
DEPARTMENT OF ELECTRICAL
ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY
MADRAS
CHENNAI - 600036

FUNCTIONAL VERIFICATION OF
SECURE HASH ALGORITHM

A Project Report

Submitted by

SUDHA JAIN

EE19M065

In the partial fulfilment of requirements

For the award of the degree

Of

MASTER OF TECHNOLOGY

July 2021

CERTIFICATE

This is to undertake that the Project report titled FUNCTIONAL VERIFICATION

OF SECURE HASH ALGORITHM, submitted by me to the Indian Institute of Tech-

nology Madras, for the award of M.Tech, is a bona fide record of the research work

done by me under the supervision of Prof. Veezhinathan Kamakoti. The contents of

this Project report, in full or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Place: Chennai 600 036

Date: 18th June 2021
SUDHA JAIN

EE19M065

Prof. Veezhinathan Kamakoti

Research Guide

Dr. Boby George

Research Co-Guide

©2021 Indian Institute of Technology Madras

ACKNOWLEDGEMENTS

I express my sincere thanks to Prof. Veezhinathan Kamakoti and Dr. Boby George

for their guidance and constant encouragement throughout the project work. I am grate-

ful to them for providing me their valuable time through various sessions to discuss the

project work which enabled me to take this project to fruitful completion.

Special thanks to Prof. Veezhinathan Kamakoti for giving the opportunity to work

in the Shakti Processor Project, helped in understanding Digital Design and Implemen-

tation. I am greatly indebted to him for the knowledge on VLSI design that I gained

during the course of my project work.

My sincere gratitude to Prof. Boby George for allowing me to do the project under

Computer Science and Engineering department

I would also like to thank my Mentor, Lavanya Jagan for explaining me the of

Verification plan and for helping me in learning the verification tools CoCoTb Verilator.

My sincere thanks to all my friends at IIT Madras, who supported me during my

stay in the campus that made it really enjoyable and memorable.

Finally, I thank my family for their support and constant encouragement.

i

ABSTRACT

Data probity assuredness and data validation are critical security features among many

areas. Secure algorithms for data security are provided by cryptographic hash functions

described by the NIST. These functions are used for digesting data and generate a hash

message which is a 1-way function that is very secure and hard to reverse.

The CoCoTb (Coroutine cosimulation testbench): a Python-based digital logic veri-

fication framework is used to verify one such hash method in this research. The Secure

Hash Algorithm 2 (SHA-2) is a collection of cryptographic functions described by the

National Security Agency (NSA) of the United States and originally published in 2001.

They are formed with the Merkle–Damgard construction, which starts with a 1-way

compression function designed with the Devies–Meyer structure by a particular block

cypher.

Cocotb verilator can be used to do functional verification of the design, such as the

Secure Hash Algorithm. The test bench must be written in such a way that the design

module can be checked in all potential scenarios.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . i

ABSTRACT . ii

LIST OF FIGURES . vi

ABBREVIATIONS . vii

CHAPTER 1: INTRODUCTION . 1

1.1 Research Goals . 2

1.2 Thesis Structure . 3

CHAPTER 2: Hash Functions: An Overview. 4

2.1 PROPERTIES AND DEFINITIONS 4

2.1.1 Hash Function Definition 4

2.1.2 Pre-image Resistance (Property.1) 5

2.1.3 Second Pre-image Resistance (Property.2) 6

2.1.4 Collision Resistance (Property.3) 6

2.2 Construction of Hash Functions 7

2.3 Applications . 9

2.3.1 Check for Data Integrity 9

2.3.2 Authentication with a Password 9

2.3.3 Digital Signatures with Encryption 11

2.4 KNOWN HASH FUNCTIONS . 12

2.4.1 Summary of the standard hash functions 12

2.4.2 Limitations and Algorithms 14

CHAPTER 3: Secure Hash Algorithm SHA-256 15

3.1 SHA-2 . 15

3.2 Hash Standard . 16

iii

3.3 SHA-256 Pseudo Code . 17

3.4 Applications . 19

CHAPTER 4: Verification Framework : CoCoTb 20

4.1 Verification . 20

4.1.1 Basics of Verification . 20

4.1.2 Abstraction Levels of Verification 21

4.1.3 Methodology of Verification 21

4.1.4 Test Strategy . 21

4.1.5 Verification Types: Simulation 23

4.1.6 Verilator . 23

4.1.7 Environment for Verification 23

4.2 CoCoTb . 24

4.2.1 What is CoCoTb and how does it work? 24

4.2.2 Verification Methodologies 24

4.2.3 What makes CoCoTb unique? 25

4.2.4 CoCoTb: Basic Architecture 25

4.3 How to Use CoCoTb? . 27

4.3.1 How to Make a Makefile? 27

4.3.2 Putting together a test . 28

4.3.3 Obtaining access to the design 28

4.3.4 Assigning Signal Values 28

4.3.5 Obtaining data from signals 28

CHAPTER 5: Testbench Architecture. 29

5.1 Writing Testbench . 29

5.1.1 Obtaining access to the design 29

5.1.2 Assigning signals with values 29

5.1.3 Values that are signed and unsigned 29

5.1.4 Reading values from signals 30

5.1.5 Execution in parallel and in sequence 30

5.2 Coroutines . 30

iv

5.3 Triggers . 31

5.4 Testbench Structure . 31

5.4.1 Logging . 32

5.4.2 Bus . 32

5.4.3 Driver . 32

5.4.4 Monitor . 33

5.4.5 Scoreboard . 34

5.4.6 Assignment Procedures 35

CHAPTER 6: Results . 36

6.1 Simulation Results . 36

6.2 Code coverage . 37

CHAPTER 7: Conclusion . 38

7.1 Future Work . 38

REFERENCES . 39

LIST OF FIGURES

Figure Title Page

2.1 Hashing Operation . 5
2.2 Pre-image Resistance . 5
2.3 Second Pre-image Resistance . 6
2.4 Collision Resistance . 7
2.5 Merkle-Damgard Model . 8
2.6 Verifying Data Integrity . 9
2.7 Authentication with a Password 10
2.8 Verification of a Digital Signature 11
2.9 Summary of the standard hash functions 12

3.1 Hash Standard . 16

4.1 Verification of Basics . 20
4.2 Verification plan for SHA-256 . 22
4.3 Simulation . 23
4.4 CoCoTb Architecture . 26
4.5 How does CoCoTb work? . 27

5.1 Testbench Architecture . 31

6.1 Simulation Result . 36
6.2 Simulation Result . 36

vi

ABBREVIATIONS

SHA Secure Hash Algorithm

AES Advanced Encryption Standard

MD Message Digest

NIST National institute of Science and Technology

NSA National Security Agency

ASIC Application-Specific Integrated Circuit

HDL Hardware Description Language

UVM Universal Verification Methodology

DUT Design Under Test

VPI Verilog Procedural Interface

FPGA Field Programmable Gate Array

SoC System on Chip

EDA Electronic Design Automation

ISA instruction Set Architecture

OOP Object-Oriented Programming

VCS Verilog Compiler Simulator

TLS Transport Layer Security

SSL Secure Sockets Layer

PGP Pretty Good Privacy

SSH Secure Shell

ICT International Criminal Tribunal

IPsec Internet Protocol Security

IITM Indian Institute of Technology Madras

HDVL Hardware Description and Verification Language

FIPS Federal Information Processing Standards

vii

CHAPTER 1

INTRODUCTION

Cryptography is difficult to master, and the only way to know if anything was done

correctly is to analyse it. This is a solid argument in favour of open source encryption

methods... However, just exposing the code does not guarantee that it will be examined

for security issues.

[1999] Bruce Schneier

Commercial encryption software should be regarded with caution... [due to] back doors.

... ” Whenever possible, employ public-domain encryption that is interoperable with

other implementations.

[2013] Bruce Schneier

The goal of System Verilog development was to create a uniform language that

would meet the needs of users in terms of design and verification. It was first advocated

by the Accellera system initiative, and it later became an IEEE standard for Hardware

Description and Verification Language after numerous changes (HDVL).

To meet a variety of verification and modelling needs, System Verilog supports object-

oriented programming (OOP) ideas. Despite its extensive capabilities, System Verilog

has unable to gain general acceptance. The adoption of SystemVerilog was hampered

by a slew of cultural and practical issues, but it prepared the way for additional libraries,

toolkits, and methodology guidelines.

As a result, the Universal Verification Methodology (UVM) was created, which is

a library that combines SystemVerilog and OOP ideas. UVM, on the other hand, has

comparable concerns with complexity. UVM has approximately 300 classes to choose

from. Again, it’s quite strong, but it’s also really tough to get started.

As a result, in our SHA2 verification, we used Python, and CoCoTb provided an

interface between the simulator and Python.

In this project, such an environment is utilised to test the hash function algorithm.

Hash functions convert any arbitrary data into fixed-size data, and the results they re-

turn are known as hashes or digests. They are a crucial and widely used encryption

component.

The size of a hash value is determined by the algorithm that was used to generate it.

This project builds hash functions using the SHA-256 algorithm, which generates a

256-bit hash (64 characters).

1.1 Research Goals

To construct a verification environment for the SHA-256 hash function. The following

tasks are important for the project’s success.

• Understand the SHA-256 hash functions’ algorithms.

• Create a CoCoTb testing environment and establish a link between the test com-
ponents and the RTL core of hash functions.

• Examine several test strategies to ensure IP’s functionality.

• Examine assertion-driven methods that could be used.

• Examine the RTL core’s functionality and timing relationships in contrast to a
software model.

• Gather the results of the functionality and coverage tests.

• Run gate level simulations to ensure that the technology-dependent netlist is cor-
rect.

• Ensure that you have enough functional coverage to prevent corner case issues.

2

1.2 Thesis Structure

The following is how the rest of the thesis is organised:

• The basic introduction to Hash Functions is covered in Chapter 2 with a liter-
ature review. The classification and applications of known hash functions are
mentioned.

• The Secure Hash algorithm is explained in detail in Chapter 3 so that the pro-
posed technique can be understood.

• The verification framework utilised, CoCoTb, is introduced in Chapter 4. (Corou-
tine Co-simulation Testbench).

• Chapter 5 explains the Testbench Architecture and description of testbench tools
that have been used in developing the testbench.

• The simulations and results are presented in Python in Chapter 6.

• The conclusion and future work are included in Chapter 7.

3

CHAPTER 2

Hash Functions: An Overview

Secure Writing is the definition of cryptography. It determines the message’s context

from both the sender and the recipient. A branch of science that deals with the process

of changing a readable message into an unreadable one and then returning the message

to its original form is referred as Cryptography.

Electronic-mail, net banking, files transfer etc. are all examples of electronic pro-

cesses used in today’s environment. Cryptography has assumed a critical role in data

conversion security. The message Hash or digest is a task that maps a message of irreg-

ular extent to a string of constant length. The SHA specification, released by the NIST

includes these hash algorithms: Secure Hash Algorithm-224, 256, 384, and 512. Hash

tasks are mostly used to protect the purity function. Siltu (2007)

2.1 PROPERTIES AND DEFINITIONS

2.1.1 Hash Function Definition

It is a process which takes an input and outputs a fixed-length string called hash value.

Depending on algorithm, the input string can be of any length.The output is generally

referred to as a message digest because it is a shorter version of the original message.

Depending on the algorithm being utilised, the message digest’s size is finalised.

This implies that all input streams provide the same length output for a given al-

gorithm. Furthermore, even little input changes results in an completely distinct hash

value. The avalanche effect is what this is called. In Figure 2.1, the hashing operation

is depicted.

Fig. 2.1: Hashing Operation

The message digest length is directly proportional to the security of a hash func-

tion. First, pre-image resistance, secondly, second pre-image resistance, and the third

collision resistance are all critical properties of any Hash Functions.

2.1.2 Pre-image Resistance (Property.1)

One-wayness (pre-image resistance):

It is computationally very hard to get an input message with the specified hash value for

all given hash values. Figure 2.2 illustrates this characteristic.

Fig. 2.2: Pre-image Resistance

5

2.1.3 Second Pre-image Resistance (Property.2)

Second pre-image resistance:

If we are provided with an input message say, m 1, finding another input message m2

in such a manner that hash (m 1) = hash (m 2) is computationally very difficult.

Figure 2.3 illustrates this characteristic.

Fig. 2.3: Second Pre-image Resistance

2.1.4 Collision Resistance (Property.3)

Collision resistance:

Finding two dissimilar inputs with the identical hash value is computationally very

difficult.

Figure 2.4 illustrates this characteristic.

6

Fig. 2.4: Collision Resistance

Hash functions are classified as: keyed and unkeyed hash functions.

A private key is given as an another input parameter to keyed hash algorithms. In

this situation, any value of the secret key satisfies the above-mentioned hash function

features.

Message Authentication Codes, or MACs, are another name for keyed hash functions.

We exclusively look at unkeyed hash functions in this paper.

2.2 Construction of Hash Functions

There are various ways to arrange hash functions, but the Merkle-Damgard model is

the most popular and stable. It has been successfully used in functions like SHA-2.

A message is padded and separated into uniform length chunks in this paradigm. The

compression function F generates an intermediate hash by processing the blocks in a

sequential order.

7

The hash message is output by the final compression procedure. The hash message’s

size is determined by the user’s implementation. Merkle-Damgard is followed by

SHA-2 and MD5.

For the compression purposes, they use operations like OR, XOR, and AND. Collision-

pairs was created, exposing these techniques to collision attacks. Inspite of the fact,

there was no confirmation that this algorithm had been successfully attacked. SHA-3

looks to be more secure than other SHA-2 variations, according to the NIST. Figure 2.5

illustrates Merkle-Damgard model.

Fig. 2.5: Merkle-Damgard Model

SHA-2 can operate on four different modes, SHA-256, SHA-384, SHA-224,and

SHA-512. This project uses SHA-256 and discussion is only based on SHA-256. SHA-

256 also uses the Merkle-Damgard model and works similar to MD5. The message

block size is 512 Bits like MD5, but the state variables are doubled to include 8 state

variables. The operations performed on each stage are AND, OR, XOR.

All well-known hash functions, including MD4, MD5, SHA-1 and SHA-2 are built

from block-cipher-like components designed for the purpose, with feedback to ensure

that the resulting function is not invertible.

SHA-3 finalists included functions with block cipher-like components though the func-

tion finally selected, was built on a cryptographic sponge instead.

8

2.3 Applications

2.3.1 Check for Data Integrity

Data integrity is a crucial component of any safe system. By utilising a hash function

to create the message digests for the files, any modifications to the files can be identified.

Digests are kept, and then, the digest is recalculated on the file in the and if the recent

digest differs from the initial digest, shows that the original file is corrupted in some

way. When it comes to protecting crucial system binaries and sensitive datasets, this

is very crucial.

To ensure that the obtained file is same as the original file, The message digest of the

received file is calculated. The original message digest provided by WEB site or FTP

site is then compared to this calculated message digest.

Because it is arithmetically tough to discover 2 inputs with the identical hash value

(a collision resistance property), if the calculated digest differs from the original, the

received file varies from the transmitted file.

The use of a hash function to verify data integrity is shown in Figure 2.6.

Fig. 2.6: Verifying Data Integrity

2.3.2 Authentication with a Password

Another field where hash functions are employed is password authentication. Clear-text

password storage is insecure for computer systems. Someone could gain access to all

9

of the credentials, compromising the entire user password database. Because of these

factors, storing password hashes rather than plain text passwords is a more safe option.

When a user registers in, the submitted password’s hash value is determined and

analogized to the value saved in the password database. User gets authenticated if the

observed hash value matches the one recorded; else, the user is denied.

This scenario is depicted in the Figure 2.7 below.

Fig. 2.7: Authentication with a Password

User privacy is preserved, despite the password database is exposed, because

obtaining the original passwords from the hash values is computationally exceedingly

challenging.

10

2.3.3 Digital Signatures with Encryption

Digital signatures are one of the most common uses of hash functions. A digital sig-

nature is a type of electronic signature. It is an algorithm widely accustomed to ensure

the authenticity and validity of a file.

Many applications emerge from the combination of a public-key method with hash

functions, one of which is digital signature.

A e-signature can be generated using a combination of a hash message and private-

key encryption. It is possible to use the Generated Text as a signature. It could be

validated by decrypting it with a public key and equating it to the hash message.

Fig. 2.8: Verification of a Digital Signature

The user could not be sure that the data integrity is secured if a hash function was

not utilised. Any change to the document will result in a change to the signature,

which will not be validated because hash functions are one-way functions .

11

Therefore, when the signature is verified, the user verifies that the file has not been

tampered with. Additional benefit of digital signatures is that they allow the source of

messages to be verified. A valid signature verifies that the message was transmitted by

the sender who owns the private key used in the encryption procedure.

2.4 KNOWN HASH FUNCTIONS

There is several hash functions developed up to now and among these hash functions

MD5, SHA-1, and SHA-256 are most popular.

2.4.1 Summary of the standard hash functions

Fig. 2.9: Summary of the standard hash functions

12

Ron Rivest proposed MD4 in 1990, and it was developed for greater-speed software im-

plementations on 32-bit processors employing 32-bit operations. MD stands for mes-

sage digest. However, because to a collision problem, MD4 was reorganised to MD5

in 1991, with advancements like compression rounds were increased from three to four.

The MD5 compresses data into 512-bit blocks, which are then subdivided into 16 32-bit

subblocks. The word has a 32-bit size.

The number of rounds is an important parameter for compression functions. MD5

provides a 64-round compression mechanism. MD5 is a widely used hash algorithm

in a variety of applications, including IPsec.

However, it was pointed out that utilising MD5’s compression function, collisions can

be formed. It was projected that by constructing dedicated technology at a cost of 10

million dollars, two messages with the identical hash value can be identified in around

25 days.

National Institute of Standards and Technology (NIST) demarked the SHA (Secure

Hash Method) 160-bit function to use with the DSS (Digital Signature Standard)

digital signature algorithm in 1993. Soon after, a method for causing collisions in-

side the function of compression was discovered by studying the message extension

function, which was made up entirely of XOR (exclusive OR).

To change that, the message expansion function was changed to Secure Hash Algorithm-

1 by inserting a 1-bit rotation. Because Secure Hash Algorithm-1 is meant to meet the

level of security of the block cypher , which utilises an 80-bits hidden key.

Secure Hash Algorithm-1 is a 512-bit block algorithm with five 32-bit chaining vari-

ables that is modelled after MD5. The output is 160 bits long. SHA-1 contains more

rounds (80 instead of 64) than MD5, despite the fact that the round functions are less

diversified and simpler. For extracting 32-bits smaller sub blocks from a 512-bit mes-

sage, SHA-1 employs a more complicated process. More than half of the sub blocks

are modified if one bit of the message is reversed, whereas this amount is only four for

MD5.

13

These two designs are strikingly similar to SHA-1, however these are far nearer to

one another than to mutual forerunner. SHA-384 is a simple alteration to SHA-512

that involves reducing the output to 384 bits and modifying the chaining variable’s start

value.

The technique for obtaining 32-bit sub blocks from a single message block is the most

significant distinction between the 3 recent hash functions and SHA-1. The collisions

have been reported for already known hash functions and it has been hypothesised that

SHA-1 could be broken. As a result, the transition to more secure hash algorithms

should be sped up.

As a starting point, the Secure hash algorithm-1 and Secure hash algorithm-256 are

used in this research. The reason for this choice is because Secure hash algorithm-1

is among the widely used hash ..functions, while SHA-256 was evolved after SHA-1

and provides higher degrees of security.

Both of these functions, as previously stated, work with 512-bit message blocks and

have the same word size of 32,.. bits. Despite these are identical generally, they differ

in terms of the no. of chaining variables, production of 32-bitsmaller sub blocks from

512-bit message blocks.

2.4.2 Limitations and Algorithms

• SHA-1: It necessitates a significant amount of computational energy and re-
sources.

• SHA-2: Because SHA256 and SHA512 have higher collision resistance, they
create larger outputs (i.e. 256 bits and 512 bits, respectively) than SHA1 (160
bits). Those who defend the usage of SHA2 point to the larger output size as a
rationale for attack resistance.

• SHA-3: SHA-3 was developed to be an efficient hash function, not a good password-
hashing-scheme (PHS), while on the contrary bcrypt was created to be a PHS and
was also evaluated in that direction.

• MD5: It is not a great idea to work with salted MD5 for passwords. MD5 is not
popular of its cryptographic flaws, but because it is quick. This means that on a
single GPU, an attacker could test millions of user passwords each second.

14

CHAPTER 3

Secure Hash Algorithm SHA-256

3.1 SHA-2

SHA-2 (Secure Hash Algorithm 2) Bashkaran (2019) is a collection of cryptographic

hash functions developed by the NSA of the United States and originally released in

2001. They are constructed with the Merkle–Damgard model, which starts with a 1-

way compression function designed with the Davies–Meyer structure from a particular

block cypher.

SHA-2 is disimilar from its antecedent, SHA-1, in a number of manners. SHA-

224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256 are the six hash

functions of the SHA-2 family, having digests (hash values) of 224, 256, 384, or 512

bits. SHA-256 and SHA-512 are two new hash algorithms that use eight 32-bit and

64-bit words, respectively, to construct their hashes.

They employ distinct shift amounts and cumulative constants, but their structures

are ver much similar, with the number of rounds being the sole difference.

SHA-224 and SHA-384 are reduced variants of SHA-256 and SHA-512, calculated by

differing beginning values, respectively. Starting values for SHA-512/224 and SHA-

512/256 are created following the procedure defined in Federal Information Process-

ing Standards (FIPS) PUB 180-4.

NIST initially issued SHA-2 as a government standard in the United States (FIPS).

The patent was distributed under a royalty-free licence by the United States. The

best public attacks now defeat preimage resistance in 52 of 64 rounds of SHA-256 and

57 of 80 rounds of SHA-512, as well as collision resistance in 46 of 64 rounds of SHA-

256.

3.2 Hash Standard

NIST issued 3 additional hash functions to the SHA family with the release of FIPS

PUB 180-2. SHA-2 refers to a group of algorithms that are called by the digest lengths

(in bits): SHA-256, SHA-384, and SHA-512.

FIPS PUB 180-1, that was issued in April 1995, was replaced by the new Secure

Hash Standard i.e. FIPS PUB 180-2 that was published in August 2002.. New standard

enclosed the original SHA-1 algorithm, along with modified technical notation that was

compatible with the SHA-2 family’s inner workings.

Fig. 3.1: Hash Standard

The bitwise rotation uses different constants for SHA-512. The given numbers are

for SHA-256. The red is addition modulo 232 for SHA-256, or 264 for SHA-512.

A modification notice for FIPS PUB 180-2 was issued in February 2004, describing a

second variation, SHA-224, which was described to meet the key length of 2-key Triple

DES. This was revised in FIPS PUB 180-3 in October 2008.

16

Dislocating security data concerning hash algorithms and suggestions to use them to

Special Publications 800-107 and 800-57 was the major impetus for changing the stan-

dard. In addition, elaborated test data and sample message digests were separated

from the standard and made available like independent papers.

The criterion was revised in March 2012 with FIPS PUB 180-4, which added the

hash functions SHA-512/224 and SHA-512/256 as well as a technique for creating start

values for cutshort versions of Secure hash algorithm-512.

The limit on elaborating input information before computation had been also elimi-

nated, and thus, permitting hash data for evaluating concurrently for matter synthesis,

like for a real-time video or audio stream. Prior to hash output, padding the last final

data block is however required.

3.3 SHA-256 Pseudo Code

Note 1: Variables are all of unsigned 32-bit integers, and summation is carried out using

modulo 232. Note 2: There is one message schedule array item w[i], 0 to 63, and one

round constant k[i] for each round. Note 3: There are eight working variables, a to h in

the compression function. Note 4: When describing constants in the pseudo code and

converting message block data from bytes to words, big-endian convention is utilised.

The initial step is to set up the values of hash: the initial 32 bits of the non-integral

real portions are the square roots of the first 8 primes 2.....19

Step 2: Create a circular constants array: The initial 32 bits of the non-integral

real portions of the cube roots of the first 64 primes 2....311 are the initial 32 bits of the

fractional portions of the cube roots of the first 64 primes.

Pre-processing (Padding) is the third step. add the ’1’ bit to the message Add n

bits of ’0’, where n is the smallest number greater than or equal to 0, results in a string

length of 448 bits.

17

Adjoin the message’s length in bits such as a 64-bit big-endian integer and this would

generate the whole post-processed length a multiple of 512 bits.

Fourth step : Break up the message into 512-bit chunks Make a 64-entry message

scheduling array w[0..63] containing 32-bit words for each chunk.

Step 5: Federal Information Processing Standards schedule array into the remaining

48 words w[16..63]: for I between 16 and 63 s0 : = (w[i-15] rightrotate 7) xor (w[i-15]

rightrotate 18) xor (w[i-15] rightshift 3) s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightro-

tate 19) xor (w[i-2] rightrotate 20) xor (w[i-2] rightrotate 21) xor (w[i-2] rightrotate 22)

(w[i-2] rightshift 10) w[i] = w[i-16] + s0 + w[i-7] + s1

Step 6: Initialize working variables to current hash value Compression function

main loop:

for i from 0 to 63 S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e rightrotate 25)

ch := (e and f) xor ((not e) and g)

temp1 := h + S1 + ch + k[i] + w[i]

S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a rightrotate 22)

maj := (a and b) xor (a and c) xor (b and c)

temp2 := S0 + maj

h := g

g := f

f := e

e := d + temp1

d := c

c := b

b := a

a := temp1 + temp2

7th Step : Compress the chunk and add it to the recent hash value.

8th Step: Generate the final hash value in big-endian format: assemble : = hash :=

h0 append h1 append h2 append h3 append h4 append h5 append h6 append h7 append

18

h8 append h9 append h10 append h11 append h12 append h13 append h14 append h15

append h16 append h17 append The only differences between SHA-224 and SHA-256

are:
• the starting hash values i.e. from h0 to h7 are distinct

• Also, the output is produced by deleting h7.

Wikipedia contributors (2021)

3.4 Applications

IPsec ,TLS and SSL, and SSH are just a few of the security applications and proto-

cols that employ the SHA-2 hash algorithm. SHA-256 is employed for verifying De-

bian software packages whereas Secure Hash Algorithm-512 is used to verify archived

film from the ICT for Rwanda’s genocide. DNSSEC proposes the usage of SHA-256

and SHA-512. For safe password hashing, Unix and Linux providers are switching to

SHA-2 256 bits and 512-bits.

SHA-256 is employed by several cryptocurrencies, including Bitcoin, to verify trans-

actions deals and calculate evidence of work.

Scrypt-based proof-work systems have become popular as ASIC SHA-2 accelerator

processors have become more common. The Hash Algorithms (SHA-1 and SHA-2)

are needed by law to use in specific applications of US government, which includes

usage inside other algorithms of cryptography and protocols and thus, for securing sen-

sitive data that is not classified. FIPS PUB 180-1 have also urged private and commer-

cial enterprises to adopt and utilise SHA-1. For most government applications, SHA-1

is being phased out.Selvakumar and Ganadhas (2009)

According to the US National Institute of Standards and Technology, "Agencies

should definitely utilise the SHA-2 family of hash functions for purposes that need

collsion ressitance after 2010." . The mandate from the National Institute of Standards

and Technology (NIST) that all US federal entities must discontinue using SHA-1 later

than 2010 was intended for hastening the transition inspite from SHA-1.

19

CHAPTER 4

Verification Framework : CoCoTb

4.1 Verification

4.1.1 Basics of Verification

Verification demonstrates functional correctness of design and the Correctness is de-

scribed by the specification.

Fig. 4.1: Verification of Basics

The most significant part in the product development operation is the Design Veri-

fication, accounting for up to 80 percent of the overall time spent on the project. The

goal is to make that the design fulfils all of the system’s needs and standards.

(1) The simulation within which detailed functionality and timing of the design can be

checked is referred to as Logic simulation and circuit simulation;

(2) The verification inside which functional models explaining the functionality of the

design are created to check the behavioural specification of the design without detailed

timing checks is referred to as functional verification and

(3) formal verification, which involves comparing functionality to a "golden" model.

Model checking, within which the design’s properties are checked against some as-

sumed "properties" specified in the functional or behavioural model and equivalence

checking, in which the functionality is checked against a "golden" model, are also part

of formal verification.

Although equivalence examining can be employed to evaluate synthesis outputs at lower

levels of the EDA cycle, property checking is required for the initial design capture.

4.1.2 Abstraction Levels of Verification

• The processor’s interface with other components is emphasised at the SoC level.

• At the core, ISA compliance and micro-architecture are prioritised.

• Level of the unit The various pipeline phases have traditionally had considerable con-

trol.

4.1.3 Methodology of Verification

• Development of a test plan

• Development of a test bench

• Simulation/Formal/FPGA based verification

• Analysis and review of coverage metrics

• Verification sign-off

4.1.4 Test Strategy

• Documenting how the design will be validated

• What design features should be tested under what circumstances?

• What method will be used to verify each feature?

• What is the stimulus, reference model, and process for checking?

• Assigning owners, deadlines, and prioritisation

In the design of integrated circuits, simulation is very significant. A designer can use

simulation to verify a design’s usefulness and performance before embarking on the

costly and time-consuming process of manufacturing it.

21

Verification plan for SHA-256 is shown in the table .

Fig. 4.2: Verification plan for SHA-256

22

4.1.5 Verification Types: Simulation

Fig. 4.3: Simulation

What to compare ? Processor state

Spike compares at the instruction level, micro-arch states are excluded.

Simulation plays an important role in the design of integrated circuits. Using simu-

lation, a designer can determine both the functionality and the performance of a design

before the expensive and time-consuming step of manufacture.

4.1.6 Verilator

• Verilator translates synthesizable Verilog code into verilated files, which are C++

executables.

• The user generates a C++ wrapper file that implements the design.

• The executable that runs the simulation is made up of the wrapper file that has been

created and linked with the verilated files.

4.1.7 Environment for Verification

• CoCoTB is used to create the test bench in Python.

• Verilator is used for Design Simulation.

• The Verilator tool was used to collect code coverage, and cocotb-coverage was used

to specify functional coverage. Constraint random generation is also included in this

package.

23

4.2 CoCoTb

4.2.1 What is CoCoTb and how does it work?

• Cocotb is a COroutine-based Cosimulation TestBench environment for Python-

based verification of SystemVerilog RTL and VHDL.

Cocotb is fully free, hosted on GitHub and is open source(under the BSD License).

• Cocotb needs a simulator to replicate the HDL design and have been tested on Linux,

Windows, and macOS with a number of simulators.

• On EDA Playground, a live version of CoCoTb could be utilised inside a web browser.

• Cocotb is a Python library for verifying digital logic.

• Provides a Python interface for controlling common RTL simulators (such as Ca-

dence, Questa, and VCS).

• Provides a verification alternative to the Verilog/SystemVerilog/VHDL framework.

4.2.2 Verification Methodologies

For verification, why not one should use Verilog or VHDL?

• Hardware description languages (HDLs) are useful for creating hardware and

firmware.

• However, hardware design and verification are two distinct issues.

• It’s possible that using the same language for both isn’t the best option.

• Software, not hardware, is used to create verification testbenches.

• When developing sophisticated testbenches, higher-level language ideas (such as

OOPs) are useful.

• Adding higher-level programming tools to a hardware description language is one

method to improve the problem.

• For verification, use an existing general-purpose language.

• The first method is SystemVerilog, which has simulation-only OOP language capa-

bilities.

• UVM libraries built in SystemVerilog (Universal Verification Methodology).

24

4.2.3 What makes CoCoTb unique?

• CoCoTb promotes the same design reuse and arbitrary testing methodology as

Universal Verification Methodology, the difference is that it is written in Python.

• VHDL or SystemVerilog are typically used just for the design, not the testbench, with

CoCoTb.

• Through standardised, CoCoTb provides in-built abet for interfacing with uninter-

rupted integration platforms like GitLab, and others.

• CoCoTb was created with the goal of reducing the time it takes to create a test.

• CoCoTb detects tests automatically, eliminating the need for a second step when

adding a test to a regression.

Python is used for all verification instead of SystemVerilog or VHDL, because it of-

fers several benefits over for verification:

• Federal Information Processing Standards

• The tests could be modified and re-run without the need of recompiling the design

or exiting the simulator GUI.

4.2.4 CoCoTb: Basic Architecture

What is CoCoTb and how does it work?

• A conventional simulator is used to execute the design under test (DUT).

• CoCoTb acts as a bridge between the simulator and Python.

• Makes use of the Verilog Procedural Interface (VPI) or the VHDL Procedural Inter-

face (VHDL Procedural Interface) .

• Python testbench code can:

1. Change values in the DUT hierarchy.

2. Wait for the simulation to finish.

25

3. Watch for a signal’s rising or dropping edge.

Fig. 4.4: CoCoTb Architecture

No additional RTL code is required for a normal cocotb testbench. Without any

wrapper code, the DUT is initialised as the most upper level in the simulator.

Cocotb applies stimuli to the DUT’s (or any higher-level) inputs and checks the outputs

simply from Python. It’s worth noting that the DUT should be completed definitely and

as CoCoTb cannot generate HDL blocks;.

26

A testbench is nothing more than a Python function. Either the simulator or the

Python code is running out of resources at any given time.

When passing control of operation back to the simulator, the await keyword is utilised.

Multiple coroutines can be spawned by a test, allowing for independent execution flows.

Fig. 4.5: How does CoCoTb work?

Cocotb is a powerful high-level programming language verification tool:

• Far more powerful than a standard Verilog testbench.

• More user-friendly than a SystemVerilog or UVM testbench.

Because of the cosimulation methodology, the RTL simulator is still used behind the

scenes:

• Testbenches can contain a mix of Python and RTL.

• Cocotb testbenches can also be utilised for simulations after synthesis. Rosser

(2018)

4.3 How to Use CoCoTb?

No additional RTL code is required for a normal cocotb testbench. Without any wrap-

per code, the DUT is initialised as the most upperlevel in the simulator. Cocotb applies

stimuli to the DUT’s inputs and monitors the outputs using Python.

4.3.1 How to Make a Makefile?

A Makefile is often required to create a Cocotb test. Cocotb has a set of guidelines

that form it simple to learn from starting. We just tell CoCoTb about the original root

27

files that required to be compiled, the toplevel object that needs to be created, and the

Python test script that needs to be loaded. Then we would make a file named test my

design.py that contained all of our tests.

4.3.2 Putting together a test

Python is used to write the test. Cocotb wraps the handle you pass it around your top

level. That handle is dut in this project, but you can use your own chosen name instead.

In all Python files that reference your RTL project, the handle is used.

4.3.3 Obtaining access to the design

When cocotb starts up, it searches the simulator for the upper-level initialisation and

produces a handle named DUT. The “dot” notation, which is used in Python to access

object attributes, may be employed to be able to use the top-level signals. Signals within

the design can be accessed using the same approach.

4.3.4 Assigning Signal Values

The value attribute of a handle object or direct during traversing the hierarchy can both

be used to assign values to signals.

4.3.5 Obtaining data from signals

A BinaryValue object is returned when the value property of a handle object is ac-

cessed. Non-resolved bits are saved and can be retrieved with the binstr attribute, and

a resolved integer value with the integer attribute.

28

CHAPTER 5

Testbench Architecture

5.1 Writing Testbench

5.1.1 Obtaining access to the design

Cocotb identifies the toplevel initialisation in the simulator and produces a handle named

dut when it initialises. The “dot” notation, which is used in Python to access object

attributes, may be employed to access toplevel signals. Signals within the design can

be accessed using the same approach.

5.1.2 Assigning signals with values

The value attribute of a handle object during traversing the hierarchy can both be used

to assign values to signals.

5.1.3 Values that are signed and unsigned

A Python int can be used to assign both signed and unsigned values to signals.Cocotb

makes no assumptions about the signal’s signedness.

It simply considers the width of the signal, hence it will accept values in the range of a

signed number’s minimum negative value to an unsigned number’s maximum positive

value:

value = 2**Nbits - 1 -2**(Nbits - 1)

Note that assigning values that are out of range will result in an OverflowError.

To assign a value to signals with greater fine-grained control, a BinaryValue object

can be used instead of a Python int (e.g. signed values only).

5.1.4 Reading values from signals

The value property of a handle object can be used to access values in the DUT.

The HDL type of a handle determines the Python type of a value:

BinaryValue is the type for logic arrays and subtypes (sfixed, unsigned, etc.).

Integer nets and constants (integer, natural, and so on) always return int.

Constants (real) and floating point nets both return float.

The result of boolean nets and constants (boolean) is bool.

Any unresolved bits in a BinaryValue object are kept and could be retrieved with the

binstr attribute.

5.1.5 Execution in parallel and in sequence

An await will start an async coroutine and then wait for it to finish. The current corou-

tine is “blocked” by the calling coroutine. Wrapping the call with fork() causes the

coroutine to execute in the background, allowing the current coroutine to continue to

execute.

You can wait for the outcome of the forked coroutine at any moment, which will block

until the forked coroutine completes.

5.2 Coroutines

Coroutines are used in cocotb testbenches. The simulation is suspended while the

coroutine is running. The await keyword is used by the coroutine to block on the exe-

cution of another coroutine or to return control of operations to the simulator, allowing

simulation time to progress.

Mostly, coroutines await the arrival of a Trigger object, that informs the simulator of

an event that would wake the coroutine when it occurs. Coroutines may potentially be

waiting for other coroutines to complete.

• Coroutines have the ability to return a value, allowing them to be used by other corou-

tines.

• For concurrent operation, coroutines can be employed with fork().

30

• An await statement can be used with forked coroutines to block until the forked corou-

tine completes.

• Forked coroutines can be killed before they finish, pushing them to finish sooner than

they would otherwise.

For async def coroutines, the cocotb.coroutine decorator is no longer required. Wher-

ever decorated coroutines are accepted, including yield statements and cocotb.fork,

async def coroutines can be used without the @cocotb.coroutine decorator.

5.3 Triggers

Triggers are used to tell the cocotb scheduler when coroutine execution should resume.

A coroutine should be waiting for a trigger to be used. The current coroutine will be

paused as a result of this. When the trigger fires, the paused coroutine will resume

execution.

5.4 Testbench Structure

Fig. 5.1: Testbench Architecture

• UVM technique is used.

• To obtain the expected output, generated test sequences are sent to both the DUT
and the model.

31

• In the Scoreboard, the observed output from the DUT is compared to the expected
output from the model.

5.4.1 Logging

Cocotb makes use of the built-in logging library, with additional settings provided in

Logging to provide some appropriate defaults. A logging is kept for each Design under

test, scoreboard, driver, and monitor (and for any other function that uses the coroutine

decorator).

Each logger has its logging level that could be customised. Individual logging levels

can be defined for each hierarchical entity within a DUT. When logging is done for

HDL objects, one should keep in mind that the preferred method is "log".

This reduces the chance of name clashes when using the Python logging feature with

an HDL log component. Levels of log printing can also be configured per-object.

5.4.2 Bus

Buses are described as collection of signals. The Bus class will automatically bundle

any group of signals together that are named similar to dut.<bus name><separator><signal

name>.

A list of signal names, or a dictionary mapping attribute names to signal names is also

passed into the Bus class. Buses can have values driven onto them, be captured (return-

ing a dictionary), or sampled and stored into a similar object.

5.4.3 Driver

Examples and specific bus implementation bus drivers (AMBA, Avalon, XGMII, and

others) exist in the Driver class enabling a test to append transactions to perform the

serialization of transactions onto a physical interface.

classcocotbbus.drivers.Driver

Class defining the standard interface for a driver within a testbench.

The driver is responsible for serializing transactions onto the physical pins of the inter-

32

face. This may consume simulation time.

Constructor for a driver instance.

async driver send(transaction: Any, sync: bool = True, **kwargs: Any) → None

Actual implementation of the send.

Sub-classes should override this method to implement the actual send() routine.

Parameters

transaction – The transaction to be sent.

sync – Synchronize the transfer by waiting for a rising edge.

**kwargs – Additional arguments if required for protocol implemented in a sub-class.

async send(transaction: Any, callback: Callable[[Any], Any], event:

cocotb.triggers.Event, sync: bool = True, **kwargs) → None

Send coroutine

Parameters

transaction – The transaction to be sent.

callback – Optional function to be called when the transaction has been sent.

event – event to be set when the transaction has been sent.

sync – Synchronize the transfer by waiting for a rising edge.

**kwargs – Any additional arguments used in child class’ driver send method.

5.4.4 Monitor

For our testbenches to actually be useful, we have to monitor some of these buses, and

not just drive them. That’s where the Monitor class comes in, with pre-built monitors

for Avalon and XGMII buses. The Monitor class is a base class which you are expected

to derive for your particular purpose.

You must create a "monitor recv()" function which is responsible for determining 1) at

what points in simulation to call the recv() function, and 2) what transaction values to

pass to be stored in the monitors receiving queue. Monitors are good for both outputs

of the DUT for verification, and for the inputs of the DUT, to drive a test model of the

DUT to be compared to the actual DUT.

For this purpose, input monitors will often have a callback function passed that is a

model. This model will often generate expected transactions, which are then compared

33

using the Scoreboard class.

classcocotbbus.monitors.Monitor(callback=None, event=None)

Base class for Monitor objects.

Monitors are passive ‘listening’ objects that monitor pins going in or out of a DUT.

This class should not be used directly, but should be sub-classed and the internal mon-

itorrecv() method should be overridden. This monitorrecv() method should capture

some behavior of the pins, form a transaction, and pass this transaction to the internal

recv() method. The monitorrecv() method is added to the cocotb scheduler during the

...init.. phase, so it should not be awaited anywhere.

The primary use of a Monitor is as an interface for a Scoreboard.

Parameters

callback (callable) – Callback to be called with each recovered transaction as the argu-

ment. If the callback isn’t used, received transactions will be placed on a queue and the

event used to notify any consumers.

event (cocotb.triggers.Event) – Event that will be called when a transaction is received

through the internal recv() method. Event.data is set to the received transaction.

5.4.5 Scoreboard

Against compare actual outputs to expected outputs, the Scoreboard class is utilised.

Actual outputs are represented by monitors on the scoreboard, while expected outputs

might be either a simple list or a function that performs a transaction.

Ability to use a common scoreboard.

classcocotb bus.scoreboard.

Scoreboard(dut, reorder depth=0, fail immediately=True) Scoreboard(dut, reorder depth=0,

fail immediately=True) object’s foundations Class for scoreboards in general.

By providing a monitor and an expected output queue, we can add interfaces.

The expected output might be either a transaction-generating function or a plain list

34

of the expected result.

Handle to the DUT (parameters dut (SimHandle))

Consider up to reorder depth elements of the expected result list as passing matches

(int, optional). The default value is 0, which means that given a passing match, just the

first element in the expected result list is taken into account.

Raise Test if fail immediately (bool, optional) is true.

Instead of simply documenting an error, failure occurs immediately when something

goes wrong. True is the default value.

5.4.6 Assignment Procedures

• classcocotb.handle.Deposit(value)

Action used for placing a value into a given handle.

• classcocotb.handle.Force(value)

Action used to force a handle to a given value until a release is applied.

• classcocotb.handle.Freeze

Action used to make a handle keep its current value until a release is used.

• classcocotb.handle.Release

Action used to stop the effects of a previously applied force/freeze action.

cocotb contributors

35

CHAPTER 6

Results

6.1 Simulation Results

Fig. 6.1: Simulation Result

Fig. 6.2: Simulation Result

The python testbench for testing SHA-256 design has been verified using Verilator in

the CoCoTb verification Environment. The pass results are shown in Figure 6.1 and

Figure 6.2.

6.2 Code coverage

Code coverage is a metric used in computer science to characterise how much of a

programme source code is executed while a test suite is run. When compared to a pro-

gramme with low test coverage, a programme with high test coverage has had more of

its source code executed during testing, implying that it has a lesser risk of holding un-

detected software problems. Test coverage can be calculated using a variety of metrics,

the most basic of which are the percentage of programme subroutines and programme

statements called during the execution of the test suite.

Code coverage helps in analysing how comprehensively a software is verified. It helps

in measurement of efficiency of test implementation. It allows quantitative measure-

ment. It also defines the degree to which the code has been tested.

Verilator version v4.038 had been used to run simulations. Cocotb version 1.4.0

had been used to write the testbench. Coverage results have been generated for 1 run

to 1000000 runs. Generally, it is observed that until 100000 runs approximately, an

increase in code coverage percentage is seen and after 100000 runs, the coverage per-

centage curve appears to flatten.

Test coverage results can be used by software authors to create additional tests and

input or configuration sets to boost coverage of critical functions. Statement (or line)

coverage and branch (or edge) coverage are two typical types of test coverage. Test

coverage is one factor to consider while certifying avionics equipment for safety. The

rules by which the Federal Aviation Administration (FAA) certifies avionics gear are

documented in DO-178B and DO-178C.

37

CHAPTER 7

Conclusion

SHA-256 RTL cores were successfully verified using CoCoTb Verilator and the test-

bench code was written in Python for the verification purpose. A reference model in C

language was used to generate expected values and imported into the CoCoTb frame-

work. DUT output data was compared with expected model values in the Scoreboard

to verify the correctness of the each core. Assertions were used to verify the protocol

over which each DUT communicates. This provided a level of confidence and ensured

each RTL core functions properly. Random input generation was used to ensure high

coverage.

7.1 Future Work

• We may determine that the code is not compact based on code coverage measures,
thus, some RTL blocks can be modified to make the code more compact.

• Processing time for SHA-256 could be reduced if the RTL was enhanced.

• At any given time, SHA-256 can only handle one input. Pipelining could be
implemented, allowing cores to accept streams of data as input.

• Because the timing on a few paths are not very great, certain nets can be re-
designed.

• Functional coverage could be done more efficiently.

• Instead of using Randomizing without any constraints that might end up not hit-
ting several possible regions. To resolve this, the randomization can be divided
so as to cover each region.

REFERENCES

1. Bashkaran, D. A. (2019). Verification of SHA-256 and MD5 Hash Functions Using
UVM. Doctoral thesis, Department of Electrical Engineering(KGCOE).

2. cocotb contributors (). Cocotb read the docs, library reference. URL https://
docs.cocotb.org/en/latest/library_reference.html.

3. Rosser, B. J. (2018). Cocotb: a Python-based digital logic verification framework.
Master’s thesis, University of Pennsylvania (US).

4. Selvakumar, A. L. and C. S. Ganadhas (2009). The evaluation report of sha-256 crypt
analysis hash function. In 2009 International Conference on Communication Software
and Networks.

5. Siltu, C. T. (2007). Design and FPGA implementation of hash processor. Master’s
thesis, Middle East Technical University.

6. Wikipedia contributors (2021). Sha-2 — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=SHA-
2&oldid=1024045149. [Online; accessed 18-June-2021].

39

https://docs.cocotb.org/en/latest/library_reference.html
https://docs.cocotb.org/en/latest/library_reference.html
https://en.wikipedia.org/w/index.php?title=SHA-2&oldid=1024045149
https://en.wikipedia.org/w/index.php?title=SHA-2&oldid=1024045149

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Research Goals
	Thesis Structure

	Hash Functions: An Overview
	PROPERTIES AND DEFINITIONS
	Hash Function Definition
	Pre-image Resistance (Property.1)
	Second Pre-image Resistance (Property.2)
	Collision Resistance (Property.3)

	Construction of Hash Functions
	Applications
	Check for Data Integrity
	Authentication with a Password
	Digital Signatures with Encryption

	KNOWN HASH FUNCTIONS
	Summary of the standard hash functions
	Limitations and Algorithms

	Secure Hash Algorithm SHA-256
	SHA-2
	Hash Standard
	SHA-256 Pseudo Code
	Applications

	Verification Framework : CoCoTb
	Verification
	Basics of Verification
	Abstraction Levels of Verification
	Methodology of Verification
	Test Strategy
	Verification Types: Simulation
	Verilator
	Environment for Verification

	CoCoTb
	 What is CoCoTb and how does it work?
	 Verification Methodologies
	 What makes CoCoTb unique?
	 CoCoTb: Basic Architecture

	 How to Use CoCoTb?
	 How to Make a Makefile?
	 Putting together a test
	 Obtaining access to the design
	 Assigning Signal Values
	 Obtaining data from signals

	Testbench Architecture
	 Writing Testbench
	 Obtaining access to the design
	 Assigning signals with values
	 Values that are signed and unsigned
	Reading values from signals
	Execution in parallel and in sequence

	Coroutines
	Triggers
	Testbench Structure
	 Logging
	 Bus
	 Driver
	 Monitor
	 Scoreboard
	 Assignment Procedures

	Results
	Simulation Results
	Code coverage

	Conclusion
	Future Work

	REFERENCES

