KB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

L
L

C
 H

it
 r

a
te

(c) DRRIP

256 512 1024 2048

Size of LLC(KB)

0

0.005

0.01

0.015

0.02

0.025

0.03

L
L

C
 H

it
 r

a
te

(d) SHiP

Figure 4.2: Varying LLC cache size

4.2 Performance trade-off in Asymmetric Multi

core Architectures(AMPs)

In this section, we study the performance trade-off in Asymmetric multi-core

architecture. Considering both performance and power as primary concerns,

Department of Electrical Engineering, IIT Madras 26

LLC Study

we have implemented nine different configurations. In configurations 1 to 5, all

cores are powerful cores with Out-of-order execution and an operating frequency

of 2.66GHz. But in the configurations 6 to 9, we have introduced Asymmetricity

by changing the order of execution of cores(In-order or Out-of-order) and the

frequency of operation of each core(1GHz, 2.66GHz). In these configurations,

cores 0−7 are In-order cores running at 1GHz, whereas 8−15 are Out-of-order

cores running at 2.66GHz. When Out-of-order and In-order cores share a cache

memory, there is a chance that Out-of-order cores may occupy a large portion

of the cache, which further degrades the performance of In-order cores running

at a lower frequency. So we gradually partitioned the last level cache among the

cores from fully shared to fully private. The remaining details of all the nine

configurations are given in Table 4.3. The architecture used for our study, along

with the corresponding simulation setup, is as given below.

Architecture used in this study

We have used Nehalem architecture, which is introduced by Intel in 2008.

Nehalem is a microarchitecture that is both dynamically scalable and design-

scalable. It regulates cache, threads, power, and cores dynamically to provide

exceptional energy efficiency and performance on demand.

An overview of Nehalem Architecture

Nehalem has scalable performance for from 1 to 16(or more) threads and from 1

to 8(or more) cores. It has customizable system interconnects as well as a built-

in memory controller. The three-level cache hierarchy of this microarchitecture

which is shown in Fig 4.3 consists of 64KB of L1 cache with 32KB of data cache

and 32KB of the instruction cache. Further, it has 256KB of L2 cache per

core(private cache) for handling data and instructions. Finally, it has a fully

inclusive and fully shared last level cache of size 8MB where all applications

can use the entire cache. Nehalem has more out-of-order window and scheduler

Department of Electrical Engineering, IIT Madras 27

LLC Study

size, which helps identify more independent operations that can run in parallel.

Other buffers in the core have been increased in size to ensure that performance

is not hampered.

Core,
L1D(32KB,8way)

L1I(32KB,4way)

Core,
L1D(32KB,8way)

L1I(32KB,4way)

Core,
L1D(32KB,8way)

L1I(32KB,4way)

Core,
L1D(32KB,8way)

L1I(32KB,4way)

L2 Cache

(256KB,8way)

L2 Cache

(256KB,8way)

L2 Cache

(256KB,8way)

L2 Cache

(256KB,8way)

8MB,16way Shared Last Level(L3) Cache

(Inclusive of L1 and L2 Caches)

Figure 4.3: Cache hierarchy of Nehalem architecture with 4 cores

Simulator and Workloads used

We have used Sniper v7.3 simulator for our study.It is an x86 simulator that

is fast, parallel, and accurate. It allows a range of flexible simulation options

when exploring different homogeneous and heterogeneous multi-core architec-

tures. Compared to other simulators, the textbfSniper simulator allows one to

run timing simulations for both multi-program workloads and multi-threaded,

shared-memory programs with multiple cores at a very high speed.

In addition to these many features, it has the best base simulation infras-

tructure to simulate a more extensive set of workloads on more recent simulated

hardware. We have used five different workloads in this study. They are Parsec-

Bodytrack (Workload1), parsec-freqmine (Workload2), splash2-barnes (Work-

Department of Electrical Engineering, IIT Madras 28

LLC Study

load3), parsec-fluidanimate (Workload4),splash2-radiosity(Workload5). Sniper

integrates with the McPAT(Multicore Power, Area, and Timing) framework

for power and area modeling of manycore architectures. We have used McPAT

v1.0 in this study to get the different power consumption values of the processor.

Simulation Results:

In the initial stage, we have simulated all nine different configurations as men-

tioned in Table 4.3. We compared them with their L2 miss rate, L3 miss rate,

and total power consumption which are shown in Table 4.4 & 4.5 and cor-

responding plots are shown in Fig.4.4. Except for L2 and L3 Cache levels,

remaining all the parameters are common in all the configurations which are as

mentioned in the Table. 4.2

Number of Cores 16
Benchmark Parsec-Bodytrack
Inclusion Policy Inclusive
Block Size 64 Bytes
Cache Coherence Protocol mesi
Replacement Policy LRU
L1 size 32KB(I), 32KB(D)
L1 shared cores 1(private to each core)
L1 Associtivity 8(D), 4(I)
L2 Size 2048KB(Total)
L2 Associtivity 8
L3 Size 8192KB(Total)
L3 Associtivity 16

Table 4.2: Configuration details

From Fig. 4.4(a), we observe that from configuration 1 to configuration 5,

the L2 cache is changing from fully shared among all cores to fully private to

each core. When we have more private caches, the chance of coherence misses

is more, which increases the miss rate. Hence L2 Miss rate is increasing when

moving from fully shared to fully private caches. But L2 cache is private to

each core from configuration 5 to configuration 9, where the miss rate is almost

the same.

Department of Electrical Engineering, IIT Madras 29

LLC Study

Config
Index

L2 Cache Details L3 Cache Details Core Frequencies

Config 1 All 16 cores shar-
ing 2048KB of L2
cache

All 16 cores shar-
ing 8192KB of L3
Cache

All 16 cores
are running at
2.66GHz

Config 2 Two sets of 8 cores
and each set shar-
ing 1024KB of L2
cache

all cores sharing
8192KB of L3
Cache

All cores are run-
ning at 2.66GHz

Config 3 Four sets of 4 cores,
and each set shar-
ing 512KB of L2
cache

all cores sharing
8192KB of L3
Cache

All cores are run-
ning at 2.66GHz

Config 4 eight sets 2 of cores,
and each set shar-
ing 256KB of L2
cache

all cores sharing
8192KB of L3
Cache

All cores are run-
ning at 2.66GHz

Config 5 Each core with pri-
vate L2 cache of
128KB

all cores sharing
8192KB of L3
Cache

All cores are run-
ning at 2.66GHz

Config 6 Each core with pri-
vate L2 Cache of
size 128KB

Two sets of 8 cores
and each set shar-
ing cache of size
4096KB

Core 0 − 7 are
running at 1GHz
,Cores 8 − 15
are running at
2.66GHz

Config 7 Each core with pri-
vate L2 Cache of
size 128KB

Four sets of 4 cores,
and each set shar-
ing Cache of size
2048KB

Cores 0 − 7 are
running at 1GHz
,Cores 8 − 15
are running at
2.66GHz

Config 8 Each core with pri-
vate L2 Cache of
size 128KB

eight sets of 2 cores,
and each set shar-
ing Cache of size
1024KB

Cores 0 − 7 are
running at 1GHz
,Cores 8 − 15
are running at
2.66GHz

Config 9 Each core with pri-
vate L2 Cache of
size 128KB

each core with pri-
vate L3 Cache of
size 512KB

Cores 0 − 7 are
running at 1GHz
, Cores 8 − 15
are running at
2.66GHz

Table 4.3: L2 and L3 Cache details for different Configurations

Department of Electrical Engineering, IIT Madras 30

LLC Study

Config
Index

Total L2 Misses / To-
tal L2 Accesses

L2 Miss
rate

Config 1 1,775,452/32,658,514 5.43
Config 2 2,414,712/23,034,264 10.48
Config 3 3,464,822/24,173,825 14.33
Config 4 5,413,832/20,838,462 25.98
Config 5 17,851,930/20,985,015 85.06
Config 6 17,945,030/20,985,015 85.36
Config 7 18,105,468/21,045,636 85.99
Config 8 18,096,468/21,045,663 85.99
Config 9 18,013,786/20,914,704 86.13

Table 4.4: L2 cache Miss rate for all configurations

Config
Index

Total L3 misses/To-
tal L3 Accesses

L3 Miss
rate (%)

Total
Power(W)

Config 1 83,872/1,792,716 4.67 275.238
Config 2 87,401/2,430,864 3.59 275.449
Config 3 87,561/3,481,529 2.51 274.293
Config 4 82,067/5,435,954 1.51 273.325
Config 5 85,948/17,871,357 0.48 273.718
Config 6 169,125/17,984,595 0.94 263.471
Config 7 309,358/18,176,373 1.7 265.63
Config 8 527,606/18,178,885 2.9 268.418
Config 9 1,033,091/18,161,730 5.688 270.978

Table 4.5: L3 cache Miss rate and Power for all configurations

From Fig. 4.4(b), we can observe that when as we go from configuration 1

to 5, the L3 miss rate is decreasing even if the L3 cache is shared in all these

cases. If we observe the number of total misses to the L3 cache in configurations

1 to 5 in the Table 4.5, they are almost the same. Due to the increasing miss

rate of L2 shown in Table4.4, the number of accesses to the L3 cache increases,

reducing the overall L3 miss rate. L3 cache is changing from a fully shared cache

to a fully private cache in configurations 5 to 9, increasing the miss rate due

to increased data inconsistency (coherent misses). When the number of private

caches is increased, there is a chance for replicating the same data, which also

increases the total miss rate due to inefficient utilization of net cache capacity.

From Fig. 4.4(c), we observe that in Configurations 1 to 5, all cores are run-

Department of Electrical Engineering, IIT Madras 31

LLC Study

1 2 3 4 5 6 7 8 9

Configuration index

0

10

20

30

40

50

60

70

80

90
L

2
 c

a
c
h

e
 M

is
s
 r

a
te

(%
)

(a) Miss Rate of L2 Vs Configuration Index

1 2 3 4 5 6 7 8 9

Configuration index

0

1

2

3

4

5

6

L
3

 c
a

c
h

e
 M

is
s
 r

a
te

(%
)

(b) Miss Rate of L3 Vs Configuration Index

1 2 3 4 5 6 7 8 9

Configuration index

0

50

100

150

200

250

300

T
o

ta
l
p

o
w

e
r(

W
)

(c) Total Power Vs Configuration Index

Figure 4.4: Performance trade-off in Heterogeneous Multi core Architecture

ning at 2.66GHz(Out-of-Order), so the total power consumed is almost the same

in all the cases. But configurations 6 to 9 have eight cores running at 1GHz(In-

order) and the other eight cores are running at 2.66GHz(Out-of-order), which

gives low power consumption. So the power consumption is reduced when we go

for asymmetric multi-cores. From the above observations, it is clear that when

we go from all powerful cores(config 1) to asymmetric cores(config 9) miss rate

of the L3 cache increased, whereas the total power consumption decreased.

In Fig 4.4, we can see that both configurations 5,6 have the same L2 miss

rate. But config 5 has a better L3 miss rate, whereas config 6 has better power

consumption. Therefore, we wanted to simulate these two configurations with

Department of Electrical Engineering, IIT Madras 32

LLC Study

the coherence protocols MSI, MESI, MESIF to check for any performance change

as the miss rate here is primarily due to coherence.

4.2.1 Configuration 5,6 with different coherence protocols

The configurations 5 and 6 are simulated against MSI,MESI,MESIF coherence

protocols for L2 miss rate, L3 miss rate, and total power consumption of the

processor. MSI is a write-invalidate coherence protocol. It has three possible

states M(Modified), S(Shared), I(Invalid). Based upon each read and write

operation, a cache block changes its state accordingly. The disadvantage of

this protocol is when a processor changes a block that is not shared with any

other processor, and if we want to read this data, we still need to search for

that block in the cache of other processors. This increases the unnecessary bus

traffic. So MESI protocol is introduced to deal with such kind of situation.

This protocol uses four states where the three states M, S, I are the same as

MSI protocol. An extra state E(Exclusive) is added in this case. But when

a cache line, which multiple other processors hold in the S state, is requested,

it will be served inefficiently by MESI protocol. It either initiates a memory

request to fetch that particular line or ended up with redundant data due to

the multiple responses by the caches having the same block. To address this

issue, MESIF protocol is developed by intel. It contanis five different states.

The first four states are the same as the MESI protocol, with an extra added

state F(Forward). When we request for a line, it is only responded to by the

cache with that line in F state and share it using direct cache to cache transfer.

From Fig. 4.5, we can observe that all the three coherence protocols are

giving the same L2 miss rate and the same total power consumption. However,

the L3 miss rate is also almost the same for all the protocols. But it is having

better value against MESI than the other two protocols. So we can use the

MESI protocol for better performance and power.

Department of Electrical Engineering, IIT Madras 33

LLC Study

Configuration5 Configuration6

Configuration index

0

10

20

30

40

50

60

70

80

90
L

2
 c

a
c
h

e
 m

is
s
 r

a
te

(%
)

(a) L2 Cache Miss rate

Configuration5 Configuration6

Configuration index

0

0.2

0.4

0.6

0.8

1

1.2

L
3

 c
a

c
h

e
 M

is
s
 r

a
te

(%
)

MSI

MESI

MESIF

(b) L3 Cache Miss rate

Configuration5 Configuration6

Configuration index

0

50

100

150

200

250

300

T
o

ta
l
p

o
w

e
r(

W
)

(c) Total Power

Figure 4.5: Configurations 5,6 with different coherence protocols

4.2.2 Exploring the effect of shared and private caches

We have fixed the coherence protocol as MESI from the previous study for better

performance and power. In section 4.1, we encountered a trade-off between L3

miss rate and total power consumption of Asymmetric multi-core architecture.

Using configuration 1, configuration 6, and configuration 9, we want to investi-

gate this trade-off further with three different replacement policies(LRU, MRU,

Round Robin) using five different workloads(parsec-bodytrack, parsec-freqmine,

splash2-barnes, parsec-fluidanimate, splash2-radiosity).

Department of Electrical Engineering, IIT Madras 34

LLC Study

LRU replacement policy

We have examined the L2 miss rate, L3 miss rate, and total power consumption

in configurations 1,6,9 against the replacement policy LRU with the five differ-

ent workloads mentioned above. Corresponding results are as shown in Fig. 4.6

parsec-bodytra
ck

parsec-fre
qmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

20

40

60

80

100

L
2

 c
a

c
h

e
 M

is
s
 r

a
te

(%
)

Config1

Config6

Config9

(a) L2 Cache Miss rate

parsec-bodytra
ck

parsec-fre
qmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

10

20

30

40

50

60

70

80

90

L
3

 c
a

c
h

e
 M

is
s
 r

a
te

(%
)

Config1

Config6

Config9

(b) L3 Cache Miss rate

parsec-bodytra
ck

parsec-fre
qmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

50

100

150

200

250

300

350

T
o

ta
l
p

o
w

e
r(

W
)

Config1

Config6

Config9

(c) Total Power

Figure 4.6: Configurations 1,6,9 with LRU replacement policy

Department of Electrical Engineering, IIT Madras 35

LLC Study

MRU replacement policy

We have examined the L2 miss rate, L3 miss rate, and total power consump-

tion in configurations 1,6,9 against the replacement policy MRU with the five

different workloads mentioned earlier. Corresponding results are shown in Fig.

4.7

parsec-bodytra
ck

parsec-fre
qmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

10

20

30

40

50

60

70

L
2

 c
a

c
h

e
 M

is
s
 r

a
te

(%
)

Config1

Config6

Config9

(a) L2 Cache Miss rate

parsec-bodytra
ck

parsec-fr
eqmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

10

20

30

40

50

60

L
3
 c

a
c
h
e
 M

is
s
 r

a
te

(%
)

Config1

Config6

Config9

(b) L3 Cache Miss rate

parsec-bodytra
ck

parsec-fr
eqmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

50

100

150

200

250

300

350

T
o
ta

l
p
o
w

e
r(

W
)

Config1

Config6

Config9

(c) Total Power

Figure 4.7: Configurations 1,6,9 with MRU Replacement policy

Round Robin replacement policy

We have examined the L2 miss rate, L3 miss rate, and total power consumption

in configurations 1,6,9 against the replacement policy Round Robin with the

Department of Electrical Engineering, IIT Madras 36

LLC Study

five different workloads mentioned above. Corresponding results are as shown

in Fig. 4.8

parsec-bodytra
ck

parsec-fre
qmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

10

20

30

40

50

60

70

80

90

L
2

 c
a

c
h

e
 M

is
s
 r

a
te

(%
)

Config1

Config6

Config9

(a) L2 Cache Miss rate

parsec-bodytra
ck

parsec-fre
qmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

10

20

30

40

50

60

70

80

90

L
3

 c
a

c
h

e
 M

is
s
 r

a
te

(%
)

Config1

Config6

Config9

(b) L3 Cache Miss rate

parsec-bodytra
ck

parsec-fre
qmine

splash2-barnes

parsec-flu
idanim

ate

splash2-barnes

Benchmark suit-workload

0

50

100

150

200

250

300

350

T
o

ta
l
p

o
w

e
r(

W
)

Config1

Config6

Config9

(c) Total Power

Figure 4.8: Configuration 1,6,9 with Round Robin Replacement policies

In the above figures, we can observe the trade-off between the L3 miss rate

and total power consumption. Independent of the replacement policy and the

workloads used when we go from configuration 1 to configuration 9, total power

consumption decreases significantly in all the cases, but the L3 miss rate in-

creases. Configuration 1 which has both L2,L3 shared caches is giving a better

L2 cache miss rate than other configurations. But we need to consider the L3

misses over the L2 misses. Because as the misses to the L3 cache go to the main

memory, which increases the overall latency and energy consumption. From con-

figuration 1 to configuration 9, we observed the 13.25%, 20.25%, 20.4% increase

Department of Electrical Engineering, IIT Madras 37

LLC Study

in L3 miss rate and 6.28%, 9.3%, and 7.7% reduction in total power consumption

in LRU, MRU, and Round Robin replacement policies, respectively.

We have also observed that from configuration 1 to configuration 6 on av-

erage, there is 11.13% decrease in L3 miss rate and 10.54% reduction in power

consumption. However, when we go from configuration 6 to configuration 9

there is 25% increase in L3 miss rate and 3.16% increase in power consumption.

So, of all the configurations, configuration 6 provides the best performance and

power.

Department of Electrical Engineering, IIT Madras 38

Chapter 5

Conclusions and Future

Work

This thesis has done a performance study of LLC(Last Level Cache) exploiting

the heterogeneity for the Asymmetric multi-core architecture. We started our

investigation by understanding the metrics that significantly affect the L2 and

Last level caches by varying the parameters such as Cache size and associativity

against different replacement strategies. We realized that replacement policy

plays a significant impact on overall cache performance.

In the second part of our work, we understand Cache Hierarchy and simulate

the AMP Architecture. It is crucial to mention beforehand that throughout our

investigation of AMPs and their cache performance, the DVFS(Dynamic Voltage

and Frequency Scaling) is kept enabled. We observe that the power variations

in our results must not be considered on absolute terms; instead, they should

be regarded as relative to each architecture. We begin our simulations with all

cores operating on the same frequency, with each core sharing both the L2 and

LL caches also have Out-of-order execution. Then we gradually partition the

39

LLC Study

caches such that they are private to each core and make some cores simpler, like

lowering the frequency values and making them In-order to save on power. Our

investigation showed the AMP Configuration 6 that has private L2 caches and

different frequencies and order of execution is an optimal choice as it has the

better power consumption compared to configuration 1 and also has the best

LL miss rate compared to Configuration 9.We tested our architectures on multi-

threaded Parsec and Splash2 benchmarks to have a real-world understanding.

AMPs have shown promise as the future architectures to solving several

current computer architecture research problems. Investigations on proper task

allocations to each core and even more diverse Cache Coherence Protocols could

improve the performance of the existing systems by leaps and bounds. Also, the

immediate next step to our work could be to increase the number of cores and

bring more levels of heterogeneity in the system, such as flexible cache designs,

varying the reorder buffer sizes, and propose many more optimizations.

Department of Electrical Engineering, IIT Madras 40

Bibliography

[1] A. Vakil-Ghahani, S. Mahdizadeh-Shahri, M.-R. Lotfi-Namin,

M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Cache

replacement policy based on expected hit count,” IEEE Computer

Architecture Letters, vol. 17, no. 1, p. 64–67, 2018.

[2] P.-Y. Peneau, D. Novo, F. Bruguier, G. Sassatelli, and A. Gamatie, “Perfor-

mance and energy assessment of last-level cache replacement policies,” 2017

First International Conference on Embedded Distributed Systems (EDiS),

2017.

[3] D. Ramtake, N. Singh, S. Kumar, and V. K. Patle, “Cache associativity

analysis of multicore systems,” 2020 International Conference on Computer

Science, Engineering and Applications (ICCSEA), 2020.

[4] G. Jang and J.-L. Gaudiot, “Data shepherding: A last level cache design

for large scale chips,” 2019 IEEE 21st International Conference on High

Performance Computing and Communications; IEEE 17th International

Conference on Smart City; IEEE 5th International Conference on Data

Science and Systems (HPCC/SmartCity/DSS), 2019.

[5] K. Anandkumar, S. Akash, D. Ganesh, and M. S. Christy, “A hybrid

cache replacement policy for heterogeneous multi-cores,” 2014 Interna-

tional Conference on Advances in Computing, Communications and In-

formatics (ICACCI), 2014.

41

LLC Study

[6] B. D. A. Silva, L. A. Cuminato, and V. Bonato, “Reducing the overall

cache miss rate using different cache sizes for heterogeneous multi-core

processors,” 2012 International Conference on Reconfigurable Computing

and FPGAs, 2012.

[7] M. Sato, S. Nishimura, R. Egawa, H. Takizawa, and H. Kobayashi, “A cache

partitioning mechanism to protect shared data for cmps,” 2016 IEEE Sym-

posium in Low-Power and High-Speed Chips (COOL CHIPS XIX), 2016.

[8] S. Gupta and H. Zhou, “Spatial locality-aware cache partitioning for effec-

tive cache sharing,” 2015 44th International Conference on Parallel Pro-

cessing, 2015.

[9] F. Yuan and Z. Ji, “Replication-aware cache management for cmps with

private llcs,” 2016 2nd IEEE International Conference on Computer and

Communications (ICCC), 2016.

[10] D. P. Kaur and V. Sulochana, “Design and implementation of cache coher-

ence protocol for high-speed multiprocessor system,” 2018 2nd IEEE Inter-

national Conference on Power Electronics, Intelligent Control and Energy

Systems (ICPEICES), 2018.

[11] A. Asaduzzaman and K. K. Chidella, “A novel directory based hybrid cache

coherence protocol for shared memory multiprocessors,” 2016 IEEE Inter-

national Symposium on Phased Array Systems and Technology (PAST),

2016.

[12] S. Chakraborty and H. K. Kapoor, “Analysing the role of last level caches

in controlling chip temperature,” IEEE Transactions on Sustainable Com-

puting, vol. 3, no. 4, p. 289–305, 2018.

[13] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache archi-

tecture for embedded systems,” ACM SIGARCH Computer Architecture

News, vol. 31, no. 2, p. 136–146, 2003.

Department of Electrical Engineering, IIT Madras 42

LLC Study

[14] A. D. Joshi, S. Indrajeet, N. Ramasubramanian, and B. S. Begum, “Anal-

ysis of multi-core cache coherence protocols from energy and performance

perspective,” 2017 International Conference on Recent Innovations in Sig-

nal processing and Embedded Systems (RISE), 2017.

Department of Electrical Engineering, IIT Madras 43

	ABBREVIATIONS
	Introduction
	Motivation
	Aim
	Major contribution
	Outline of the report

	Background
	Memory-wall problem
	Memory Hierarchy
	Cache Management polices
	Write Policies
	Replacement Policies
	Mapping Techniques
	Cache Misses
	Memory access patterns

	Multi core Architecture
	Symmetric Multi core Architecture
	Asymmetric Multi core architecture

	Cache Coherence
	Private caches and Shared caches
	Coherence

	Power
	Why Low-power design?

	Literature Review
	Performance Study of Last Level Cache
	Study of both associativity and cache size with different replacement policies
	Varying the Associativity of cache
	Varying LLC cache size

	Performance trade-off in Asymmetric Multi core Architectures(AMPs)
	Configuration 5,6 with different coherence protocols
	Exploring the effect of shared and private caches

	Conclusions and Future Work

