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ABSTRACT

KEYWORDS: Light Field; View Synthesis; Bilateral Grid; Disparity Estimation

Light field imaging has become widespread recently with the introduction of consumer

light field cameras. However, these light field cameras often sparsely sample in either

spatial or angular domain due to an inherent trade-off between the angular and spatial

resolution. In this thesis, to mitigate this trade-off an end-to-end deep learning frame-

work was used which specifically takes only a sparse set of input views to synthesize

new set of views.

Building upon existing view synthesis techniques this process has been broken down

into two parts i.e. disparity estimation and color estimation components. A deep resid-

ual neural network followed by convolutional neural network was used to model the

two components and the whole learning framework can be trained end-to-end by mini-

mizing the error between synthesized and ground truth images.

The proposed approach uses only four corner sub-aperture views from the light

fields captured from light field cameras. The input feature map to the network is com-

puted using 3D bilateral grids obtained from the four corner views which enables edge-

aware processing of light field images. The experimental results show that the proposed

approach synthesizes high-quality images compared to other techniques on a variety of

real world scenes. This approach could potentially decrease the required angular reso-

lution of consumer light field cameras, which allows their spatial resolution to increase.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Light Field imaging as a revolutionary imaging technology, has attracted extensive at-

tention from both academia and industry, especially with the emergence of commercial

plenoptic cameras and recent dedication in the field of Virtual Reality and Augmented

Reality. Equipped with additional optical components like the microlens array inserted

between the main lens and the image sensor, plenoptic cameras are capable of capturing

both intensity and direction information of rays from real-world scenes, which enables

applications such as refocusing and 3D display. However, due to the limited sensor res-

olution an inherent tradeoff between angular and spatial resolution inevitably occurs,

which restricts light field imaging in many practical vision applications. View synthe-

sis, which synthesizes novel views from a sparse set of input views captured using light

field cameras is one of the possible solution to this problem.

Generally, existing traditional view synthesis approaches [Chaurasia et al.; Wanner

and Goldluecke] typically first estimate the depth at the input views and use it to warp

the input images to the novel view. They then combine these images in a specific

way (for example by weighting each warped image) to obtain the image of the novel

view. Building upon these methods we break down the task of view synthesis into

disparity (depth) estimation and color predictor components. In our approach we use

two networks connected sequentially for estimating the disparity and pixel colors of

the novel view, respectively. Since both the networks are trained simultaneously by

minimizing the error between the synthesized novel view and the ground truth, the

required disparity for view-warping is implicitly produced by the first network, which is

more suitable for view synthesis application. Bilateral grids obtained from four corner

images were used to compute the input feature map, this enables the system to learn

weights which will be capable of producing edge-consistent novel views.



1.2 Problem definition

Formally, the problem of novel view synthesis can be defined as follows:

Given the position q of the novel view and a sparse set of input views Lp1 , Lp2 ...

, LpN the goal is to synthesize the image Lq at the novel view. We can express this as

follows:

Lq = f(Lp1 , Lp2 , ..., LpN , q) (1.1)

where pi and q refer to the coordinates (x, y) of the input view and the novel view,

respectively. Here, the relationship between the input views and the novel view is de-

fined by the function f . As it requires finding connections between all the input views,

and collecting appropriate information from each image based on the position of the

novel view, this relationship defined by f is very complex. Inaccuracies such as noise

and optical distortions in the light field images of real-world scenes further add to the

complexity of this relationship. This relationship is learnt by our model which consists

of a deep residual neural network followed by a convolutional neural network, through

training.

Figure 1.1: Using only four corner sub-aperture images of a light field with angular
resolution 8×8, all other views of the light field are synthesized by our
proposed approach.
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1.3 Summary of our work

The performance of our view synthesis pipeline is demonstrated using only the four cor-

ner sub-aperture views obtained from 8 × 8 light fields captured using consumer light

field cameras (see fig.1.1). Experimental results show that our method outperforms mul-

tiple traditional view synthesis techniques. Since our method employs residual neural

network it is observed that our model achieves very good PSNR (Peak Signal-to-Noise

Ratio) in considerably less number of iterations during training even though we are

working with large amount light field images (close to 80 images).

We believe that our system potentially could be used to decrease the required an-

gular resolution of light field cameras, which allows their spatial resolution to increase.

Our method can be used on a subset of four angular views to synthesize the in between

views which can increase the baseline of consumer light field cameras, this is another

application of our approach. In summary, we make the following contributions:

We present a robust deep learning frame work for novel view synthesis using con-

sumer light field cameras. Our system includes the disparity estimator which is modeled

using a convolution residual network (ResNet) and this network is fed with bilateral 3D

grid features which results in better disparity estimation suited for edge-consistent view

synthesis. Also due to the inclusion of ResNet our model can be trained to achieve good

PSNR values in less time compared other approaches [Kalantari et al.] The output of

the disparity estimator network is connected to the color predictor network which is

modeled using a convolutional neural network, synthesizes the final novel view.

We propose a end-to-end deep learning framework where both the networks are

trained simultaneously by directly minimizing the error between the synthesized and

ground truth images which alleviates the need for explicit depth information for view-

warping since this information is implicitly estimated by the disparity (ResNet) net-

work. So our model produces disparities which are suitable especially for the view

synthesis application.
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1.3.1 Organization of our thesis

The thesis is organised in the following order:

In chapter 1, we introduce the method of novel view synthesis and explain how it

can be used to mitigate the inherent trade-off between angular and spatial resolution of

the consumer light field cameras. We define the problem of view synthesis precisely

and also summarize our work in this thesis.

In chapter 2, a brief review of the traditional view synthesis techniques is given.

Few state-of-the-art algorithms are also explained.

In chapter 3, some key concepts that are used in our approach are explained. Bilat-

eral grids are explained in detail about how they are constructed and why it is used in our

approach. Also Convolutional neural networks and ResNets are explained specifying

the advantages of ResNets over CNNs.

In chapter 4, we propose our algorithm and network architecture and explain each

component of our pipeline in detail. We show our results and compare them with the

results of multiple other view synthesis techniques. we conclude our thesis by briefly

talking about our proposed algorithm and discuss about our contribution.
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CHAPTER 2

RELATED WORK

Several powerful methods for increasing the resolution in both angular [Levin and Du-

rand; Shi et al.; Wanner and Goldluecke] and spatial [Bishop et al.; Cho et al.] domains

have been proposed to solve the problem of the light field’s limited resolution. In this

work we focus on the techniques that are designed for angular super-resolution. We

first review the algorithms which explicitly use depth information for view synthesis

and then explain the depth-independent view synthesis approaches.

2.1 Depth-dependent view synthesis

Depth-dependent view synthesis approaches generally synthesize novel views of a scene

in a two-step process, i.e. first estimating disparities of the input views and then warp-

ing those input views to novel views based on the estimated disparities, followed by

combining the warped images in a specific way (e.g. weighted summation) to obtain

the final novel views.

To reconstruct images at novel views from an input light field Wanner and Gold-

luecke proposed an optimization approach. They reconstruct novel views using the

depth estimates at the input views, by minimizing an objective function which max-

imizes the quality of the final results. Their method produces reasonable results on

dense light fields but for sparse input views, it produces results with tearing, ghost-

ing, and other artifacts as shown in our results. This is mainly because of two reasons.

Firstly, independent of the view synthesis process, they estimate the disparity at the in-

put views as a preprocessing step. Even state-of-the-art light field disparity estimation

techniques [Wang et al.; Jeon et al.] are not typically designed to maximize the quality

of synthesized views, due to this they are not suitable for this application. Secondly,

Wanner and Goldluecke’s method assumes that the images are captured under ideal

conditions but in practice this is not true since the images from consumer light field

cameras are usually noisy and suffer from optical distortions.



A phase-based approach is proposed by Zhang et al. to reconstruct the light fields

from a micro-baseline stereo pair. However, since their approach is iterative, it is of-

ten slow since and prevents its usage in practice. Using convolutional neural networks

(CNN) Yoon et al. perform spatial and angular super-resolution on light fields . How-

ever, their method is not able to synthesize views at arbitrary locations and can only

increase the resolution by a factor of two. The patch-based synthesis method by Zhang

et al. decomposes the disparity map into different layers and requires user interactions

for various Light Field editing goals but has limited performance for view synthesis and

cannot handle challenging scenes.

Some approaches [Eisemann et al.; Chaurasia et al.] typically use multi-view stereo

algorithms to estimate depth and use this depth to warp and combine input images to

the novel view. However, these are not suitable for light fields with a narrow baseline.

Flynn et al. proposed a deep learning method to perform view synthesis on a se-

quence of images with wide baselines. They first project the input images on multiple

depth planes, then estimate the pixel color and weight of the image at each depth plane

from these projected images. Following that they compute a weighted average of the

estimated pixel colors to obtain the final pixel color. However, their method is slow

compared to our (few minutes vs. seconds).

2.2 Depth-independent view synthesis

To reconstruct the full 4D light field from a 3D focal stack sequence Levin and Durand

use a prior based on the dimensionality gap. To reconstruct a dense light field from a 1D

set of view points, Shi et al. leverage sparsity in the continuous Fourier spectrum. Using

multidimensional patches from a sparse set of input views Schedl et al. reconstruct a full

light field . These methods are not able to synthesize novel views at arbitrary positions

and also they require the input samples to be captured with a specific pattern.

Marwah et al. employs a dictionary-based approach to reconstruct light fields using

a coded 2D projection . However, their method requires the light fields to be captured

in a compressive way. Using a Gaussian mixture model Mitra and Veeraraghavan in-

troduce a patch-based approach to model the light field patches . However, this method

struggles on low-quality images taken with commercial light field cameras and is not
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robust against noise.

Other approaches synthesize images without explicitly estimating the geometry. For

example, to reconstruct the image at a novel view Mahajan et al. propose to move the

gradients in the input images along a specific path. A patch-based optimization frame-

work is proposed by Shechtman et al. to reconstruct images at novel views. However,

since these approaches work on only two input images they are not able to utilize all

the information available in light fields.

View synthesis is model as learning-based angular detail restoration on 2D Epipolar

Plane Images (EPIs) by Wu et al.. A “blur-restoration-deblur” framework is proposed

that consists of following steps: firstly, using a predefined blur kernel the input EPI is

convolved; secondly, to restore the angular detail of the EPI damaged by the under-

sampling, a CNN is applied; finally, to recover the spatial detail suppressed by the EPI

blur a non-blind deconvolution operation is applied. This method achieves promising

results on a variety of scenes. However, the operations of “blur-restoration-deblur” loop

numerous times before all the in-between views are synthesized and also the potential

of the full LF data is underused. The important insight of view synthesis is to make full

use of the input views. It is necessary that the input views are regularly spaced on a grid

to reduce the difficulty of collecting data,

There are also other several algorithms that have approached this problem using

deep learning. Dosovitskiy et al. trained a CNN to render images of chairs given a

graphics code containing the rendering details. Expanding on this work, Yang et al.

decode the implicit rendering information from the input image instead of representing

it explicitly as the graphics code. Then the desired transformation is applied and the

new view is rendered. To estimate appearance flow, Zhou et al. train a CNN and this

flow is then used to warp the input image to the novel view. Since these methods are

specifically designed to work on objects they do not work well on general scenes and

moreover they only use a single image, and are unable to utilize all the images in light

fields.
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CHAPTER 3

OVERVIEW OF KEY CONCEPTS

3.1 Bilateral Grid

For a variety of image enhancement and editing or manipulation techniques nonlinear

filters have proved to be very useful since they take image structure into account. The

bilateral filter in particular is also a nonlinear filtering process that respects strong edges

while smoothing an image. Bilateral filtering has been widely used in computational

photography and image processing applications but a common drawback of this method

is the computational complexity for processing high-definition (HD) content.

Paris and Durand build upon the fast bilateral filter presented by Durand and Dorsey

and they recast the bilateral filtering as a higher-dimensional space linear convolution

followed by trilinear interpolation and a division. Chen et al. generalize the ideas

presented by Paris and Durand and introduce a new higher dimensional compact data

structure i.e. the bilateral grid which enables a number of edge-aware image manipula-

tions on high resolution images in real time. The bilateral grid is a 3D representation of

a 2D image. It separates the pixels of the image not only by spatial coordinate, but also

by respective intensity value or range coordinate.

3.1.1 Construction of Bilateral Grid

The first two dimensions (x, y) of the 3D bilateral grid correspond to 2D position in

the image (gray-scale) plane and form the spatial domain, while the third dimension z

corresponds to the image intensity.

Let I(x, y) = z be a gray scale image normalized to [0,1] where x, y are the pixel

indices and z is the intensity value, its corresponding bilateral grid BG is given by

BG([x/ss], [y/ss], [z/si]) = z ∀x, y, z ∈ I (3.1)



Figure 3.1: Construction of bilateral grid

Here, ss and si are sampling rates in spatial axis and intensity axis, respectively and

[.] is the closest-integer operator. For images which are large adding a third dimension

can make the size of 3D bilateral grid very large. To control the size of the grid above

sampling rates can be used and their values are determined by the operation we want

to perform on the grid. Intuitively, si controls the degree of edge preservation , while

ss controls the amount of smoothing. A smaller si or ss yields a larger number of grid

cells and requires more memory. In fig.3.1 the 3D array is constructed using the gray-

scale image on the right in which we can see that the edge is separated by the intensity

dimension as well.

3.1.2 Why 3D bilateral grids

We do not perform the processing inside the grid in our proposed framework but we

exploit the edge-aware properties of the bilateral grid and enable our model to learn on

high-dimensional feature space for edge consistent disparity estimation and novel view

synthesis. The key point to note is that in the spatial dimension of an image, although

two pixels across an edge are close, but from the bilateral grid perspective, they are

distant from each other because their values differ widely in the intensity dimension of

the data structure. Due to this property while performing convolution operations only a

limited number of intensity values will get affected around edge pixels.
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3.2 Convolution residual networks (ResNets)

3.2.1 Convolution neural networks (CNNs)

CNNs were first introduced by Yann LeCun in the 1980s. The early version of CNNs

were able to recognize handwritten digits. CNNs found a good market in banking and

postal services, where they were used to read digits on checks and zip codes on en-

velopes. At the time, the technique was only applicable to images with low resolutions

because CNNs needed a lot of data and compute resources to work efficiently for large

images. Now due to availability of large sets of data (eg: ImageNet), and vast compute

resources enabled researchers to create complex CNNs which can perform computer

vision tasks that were previously impossible.

Figure 3.2: A CNN sequence for handwritten digits classification

In fig. 3.2 a CNN sequence which consists of convolutional, max-pooling and fully-

connected which is used to classify handwritten digits is shown. Through the applica-

tion of relevant filters a CNN is able to successfully capture the Spatial and Temporal

dependencies in an image. Due to the reduction in the number of parameters involved

and reusability of weights , the architecture performs a better fitting to the image dataset

compared to the conventional feed-forward neural networks.

10



3.2.2 ResNets

We are getting state of the art results on problems such as image classification and image

recognition with the introduction of deep CNNs. Due to this over the years, researchers

having been adding more layers to make deeper neural networks hoping to solve such

complex tasks and to also improve the classification/recognition accuracy. But, it has

been observed that it becomes difficult to train as we go adding on more layers to the

neural network, and also the accuracy starts saturating and then degrades also. This is

where ResNets come into rescue and help us solve this problem.

Residual Network (ResNet) is a specific type of neural network that was introduced

by Kaiming He et al. The intuition behind adding more layers to solve a complex

problem is that these layers progressively learn more complex features. For example, in

case of image recognition, the first layer may learn to identify edges, the second layer

may learn to detect textures and similarly the third layer can learn to detect objects

and so on. But it has been observed that there is a threshold for maximum depth in the

context of traditional CNN model. In fig.3.3 the plot shows the error percent on training

and testing data for a 20 layer and 56 layer CNN.

Figure 3.3: Training and testing error% for 20-layer and 56-layer CNN

We can see that error% for 56-layer is actually more than a 20-layer network for both

training data as well as testing data. This shows that adding more layers to a network

results in degradation of it performance. This could not be the result of overfitting

because here the error% of the 56-layer network is worst on both training as well as

testing data.

11



Residual block

With the introduction of ResNet or residual networks the problem of training very deep

networks has been solved and Residual Blocks are the building blocks of these Resnets.

Figure 3.4: Building block for residual learning

Building block is ResNets is shown in fig.3.4. Here, there is a direct connection

which skips some layers(may vary in different models) in between which is called ’skip

connection’ and is the core of residual blocks. The output of the layer changes due to

this skip connection.

Without using this skip connection, the input x just gets multiplied by the weights

of the layer and a bias term is added. Then it goes through activation function F and

we get output H(x) as

H(x) = F (w.x+ b) or H(x) = F (x) (3.2)

The changes as below with the introduction of skip connection

H(x) = F (x) + x (3.3)

A small problem with this approach is when the dimensions of the input vary from

that of the output which can happen due to convolutional and pooling layers. When

dimensions of x and F (x) are different, to match the dimension the projection method

is used which is done by 1 × 1 or other convolutional layer to input. In that case, the

12



output is

H(x) = F (x) + w1.x (3.4)

where w1 represents the additional weights added to match the dimensions.

How ResNet helps

While training a deep neural network the vanishing gradients problem is an unstable

behavior that we encounter. In this situation a deep multi-layer feed-forward network

is unable to propagate useful gradient information for adjusting the weights from the

output end of the model back to the layers near the input end of the model. The skip

connections in ResNet acts as an alternate shortcut path for the gradient to flow through

towards the input end of the model and solve the problem of vanishing gradient in deep

neural networks. These skip connections also help by allowing the model to learn the

identity functions which ensures that the higher layer will perform at least as good as

the lower layer, and not worse.

Figure 3.5: Comparison of error% between ResNets and plain CNNs

In fig.3.5, the plot shows that there is big difference in the networks with 34 lay-

ers. Here, ResNet-34 has much lower error% as compared to plain-34 CNN. This way

ResNets enhance the performance of very deep neural networks.

13



CHAPTER 4

PROPOSED ALGORITHM

Figure 4.1: Pipeline of our system. Architectures of the networks used for disparity
estimator and color predictor components are shown in fig.4.2 and fig.4.3
respectively.

4.1 Disparity estimator

The disparity at the novel view Dq is computed using disparity estimator component.

Dq = gd(K) (4.1)

where K represents the set of input features computed using the bilateral grids of the

four input corner views and the relationship gd modelled by the convolutional residual

network (ResNet). We first convert the four corner RGB images to gray scale and

then lift those gray scale images to 3D bilateral grids using the equation 3.1, here si

(sampling rate of intensity axis) is chosen such that we get 10 intensity levels i.e. the

length of the intensity dimension of the computed bilateral grid is 10. Now for every

intensity channel of the four bilateral grids we perform warping operations using below

equation

W dl
pi
(s) = Lpi [s+ (pi − q).dl] (4.2)

where vector s contains the pixel position in x and y directions. Vectors pi and q

contains the position of input and novel views in x and y directions, respectively. Lpi



is the intensity channel of the ith input corner view. Here, Wpi is the intensity channel

obtained by warping Lpi using the disparity level dl. We consider L=10 predefined

disparity levels ( l ∈ {1, ..., L}) in the range of [-21,21] pixels. Then we compute mean

and standard deviation of all Wpis at each disparity level as below

Mdl(s) =
1

N

N∑
i=1

W dl
pi
(s)

V dl(s) =

√√√√ 1

N

N∑
i=1

(W dl
pi (s)−Mdl(s))

2

(4.3)

Here N = 4, since we are using four corner views as input. The input feature map

is then generated by concatenating the mean and standard deviation for all intensity

and disparity levels. So, K = {Md1 , V d1 , ...,MdL , V dL}. Since 10 intensity levels and

10 disparity levels are used, the feature vector is of 200 channels. This feature vector

is fed to the disparity net shown in the fig.4.2. We avoid the alternative of training

disparity estimator separately by minimizing the error between estimated and ground

truth disparities because it requires ground truth disparities also which is difficult to

obtain. Also, training the system end-to-end results in disparities better suited for novel

view synthesis.

Figure 4.2: Disparity Network used for estimation of disparity. This network is based
on the ResNet-18 architecture. We newly added a 1×1 convolutional layer
at the end of each block as shown in figure.
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4.2 Color predictor

The final novel view (Lq) is synthesized by using the a set of input feature that includes

the warped images, the position of the novel view (q) and the estimated disparity (Dq):

Lq = gc(H) (4.4)

where relationship gc is modelled using a CNN shown in fig.4.3. This relationship

between the warped and final synthesized images is often complex because of occlusion,

thus it is modelled using a CNN and learnt through training. The feature vector is

H = {Wp1 , ...,WpN , Dq, q} where

Wpi(s) = Lpi [s+ (pi − q).Dq(s)] (4.5)

Here, the disparity gives useful information about the occlusion boundaries and the

the position of the novel view can potentially be used to weight a particular image more

in synthesizing the novel view.

Figure 4.3: Color CNN consists of above convolutional layers each followed by recti-
fied linear unit (ReLU).
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Figure 4.4: Synthesized novel views at q = (5,5) coordinate are shown above and are
compared with Ground truth (GT). In the estimated disparity darker pixels
indicate the regions that are closer to the camera. Our algorithm produces
reasonable disparities for the purpose of view synthesis.

4.3 Results

The networks were trained by minimizing the L2 distance (eqn 4.6) between the syn-

thesized and ground truth images.

E =
3∑

k=1

(L̂q,k − Lq,k)
2

(4.6)

where summation is over RGB channels, L̂q,k is the synthesized image at novel view

and Lq,k is the ground truth image. Over 70 light field images captured with Lytro Illum

camera were used as training set. To ensure diversity a variety of scenes with different

lighting conditions, depth variations and texture properties were used. Patches of size

60 × 60 with a stride of 16 pixels were extracted from the full images since training

on the full images is slow. The output patches are then compared to the ground truth

patches and the error at each pixel is back-propagated to adjust weights and train the

networks.

The angular resolution of the light fields is 8×8 from which only the four corner

sub-aperture images were used as input to our system to generate the full light field. In
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fig.1.1 we can see four corners views are used to synthesize the 8×8 output grid. In

comparative analysis we show one synthesized image where q=(5,5) for each scene and

compare it with other techniques.

Figure 4.5: Our approach compared against other methods.

In Wanner and Goldluecke’s approach they compute the disparity for each input

view using an existing technique first and then use those disparities in an optimization

framework to the synthesize the novel views. In comparative analysis multiple light

field disparity estimation techniques were adopted to generate the disparities required

for Wanner and Goldluecke’s method. Specifically, Tao et al., Wang et al., Jeon et al.
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techniques were used. Results were evaluated numerically, in terms of PSNR and struc-

tural similarity (SSIM) and are shown in the fig.4.5 and fig.4.6. SSIM of 1 indicates

perfect perceptual quality with respect to the ground truth.

Figure 4.6: Our approach compared against other methods.

4.4 Conclusion

We have proposed a end-to-end learning-based approach for synthesizing novel views

from a sparse set of input views captured with a consumer light field camera. Our sys-

tem consists of disparity estimator which is modelled using ResNet and 3D bilateral

grid features. And the color predictor component is modelled using a convolutional

neural networks. The result of our approach were computed on a variety of light field

scenes using only the four corner sub-aperture images captured with a Lytro Illum cam-

era. Experimental results show that our method outperforms multiple other approaches.
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