

DEPARTMENT OF ELECTRICAL

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

MADRAS

CHENNAI-600 036

 Functional Verification of RSA Algorithm

A Thesis

Submitted by

RAJAT LABH

EE19M063

 For the award of the degree

Of

MASTER OF TECHNOLOGY

June, 2021

i

THESIS CERTIFICATE

This is to undertake that the Thesis titled, FUNCTIONAL VERIFICATION OF RSA

ALGORITHM submitted by me to the Indian Institute of Technology Madras, for the

award of M.Tech is a bonafide record of the research work done by me under the

supervision of Prof. V. Kamakoti and Prof. Boby George. The contents of this Thesis,

in full or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Chennai 600 036

Date:

Rajat Labh

M.Tech(EE)

Prof. V. Kamakoti

Research Guide

Prof. Boby George

Research Co-Guide

© 2021 Indian Institute of Technology Madras

ii

ACKNOWLEDGEMENTS

I would want to convey my gratitude to Dr. V. Kamakoti and Dr. Boby George for

their support and encouragement during the project. I am grateful to them for giving

me their time throughout several sessions to discuss project work, which allowed me

to successfully complete this project.

Special thanks to Prof. V. Kamakoti. For allowing me to work on the Shakti Processor

Project, which helped me in better understanding of digital design and

implementation. I owe him a huge debt of gratitude for the VLSI design knowledge I

received during my project work.

I would also want to thank my Mentor, Lavanya Jagan, for explaining the principles

of the Verification Plan and assisting me in understanding the Cocotb-Verilator

verification tools.

My heartfelt gratitude to all of my IIT Madras friends for their unwavering support

and for making my time on campus so joyful and unforgettable.

I also appreciate my family's continual support.

iii

ABSTRACT

Cryptography is a means of using codes to protect information and communications

so that only those who are supposed to read and process it may do so. Cryptosystems

encrypt and decrypt data using a set of techniques known as cryptographic algorithms,

or cyphers, to provide secure communications between computer systems, devices,

and applications. Any cryptosystem's core processes are encryption and decryption..

There are numerous encryption and decryption techniques available; the RSA (Rivest-

Shamir-Adlean) algorithm is one of them. Bluespec SystemVerilog has previously

been used to generate the design (BSV). The goal of this project is to create a

verification environment for the RSA design. Cocotb, an open source tool, has also

been discussed.

iv

TABLE OF CONTENTS

Title Page

Certificate i

Acknowledgement ii

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

Abbreviations viii

1. Introduction ………………………………………………………………. 1

1.1. Research Goals ………………………………………………………. 3

2. RSA Algorithm …………………………………………………………… 4

2.1 RSA Problem ………………………………………………………..... 4

2.2 Montgomery Modular Multiplication ………………………………… 5

2.3 MMM Algorithm ……………………………………………………… 5

2.4 MMM Architecture ……………………………………………………. 6

2.5 MME Algorithm ………………………………………………………. 8

2.6 MME Architecture …………………………………………………..... 9

3. Cocotb …………………………………………………………….............. 11

3.1 Why use Python ………………………………………………………. 11

3.2 Cocotb Architecture …………………………………………………… 12

3.3 Makefile ………………………………………………………………. 13

3.4 Coroutine ……………………………………………………………… 13

3.5 Trigger ………………………………………………………………… 14

v

4. Verification ………………………………………………………………... 15

4.1 Verification Plan ………………………………………………………. 16

4.2 Testbench ……………………………………………………………… 17

4.2.1 Accessing the Design …………………………………………. 17

4.2.2 Assigning Values ……………………………………………… 17

4.2.3 Reading Values ……………………………………………….. 18

4.3 Testbench Architecture ……………………………………………….. 18

4.4 Testbench Components ………………………………………............. 19

4.4.1 Random Input Generator …………………………………….. 19

4.4.2 Driver ……………………………………………………........ 19

4.4.3 Monitor ……………………………………………………….. 19

4.4.4 Scoreboard ………………………………………………......... 19

4.5 Simulation …………………………………………………………….. 20

4.6 Code Coverage ……………………………………………………....... 21

4.7 Result ………………………………………………………………….. 22

5. Conclusion ………………………………………………………………… 23

5.1 Future Work …………………………………………………………... 23

References 24

vi

LIST OF TABLES

Table 1.1: Security objectives

Table 4.1: Verification Plan

Table 4.2: Coverage Report

vii

LIST OF FIGURES

Figure 2.1: Architecture PE

Figure 2.2: Architecture qPE

Figure 2.3: Architecture MMM

Figure 2.4: Architecture MME

Figure 3.1: cocotb Architecture

Figure 3.2: Makefile

Figure 4.1: Testbench Architecture

Figure 4.2: Simulation Result

Figure 4.3: Coverage Result

viii

ABBREVIATIONS

RSA Rivest, Shamir, Adleman

MIT Massachusetts Institute of Technology

MMM Montgomery Modular Multiplication

MME Montgomery Modular Exponentiation

PE Processing Element

COCOTB COroutine based COsimulation TestBench

OOP Object Oriented Programming

UVM Universal Verification Methodology

DUT Device Under Test

RTL Register Transfer Logic

VPI Verilog Procedural Interface

VHPI VHDL Procedural Interface

IC Integrated Chip

VLSI Very Large Scale Integration

CAD Computer Aided Design

BSV Bluespec System Verilog

Chapter 1

INTRODUCTION

Since the dawn of civilization, information has been and will continue to be a prized

resource. Many economies have shifted from manufacturing and heavy industry to

technology and data in recent years. This has underscored the need of information

security. Cryptography is used to do this. After the invention of computers,

cryptography became a viable option. Cryptography is used frequently in everything

around us, from our smartphones to our online banking. Some objectives of

information security are

privacy to store information confidential from all.

data integrity to ensure information has not been modified by

unauthorized means.

signature to attach information to an entity.

authorization to convey, to another user or entity, of official

permission to do or be something.

validation to provide timeliness of permission to utilize or

change information or resources.

certification to validate information by a trusted entity

confirmation to acknowledge that services have been provided.

ownership to provide an entity or user with the legal rights to use

or transfer a resource to others

Table 1.1: Security objectives

2

Cryptography's key processes are encryption and decryption. The technique of

encoding common data, also known as "plain-text," is known as encryption. It is done

in such a way that only authorised users have access to the information it contains.

"Cipher-text" is another term for the encoded data. The process of translating cypher

text to plain text is known as decryption. The "key" is the most important component

of this procedure.

A key is a little piece of data that determines a cryptographic algorithm's output. A

key can be made in a variety of ways. It should be a random number that is difficult to

predict. Pseudorandom number generators and random-number generators are two of

the most well-known key generators. Random number generators generate random

numbers on their own, but pseudo-random number generators require a seed value. To

produce a new set of random numbers, adjust the seed values. The ability to renew the

random number if the seed value is known is one downside of this pseudo-random

generator.

The complexity of prime factor decomposition of a large number is used to determine

the security level of RSA, which is a common public key cryptography technique.

Three MIT cryptography scientists, Ron Rivest, Adi Shamir, and Leonard Adleman,

suggested it in 1978, and ISO formally adopted it as an International Standard in

1992. Compared with the symmetric key cryptographic algorithms, RSA algorithm

mainly has two distinct advantages:

1. It supports for digital signatures and digital certificates.

2. It simplifies the work of key management.

3

1.2 RESEARCH GOALS

The goal is to build a verification environment that verifies the RSA encryption

algorithm. Cocotb-Verilator has been used for Verification. The goals achieved with

the following objectives:

• To understand the RSA encryption algorithm for 2048 bit key length.

• To apply an open source verification technique to create the verification

environment.

• To generate the results with coverage tests.

Chapter 2

RSA ALGORITHM

Rivest, Shamir, and Adleman invented the first successful public-key encryption

scheme in 1978, which is now known as RSA. The RSA scheme is based on a

challenging mathematical problem: factoring huge integers. The use of a tough

mathematical problem in cryptography re-energized efforts to create more efficient

factoring algorithms.

The most widely used public-key cryptography algorithm is RSA. It's utilised in

public signature apps and secure transactions in general. It provides effective

cryptographic security, but it is slower than symmetric key methods due to its difficult

mathematical calculation complexity.

2.1 RSA PROBLEM

Given a positive integer 𝑛 that is a product of two distinct odd primes 𝑝 and 𝑞, a

positive integer 𝑒 such that gcd(𝑒, (𝑝 − 1)(𝑞 − 1)) = 1, and an integer 𝑐, find an

integer 𝑚 such that 𝑚 = 𝑐𝑒 (𝑚𝑜𝑑 𝑛).

In other words, the RSA problem is that of finding 𝑒𝑡ℎ roots modulo a composite

integer 𝑛. The conditions imposed on the problem parameters 𝑛 and 𝑒 ensure that for

5

each integer 𝑐 ∈ {0,1, . . . , 𝑛 − 1} there is exactly one 𝑚 ∈ {0,1, . . . , 𝑛 − 1} such that

𝑚 = 𝑐𝑒 (𝑚𝑜𝑑 𝑛).

2.2 MONTGOMERY MODULAR MULTIPLICATION

The RSA algorithm's mathematics may be summed up in two operations: modular

multiplication and modular exponentiation. Modular multiplication has a significant

disadvantage. Trial division is used to obtain the remaining value. There have been

numerous attempts to break down the trial division barrier. The Montgomery Modular

Multiplication (MMM) and Montgomery Modular Exponentiation (MME) algorithms,

first described by P. Montgomery, are the most often used solutions. By normalising

the values to be multiplied, this technique manages to fully avoid trial division.

2.3 MMM ALGORITHM

The MMM algorithm calculates the value of A = X . Y . R-1 mod N where R is a

constant number usually R = 2n. The n-bit value N has to be an integer filling the

condition gcd(R,N) = 1.

Function MMM (X, Y, N)

1. C𝑖𝑛 = 0, S𝑖𝑛 = 0

2. For k=0 to n-1 do begin

3. 𝑞 = (S𝑖𝑛0 + C𝑖𝑛0 + 𝑥𝑘𝑦0) 𝑚𝑜𝑑 2

4. if 𝑥𝑘 = 0 then

a. if (q=0) then

b. I=0

c. Else

6

d. I=N

e. End

5. End

6. if 𝑥𝑘 = 1 then

a. if (q=0) then

b. I=Y

c. Else

d. I=Y+N

e. End

7. End

8. C+S=C𝑖𝑛 + S𝑖𝑛 + I

9. C𝑖𝑛 = C/2, S𝑖𝑛 = S/2

10. End

11. Return C𝑖𝑛 and S𝑖𝑛

2.4 MMM ARCHITECTURE

Two types of Processing Elements are required to construct an architecture for the

MMM algorithm employing systolic array logic: the simple PE and the PE that

calculates the q value (qPE). The only difference is that the qPE contains a few extra

gates. For the calculation of q, those gates are employed. Carry – Save binary

arithmetic is used for all calculations.

One of the key ideas of Carry – Save logic is that the result must be changed into a

non redundant format employing an adder at the end of the computations. If only used

once, this is quite effective. However, because the MMM architecture is built for RSA

7

encryption, which necessitates repeated multiplications, using one additional addition

in each loop is not cost-effective. By making the suggested MMM architecture

completely functional with C – S numbers, this step can be omitted.

Figure 2.1 Architecture PE Figure 2.2 Architecture qPE

The MMM architecture would require n × n PEs if we used a full systolic layout. As a

result, the suggested MMM architecture uses just n PEs and is based on feedback

logic.

Figure 2.3 Architecture MMM

Carry – Save format is used for all input, output, and intermediate signals. In the

previous PE, the C (Carry) output signal is backtracked, resulting in the shifting

8

(division by 2 operation) in step 9 of the MMM algorithm. After n clock cycles, the

suggested MMM architecture produces a result.

2.5 MME ALGORITHM

The distinctiveness of MMM algorithm is that it uses the R value and calculates

A = X . Y . R-1 mod N. The algorithm for Montgomery Modular Exponentiation

(MME) is

Function MME (X, e, N)

1. 𝐴 = 𝑅 𝑚𝑜𝑑 𝑁

2. 𝐺 = 𝑅2 𝑚𝑜𝑑 𝑁

3. �̅� = 𝑀𝑀𝑀(𝑋, 𝐺)

4. For i=t to 0 do begin

a. 𝐴 = 𝑀𝑀𝑀(𝐴, 𝐴)

b. If e𝑖 = 1 then 𝐴 = 𝑀𝑀𝑀(𝐴, �̅�)

5. End

6. 𝐴 = 𝑀𝑀𝑀(𝐴, 1)

R=2n, e is the exponent, and all numbers are in Carry – Save format. Regardless of the

X or e value, steps 1 and 2 are the same. They can be computed ahead of time. The

value in step 3 only needs to be computed once for each X before being saved in a

memory module. When the i-th bit of e is set, step 4b is completed.

9

2.6 MME ARCHITECTURE

The Montgomery Modular Exponentiation architecture (MME) can be created using

the MMM architecture and MME algorithm. Our primary goal is to maintain a steady

flow of data, which necessitates a high throughput. Two MMM architectures are

required for this purpose: MMM1 controls the incoming X values and MMM2 runs the

MME algorithm's main loop. In MMM1 (step 3 of the MME algorithm), the X values

are normalised and placed in a Register Set. When et = 1, the data is pushed into

MMM2, otherwise the output of MMM2 is reinserted into the input. For the

calculation of Y+N, a precomputation unit is required, which conducts one

computation every n clock cycles.

Figure 2.4 Architecture MME

The X value is entered into the MMM1 unit and normalised in tandem with MMM2's

initial square operation. The output of MMM1 is saved in the Register Set after n

clock cycles. When et=1, MMM1's stored output is moved into MMM2, and a multiply

operation is started. Otherwise, the square procedure is performed again. MMM2

10

makes use of feedback and renews its input with the results of the preceding

computation. When the MME algorithm's loop is finished, value 1 is used as the input

in MMM1 instead of X, and the output of MMM2 is used to convert the Montgomery

number to normal.

Chapter 3

COCOTB

Cocotb is a Python-based COroutine-based COsimulation TestBench for testing

VHDL and SystemVerilog RTL. It is necessary to use a simulator to simulate the

design. It's been tested with a wide range of simulators on Linux, Windows, and

macOS. It follows the same design reuse and randomised testing concept as UVM.

Unlike UVM, it is written in Python. It provides a verification alternative to Verilog,

System Verilog, or the VHDL framework.

3.1 WHY USE PYTHON

HDL is great for designing hardware or firmware. But hardware design and

verification are different problems. It might not be optimal using the same language

for hardware design and verification. Verification testbenches are software, not

hardware. Higher level languages concepts, like OOP, are useful when writing

complex testbenches.

SystemVerilog approach has simulation-only OOP features. UVM libraries are

written in SystemVerilog. SystemVerilog is a very complicated language. It has 221

keywords. It is very powerful but takes significant amount of time to learn. UVM also

has similar complexity issues. It has over 300 classes. It is also very powerful, but

very difficult to get started.

12

Python, on the other hand, is simple and easy to learn. It is also very powerful

language. It has a large standard library and a huge ecosystem. Python is well

documented, popular and lots of resources are available.

3.2 COCOTB ARCHITECTURE

Design under test (DUT) runs in standard simulator. It Is instantiated as the toplevel in

the simulator. Cocotb provides interface between simulator and Python. It drives the

stimulus onto the inputs to the DUT. It also monitors the output directly from Python.

It uses Verilog Procedural Interface (VPI) or VHDL Procedural Interface (VHPI).

Figure 3.1 cocotb Architecture

Python test is a simple python function referred to as coroutines. Python testbench

code can:

• Reach into DUT hierarchy and change values.

• Wait for simulation time to pass.

• Wait for a rising or falling edge of a signal.

13

3.3 MAKEFILE

Each cocotb project need a Makefile to specify which files to include in simulation.

Figure 3.2 Makefile example

• MODULE, TOPLEVEL control which Python, RTL module to instantiate.

• TOPLEVEL_LANG can be Verilog or VHDL.

• EXTRA_ARGS allows extra arguments to be passed to simulator.

• VERILOG_SOURCES refers the RTL file to include.

3.4 COROUTINE

Tests can call other methods and functions , just like normal Python. If those methods

want to consume simulation time, they must be coroutines. Coroutines are just Python

functions that have two properties:

1. It should be decorated using the @cocotb.coroutine.

2. It should contain at least one yield statement, yielding another coroutine or

trigger.

Coroutines can be yielded, but they can also be forked to run in parallel. It is

something similar to Verilog always block.

14

3.5 TRIGGER

When design and testbench are simulated independently, it is called cosimulation.

Triggers are represented as communication through VPI or VHPI interfaces. When

Python code is executing, simulation time is not advancing. When a trigger is yielded,

the testbench waits until the triggered condition is satisfied before resuming

execution.

There are few triggers available in cocotb

• Timer (time, unit): it waits for certain amount of simulation time to pass.

• Edge (signal): it waits for a signal to change state (rising or falling edge).

• RisingEdge (signal): it waits for the rising edge of a signal.

• FallingEdge (signal): it waits for the falling edge of a signal.

• ClockCycles (signal, num): it waits for some number of clocks (transition

from 0 to 1).

Chapter 4

VERIFICATION

Electronics equipment and gadgets have become far more functional, but their

physical sizes and weights have shrunk dramatically. The main reason is because

significant improvements in integration technologies have made it possible to

fabricate millions of transistors in a single Integrated Circuit (IC) or chip. In a VLSI

IC, systems of systems can be implemented. However, as the functionality of VLSI

ICs has increased, the design problem has grown enormously complex.

Following the design parameters, all subsequent procedures are automated using CAD

tools. Even designs created with CAD technologies, however, may contain flaws. As

a result, a technique to check whether the design fits all of the input specifications is

required. Verification is the term for this method.

From a functional standpoint, functional verification is described as the process of

ensuring that an RTL (Synthesizable Verilog, VHDL, SystemVerilog) design fits its

specifications. It verifies that the design under test (DUT) correctly implements the

specification's functionality.

16

4.1 VERIFICATION PLAN

TestPlan

id

Features Sub Feature TestPlan Design

Parameter

rsa_1 Input Signals All Inputs are

2048 bits

Input rr has to be

precalculated

rr

rsa_2 Apply inputs

to the module

Should be set

to apply

inputs to the

module

Check if the signal is

set before applying the

inputs

RDY_mmeExp

rsa_3 Enable to start

execution

Should be 1

to start

execution

Ensure input enable

signal gets

EN_mmeExp

rsa_4 Output

Availability

Will be set

when the

output is

available

Ensure output is

available when signal

is set

RDY_getResult

rsa_5 Read the

output

Should be 1

to read the

output from

getResult

Check whether output

is readable when the

signal is true

isReady

rsa_6 Reference

Model Output

2048 bits Monitor to ensure that

the Reference Model

output generates

expected_output

rsa_7 DUT Output 2048 bits Monitor to ensure that

DUT output generates

output_mon

Compare whether the

Reference model

output and DUT output

are equal

Scoreboard

compare

Table 4.1: Verification Plan

17

The verification method used in this project is to ensure that the design is functionally

valid. It's done by giving the DUT and the Reference Model the same stimulus. The

output of the DUT is then compared to the output of the Reference Model.

4.2 TESTBENCH

A “testbench” is the code used to create a determined input sequence to a design and

then observe the response. The design is usually written in Verilog, SystemVerilog,

VHDL.

4.2.1 ACCESSING THE DESIGN

Cocotb identifies the toplevel instantiation in the simulator and produces a handle

named dut when it initialises. The “dot” notation, which is used in Python to access

object attributes, may be used to access toplevel signals. Signals inside the design can

be accessed using the same approach.

clk = dut.clk - a reference to the “clk” signal

4.2.2 ASSIGNING VALUES

The value attribute of a handle object or direct assignment while traversing the

hierarchy can both be used to assign values to signals.

clk.value = 1 - to assign a value to “clk” signal

18

4.2.3 READING VALUES

The value property of a handle object can be used to access values in the DUT. A

common blunder is overlooking the .value parameter, which only returns a handle

reference (helpful for defining an alias name), not the value.

count = dut.counter.value - read a value back from the DUT

4.3 TESTBENCH ARCHITECTURE

Figure 4.1: Testbench Architecture

19

4.4 TESTBENCH COMPONENTS

4.4.1 RANDOM INPUT GENERATOR

Random input Generator is the Test Sequence Generator. It is used to initialise the

verification environment and the DUT.

4.4.2 BUS

Simply put, a bus is a collection of signals. The Bus class also accepts a list of signal

names or a dictionary mapping attribute names to signal names. Values can be

programmed onto buses. In the Driver class, there is a specific bus implementation.

4.4.3 DRIVER

Driver communicates with the DUT via VPI or VHPI. It fetches the data from

Sequence Generator and drive the data to DUT.

4.4.3 MONITOR

The monitor is used to detect DUT output signals. The Monitor class is a foundation

class from which you must derive your own classes for your own needs. Monitors are

useful for both the DUT's outputs for verification and the DUT's inputs for driving a

test model of the DUT that can be compared to the actual DUT. Expected transactions

are frequently generated by this model, which are then compared using the

Scoreboard class.

4.4.4 SCOREBOARD

Comparison of expected output and actual output is performed by Scoreboard.

Expected output is the output from Reference Model. The output from the DUT is the

20

actual output. By providing a monitor and an expected output queue, we can add

interfaces. To add an interface to the scoreboard, use the add_interface method.

4.5 SIMULATION

Figure 4.2: Simulation Result

21

4.6 CODE COVERAGE

Code coverage is a measure of how many lines of code are successfully verified under

a test procedure. It helps in analysing how comprehensively a software is verified. It

helps in measurement of efficiency of test implementation. It allows quantitative

measurement. It also defines the degree to which the code has been tested.

Runs Code Coverage (%)

1 2

10 22

100 22

1000 22

10000 27

100000 39

1000000 39

Table 4.2: Coverage Report

Figure 4.3: Coverage Result

22

4.7 RESULT

Figure 4.2 shows the simulation outputs. Verilator version v4.038 had been used to

run simulations. Cocotb version 1.4.0 had been used to write the testbench. Coverage

results have been generated for 1 run to 1000000 runs. The percentage of code

coverage is plotted against the number of runs in Figure 4.3. Until 100000 runs, an

increase in code coverage percentage was seen. After 100000 runs, the coverage

percentage appears to flatten. The code coverage report for many runs is detailed in

Table 4.2.

Chapter 5

CONCLUSION

The RSA algorithm has been implemented based on Montgomery Modular

Exponentiation. The design has been created using Bluespec SystemVerilog (BSV).

The code has been designed for 2048 bit. It can be further modified for higher key

size. A cocotb verification environment was designed to verify the functionality of

the design. A Python based software reference model was integrated into this cocotb

environment to compare the model and DUT results. The testbench is efficient to

provide large number of randomized data to the DUT. It ensured that a wide range of

data had been passed to DUT.

5.1 FUTURE WORK

Modular Exponentiation technique has been implemented in this design. Other

techniques can be implemented and merits can be compared. Modular exponentiation

can be explored more for higher key sizes.

24

REFERENCES

[1] Peter L. Montgomery. Modular multiplication without trial division. In

Mathematics of Computation, Vol. 44, No. 170. (Apr., 1985), pp. 519-521.,

1985.

[2] A. P. Fournaris and O. Koufopavlou. A New RSA Encryption Architecture and

Hardware Implementation based on Optimized Montgomery Multiplication. In

International Symposium on Circuits and Systems (ISCAS 2005), 23-26 May

2005, Kobe, Japan.

[3] https://readthedocs.org/projects/cocotb/

