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ABSTRACT  

 

Character Image recognition task is identification of handwritten text 

by a computer. Deep learning techniques applied to character 

recognition has shown superior results in the past decade. FPGAs are 

a good platform to implement deep learning techniques because of 

its general purpose, flexibility and ability for reconfiguration. 

 

Design and implementation of character recognition of a language 

on FPGA devices has numerous challenges to offer starting with 

obtaining good dataset, selection of algorithm, size of the network, 

computational cost and resources available in hardware device. In 

this project, the deep network is trained using a computer and the 

trained network is implanted in a low end FPGA using systolic 

architectures for character recognition. 

 

This thesis examines the design of the digit recognition task on 

MNIST dataset and character recognition on Devanagari dataset. 

The overall tasks are grouped in three   verticals – design of suitable 

training network, analysis of data quantization and design and 

implementation of a VLSI architecture to implement the task on a 

low end FPGA device. 

 

A study was done to analyze different CNN architectures and 

identify a suitable deep network architecture first. The project moves 

on to implement the above architecture in Xilinx Spartan-3e FPGA 

by applying systolic architecture for the convolutions in the deep 

network. 
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1 INTRODUCTION 

 

Deep learning techniques are the go-to method in the field of Image recognition owing to its 

capability in achieving high accuracy compared to the traditional methods. The Neural network 

automatically learns the parameter values necessary to accurately predict the correct output. 

The latest neural network architectures have given an accuracy of over 99% in the fields of 

character recognition. 

1.1 Motivation 

Due to the computation pattern of the deep learning techniques, there is a large scope for 

parallel computations which makes GPUs, ASICs and FPGAs good platforms over a general-

purpose CPU. FPGAs are especially good because of its good performance, ability for 

reconfiguration and massive parallelism. It also has the advantage of fast round development 

and finding its performance very easily. 

Even though deep learning methods have significant advantages in terms of performance, it 

has its disadvantages in terms of requirements of heavy computational resources, need for huge 

memory to store the intermediate results and coefficient terms. This in turn requires large 

hardware and high-power consumption. 

Even though the modern VLSI technologies has made possible to accommodate billions of 

components in a chip, effective utilisation of the available resources are needed to reduce the 

computation time and power consumption. This is particularly needed in implementing deep 

learning techniques in low end FPGAs where the availability of memory and hardware 

resources are less. 

Because of the re-configurability of a FPGA, custom architecture which can utilise the 

maximum available resources and same time achieving maximum speed is required based on 

the custom application.  

Systolic architecture is one of the architectures used for Google’s Tensor Processor units 

(TPUs) which is an accelerator used for neural network machine learning using Tensor Flow 

software. This architecture uses a set of interconnected general-purpose cells, each performing 

a simple task with a high throughput. The general-purpose cells used are a set of Multiply and 
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Cumulate (MAC) units with an appropriate dataflow. Such MAC units can be easily replicated 

in FPGAs and the scope of such multiple MAC units operating in parallel can be determined 

based on the FPGA resources. 

1.2 Objectives 

This project focuses on identifying a CNN architecture keeping in mind the hardware 

limitations of the low-end FPGA (Xilinx Spartan 3e XC3S500) and implementing a VLSI 

architecture for the forward prorogation computations for handwriting recognition.  

1.3 Challenges 

Identifying a proper CNN architecture is crucial as the filter sizes, in-channels, and out-

channels determine the accuracy of the trained network. Increasing these numbers generally 

tend to increase the accuracy before reaching the over fitting problem. It also increases the 

number of intermediate features extracted and might lead to a large memory requirement as 

well as the ned for bigger processing units. 

1.4 Contribution of this thesis 

CNN architecture for MNIST digit and Devanagari Characters Dataset for hardware limited 

devices. 

Data quantization strategy for CNN with fixed point data.   

VLSI architecture for character and digit recognition for low end FPGA device. 

1.5 Organization  

In the next chapter, fundamental building for machine learning algorithms and multi-layer 

perceptron model are presented. 

In chapter 4 convolutional neural network basics and their algorithms are presented with 

numerical example. 

In chapter 5 digit and character recognition architectures for MNIST dataset and Devanagari 

dataset and quantization strategy for fixed data points are presented along with experimental 

results. 

In chapter 6 VLSI architecture for Low end FPGA devices and design considerations of 

different components are presented along with experimental results. 



 

3 
 

2 LITERATURE SURVEY 

 

Deep learning techniques in the field of image recognition, natural language processing and 

speech recognition has given the best solutions in the past decade. The computer learns from 

the observational data automatically imparting a level of intelligence to the system. 

The literature provided in [1] talks about the comprehensive understanding behind the image 

recognition of handwritten digits using neural networks. It also provides information on the 

core algorithms like back propagation, gradient descent, a visual proof on how a neural network 

can estimate any function, types of non-linearity and different layers involved in the network. 

The literature in [2] compares the different non linearity such as RELU, sigmoid and tanh and 

shows how that using RELU for supervised learning of deep networks is faster. 

The literature provided in [3] talks about how the convolutional networks can be used for 

isolated character recognition. It also provides an architecture which showed an error rate of 

0.7%. It also compares the deep learning technique results with other classifiers like SVM, k-

Nearest neighbour, Principal component analysis etc. on a standard data set. This paper shows 

that better pattern recognition systems are based on automatic learning than the hand-crafted 

methods.  

The literature provided in [4] increases the understanding on why CNNs performs so well. A 

visual technique to understand the functions of intermediate layers is implemented. These 

studies were done on the ImageNet database with Deep Net architecture. It also showed how 

these intermediate activations can be used to choose better architectures and obtain better 

results. 

The literature provided in [5] provides an architecture which showed the best results on 

ImageNet database which has over 15 million labelled images in 22000 categories. The 

architecture implemented achieved the top-5 error rates of 15.3% significantly higher than the 

previous state of the art techniques. A recently new technique called dropout was implemented 

to reduce the overfitting in fully connected layers.  

The literature in [6] improves the above architecture with the help of deeper networks (16-19 

weight layers) with very small filters. All the convolutional filter was of size 3x3. It was also 

shown that this architecture generalises well to other data set with state-of-the-art accuracy. 
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The literature in [7], [8] looks into the performance of the deep networks where the weights 

and inputs are binary values. The performance of the system was only in percentages of mid 

50s for the architecture in [5]. But the operations were 58 time faster and the memory savings 

of 32 times was achieved. This can be mostly employed in very low-end hardware. 

The handwritten Devanagari character recognition was studied in [9], [10], [11]. There are 

some characters which look very similar to each other and the dataset available is not 

extensively used as in case of MNIST and ImageNet datasets. Lack of a good training data 

along with above issue makes it difficult to achieve accuracy compared to MNIST dataset. The 

maximum accuracy seen from the previous works is 98.26%. 

Efficient hardware implementations of deep learning algorithms have been addressed in 

literatures.  

There are literatures which talks about efficient Hardware accelerators with FPGA, which can 

be interphased with host device to accelerate deep learning algorithms. The literature in [12] 

put forward modified CNN architecture caffe with FPGA support which adapts the original 

GPU based architecture to FPGAs for parallel computations. It enables to achieves 50 GFLOPs 

performance boost. The literatures provided in [13], [14], [15] talks about optimization 

strategies of CNN accelerators and the levels of parallelism possible in convolution. Literature 

in [15] also discusses efficient data quantization strategies that can be performed for fixed bit 

width designs. It demonstrates the ways to reduce bit width without significant loss of accuracy. 

Literature in [16] combines flexibility of high-level synthesis and finer level optimization of 

RTL implementations to construct modularized and scalable RTL design of CNN algorithms. 

These are useful for reconfigurable CNN accelerators with FPGA devices of good resource 

limit. 

Different types dataflow pattern is also discussed in literatures. Literature in [17] and [18] 

proposes energy efficient dataflow structures by minimizing memory access. Literature in [17] 

also provides analysing architecture of energy efficiency for different dataflow models. 

Literature [19] addresses the mismatch between parallel types supported by processing device 

and parallel type CNN workload has as dominant. It proposes a flexible dataflow model which 

optimizes interconnects in the dataflow and hence the resource utilization. The significance of 

interconnects in resource utilization for large number of processing elements is also 

demonstrated in this literature. The proposed model achieves 2-10 times boost in performance 

and 2.5-10 times improvement in efficiency. 
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Different types of architectures are also explored in literatures to speed up convolution time 

and increase efficiency3. Literature in [20] discusses implementation of 2D convolution on a 

chip using systolic architectures. Literature in [21] talks about what systolic array intends to do 

and design methods of systolic architectures. It also explains how systolic architectures helps 

to balance memory and computation in compute bound tasks. 

Literature provided in [22] proposes a multiplier less architecture for CNNs. It enables the 

multiplication to be replaced with cordic as weights can be represented with trigonometric 

functions. It also talks about systolic architecture with limited number of processing elements 

along with data scheduling. For resource limited devices the architecture gives comparable 

performance. 

Implementing fixed point is much more efficient than floating point on FPGA. So, most of the 

literatures use fixed point quantization. Different quantization strategies have also been 

discussed in literatures. Literature in [23] discusses different data quantization strategies 

applied to state of art CNN architectures. Literature in [24] observes that with data quantization 

of 20 bits almost zero accuracy loss is achieved for LeNet architecture. 
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3 BASICS OF MACHINE LEARNING 

 

Any system having the capability to simulate human intelligence is said to have Artificial 

intelligence (AI). Machine learning is the form of AI that enables computers/systems to learn 

from a data rather than explicit programming. Similar to how human beings can be trained to 

learn things, computers are provided with a training data and a training network which models 

upon the training data to predict the desired output. The learned model can be deployed for the 

application. The learning can be supervised or unsupervised. In supervised learning, data are 

provided along with labels/expected output which the system has to learn and predict. E.g., 

Image classification where each image data is labelled with its corresponding class. In 

unsupervised learning only data is provided and no labels/expected output. An example is a 

clustering model which groups the customer database into different categories based on their 

common interest. Supervised models can be further classified into Regression models and 

Classification models. In regression models, output being predicted is a continuous quantity 

whereas in classification models, output being predicted is a discrete label. A model which 

predicts House rent in an area based on the data trained is a regression model while the model 

which predicts if a person is cancer patient or not is classification model. 

A classification model can be binary or multiclass depending upon the number of classes it 

needs to classify. In classification problem, training data will be provided with labels and the 

model has to find the dependency of output on input data.  

 

3.1 Hypothesis function 

 

Consider a simple binary classification problem with one-layer network. 

 

Figure 1 A single layer neuron with an activation function 
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Let  𝑥1, 𝑥2, 𝑥3,…., 𝑥𝑛 be the input fed into model, 𝑧 is the predicted output and.𝑦0 is the label 

or expected output. Since classification is binary 𝑦0  can be given as 0 and 1. Assuming 

dependency on all input values 𝑧 can be written as 

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2+ ⋅ ⋯+ 𝑤𝑛𝑥𝑛 + 𝑏 

Where 𝑤1, 𝑤2, 𝑤3,…., 𝑤𝑛 are weights each input contributing to the output and b is bias/offset 

value. Since the dependency need not be linear, A nonlinear element has to included. They are 

called activation functions. The type of activation function to be chosen depends on the 

prediction problem. In the above case, since y has to predict the value to 0 or 1, function chosen 

must have range of 0 to 1. Then the predicted value will be the probability of being in class 1. 

Sigmoid function is a non-linear function which ranges from 0 to 1 and hence can be used. 

Sigmoid(z)= 𝐴(𝑧) =
1

1+ⅇ−𝑧
 

Then y can be written as 

𝑦 = 𝐴(𝑤1𝑥1 +𝑤2𝑥2+ ⋅ ⋯+ 𝑤𝑛𝑥𝑛 + 𝑏)  

So here the problem reduces to a function optimization problem where parameters 𝑤1, 𝑤2, 

𝑤3,…., 𝑤𝑛 and b has to be optimised so as to match y to labelled data 𝑦0. In order to solve this 

optimization problem, A Loss function/cost function 𝐶(𝑦, 𝑦0) has to be associated. The Loss 

function which is a function of y and 𝑦0 has very high value when difference between y and 𝑦0 

increases and zero/minimum when y = 𝑦0.It basically reflects how much close each prediction 

value is to the expected output. Then the problem can be solved by optimizing the cost function 

with all training data and finding the optimized weights and bias values. 

One such loss function is Mean Squared error (MSE) loss or L2 loss.it is defined as 

𝐶(𝑦, 𝑦0) =
1

2
(𝑦 − 𝑦0)

2 

3.2 Gradient Descent Algorithm 

We have seen that if we can associate a loss function to a model, then the goal reduces to an 

optimization problem where loss function has to be minimized. One of the commonly followed 

approach for optimization is gradient descent approach. Convergence process of gradient 

descent algorithm and impact of hyperparameters in convergence are discussed below. These 

understanding can help to analysis the loss function while training the network model and tune 

the hyperparameters effectively.  
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Consider a function 𝑦 = 𝑓(𝑥) as shown below. 

 

Figure 2 A sample 2nd order function 

In order to find the minimum value for 𝑥,  

𝑥𝑖+1 = 𝑥𝑖 − 𝛼𝑓
′(𝑥𝑖) is iteratively computed. 

If 𝑥𝑖 > 𝑥𝑚𝑖𝑛 , then 𝑓′(𝑥𝑖)  is positive and x will decrease. 

 

Figure 3 Initial point with xi>xmin (Slope marked at xi with straight line) 

If 𝑥𝑖 < 𝑥𝑚𝑖𝑛  , then 𝑓′(𝑥𝑖)  is negative and x will increase. 

 

Figure 4 Initial point with xi<xmin. (Slope marked at xi with straight line) 
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 𝛼 is a hyperparameter which is decisive while optimizing. If 𝛼 is very large then Algorithm 

won’t converge to minimum value. If 𝛼 is too small it will take huge time to converge. Change 

in convergence pattern with increase in 𝛼 is represented graphically below. 

 

Figure 5 change in convergence pattern with change in alpha 

Since the cost function has all the weights and biases as parameters, it is a function of several 

variables. In such functions, minimum value can be obtained if moved along the direction of 

the gradient ∇ (directional derivative), because function decreases at the maximum rate along 

the gradient. So, each weight is updated with corresponding partial derivate multiplied by step 

size 𝛼.  

In the above example, if there are m training data and 𝑦[𝑘]  and 𝑦0
[𝑘]

 represents 𝑘𝑡ℎ sample 

predicted output and expected output respectively, then cost function 

𝐶 =
1

2𝑚
∑(𝑦[𝑘] − 𝑦0

[𝑘]
)2

𝑚

𝑘=1

 

Gradient component values, 

𝜕𝐶

𝜕𝑤𝑖
=

1

2𝑚
∑ (

𝜕𝐶

𝜕𝑦[𝑘]
⋅
𝜕𝑦[𝑘]

𝜕𝑧[𝑘]
.
𝜕𝑧[𝑘]

𝜕𝑤𝑖

𝑚
𝑘=1 )                    

𝜕𝐶

𝜕𝑦[𝑘]
= 2(𝑦[𝑘] − 𝑦0

[𝑘]
)     and     

𝜕𝑧[𝑘]

𝜕𝑤𝑖
= 𝑥𝑖

[𝑘]
 

Therefore    
𝜕𝐶

𝜕𝑤𝑖
=

1

𝑚
∑ ((𝑦[𝑘] − 𝑦0

[𝑘]
) . 𝐴′(𝑧[𝑘]). 𝑥𝑖

[𝑘]
)𝑚

𝑘=1  
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𝜕𝐶

𝜕𝑏
=

1

𝑚
∑ (

𝜕𝐶

𝜕𝑦[𝑘]
⋅
𝜕𝑦[𝑘]

𝜕𝑧[𝑘]
.
𝜕𝑧[𝑘]

𝜕𝑏
) 𝑚

𝑘=1                       
𝜕𝑧[𝑘]

𝜕𝑏
= 1 

Therefore    
𝜕𝐶

𝜕𝑏
=

1

𝑚
∑ ((𝑦[𝑘] − 𝑦0

[𝑘]
) . 𝐴′(𝑧[𝑘]))𝑚

𝑘=1  

Then weights and biases can be updated as per equation below. 

𝑤𝑖
′ = 𝑤𝑖 − 𝛼

𝜕𝐶

𝜕𝑤𝑖
 

𝑏𝑖
′ = 𝑏𝑖 − 𝛼

𝜕𝐶

𝜕𝑏𝑖
 

3.3 Activation functions 

We have seen the optimization algorithm used in machine learning and its gradient update 

equations. Activation functions are another important aspect which is used in machine learning 

to bring non linearity in the network. Different types of activations used and their impact in 

introducing non linearity is discussed below. Fundamental Differences between them are also 

examined to get better idea of where these activations can be used. 

3.3.1 Sigmoid  

Sigmoid function is defined by the equation 

𝑓(𝑥) =
1

1+ⅇ−𝑥
                    𝑓′(𝑥) =

ⅇ−𝑥

(1+ⅇ−𝑥)2
 

 

Figure 6 Sigmoid function and its derivative 

It is a smooth function which is differentiable at every point. The function has a nice saturation 

at 1, limiting upper bound of any function. It is used mainly in output layer of binary 

classification models where output predicts the value between 0 and 1.  

3.3.2 Tanh 

Hyperbolic function Tanh is defined as 
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𝑓(𝑥) =
ⅇ𝑥−ⅇ−𝑥

ⅇ𝑥+ⅇ−𝑥
       𝑓′(𝑥) =  

4

(ⅇ𝑥+ⅇ−𝑥 )2
  

It is easy to observe that tanh is a shifted form of sigmoid. 

tanh(x)= 2 sigmoid(2x)-1 

 

Figure 7 tanh function and its derivative 

Since tanh is zero centered function, it is preferred over sigmoid in hidden layers as activation. 

Both sigmoid and tanh are computationally expensive to evaluate. Since the gradient of these 

functions at either end are close to zero, it sometimes causes ‘vanishing gradient’ problem. In 

the backpropagation algorithm, partial derivatives of the cost function backpropagate layer by 

layer. Zero value of the gradients of the activation functions make the derivative of the cost 

function to become zero while using chain rule. In that case network refuses to learn further. 

This is vanishing gradient problem. 

3.3.3 RELU 

Rectified Linear unit (RELU) is defined as 

𝑓(𝑥) = max(0, 𝑥) = {
  0       𝑖𝑓 𝑥 ≤ 0
  𝑥       𝑖𝑓 𝑥 > 0

                 𝑓′(𝑥) =  {
0         𝑖𝑓 𝑥 ≤ 0 
1         𝑖𝑓 𝑥 > 0

 

 

Figure 8 RELU function and its derivative 
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RELU helps to get rid of vanishing gradient problem. Also, it is computationally less expensive 

function. Hence it is commonly used activation in hidden layers.  

3.3.4 SoftMax 

 SoftMax is used in multiclass classification problems where final output should be 

probabilities of each class which adds up to 1. If 𝑥1, 𝑥2, 𝑥3,…., 𝑥𝑛 are values at each node of 

output layer before activation, then SoftMax function is defined as 

𝑓(𝑥𝑖) =
ⅇ𝑥𝑖

∑ ⅇ
𝑥𝑗

𝑗
                 

𝜕𝑓

𝜕𝑥𝑗
= 

{
 

 −
ⅇ𝑥𝑖  . ⅇ

𝑥𝑗

(∑ ⅇ
𝑥𝑗)𝑗

2               𝑖𝑓 𝑗 ≠ 𝑖

 
ⅇ𝑥𝑖

∑ ⅇ
𝑥𝑗

𝑗
− (

ⅇ𝑥𝑖

∑ ⅇ
𝑥𝑗

𝑗
)
2

   𝑖𝑓 𝑗 = 𝑖

                                                      

3.4 Improved Optimization algorithms 

Apart from Batch gradient descent method discussed above some other modified algorithms 

are also used to arrive at optimized weights and bias values of network. the gradient descent 

equation discussed before uses all the training data points to evaluate cost function and hence 

gradient terms for weight update in each iteration. Due to high computational cost in this 

method, it is hardly used for big training data. Modifications to batch gradient descent 

algorithms and their update equations are discussed below. The improvement in convergence 

speed with these modifications and intuitive reasoning for the same is examined. Basic 

understanding of how each algorithms work can be useful in choosing the algorithm for 

optimization. 

3.4.1 SGD 

In stochastic gradient descent (SGD) method only one randomly sampled training data is used 

in each iteration to evaluate gradient and to update weights. Hence computational cost is 

reduced significantly with this method.it may not follow in the exact direction of minima and 

hence can take a longer time to converge. But increased no of iterations required is well 

compensated by the computational cost due to large no of samples. 

For kth randomly sampled data  

          𝐶 = 
1

2
 (𝑦[𝑘] − 𝑦0

[𝑘]
)2 

 Hence Weight and bias update equation will be 

𝑤𝑖
′ = 𝑤𝑖 − 𝛼 (𝑦

[𝑘] − 𝑦0
[𝑘]) . 𝐴′(𝑧[𝑘]). 𝑥𝑖

[𝑘]
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𝑏𝑖
′ = 𝑏𝑖 − 𝛼 (𝑦

[𝑘] − 𝑦0
[𝑘]) . 𝐴′(𝑧[𝑘]) 

However Gradient direction oscillates due to the additional noise introduced by random 

selection of data in SGD. 

3.4.2 Minibatch Gradient descent 

It is a compromised method of optimization which reduces the high computational cost of 

Batch Gradient descent and oscillating nature of SGD. Here a minibatch of training data is used 

in each iteration for gradient evaluation and weight update. 

𝐶 =
1

2𝑚
∑(𝑦[𝑘] − 𝑦0

[𝑘]
)2

𝑖+𝑚

𝑘=𝑖

 

Where C is the cost function for ith minibatch and ‘m’ is the minibatch size. 

3.4.3 Momentum 

Oscillating nature of SGD slows down learning. Momentum method helps to decrease runtime 

of convergence. Momentum term, which is exponentially weighted moving average of previous 

gradients is added to current gradient and parameters are moved along the resultant direction. 

𝑚(𝑡) = 𝛽.𝑚(𝑡 − 1) + (1 − 𝛽). 𝑔(𝑡)  

𝑤(𝑡 + 1) = 𝑤(𝑡) − 𝛼.𝑚(𝑡) 

Where 𝛽 is a hyperparameter (set as 0.9 usually), 𝑚(𝑡 − 1) is momentum of previous iteration, 

𝑔(𝑡) is current gradient, 𝑚(𝑡) is momentum in current iteration and 𝑤(𝑡) is weight in current 

iteration. 

 

Let 𝛽 = 0.9  and  𝑚(0) = 0  

𝑚(1) = (0.1)𝑔(1) 

𝑚(2) = (0.9)(0.1)𝑔(1) + (0.1)𝑔(2) 
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𝑚(3) = (0.9)2(0.1)𝑔(1) + (0.9)(0.1)𝑔(2) + (0.1)𝑔(3) 

𝑚(4) = (0.9)3(0.1)𝑔(1) + (0.9)2(0.1)𝑔(2) + (0.9)(0.1)𝑔(3) + (0.1)𝑔(4)   

and so on. In general, 

𝑚(𝑡) = (1 − 𝛽)𝑔(𝑡) + (1 − 𝛽).∑𝛽𝑡−𝑘. 𝑔(𝑘)

𝑡−1

𝑘=1

 

           = (1 − 𝛽)𝑔(𝑡) + 𝛽.
∑ 𝛽𝑡−𝑘. 𝑔(𝑘)𝑡−1
𝑘=1

∑ 𝛽𝑡−𝑘∞
𝑘=1

 

Comparing with earlier equation, 

𝑚(𝑡 − 1) =
∑ 𝛽𝑡−𝑘. 𝑔(𝑘)𝑡−1
𝑘=1

∑ 𝛽𝑡−𝑘∞
𝑘=1

 

It is evident that more weightage is given to most recent gradient terms than older terms in the 

momentum calculation.  

 

Figure 9 (i) SGD without momentum (ii) with momentum 

momentum drives to direct along the actual minima and reduce oscillations in SGD as depicted 

above. 

3.4.4 RMSprop 

It uses rms value of gradient terms over the iterations and learning rate is adapted according to 

that for each parameter. Using single global learning rate for all weights makes convergence 

slower along the weights whose gradient is smaller compared to other weights. So, weights 

with smaller average gradient have to be updated with larger learning rate.   

𝑣(𝑡) = 𝛽. 𝑣(𝑡 − 1) + (1 − 𝛽). 𝑔2(𝑡)  

𝑤(𝑡 + 1) = 𝑤(𝑡) −
𝛼

√𝑣(𝑡) + 𝜀
. 𝑔(𝑡) 



 

15 
 

Where 𝑣(𝑡) is the exponentially weighted average of squares of gradient terms, 𝜀 is a very 

small constant added to avoid division by zero (typically given 𝜀 = 10−8) 

Global learning rate 𝛼 is divided by rms value of gradient terms to get the actual learning rate 

for each parameter.  

3.4.5 Adam (Adaptive Momentum) 

It uses Momentum and rms prop together in the algorithm. Adaptive learning rate along with 

momentum terms are used while optimizing with bias correction terms also added. 

𝑚(𝑡) = 𝛽1.𝑚(𝑡 − 1) + (1 − 𝛽1). 𝑔(𝑡)  

𝑣(𝑡) = 𝛽2. 𝑣(𝑡 − 1) + (1 − 𝛽2). 𝑔
2(𝑡) 

�̂�(𝑡) =
𝑚(𝑡)

1 − 𝛽1
𝑡 

𝑣(𝑡) =
𝑣(𝑡)

1 − 𝛽2
𝑡 

Where 𝛽1, 𝛽2 are hyperparameters and �̂�(𝑡), 𝑣(𝑡) are bias corrected terms. 

𝑤(𝑡 + 1) = 𝑤(𝑡) −
𝛼

√𝑣(𝑡) + 𝜀
. �̂�(𝑡) 

Bias correction is added in Adam because, momentum calculated (when initialized with zero 

momentum) uses ∑ 𝛽𝑡−𝑘∞
𝑘=1  as sum of weights to find exponentially weighted average. To 

correct that bias, average is taken with ∑ 𝛽𝑡−𝑘𝑡
𝑘=1  as sum of weights.  

∑ 𝛽𝑡−𝑘∞
𝑘=1

∑ 𝛽𝑡−𝑘𝑡
𝑘=1

=
1

1−𝛽1
𝑡. 

Hence it is divided by term 1 − 𝛽1
𝑡.  

3.5 Deep learning network 

Different optimization algorithms and Activation functions were discussed in preceding 

sections. In the following section we will see how cascading of multiple layers to form deep 

learning networks are used to get good modelling on the data. The working of forward and 

backward propagation equations of optimization algorithms with multiple layers are also 

examined.  
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3.5.1 Traditional approaches vs deep learning 

In traditional approaches, handcrafted feature extraction techniques are used to extract features 

from the input data and those features are given as inputs to trainable classifiers to get output. 

 

Figure 10 Traditional approach for classifications 

In deep learning, multiple layers of abstractions are present in network itself and input data is 

given directly without any manual feature extractions. A set of nodes called neurons which are 

connected together to form an artificial neural network (ANN) which has biological inspiration 

from human neural system is used in deep learning. Cascade of nonlinear functions gives ANN 

power of universal function approximator, which enable them to realize any arbitrary mapping. 

 

Figure 11 multi-layer perceptron (MLP) for a multi class classification 

3.5.2 Forward Propagation Equations 

Forward propagation equations are those which are involved in final output value and loss 

evaluation. It propagates from input layer to output layer. During inference phase, only these 

equations are used since optimization is not required. Forward propagation equations in multi-

layer network in described below. 
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Figure 12 Forward propagation for MLP 

For each layer ‘l’, 

𝑧1
[𝑙]
= 𝑤11

[𝑙]
𝑥1
[𝑙]
+ 𝑤12

[𝑙]𝑥2
[𝑙]
+⋅ ⋯+ 𝑤1𝑛

[𝑙]𝑥𝑛
[𝑙]
+ 𝑏1

[𝑙]
 

𝑧2
[𝑙]
= 𝑤21

[𝑙]
𝑥1
[𝑙]
+ 𝑤22

[𝑙]𝑥2
[𝑙]
+⋅ ⋯+ 𝑤2𝑛

[𝑙]𝑥𝑛
[𝑙]
+ 𝑏2

[𝑙]
 

𝑧3
[𝑙]
= 𝑤31

[𝑙]𝑥1
[𝑙]
+ 𝑤32

[𝑙]𝑥2
[𝑙]
+⋅ ⋯+ 𝑤3𝑛

[𝑙]𝑥𝑛
[𝑙]
+ 𝑏3

[𝑙]
           and so on. 

In matrix form, it can be written as 

(

 
 
 
 
 

𝑧1
[𝑙]

𝑧2
[𝑙]

𝑧3
[𝑙]

⋮
⋮

𝑧𝑚
[𝑙]
)

 
 
 
 
 

=

(

 
 
 
 

𝑤11
[𝑙] 𝑤12

[𝑙] 𝑤13
[𝑙] ⋯ ⋯ 𝑤1𝑛

[𝑙]

𝑤21
[𝑙] 𝑤22

[𝑙] 𝑤23
[𝑙] ⋯ ⋯ 𝑤2𝑛

[𝑙]

𝑤31
[𝑙] 𝑤32

[𝑙] 𝑤33
[𝑙] … … 𝑤3𝑛

[𝑙]

⋮ ⋮ ⋮ … … ⋮
⋮ ⋮ ⋮ … … ⋮

𝑤𝑚1
[𝑙] 𝑤𝑚2

[𝑙] 𝑤𝑚3
[𝑙] … … 𝑤𝑚𝑛

[𝑙])

 
 
 
 

×

(

 
 
 
 

𝑥1
[𝑙]

𝑥2
[𝑙]

𝑥3
[𝑙]

⋮
⋮
𝑥𝑛
[𝑙])

 
 
 
 

+

(

 
 
 
 

𝑏1
[𝑙]

𝑏2
[𝑙]

𝑏3
[𝑙]

⋮
⋮

𝑏𝑛
[𝑙])

 
 
 
 

 

𝑍[𝑙] = 𝑊[𝑙]𝑋[𝑙] + 𝐵[𝑙] 

𝑋[𝑙+1] = 𝐴(𝑍[𝑙]) 

3.5.3 Backpropagation Equations 

Backward propagation equations are involved in gradient computations of optimization. It 

propagates from output layer to input layer since succeeding layer gradients are required to 

compute present gradient. These equations are used during training phase to optimize the loss 

function as discussed before. The gradient update equations in each layer for different 
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parameters are examined in below section. Understanding of these equations helps while 

designing training network. 

 

Figure 13 Backpropagation for a single neuron 

For each layer ′𝑙′, 

𝜕𝐶

𝜕𝑧1
[𝑙]
=

𝜕𝐶

𝜕𝑥1
[𝑙+1]

⋅
𝜕𝑥1

[𝑙+1]

𝜕𝑧1
[𝑙]

=
𝜕𝐶

𝜕𝑥1
[𝑙+1]

⋅ 𝐴′(𝑧1
[𝑙]) 

𝜕𝐶

𝜕𝑧2
[𝑙]
=

𝜕𝐶

𝜕𝑥2
[𝑙+1]

⋅
𝜕𝑥2

[𝑙+1]

𝜕𝑧2
[𝑙]

=
𝜕𝐶

𝜕𝑥2
[𝑙+1]

⋅ 𝐴′(𝑧2
[𝑙]) 

This can be written as matrix equation as follows. 

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑧1
[𝑙]

𝜕𝐶

𝜕𝑧2
[𝑙]

⋮
𝜕𝐶

𝜕𝑧𝑚
[𝑙]
)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑥1
[𝑙+1]

𝜕𝐶

𝜕𝑥2
[𝑙+1]

⋮
𝜕𝐶

𝜕𝑥𝑚
[𝑙+1]

)

 
 
 
 
 
 

⊙

(

 
 
 
 

𝐴′(𝑧1
[𝑙])

𝐴′(𝑧2
[𝑙])

⋮

𝐴′(𝑧𝑚
[𝑙]
))

 
 
 
 

 

(
𝜕𝐶

𝜕𝑍[𝑙]
) = (

𝜕𝐶

𝜕𝑋[𝑙+1]
)⊙ 𝐴′(𝑍[𝑙]) 

Where ⊙  operation is the elementwise product of two matrices. 

3.5.4 Weight update 

Using chain rule 

𝜕𝐶

𝜕𝑤11
[𝑙]
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅
𝜕𝑧1
[𝑙]

𝜕𝑤11
[𝑙]
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅ 𝑥1 

Similarly, 
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𝜕𝐶

𝜕𝑤12
[𝑙]
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅
𝜕𝑧1
[𝑙]

𝜕𝑤12
[𝑙]
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅ 𝑥2 

𝜕𝐶

𝜕𝑤21
[𝑙]
=
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅
𝜕𝑧2
[𝑙]

𝜕𝑤21
[𝑙]
=
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅ 𝑥1 

𝜕𝐶

𝜕𝑤22
[𝑙]
=
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅
𝜕𝑧2
[𝑙]

𝜕𝑤22
[𝑙]
=
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅ 𝑥2 

In matrix form it can be expressed as, 

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑤11
[𝑙]

𝜕𝐶

𝜕𝑤12
[𝑙]

⋯
𝜕𝐶

𝜕𝑤1𝑛
[𝑙]

𝜕𝐶

𝜕𝑤21
[𝑙]

𝜕𝐶

𝜕𝑤22
[𝑙]

…
𝜕𝐶

𝜕𝑤2𝑛
[𝑙]

⋮ ⋮ … ⋮
𝜕𝐶

𝜕𝑤𝑚1
[𝑙]

𝜕𝐶

𝜕𝑤𝑚2
[𝑙]

…
𝜕𝐶

𝜕𝑤𝑚𝑛
[𝑙]
)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑧1
[𝑙]

𝜕𝐶

𝜕𝑧2
[𝑙]

⋮
𝜕𝐶

𝜕𝑧𝑚
[𝑙]
)

 
 
 
 
 
 

× (𝑥1 𝑥2 … 𝑥𝑛) 

(
𝜕𝐶

𝜕𝑤[𝑙]
) = (

𝜕𝐶

𝜕𝑧[𝑙]
) (𝑋[𝑙])

𝑇
 

Where 𝑋𝑇 is transport of 𝑋. 

3.5.5 Bias update 

𝜕𝐶

𝜕𝑏1
[𝑙]
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅
𝜕𝑧1
[𝑙]

𝜕𝑏1
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅ 1 =

𝜕𝐶

𝜕𝑧1
[𝑙]

 

Similarly, 

𝜕𝐶

𝜕𝑏2
[𝑙]
=
𝜕𝐶

𝜕𝑧2
[𝑙]

 

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑏1
[𝑙]

𝜕𝐶

𝜕𝑏2
[𝑙]

⋮
𝜕𝐶

𝜕𝑏𝑚
[𝑙]
)

 
 
 
 
 
 

=

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑧1
[𝑙]

𝜕𝐶

𝜕𝑧2
[𝑙]

⋮
𝜕𝐶

𝜕𝑧𝑚
[𝑙]
)

 
 
 
 
 
 

 

i.e. 
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(
𝜕𝐶

𝜕𝑏[𝑙]
) = (

𝜕𝐶

𝜕𝑧[𝑙]
) 

3.5.6 Previous layer update 

𝜕𝐶

𝜕𝑥1
[𝑙]
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅
𝜕𝑧1

[𝑙]

𝜕𝑥1
[𝑙]
+
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅
𝜕𝑧2

[𝑙]

𝜕𝑥1
[𝑙]
+ ………+

𝜕𝐶

𝜕𝑧𝑚
[𝑙]
⋅
𝜕𝑧𝑚

[𝑙]

𝜕𝑥1
[𝑙]

 

          =
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅ 𝑤11

[𝑙] +
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅ 𝑤21

[𝑙] +⋯……+
𝜕𝐶

𝜕𝑧𝑚
[𝑙]
⋅ 𝑤𝑚1

[𝑙]
 

Similarly, 

𝜕𝐶

𝜕𝑥2
[𝑙]
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅
𝜕𝑧1

[𝑙]

𝜕𝑥2
[𝑙]
+
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅
𝜕𝑧2

[𝑙]

𝜕𝑥2
[𝑙]
+ ………+

𝜕𝐶

𝜕𝑧𝑚
[𝑙]
⋅
𝜕𝑧𝑚

[𝑙]

𝜕𝑥2
[𝑙]

 

          =
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅ 𝑤12

[𝑙] +
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅ 𝑤22

[𝑙] +⋯……+
𝜕𝐶

𝜕𝑧𝑚
[𝑙]
⋅ 𝑤𝑚2

[𝑙]
 

𝜕𝐶

𝜕𝑥𝑛
[𝑙]
=
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅
𝜕𝑧1

[𝑙]

𝜕𝑥𝑛
[𝑙]
+
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅
𝜕𝑧2

[𝑙]

𝜕𝑥𝑛
[𝑙]
+ ………+

𝜕𝐶

𝜕𝑧𝑚
[𝑙]
⋅
𝜕𝑧𝑚

[𝑙]

𝜕𝑥𝑛
[𝑙]

 

          =
𝜕𝐶

𝜕𝑧1
[𝑙]
⋅ 𝑤1𝑛

[𝑙] +
𝜕𝐶

𝜕𝑧2
[𝑙]
⋅ 𝑤2𝑛

[𝑙] +⋯……+
𝜕𝐶

𝜕𝑧𝑚
[𝑙]
⋅ 𝑤𝑚𝑛

[𝑙]
 

In matrix form it can be expressed as, 

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑥1
[𝑙]

𝜕𝐶

𝜕𝑥2
[𝑙]

⋮
𝜕𝐶

𝜕𝑥𝑛
[𝑙]
)

 
 
 
 
 
 

=

(

 
 

𝑤11
[𝑙] 𝑤12

[𝑙] ⋯ ⋯ 𝑤1𝑛
[𝑙]

𝑤21
[𝑙] 𝑤22

[𝑙] ⋯ ⋯ 𝑤2𝑛
[𝑙]

⋮ ⋮ … … ⋮
⋮ ⋮ … … ⋮

𝑤𝑚1
[𝑙] 𝑤𝑚2

[𝑙] … … 𝑤𝑚𝑛
[𝑙])

 
 

𝑇

×

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑧1
[𝑙]

𝜕𝐶

𝜕𝑧2
[𝑙]

⋮
𝜕𝐶

𝜕𝑧𝑚
[𝑙]
)

 
 
 
 
 
 

 

(
𝜕𝐶

𝜕𝑥[𝑙]
) = (𝑊[𝑙])

𝑇
× ((

𝜕𝐶

𝜕𝑧[𝑙]
)) 

These backpropagation equations in matrix form can be used in the algorithms  

 

 

during training the network. 
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3.6 Summary 

In this chapter, the fundamental concepts of machine learning were discussed. We have seen 

how computers can be made to learn from data to perform tasks where explicit programming 

is very difficult. Gradient descent optimizing algorithm and how it works in machine learning 

were discussed. After that commonly used activation functions in machine learning and their 

differences were mentioned. We have seen that improved algorithms on gradient descent can 

be helpful to boost convergence speed and accuracy. After that a multi-layer perceptron model 

and their forward and backward propagation equations for update of parameters were 

discussed. These equations are used to develop training and inference algorithms of the 

network. Basic theoretical understanding of the algorithms and approaches helps to analyse the 

network behaviour better and aids to improvise the performance. 
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4 OVERVIEW OF CONVOLUTIONAL NEURAL 

NETWORKS 

The convolutional operation was used to extract out vital information out of a signal. It was 

significantly used as filters even before the machine learning algorithms came into picture. In 

this chapter, the basics of convolution applied to image filtering as well as incorporating 

convolutional layers into the deep network for the feature extraction will be discussed. 

4.1 Convolution operation 

It is a mathematical operation between two functions. It is used in signal processing to extract 

some vital information from the inputs. 

Some basic conventions used in this literature are 

∗ : Convolution operation ignoring the data points at the edges. 

⊛: Complete convolution between two inputs. 

⊗̇: Complete cross-correlation between two inputs. 

⊗: Correlation ignoring the edges. 

⊙: Element wise multiplication between two matrices. (Hadamard product)  

Computer sees image as pixels. Pixel is the smallest element of a picture, with each pixel having 

an intensity value with a colour. Simplest example is that of a Gray scale image. Pixels hold 

information on different intensities of Gray with black as the weakest intensity and white as 

the strongest. 

A simple convention can be as follows. 

Pixel value Image 

≥ 1  

≤ −1  

0  
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The output of 2D convolution (Complete convolution) between two inputs is given as 

𝑦[𝑚, 𝑛] = 𝑥(𝑚, 𝑛) ⊛ ℎ(𝑚, 𝑛) = ∑ ∑ 𝑥(𝑖, 𝑗). ℎ(𝑚 − 𝑖, 𝑛 − 𝑗)

∞

𝑖=−∞

∞

𝑗=−∞

 

A similar function as that of convolution is cross-correlation operation which is used to find 

the similarity between two inputs. 

𝑦[𝑚, 𝑛] = 𝑥(𝑚, 𝑛) ⊗ ℎ(𝑚, 𝑛) = ∑ ∑ 𝑥(𝑖, 𝑗). ℎ(𝑚 + 𝑖, 𝑛 + 𝑗)

∞

𝑖=−∞

∞

𝑗=−∞

  

Defining convolution and cross-correlation using above formulas may not be a good idea, 

because this formula assumes value of 𝑥 and ℎ outside its dimension. As ′0′ value for a pixel 

intensity could mean some colour for the pixel according to the convention used and it might 

lead to some improper values at the edges. So, it is better to calculate output values at those 

places only where there is complete overlap between the filter and the input. (Referred to as 

‘convolution’ and ‘cross-correlation’). 

 

4.1.1 Edge Detection 

Consider a simple (6, 6) image I and an edge detecting filter as shown. 

                                            I:                                              F: 

                                                  

 

 

 

 

 

 

We can clearly see that there is an edge in the middle of the image. The values of the filter are 

chosen by hand specifically to determine an edge in the input. 

 

1 1 1 0 0 0 

1 1 1 0 0 0 

1 1 1 0 0 0 

1 1 1 0 0 0 

1 1 1 0 0 0 

1 1 1 0 0 0 

1 0 -1 

1 0 -1 

1 0 -1 

Figure 14  A sample 6x6 image and its visual representation 
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Cross-correlating these two inputs,  

𝑌 = 𝐼 ⊗ 𝐹 

𝑦11 = 𝑖11𝑓11 + 𝑖12𝑓12 + 𝑖13𝑓13 + 𝑖21𝑓21 + 𝑖22𝑓22 + 𝑖23𝑓23 

           +𝑖31𝑓31 + 𝑖32𝑓32 + 𝑖33𝑓33 

       = 1 + 0 + (−1) + 1 + 0 + (−1) + 1 + 0 + (−1) 

       = 0 

 

Similarly, 

𝑦12 = 𝑖12𝑓11 + 𝑖13𝑓12 + 𝑖14𝑓13 + 𝑖22𝑓21 + 𝑖23𝑓22 

            + 𝑖24𝑓23 + 𝑖32𝑓31 + 𝑖33𝑓32 + 𝑖34𝑓33  

        = 1 + 0 + 0 + 1 + 0 + 0 + 1 + 0 + 0                       

        = 3 

 

At every point y can be evaluated and it turns out to 

0 3 3 0 

0 3 3 0 

0 3 3 0 

0 3 3 0 

 

The white line in the middle indicates the edge in the original image. The grey shades on both 

sides of the white lines indicates that colours of similar intensity are present on the sides of the 

image. This result becomes more obvious as the size of the input image becomes bigger. 

E.g.: 

Let 𝐼𝑖𝑗 be a (12, 12) image with 

 𝐼𝑖𝑗 = {
0   𝑖𝑓 𝑖 ≤ 6
1   𝑖𝑓 𝑖 > 6

  

 

1 1 1 0 1−1 

1 1 1 0 1−1 

1 1 1 0 1−1 

1 1 1 0 0−1 

1 1 1 0 0−1 

1 1 1 0 0−1 
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This image is correlated with the same filter. 

 

                               

 

 

 

 

 

 

 

 

The thin line in the middle indicates the presence of edge at the centre of the image. The values 

in the filter above were handcrafted. For complex applications, handcrafting filters for 

extracting complex features is too difficult or next to impossible. So is the question, can 

computer learn these values somehow on its own? 

4.2 Incorporating Convolutional layers in deep network 

The computer is given training examples from which it starts to find these filter values. The 

filter values are initialized randomly and values of these filters are changed iteratively from the 

training examples in a well-informed manner. The two parameters associated with a layer in 

CNN are weights and biases. 

MSE (Mean square error) Loss/Cost function can be used as cost function. 

𝐶 =
1

2
∑∑(𝑦𝑖𝑗

𝑜𝑏𝑠ⅇ𝑟𝑣ⅇ𝑑 − 𝑦𝑖𝑗
ⅇ𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑)

2

𝑖𝑗

 

where, 𝑦𝑖𝑗
ⅇ𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑

 is the actual result which should have come as output and  𝑦𝑖𝑗
𝑜𝑏𝑠ⅇ𝑟𝑣ⅇ𝑑 is the 

output from CNN. Ideally C = 0. But it happens only when 𝑦𝑖𝑗
𝑜𝑏𝑠ⅇ𝑟𝑣ⅇ𝑑 = 𝑦𝑖𝑗

ⅇ𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑
 .The next 

best thing is to adjust 𝑓and 𝑏  such that 𝐶 is minimum. 

So 𝑓and 𝑏  are changed iteratively as per gradient descent method. 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

0 0 0 0 -6 -6 0 0 0 0 

1 0 -1 

1 0 -1 

1 0 -1 
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𝑓′ = 𝑓 − 𝛼
𝜕𝐶

𝜕𝑓
 

                                                                     𝑏′ = 𝑏 − 𝛼
𝜕𝐶

𝜕𝑏
  

The gradient values are backpropagated through each layer which are used to update the values 

of 𝑓and 𝑏. 

Let’s see that with an example. Let’s define a two-layer CNN as below. 

 

Figure 15 A sample 2- layer CNN with activation functions 

Let the filters and biases are initialized as follows. 

𝑓 = (
1 2
3 4

)                             𝑓′ = (
−1 2
3 −4

)            

𝑏1 = 5                                      𝑏2 = −10 

Let the first training sample be as follows. 

𝑥𝑖𝑛 = (

1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1

)                       𝑦ⅇ𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑 = (
10 −10
10 −10

) 

4.2.1 Forward Propagation 

As the name suggests, the data is fed into CNN and moves forward from left to right across 

layers. Even though layer name is “convolutional layer”, the exact operation performed is the 

cross-correlation operation between input and filter. 

4.2.2 Activation functions 

The output from convolutional layer is passed through an activation function in CNN. For 

example, 𝑥′ in the above neural network was passed into a RELU activation before it was 

passed into next convolutional layer. 

𝑥′ = 𝑥 ⊗ 𝑓 + 𝑏1 
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𝑥′ = (

1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1

)⊗ (
1 2
3 4

) + (
5 5 5
5 5 5
5 5 5

)  

     = (
10 −2 −10
10 −2 −10
10 −2 −10

) + (
5 5 5
5 5 5
5 5 5

) = (
15 3 −5
15 3 −5
15 3 −5

) 

 𝑦 = 𝑅𝑒𝑙𝑢(𝑥′) = (
15 3 0
15 3 0
15 3 0

) 

𝑥′′ = 𝑦⊗ 𝑓′ + 𝑏2 

𝑥′′ = (
15 3 0
15 3 0
15 3 0

)⊗ (
−1 2
3 −4

) + (
−10 −10
−10 −10

) = (
14 −4
14 −4

) 

 

𝑦′ = 𝑅𝑒𝑙𝑢(𝑥′) = (
14 0
14 0

) 

4.2.3 Backpropagation 

Computing 
𝜕𝐶

𝜕𝑓
  and  

𝜕𝐶

𝜕𝑏
 terms required in update equations directly is difficult. So, gradients at 

the output are computed first and backpropagate using chain rule to compute these terms. 

To find 
𝜕𝐶

𝜕𝑓
  and  

𝜕𝐶

𝜕𝑏
 terms, let’s find gradient at 𝑦′ is and backpropagate layer by layer. 

 

Figure 16 Back propagating cost functions 

𝐶 =
1

2
∑∑(𝑦𝑖𝑗

′ − 𝑦𝑖𝑗
ⅇ𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑)

2

𝑖𝑗

 

𝜕𝐶

𝜕𝑦𝑖𝑗
′ = (𝑦𝑖𝑗

′ − 𝑦𝑖𝑗
ⅇ𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑) 

In matrix form, 
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(

 
 

𝜕𝐶

𝜕𝑦𝑖𝑗
′

𝜕𝐶

𝜕𝑦𝑖𝑗
′

𝜕𝐶

𝜕𝑦𝑖𝑗
′

𝜕𝐶

𝜕𝑦𝑖𝑗
′
)

 
 
= 𝑦′ − 𝑦ⅇ𝑥𝑝ⅇ𝑐𝑡ⅇ𝑑 = (

14 0
14 0

) − (
10 −10
10 −10

) = (
4 10
4 10

) 

We know that 𝑦𝑖𝑗
′ = 𝑅𝑒𝑙𝑢(𝑥′′𝑖𝑗) 

Therefore 
𝜕𝑦𝑖𝑗

′

𝜕𝑥′′𝑖𝑗
= 𝑅𝑒𝑙𝑢′(𝑥′′𝑖𝑗) 

where derivative of RELU is represented as 𝑅𝑒𝑙𝑢′ . 

Now 
𝜕𝐶

𝜕𝑥′′𝑖𝑗
=

𝜕𝐶

𝜕𝑦𝑖𝑗
′

𝜕𝑦𝑖𝑗
′

𝜕𝑥′′𝑖𝑗
=

𝜕𝐶

𝜕𝑦𝑖𝑗
′ ⋅ 𝑅𝑒𝑙𝑢′(𝑥

′′
𝑖𝑗) 

i.e. 

𝜕𝐶

𝜕𝑥′′11
=

𝜕𝐶

𝜕𝑦11
′

𝜕𝑦11
′

𝜕𝑥′′11
=

𝜕𝐶

𝜕𝑦11
′ ⋅ 𝑅𝑒𝑙𝑢

′(𝑥′′11)                     
𝜕𝐶

𝜕𝑥′′12
=

𝜕𝐶

𝜕𝑦12
′

𝜕𝑦12
′

𝜕𝑥′′12
=

𝜕𝐶

𝜕𝑦12
′ ⋅ 𝑅𝑒𝑙𝑢′(𝑥

′′
12) 

𝜕𝐶

𝜕𝑥′′21
=

𝜕𝐶

𝜕𝑦21
′

𝜕𝑦21
′

𝜕𝑥′′21
=

𝜕𝐶

𝜕𝑦21
′ ⋅ 𝑅𝑒𝑙𝑢

′(𝑥′′21)                    
𝜕𝐶

𝜕𝑥′′22
=

𝜕𝐶

𝜕𝑦22
′

𝜕𝑦22
′

𝜕𝑥′′22
=

𝜕𝐶

𝜕𝑦22
′ ⋅ 𝑅𝑒𝑙𝑢′(𝑥

′′
22) 

 it can be represented as a matrix equation as 

𝜕𝐶

𝜕𝑥′′
=
𝜕𝐶

𝜕𝑦′
⊙ 𝑅𝑒𝑙𝑢′(𝑥′′) 

In general, 

𝜕𝐶

𝜕𝑥′′
=
𝜕𝐶

𝜕𝑦′
⊙ 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛′(𝑥′′) 

Where ⊙ denotes element wise product of two matrices and 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛′ denotes derivative 

of activation function. 

𝑅𝑒𝑙𝑢′(𝑥) = {
1 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 < 0

  

Therefore, 

𝜕𝐶

𝜕𝑥′′
= (
4 10
4 10

)⊙ (
1 0
1 0

) = (
4 0
4 0

) 

We know that 

𝑥′′ = 𝑦⊗ 𝑓′ + 𝑏2 



 

29 
 

i.e. 

𝑥′′11 = 𝑦11𝑓′11 + 𝑦12𝑓′12 + 𝑦21𝑓′21 + 𝑦22𝑓′22 + 𝑏2 

𝑥′′12 = 𝑦12𝑓′11 + 𝑦13𝑓′12 + 𝑦22𝑓′21 + 𝑦23𝑓′22 + 𝑏2 

𝑥′′21 = 𝑦21𝑓′11 + 𝑦22𝑓′12 + 𝑦31𝑓′21 + 𝑦32𝑓′22 + 𝑏2 

𝑥′′22 = 𝑦22𝑓′11 + 𝑦23𝑓′12 + 𝑦32𝑓′21 + 𝑦33𝑓′22 + 𝑏2 

Evaluating  
𝝏𝑪

𝝏𝒃𝟐
, 

 

Figure 17 Back propagating bias and its updating 

Applying chain rule 

𝜕𝐶

𝜕𝑏2
=

𝜕𝐶

𝜕𝑥′′11
⋅
𝜕𝑥′′11
𝜕𝑏2

+
𝜕𝐶

𝜕𝑥′′12
⋅
𝜕𝑥′′12
𝜕𝑏2

+
𝜕𝐶

𝜕𝑥′′21
⋅
𝜕𝑥′′21
𝜕𝑏2

+
𝜕𝐶

𝜕𝑥′′22
⋅
𝜕𝑥′′22
𝜕𝑏2

 

Since 
𝜕𝑥′′𝑖𝑗

𝜕𝑏2
= 1 

𝜕𝐶

𝜕𝑏2
=

𝜕𝐶

𝜕𝑥′′11
+

𝜕𝐶

𝜕𝑥′′12
+

𝜕𝐶

𝜕𝑥′′21
+

𝜕𝐶

𝜕𝑥′′22
 

In general, 

𝜕𝐶

𝜕𝑏
=∑∑

𝜕𝐶

𝜕𝑥′′𝑖𝑗
𝑖𝑗

 

In the example, 

𝜕𝐶

𝜕𝑏2
= 4 + 4 + 0 + 0 = 8 

Updated 𝑏2 = 𝑏2 − 𝛼
𝜕𝐶

𝜕𝑏2
  (Let 𝛼 = 1) 
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                      = −10 − 8 = −18 

This will be the value of 𝑏2 after first iteration. 

4.2.4 Filter values update 

Applying chain rule, 

𝜕𝐶

𝜕𝑓′11
=

𝜕𝐶

𝜕𝑥′′11
⋅
𝜕𝑥′′11
𝜕𝑓′11

+
𝜕𝐶

𝜕𝑥′′12
⋅
𝜕𝑥′′12
𝜕𝑓′11

+
𝜕𝐶

𝜕𝑥′′21
⋅
𝜕𝑥′′21
𝜕𝑓′11

+
𝜕𝐶

𝜕𝑥′′22
⋅
𝜕𝑥′′22
𝜕𝑓′11

 

Implies, 

𝜕𝐶

𝜕𝑓′11
=

𝜕𝐶

𝜕𝑥′′11
𝑦11 +

𝜕𝐶

𝜕𝑥′′12
𝑦12 +

𝜕𝐶

𝜕𝑥′′21
𝑦21 +

𝜕𝐶

𝜕𝑥′′22
𝑦22 

Similarly, 

𝜕𝐶

𝜕𝑓′12
=

𝜕𝐶

𝜕𝑥′′11
𝑦12 +

𝜕𝐶

𝜕𝑥′′12
𝑦13 +

𝜕𝐶

𝜕𝑥′′21
𝑦22 +

𝜕𝐶

𝜕𝑥′′22
𝑦23 

𝜕𝐶

𝜕𝑓′21
=

𝜕𝐶

𝜕𝑥′′11
𝑦21 +

𝜕𝐶

𝜕𝑥′′12
𝑦22 +

𝜕𝐶

𝜕𝑥′′21
𝑦31 +

𝜕𝐶

𝜕𝑥′′22
𝑦32 

𝜕𝐶

𝜕𝑓′22
=

𝜕𝐶

𝜕𝑥′′11
𝑦22 +

𝜕𝐶

𝜕𝑥′′12
𝑦23 +

𝜕𝐶

𝜕𝑥′′21
𝑦32 +

𝜕𝐶

𝜕𝑥′′22
𝑦33 

This can be written in matrix form as, 

(

 
 

𝜕𝐶

𝜕𝑓′
11

𝜕𝐶

𝜕𝑓′
12

𝜕𝐶

𝜕𝑓′
21

𝜕𝐶

𝜕𝑓′
22)

 
 
= (

𝑦11 𝑦12 𝑦13
𝑦21 𝑦22 𝑦23
𝑦31 𝑦32 𝑦33

)⊗

(

 
 

𝜕𝐶

𝜕𝑥′′11

𝜕𝐶

𝜕𝑥′′12
𝜕𝐶

𝜕𝑥′′21

𝜕𝐶

𝜕𝑥′′22)

 
 

 

In general,  (
𝜕𝐶

𝜕𝑓′
) = 𝑦 ⊗ (

𝜕𝐶

𝜕𝑥′′
) 

Where ⊗ is cross-correlation. 

In the example, 

 

(

 
 

𝜕𝐶

𝜕𝑓′11

𝜕𝐶

𝜕𝑓′12
𝜕𝐶

𝜕𝑓′21

𝜕𝐶

𝜕𝑓′22)

 
 
= (

15 3 0
15 3 0
15 3 0

)⊗ (
4 0
4 0

) = (
120 24
120 24

) 
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Filter values will be updated as 

Updated 𝑓′ = 𝑓′ − 𝛼
𝜕𝐶

𝜕𝑓′
  ( let 𝛼 = 1 ) 

                      = (
−1 2
3 −4

) − (
120 24
120 24

) = (
−121 −22
−117 −28

) 

4.2.5 Gradient to Previous Layer Evaluation  

𝜕𝐶

𝜕𝑦11
=

𝜕𝐶

𝜕𝑥′′11
⋅
𝜕𝑥′′11
𝜕𝑦11

=
𝜕𝐶

𝜕𝑥′′11
𝑓′11 

𝜕𝐶

𝜕𝑦12
=

𝜕𝐶

𝜕𝑥′′11
⋅
𝜕𝑥′′11
𝜕𝑦12

+
𝜕𝐶

𝜕𝑥′′12
⋅
𝜕𝑥′′12
𝜕𝑦12

=
𝜕𝐶

𝜕𝑥′′11
𝑓′
12
+

𝜕𝐶

𝜕𝑥′′12
𝑓′
11

 

Simplifying remaining terms, 

𝜕𝐶

𝜕𝑦13
=

𝜕𝐶

𝜕𝑥′′12
𝑓′12 

𝜕𝐶

𝜕𝑦21
=

𝜕𝐶

𝜕𝑥′′11
𝑓′
21
+

𝜕𝐶

𝜕𝑥′′21
𝑓′
11

 

𝜕𝐶

𝜕𝑦22
=

𝜕𝐶

𝜕𝑥′′11
𝑓′
22
+

𝜕𝐶

𝜕𝑥′′12
𝑓′
21
+

𝜕𝐶

𝜕𝑥′′21
𝑓′
12
+

𝜕𝐶

𝜕𝑥′′22
𝑓′
11

 

𝜕𝐶

𝜕𝑦23
=

𝜕𝐶

𝜕𝑥′′12
𝑓′
22
+

𝜕𝐶

𝜕𝑥′′22
𝑓′
12

 

𝜕𝐶

𝜕𝑦31
=

𝜕𝐶

𝜕𝑥′′21
𝑓′21 

𝜕𝐶

𝜕𝑦32
=

𝜕𝐶

𝜕𝑥′′21
𝑓′
22
+

𝜕𝐶

𝜕𝑥′′22
𝑓′
21

 

𝜕𝐶

𝜕𝑦33
=

𝜕𝐶

𝜕𝑥′′22
𝑓′22 

This can be simplified as, 

(

 
 
 
 

𝜕𝐶

𝜕𝑦11

𝜕𝐶

𝜕𝑦12

𝜕𝐶

𝜕𝑦13
𝜕𝐶

𝜕𝑦21

𝜕𝐶

𝜕𝑦22

𝜕𝐶

𝜕𝑦23
𝜕𝐶

𝜕𝑦31

𝜕𝐶

𝜕𝑦32

𝜕𝐶

𝜕𝑦33)

 
 
 
 

=

(

 
 

𝜕𝐶

𝜕𝑥′′11

𝜕𝐶

𝜕𝑥′′12
𝜕𝐶

𝜕𝑥′′21

𝜕𝐶

𝜕𝑥′′22)

 
 
⊛(

𝑓′
11

𝑓′
12

𝑓′
21

𝑓′
22

) 
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In general, (
𝜕𝐶

𝜕𝑦
) = (

𝜕𝐶

𝜕𝑥
)⊛ 𝑓′ 

Where ⊛ is complete convolution. 

In the example (
𝜕𝐶

𝜕𝑦
) = (

4 0
4 0

)⊛ (
−1 2
3 −4

) = (
−4 8 0
8 −8 0
12 −16 0

) 

Back propagating to previous layer in the example can be computed as follows. 

Figure 

(
𝜕𝐶

𝜕𝑥′
) = (

𝜕𝐶

𝜕𝑦
)⊙ 𝑅𝑒𝑙𝑢′(𝑥′) 

            = (
−4 8 0
8 −8 0
12 −16 0

)⊙ (
1 1 0
1 1 0
1 1 0

) = (
−4 8 0
8 −8 0
12 −16 0

) 

𝜕𝐶

𝜕𝑏1
=∑∑

𝜕𝐶

𝜕𝑥′𝑖𝑗
= −4 + 8 + 8 + (−8) + 12 + (−16)

𝑖𝑗

 

        = −8 

𝑏1 = 𝑏1 − 𝛼
𝜕𝐶

𝜕𝑏1
= 5 − 1 × (−8) = 13 

(
𝜕𝐶

𝜕𝑓
) = 𝑥 ⊗ (

𝜕𝐶

𝜕𝑥′
) = (

1 1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 1 −1 −1

)⊗ (
−4 8 0
8 −8 0
12 −16 0

) = (
0 32
0 32

) 

𝑓 = 𝑓 − 𝛼
𝜕𝐶

𝜕𝑓
= (
1 2
3 4

) − (
0 32
0 32

) = (
1 −30
3 −28

)   

These are the updated values of 𝑓 after first iteration. The network is trained with many such 

training data which constantly improve the values of the filter. 

 

4.3 Pooling Layers 

Pooling layers are used in CNN to down sample feature map and thereby reduce the total 

number of computations required in forward and backward propagation. 

Consider an architecture with only Convolutional and fully connected layers. 
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Figure 18 A sample 2-layer CNN to demonstrate number of computations 

Here total number of computations (multiplications) in forward propagation 

                                                       = (5 × 5 × 1) × (28 × 28 × 10) + (5 × 5 × 10)  ×

                                                              (24 × 24 × 10) + (24 × 24 × 10) × 10 = 1693600 

                                                       ≈ 1.7 𝑀 

Two of the commonly used pooling methods are 

4.3.1 Max Pooling 

 (f, f) window is slid over the input and maximum value is stored as the output. 

        E.g.:  (

2 3 1 9
4 7 3 5
8 2 2 2
1 3 4 5

)                                               (
7 9
8 5

) 

                                          7 = max {2, 3, 4, 7} 

4.3.2 Average Pooling 

 (f, f) window is slid over the input and average value is stored as the output. 

      E.g.:  (

2 3 1 9
4 7 3 5
8 2 2 2
1 3 4 5

)   (
4 4.5
3.25 3.25

)      

                                                   4 =
1

4
(2 + 3 + 4 + 7) 

 

To see the effect of pooling layers in reducing number of computations, Consider the 

architecture in previous example modified by adding pooling layers after each convolutional 

layer. 

Max pooling f =2 

Average pooling f =2 
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Figure 19 A sample 2-layer CNN to demonstrate number of computations after pooling 

Now total number of computations (multiplications) = (5 × 5 × 1) × (28 × 28 × 10) +

                                                         (5 × 5 × 10) × ((10 × 10 × 10) + 10) = 272100 

                                                        ≈ 2.7 𝐿    

Number of computations are reduced significantly here. So, by adding pooling layers once in 

a while after convolutional layers reduces the dimension and hence the computations required. 

The type of pooling suitable for CNN might depend upon the application where it is used and 

the nature of the dataset chosen. For example, in MNIST dataset for digit recognition, digits 

are represented with high pixel values (white) and background is low pixel values (black), so 

usage of max pooling can be justified logically as the necessary information is retained after 

sampling because maximum value pixels are the ones decisive in determining output. 

Effect of pooling layers on back propagation is examined below. Consider an input image of 

size  

(6, 6) and a filter of size (2, 2) performed cross-correlation and the result is passed through (2, 

2) pooling layer as shown below. 

(

  
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16
𝑥21 𝑥22 𝑥23 𝑥24 𝑥25 𝑥26
𝑥31 𝑥32 𝑥33 𝑥34 𝑥35 𝑥36
𝑥41 𝑥42 𝑥43 𝑥44 𝑥45 𝑥46
𝑥51 𝑥52 𝑥53 𝑥54 𝑥55 𝑥56
𝑥61 𝑥62 𝑥63 𝑥64 𝑥65 𝑥66)

  
 
   ⊗ (

𝑓11 𝑓12

𝑓21 𝑓22
)  

 

𝑐𝑜𝑛𝑣
→     (

𝑔11 𝑔12 𝑔13 𝑔14
𝑔21 𝑔22 𝑔23 𝑔24
𝑔31 𝑔32 𝑔33 𝑔34
𝑔41 𝑔42 𝑔43 𝑔44

)  
𝑎𝑐𝑡𝑣𝑡𝑛 𝐴
→        (

𝑦11 𝑦12 𝑦13 𝑦14
𝑦21 𝑦22 𝑦23 𝑦24
𝑦31 𝑦32 𝑦33 𝑦34
𝑦41 𝑦42 𝑦43 𝑦44

) 
 2×2 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 
→         (

𝑧11 𝑧12
𝑧21 𝑧22

)    

For average pooling,  
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    𝑧11 =
1

4
(𝑦11 + 𝑦12 + 𝑦21 + 𝑦22) 

𝜕𝐶

𝜕𝑦11
=

𝜕𝐶

𝜕𝑧11
 .
𝜕𝑧11

𝜕𝑦11
             

𝜕𝑧11

𝜕𝑦11
=
𝜕𝑧11

𝜕𝑦12
=
𝜕𝑧11

𝜕𝑦21
=
𝜕𝑧11

𝜕𝑦22
=
1

4
  

Therefore  
𝜕𝐶

𝜕𝑦11
= 

1

4

𝜕𝐶

𝜕𝑧11
     

Similarly, 

𝜕𝐶

𝜕𝑦12
= 

1

4

𝜕𝐶

𝜕𝑧11
    ,  

𝜕𝐶

𝜕𝑦13
= 

1

4

𝜕𝐶

𝜕𝑧11
   ,  

𝜕𝐶

𝜕𝑦14
= 

1

4

𝜕𝐶

𝜕𝑧11
  

In matrix form it can be written as 

(

 
 

𝜕𝐶

𝜕𝑦11

𝜕𝐶

𝜕𝑦12
𝜕𝐶

𝜕𝑦21

𝜕𝐶

𝜕𝑦22)

 
 
= (

1
4⁄
1
4⁄

1
4⁄
1
4⁄
) .  

𝜕𝐶

𝜕𝑧11
 

Earlier for conv layers the following equation was obtained for convolution layers. 

(

𝜕𝐶

𝜕𝑓11

𝜕𝐶

𝜕𝑓12

𝜕𝐶

𝜕𝑓21

𝜕𝐶

𝜕𝑓22

) = 

(

 
 
 
 
 
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16

𝑥21 𝑥22 𝑥23 𝑥24 𝑥25 𝑥26

𝑥31 𝑥32 𝑥33 𝑥34 𝑥35 𝑥36

𝑥41 𝑥42 𝑥43 𝑥44 𝑥45 𝑥46

𝑥51 𝑥52 𝑥53 𝑥54 𝑥55 𝑥56

𝑥61 𝑥62 𝑥63 𝑥64 𝑥65 𝑥66)

 
 
 
 
 
 

 ⊗

(

 
 
 
 
 
 
 

𝐴′(𝐺).

(

 
 
 
 
 
 

𝜕𝐶

𝜕𝑦11

𝜕𝐶

𝜕𝑦12

𝜕𝐶

𝜕𝑦13

𝜕𝐶

𝜕𝑦14

𝜕𝐶

𝜕𝑦21

𝜕𝐶

𝜕𝑦22

𝜕𝐶

𝜕𝑦23

𝜕𝐶

𝜕𝑦24

𝜕𝐶

𝜕𝑦31

𝜕𝐶

𝜕𝑦32

𝜕𝐶

𝜕𝑦33

𝜕𝐶

𝜕𝑦34

𝜕𝐶

𝜕𝑦41

𝜕𝐶

𝜕𝑦42

𝜕𝐶

𝜕𝑦43

𝜕𝐶

𝜕𝑦44)

 
 
 
 
 
 

)

 
 
 
 
 
 
 

   

Where ′ ⊗ ′ denotes convolution operation, ‘.’ Denotes elementwise product and A’(G) is the 

derivative of activation for each element in the G matrix. 

Now, 

(

 
 
 
 
 
 
 

𝜕𝐶

𝜕𝑦11

𝜕𝐶

𝜕𝑦12

𝜕𝐶

𝜕𝑦13

𝜕𝐶

𝜕𝑦14

𝜕𝐶

𝜕𝑦21

𝜕𝐶

𝜕𝑦22

𝜕𝐶

𝜕𝑦23

𝜕𝐶

𝜕𝑦24

𝜕𝐶

𝜕𝑦31

𝜕𝐶

𝜕𝑦32

𝜕𝐶

𝜕𝑦33

𝜕𝐶

𝜕𝑦34

𝜕𝐶

𝜕𝑦41

𝜕𝐶

𝜕𝑦42

𝜕𝐶

𝜕𝑦43

𝜕𝐶

𝜕𝑦44)

 
 
 
 
 
 
 

= 

(

 
 

𝜕𝐶

𝜕𝑧11

𝜕𝐶

𝜕𝑧12

𝜕𝐶

𝜕𝑧21

𝜕𝐶

𝜕𝑧22)

 
 
 ⋆ (

𝐷11 𝐷12
𝐷21 𝐷22

) 
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Here ⋆ operation is defined as follows. each element of first matrix is multiplied by 

corresponding submatrix  𝐷𝑖𝑗 of second matrix to generate a bigger sized matrix. 

𝐷𝑖𝑗 = (
1
4⁄

1
4⁄

1
4⁄

1
4⁄
)   for average pooling of (2, 2). 

Since 
𝜕𝐶

𝜕𝑦𝑖𝑗
 is obtained in backpropagation,  

𝜕𝐶

𝜕𝑓
 , 
𝜕𝐶

𝜕𝑏
 and 

𝜕𝐶

𝜕𝑥
 can be calculated as per the equation 

in convolution backpropagation. 

If max pooling is used instead of average pooling, 𝐷𝑖𝑗  can be represented in the form  (
0 0
1 0

)  

if (2, 1) indexed element in the pooling window is of maximum value. Because in 

backpropagation, maximum value node contributes to the derivative. 

For example, 

(

2 3 1 9
4 7 3 5
8 2 2 2
1 3 4 5

)    
𝑓=2 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔
→                     (

7 9

8 5
)      

Here, 

(
𝐷11 𝐷12

𝐷21 𝐷22
)      will have   𝐷11 = (

0 0
0 1

)   , 𝐷12 = (
0 1
0 0

)   , 

                                                   𝐷21 = (
1 0
0 0

)   , 𝐷22 = (
0 0
0 1

)                                     

Rest of the operation is same as that of average pooling. Therefore, backpropagation in average 

pooling and max pooling can be pictorially represented as below.  
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Figure 20 Backpropagation with average pooling and maxpooling 

Where 𝑥1, 𝑥2, 𝑥3, 𝑥4 denotes input nodes to (2, 2) pooling and 𝑦 denotes Output node with 𝑥2 

node assumed to have maximum value. 

Unlike convolutional layers pooling layers do not have any parameter of its own to optimize. 

4.4 Strides in Convolution 

It is also used to reduce dimension of deeper layers and hence the number of computations. 

Filter window is stridden after a fixed gap instead of immediate row/column. Consider 

modified form of previous architecture where stride of more than 1 (s=2) is used in 

convolutional layers. 

 

Figure 21 A sample 2-layer CNN 

Total number of computations (multiplications) = (14 × 14 × 10) × (5 × 5 × 1) 

                                                                            + (5 × 5 × 10) × ((5 × 5 × 10) + 10) = 81500 

≈ 81𝐾 

It is evident from this example that strides in convolution saves the number of computations.  
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If input dimension is very large, using stride of high value is justified. For example, if the image 

size is 1024 X 1024, then extraction of features wouldn’t get affected so much even if stride of 

S=2 or S=3 is used. 

An example of a simple cross-correlation of 5 X 5 input with 3 X 3 filter with stride S=2 is 

shown below. 

(

 
 

1 1 −1 −1 −1
1 1 −1 −1 −1
1 1 −1 −1 −1
1 1 −1 −1 −1
1 1 −1 −1 −1)

 
 
⊗(

1 2 3

4 5 6

7 8 9

)   =   (
9 −45

9 −45
) 

4.4.1 Backpropagation with stride 

Consider a cross-correlation of (6, 6) input with (3, 3) filter with stride s = 2. 

(

  
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16
𝑥21 𝑥22 𝑥23 𝑥24 𝑥25 𝑥26
𝑥31 𝑥32 𝑥33 𝑥34 𝑥35 𝑥36
𝑥41 𝑥42 𝑥43 𝑥44 𝑥45 𝑥46
𝑥51 𝑥52 𝑥53 𝑥54 𝑥55 𝑥56
𝑥61 𝑥62 𝑥63 𝑥64 𝑥65 𝑥66)

  
 
  ⊗ (

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

) = (
𝑦11 𝑦12
𝑦21 𝑦22

) 

𝑦11 = 𝑓11𝑥11 + 𝑓12𝑥12 + 𝑓13𝑥13 + 𝑓21𝑥21 + 𝑓22𝑥22 + 𝑓23𝑥23 + 𝑓31𝑥31 + 𝑓32𝑥32 + 𝑓33𝑥33 + 𝑏  

𝑦12 = 𝑓11𝑥13 + 𝑓12𝑥14 + 𝑓13𝑥15 + 𝑓21𝑥23 + 𝑓22𝑥24 + 𝑓23𝑥25 + 𝑓31𝑥33 + 𝑓32𝑥34 + 𝑓33𝑥35 + 𝑏 

𝑦21 = 𝑓11𝑥31 + 𝑓12𝑥32 + 𝑓13𝑥33 + 𝑓21𝑥41 + 𝑓22𝑥42 + 𝑓23𝑥43 + 𝑓31𝑥51 + 𝑓32𝑥52 + 𝑓33𝑥53

+ 𝑏 

𝑦22 = 𝑓11𝑥33 + 𝑓12𝑥34 + 𝑓13𝑥35 + 𝑓21𝑥43 + 𝑓22𝑥44 + 𝑓23𝑥45 + 𝑓31𝑥53 + 𝑓32𝑥54 + 𝑓33𝑥55

+ 𝑏 

 

𝜕𝐶

𝜕𝑓11
=
𝜕𝐶

𝜕𝑦11
 
𝜕𝑦11
𝜕𝑓11

+ 
𝜕𝐶

𝜕𝑦12
 
𝜕𝑦12
𝜕𝑓11

+ 
𝜕𝐶

𝜕𝑦21
 
𝜕𝑦21
𝜕𝑓11

+ 
𝜕𝐶

𝜕𝑦11
 
𝜕𝑦22
𝜕𝑓11

 

          =
𝜕𝐶

𝜕𝑦11
𝑥11  +

𝜕𝐶

𝜕𝑦12
𝑥13  +

𝜕𝐶

𝜕𝑦21
𝑥31  +

𝜕𝐶

𝜕𝑦22
𝑥33   

In matrix form this will be represented as  
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𝜕𝐶

𝜕𝑓13
= (

𝑥11 𝑥13

𝑥31 𝑥33
) .

(

 
 

𝜕𝐶

𝜕𝑦11

𝜕𝐶

𝜕𝑦12
𝜕𝐶

𝜕𝑦21

𝜕𝐶

𝜕𝑦22)

 
 

 

Similarly, 

𝜕𝐶

𝜕𝑓12
=
𝜕𝐶

𝜕𝑦11
 
𝜕𝑦11
𝜕𝑓12

+ 
𝜕𝐶

𝜕𝑦12
 
𝜕𝑦12
𝜕𝑓12

+ 
𝜕𝐶

𝜕𝑦21
 
𝜕𝑦21
𝜕𝑓12

+ 
𝜕𝐶

𝜕𝑦11
 
𝜕𝑦22
𝜕𝑓12

 

         =
𝜕𝐶

𝜕𝑦11
𝑥12  +

𝜕𝐶

𝜕𝑦12
𝑥14  +

𝜕𝐶

𝜕𝑦21
𝑥32  +

𝜕𝐶

𝜕𝑦22
𝑥34    

To represent  
𝜕𝐶

𝜕𝑓
  in matrix operation, rows and columns of zeros are inserted to 

𝜕𝐶

𝜕𝑦
 matrix 

wherever convolution is skipped in stride. 

i.e.  

(

 
 

𝜕𝐶

𝜕𝑦11

𝜕𝐶

𝜕𝑦12
𝜕𝐶

𝜕𝑦21

𝜕𝐶

𝜕𝑦22)

 
 𝑚𝑜𝑑𝑖𝑓𝑖ⅇ𝑑 𝑡𝑜
→        

(

 
 
 

𝜕𝐶

𝜕𝑦11
0

𝜕𝐶

𝜕𝑦12
0

0 0 0 0
𝜕𝐶

𝜕𝑦21
0

𝜕𝐶

𝜕𝑦22
0

0 0 0 0)

 
 
 

 

Here zeros are added in second and fourth row and second and fourth column because while 

performing cross-correlation with stride s=2, second and fourth convolution window column 

wise and row wise were skipped. 

So, update equations will be  

(

 
 
 
 

𝜕𝐶

𝜕𝑓11

𝜕𝐶

𝜕𝑓12

𝜕𝐶

𝜕𝑓13
𝜕𝐶

𝜕𝑓21

𝜕𝐶

𝜕𝑓22

𝜕𝐶

𝜕𝑓23
𝜕𝐶

𝜕𝑓31

𝜕𝐶

𝜕𝑓32

𝜕𝐶

𝜕𝑓33)

 
 
 
 

=

(

  
 

𝑥11 𝑥12 𝑥13 𝑥14 𝑥15 𝑥16
𝑥21 𝑥22 𝑥23 𝑥24 𝑥25 𝑥26
𝑥31 𝑥32 𝑥33 𝑥34 𝑥35 𝑥36
𝑥41 𝑥42 𝑥43 𝑥44 𝑥45 𝑥46
𝑥51 𝑥52 𝑥53 𝑥54 𝑥55 𝑥56
𝑥61 𝑥62 𝑥63 𝑥64 𝑥65 𝑥66)

  
 
⊗

(

 
 
 

𝜕𝐶

𝜕𝑦11
0

𝜕𝐶

𝜕𝑦12
0

0 0 0 0
𝜕𝐶

𝜕𝑦21
0

𝜕𝐶

𝜕𝑦22
0

0 0 0 0)

 
 
 

 

  Where ⊗  is cross-correlation operation. 

𝜕𝐶

𝜕𝑏
  equation will be sum of all 

𝜕𝐶

𝜕𝑦𝑖𝑗
. 
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4.4.2 Previous layer update 

This will can also be written with modified 
𝜕𝐶

𝜕𝑦𝑖𝑗
 matrix with zeros inserted. 

(

 
 
 
 
 
 
 
 
 
 
 

𝜕𝐶

𝜕𝑥11

𝜕𝐶

𝜕𝑥12

𝜕𝐶

𝜕𝑥13

𝜕𝐶

𝜕𝑥14

𝜕𝐶

𝜕𝑥15

𝜕𝐶

𝜕𝑥16
𝜕𝐶

𝜕𝑥21

𝜕𝐶

𝜕𝑥22

𝜕𝐶

𝜕𝑥23

𝜕𝐶

𝜕𝑥24

𝜕𝐶

𝜕𝑥25

𝜕𝐶

𝜕𝑥26
𝜕𝐶

𝜕𝑥31

𝜕𝐶

𝜕𝑥32

𝜕𝐶

𝜕𝑥33

𝜕𝐶

𝜕𝑥34

𝜕𝐶

𝜕𝑥35

𝜕𝐶

𝜕𝑥36
𝜕𝐶

𝜕𝑥41

𝜕𝐶

𝜕𝑥42

𝜕𝐶

𝜕𝑥43

𝜕𝐶

𝜕𝑥44

𝜕𝐶

𝜕𝑥45

𝜕𝐶

𝜕𝑥46
𝜕𝐶

𝜕𝑥51

𝜕𝐶

𝜕𝑥52

𝜕𝐶

𝜕𝑥53

𝜕𝐶

𝜕𝑥54

𝜕𝐶

𝜕𝑥55

𝜕𝐶

𝜕𝑥56
𝜕𝐶

𝜕𝑥61

𝜕𝐶

𝜕𝑥62

𝜕𝐶

𝜕𝑥63

𝜕𝐶

𝜕𝑥64

𝜕𝐶

𝜕𝑥65

𝜕𝐶

𝜕𝑥66)

 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 

𝜕𝐶

𝜕𝑦11
0

𝜕𝐶

𝜕𝑦12
0

0 0 0 0
𝜕𝐶

𝜕𝑦21
0

𝜕𝐶

𝜕𝑦22
0

0 0 0 0)

 
 
 

⊛(

𝑓11 𝑓12 𝑓13

𝑓21 𝑓22 𝑓23

𝑓31 𝑓32 𝑓33

) 

Where ⊛ performs complete convolution. 

It can be verified by checking some elements from this output matrix. 

From equation of 𝑦11 , 𝑦12 , 𝑦21 , 𝑦22 obtained earlier, 

𝜕𝐶

𝜕𝑥11
 =  

𝜕𝐶

𝜕𝑦11

𝜕𝑦11
𝜕𝑥11

 =  
𝜕𝐶

𝜕𝑦11
𝑓11 

𝜕𝐶

𝜕𝑥12
= 

𝜕𝐶

𝜕𝑦11

𝜕𝑦11
𝜕𝑥12

= 
𝜕𝐶

𝜕𝑦11
𝑓12 

𝜕𝐶

𝜕𝑥13
= 

𝜕𝐶

𝜕𝑦11

𝜕𝑦11
𝜕𝑥13

+ 
𝜕𝐶

𝜕𝑦12

𝜕𝑦12
𝜕𝑥13

= 
𝜕𝐶

𝜕𝑦11
𝑓13 +

𝜕𝐶

𝜕𝑦12
𝑓11 

𝜕𝐶

𝜕𝑥21
= 

𝜕𝐶

𝜕𝑦11

𝜕𝑦11
𝜕𝑥21

= 
𝜕𝐶

𝜕𝑦11
𝑓21 

𝜕𝐶

𝜕𝑥33
= 

𝜕𝐶

𝜕𝑦11

𝜕𝑦11
𝜕𝑥33

+
𝜕𝐶

𝜕𝑦12

𝜕𝑦12
𝜕𝑥33

+
𝜕𝐶

𝜕𝑦21

𝜕𝑦21
𝜕𝑥33

+
𝜕𝐶

𝜕𝑦22

𝜕𝑦22
𝜕𝑥33

 

             =  
𝜕𝐶

𝜕𝑦11
𝑓33 +

𝜕𝐶

𝜕𝑦12
𝑓31 +

𝜕𝐶

𝜕𝑦21
𝑓13 +

𝜕𝐶

𝜕𝑦22
𝑓11 

Therefore, Backpropagation with stride s = 2 can pictorially be represented as 



 

41 
 

 

Figure 22 Backpropagation with stride 

4.5 Padding in convolution 

When convolution (cross-correlation to be exact) is performed, pixels deep inside are used a 

greater number of times than those at the edges. Hence information at edges is less represented 

in convolution output. To overcome this issue and also to make output size same as that of 

input image size, extra rows and columns are added around edges before convolution is 

performed. 

Type of padding has to be chosen suitably in accordance with the application. For example, in 

MNIST dataset for handwritten digit classification, numbers are in white (high pixel value) and 

background is in black (0-pixel value). So, in this case suitable value to pad with is zeroes as it 

is the background value. 

Consider an example of cross-correlation between (5, 5) input and (3, 3) filter without any 

padding. 

(

 
 

1 1 −1 −1 −1
1 1 −1 −1 −1
1 1 −1 −1 −1
1 1 −1 −1 −1
1 1 −1 −1 −1)

 
 
 ⊗ (

1 2 3
4 5 6
7 8 9

) = (
9 −21 −45
9 −21 −45
9 −21 −45

) 

Input image size is (5, 5) but output size is reduced to (3, 3). To compare feature location and 

make output size same as input rows and columns of zeros are padded as shown below. 

p=1 
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(

 
 
 
 

0 0 0 0 0 0 0
0 1 1 −1 −1 −1 0
0 1 1 −1 −1 −1 0
0 1 1 −1 −1 −1 0
0 1 1 −1 −1 −1 0
0 1 1 −1 −1 −1 0
0 0 0 0 0 0 0)

 
 
 
 

⊗ (
1 2 3
4 5 6
7 8 9

) =

(

 
 

28 9 −17 −39 −24
33 9 −21 −45 −27
33 9 −21 −45 −27
33 9 −21 −45 −27
16 3 −11 −21 −12)

 
 

 

Padding is commonly used when filter size is large, say (7, 7). Because reduction in output size 

and loss of information at edges will be more in that scenario. It can also be used when crucial 

information is present at the edges to extract it out. In backpropagation with padding,  
𝜕𝐶

𝜕𝑥
 matrix 

obtained will be of higher size than X matrix. the rows and columns in 
𝜕𝐶

𝜕𝑥
 matrix correspond to 

padding are ignored and remaining elements of matrix are used for backpropagating to previous 

layer. For example, in convolution of (5, 5) input with (3, 3) filter with padding p = 1, 
𝜕𝐶

𝜕𝑥
 matrix 

obtained by complete convolution will be of size (7, 7) but (5, 5) sized matrix after ignoring 

first and last row and column will be backpropagated for previous layer update. 

 

Figure 23 Backpropagation with padding 

If cross-correlation is performed between (n, n) input and (f, f) filter with stride ‘s’ and padding 

‘p’, 

Then dimension of output = ⌈
𝑛−𝑓+1+2𝑝

𝑠
⌉ × ⌈

𝑛−𝑓+1+2𝑝

𝑠
⌉ 

Where ⌈𝑥⌉ performs ceiling function on 𝑥 (least Integer which is greater than 𝑥). 

For example, if cross-correlation is performed between (6, 6) input and (2, 2) filter with stride 

s=2 and padding p=1, 
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Then output dimension = ⌈
6−2+1+2

2
⌉ × ⌈

6−2+1+2

2
⌉ = (4 × 4). 

 

4.6 Summary 

In this chapter deep learning networks using convolutions for applications involving images 

were discussed. We have seen how filters using convolutions were able to extract underlying 

features of an image and how these filter values can be parametrized for computers to learn on 

its own. Updating filter weights and biases iteratively in a convolutional network is examined 

with their forward and backward propagation equations and an illustrative example. After that, 

we have discussed about Pooling layers which are used in CNN and why it is needed. We have 

seen the roles of Strides and padding in convolutions, and how they help to reduce 

computations and avoid loss of informations at edges of image. The modification in backward 

propagation equations with strides and padding was also examined. These basic intuitive 

understanding is helpful while using convolutional neural networks for the desired application 

and tuning the network to improve the performance. 
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5 CHARACTER RECOGNITION USING 

NEURAL NETWORKS 

 

In this chapter, different architectures are implemented for character recognition. The 

parameters to measure performance will be defined. Based on these parameters, different Deep 

network architectures are compared and a suitable one is selected to implement in the FPGA. 

The MNIST (Modified national institute of standards and technology) dataset which is 

considered as the benchmark for analysing the performance of character recognition is used for 

the Deep network simulation. The MNIST data set consists of 70000 scanned grey scale images 

of handwritten digits and its labels. Each digit has 70000 images along with its expected output. 

A sample of the data set is given below. 

 

Figure 24 Sample of MNIST data set 

The images have been normalised and centred properly to improve the performance of the 

network. The images are of size 28x28 which makes 784 distinct input data points for each 

image. 

For this particular application, the total number of images is split into 50000 training data, 

10000 validation data and 10000 test data. The network is trained with 50000 training data 

alone. The performance of the system is improved by adjusting network related parameters 

based on the validation dataset accuracy. The test data is considered to be the unseen data by 

the network which will be used to measure the performance of the network. 

While training the network, the constraints during the implementation on the FPGA also has to 

be kept in mind. These can be listed as following. 
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1. Memory limitations. 

The memory requirement is due to the number of learnable in the network and due to 

the storage requirements of largest value of intermediate outputs obtained from each 

layer. The intermediate results may not be immediately operated on due to hardware 

limitations and may have to be stored on on-chip memory till the entire operations on 

that layer is completed. For the later part of this literature, the sum of the above two 

terms is referred to as the number of data points to be stored. 

2. Number of dedicated multipliers available in FPGA 

The multiplication operation can be done in parallel or one after another. A higher level 

of serialism increases the time of operation and the memory requirements while higher 

level of parallelism will need more no. of multipliers. A trade-off must be reached 

according to the speed of operation, available hardware and on chip memory. To 

compare different architectures, it is assumed that for a ‘nxn’ filter, we need n2 

multipliers. For fully connected layers, the total number of multipliers is the highest 

number of neurons in a single layer. 

3. Total number of slices and flops 

This is dependent on the architecture and the data flow implemented in the FPGA. 

These cannot be determined initially during architecture simulations. 

4. Speed of the system 

The time at which the output is obtained is directly proportional to the total number of 

operations that has to be performed during forward propagation. Number of operations 

is the total number of multiplications and additions done during forward propagation. 

Performance of different trained networks are compared using  

1. The test set accuracy: The test set is unseen data fed into the network. Total number 

of correctly predicted outputs is used to calculate the test set accuracy. 

2. Average F1 score: F1 score is again a measure of performance of the system based 

on it recall and precision of its classes. 

Precision of a class is the proportion of the identifications which were actually 

correct among all the positive identifications for a class. It is defined as 

 

Precision(P) =  
No. of True positives

No. of True positives + 𝑁𝑜. 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 



 

46 
 

Recall of class is the proportion of the identifications which were correct for a class. 

It is defined as  

Recall(R) =  
No. of True positives

No. of True positives + 𝑁𝑜. 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Both Precision and Recall is used to analyse the performance of a system. A 

commonly used term which finds the trade-off between Precision and Recall is the 

F1 score which is the harmonic mean of the Precision and Recall. 

F1 score =  
2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1 + 𝑅𝑒𝑐𝑎𝑙𝑙−1
=
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

The average F1 score was calculated as the mean value of F1 scores for all the output classes. 

For example, in MNIST data set, there are 10 output classes (10 digits). F1 score of each digit 

is found and averaged to find the mean F1 score. 

Better performance of the network can be achieved by increasing the number of filters and the 

depth of the neural network. As mentioned before, deep networks have shown to have better 

performance than shallow networks because of superior function approximation capabilities 

with limited number of filters. 

Therefore, there is a trade-off between the performance and the hardware requirements. 

Different deep network frame works are compared based on the above parameters. 

Each of the networks are trained by setting hyper parameters on a trial-and-error basis.  

1. Learning rate 

2. Decay factor 

3. No of epochs 

4. Batch size 

Adam optimiser mentioned in the CNN basics are used as the optimiser to update the learnable 

after each iteration. 

It has to be noted that these parameters will no way affect the hardware implementation in 

FPGA. These are the parameters are adjusted during the training to obtain a faster training and 

higher validation accuracy. 

Rather than starting with random architectures, the proven architectures are analysed first. 

Modifications based on inferences from previous works are incorporated and tested for better 
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results. Many architectures are tested and tuned to get the best results. The following are some 

of them which showed best results along with its performance. All of the following 

architectures are trained on Nvidia GeForce GTX 1050Ti GPU LeNet Architecture. 

The LeNet architecture for character recognition based on MNIST data set. It consists of 12 

layers with 2 layers of convolutional layers and 3 layers of Fully connected layers. The original 

LeNet architecture uses the sigmoid function as the activation function. This has been replaced 

with the superior RELU activation due to vanishing gradient issue of the former.  

The average pooling function is used here to decrease the number of features deeper into the 

network. 

The network was trained with following parameters 

 Batch size=100, epochs=10, learning rate=3e-4, gradient factor=0.99; 

Figure 25 Configuration of LeNet framework 
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Figure 26 Accuracy and Loss function for the LeNet architecture 

The above network gave following results. 

 Validation accuracy =98.28%  

 test accuracy = 98.6% 

 Average F1 score = 0.98. 

From figure 1, FPGA requirements also can be calculated as follows.  

1. Number of data points to be stored =Total number of learnable+ highest intermediate 

activations= 47882 

2. Total number of Multipliers=145 

3. Total number of operations=521854 

5.1 Network with only Fully connected Layers  

The convolutional layers in the above network were completely removed and only FC layers 

are included and the performance is measured. The FC layer mainly contributes to the number 

of data points to be stored, thus requiring more on chip memory in FPGA to hold the learnable 

parameters. The network is trained with a shallow network first and then depth and number of 

neurons in each layer is increased. Following are the networks and the number of neurons 

which showed best performance for each depth.  
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5.1.1 Shallow Network 

The shallow network consists of a single input layer and one output layer. There are no hidden 

layers. The input layer is of size 784 (as input image is 28x28) and output layer of 10 neurons 

are designed. 

The network was trained with following parameters 

 Batch size=100, epochs=10, learning rate=3e-2, gradient factor=0.9; 

The performance of the system was as following 

 Validation accuracy =90.75%  

 test accuracy = 90.65% 

 Average F1 score = 0.9 

 Number of data points to be stored = 7850 

 Total number of Multipliers=10 

 Total number of operations=15680 

Deep networks with varying number of neurons and depths have been trained. Below are the 

ones which showed the best results. 

5.1.2 FC1 

This Network consisted of input layer with 784 neurons, 1st hidden layer with 15 neurons and 

output layer with 10 neurons. 

 

Figure 27 Accuracy and Loss function for the Shallow framework 
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Figure 28 Configuration of FC1 architecture 

The network was trained with following parameters 

Batch size=100, epochs=10, learning rate=3e-2, gradient factor=0.85; 

 

Figure 29 Accuracy and Loss function for the FC1 architecture 

The performance of the system was as following 

 Validation accuracy =93.07%  

 test accuracy = 92.64% 

 Average F1 score = 0.92 

 Number of data points to be stored = 11950 

 Total number of Multipliers=15 
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 Total number of operations=23820 

The accuracy of the system has been found to increase compared to the shallow network but at 

the cost of more data points and a greater number of operations. 

5.1.3 FC2 

This Network consisted of input layer with 784 neurons, 1st hidden layer with 45 neurons and  

output layer with 10 neurons.  

Figure 30 Configuration of FC2 architecture 

The network was trained with following parameters 

Batch size=100, epochs=10, learning rate=3e-2, gradient factor=0.85; 

 

Figure 31 Accuracy and Loss function for the FC2 architecture 
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The performance of the system was as following 

 Validation accuracy =96.63%  

 test accuracy = 92.64% 

 Average F1 score = 0.92 

 Number of data points to be stored = 11950 

 Total number of Multipliers=15 

 Total number of operations=23820 

5.1.4 FC3 

This Network consisted of input layer with 784 neurons, 1st hidden layer with 40 neurons, 2nd 

hidden layer with 20 neurons and output layer with 10 neurons. 

 

Figure 32 Configuration of FC3 architecture 

The network was trained with following parameters 
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Batch size=100, epochs=10, learning rate=3e-3, gradient factor=0.9; 

Figure 33 Accuracy and Loss function for the FC3 architecture 

The performance of the system was as following 

 Validation accuracy =96.87%  

 test accuracy = 96.76% 

 Average F1 score = 0.967 

 Number of data points to be stored =35825 

 Total number of Multipliers=40 

 Total number of operations=71460 

5.1.5 FC4 

This Network consisted of input layer with 784 neurons, 1st hidden layer with 25 neurons, 2nd 

hidden layer with 20 neurons, 3rd hidden layer with 15 neurons and output layer with 10 

neurons. 
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Figure 34 Configuration of FC4 architecture 

The network was trained with following parameters 

Batch size=100, epochs=10, learning rate=3e-2, gradient factor=0.85; 

 

Figure 35 Accuracy and Loss function for the FC4 architecture 

The performance of the system was as following 

 Validation accuracy =95.21%  

 test accuracy = 95.39% 

 Average F1 score = 0.95 

 Number of data points to be stored = 20645 

 Total number of Multipliers=25 

 Total number of operations=41170 
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5.2 Convolutional Layers only 

The fully connected layers are removed and the network is trained only with the convolutional 

layers. The convolutional layers extract the features out from the trained networks and uses it 

to predict the outputs.  

The convolutional layers do not need much memory to store its learnable parameters. Most of 

the memory requirements come from the intermediate activations. If the network with just 

convolutional layer gives better performance than the best performing Fully connected network 

with less memory, the FPGA implementation can be done with just convolutional layers. 

5.2.1 CNN-1 

This architecture is similar to the configuration in LeNet architecture. The filter sizes are kept 

of size 5x5 across the layers. Average pooling and Relu non linearity is also used. An extra 

layer of convolutional layer with 5x5 is added and average pooling with stride of 4 is used to 

adjust the number of outputs in the output layer to 10 for the classification layer. 

 

Figure 36 Configuration of CNN-1 architecture 

The network was trained with following parameters 
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Batch size=100, epochs=8, learning rate=3e-4, gradient factor=0.85; 

Figure 37 Accuracy and Loss function for the CNN-1 architecture 

The performance of the system was as following 

 Validation accuracy = 94.49 

 test accuracy = 94.33 

 Average F1 score = 0.94 

 Number of data points to be stored = 6028 

 Total number of Multipliers=25 

 Total number of operations=895800 

5.2.2 CNN2 

The convolutional layers in the latest deep networks for image recognition such as Alex net 

and VGGnet employs small filters of size 3x3 rather than big filters. It was found that this 

reduces the no. of learnable while keeping the performance of the system same. An intuitive 

way to look into this is that large filters extracted more background information rather than the 

actual features. All of the filters in above network were thus replaced with 3x3 filters. 

The average pooling is also replaced with max pooling layers of size 2x2 with a stride of 2. 

The configuration of the network is as below 
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Figure 38 Configuration of CNN-2 architecture 

The network was trained with following parameters 

Batch size=50, epochs=8, learning rate=3e-4, gradient factor=0.9; 

 

Figure 39 Accuracy and Loss function for the CNN-2 architecture 

The performance of the system was as following 

 Validation accuracy = 97.28 

 Test accuracy = 97.42 

 Average F1 score = 0.97 

 Number of data points to be stored = 9590 
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 Total number of Multipliers=9 

 Total number of operations=386280 

5.3 Comparison Report 

Deep networks perform better than the shallow networks in terms of accuracy and average F1 

score. But it needs a greater number of learnable to achieve its desired accuracy.  The 

Convolutional neural networks gave better results compared to fully connected networks for 

image recognition. Also, the CNN has a smaller number of data points which means it can be 

implemented relatively easier on FPGAs with low on chip memory. This comes at the cost of 

time of operation which can be improved by an efficient architecture and the capability of 

massive parallelism of the convolutional operation.  

The LeNet architecture which has both FC and convolutional layers showed the best 

performance but it has huge memory as well time of operation. 

The CNN-2 architecture which showed the best result in terms of accuracy is chosen for 

implementation in the FPGA. It has 1.18% less accuracy compared to LeNet but has reduced 

the memory requirement by 80% and increased the speed of operation by 25.98%. It also has 

0.41% better accuracy compared to the best performing FC network (FC-3) with reduced 

memory requirement of 70.42% but the speed of the network is reduced by 5.96 times. 

Network 

Configuration 

No. of 

data 

points 

Total no. of 

operations 

Validation 

accuracy 

Test 

accuracy 

Average 

F1 score 

No. of 

multipliers 

LeNet 47882 521854 98.28 98.6 0.98 145 

Shallow  7850 15680 90.75 90.65 0.90 10 

FC-1 11935 23820 93.07 92.64 0.92 15 

FC-2 35785 71460 96.63 96.76 0.967 45 

FC-3 32430 64790 96.87 96.53 0.964 40 

FC-4 20645 41170 95.21 95.39 .95 25 

CNN-1 6028 895800 94.49 94.33 .94 25 

CNN-2 9590 386280 97.28 97.44 0.97 9 

Table 1 Comparison report of different Deep networks 

Looking deeper into CNN-2, some of the wrongly classified digits by the network is shown 

below. These can be confusing even for humans to correctly classify them at first sight. It can 

be safely assumed that the well written hand digits can be correctly identified by this network 

with confidence. 



 

59 
 

 

 

 

  

 

 

 

Figure 40 Some of the wrongly predicted images in CNN-2 

5.4 Data Quantisation 

The Xilinx Spartan 3e XCS3500e FPGA has a block ram of 360 kbits, Block rams are the 

dedicated memory resources available within to store the results of intermediate operations. 

All the learnable, intermediated partial outputs and the results are quantised and stored in this 

memory in 2’s complement binary form in a fixed-point format. 

The data width for the fixed-point format and the position of the radix point is to be determined. 

This is determined by analysing the range of values of the weights, biases and the intermediate 

activations of the trained network. The goal is to find the number of decimal and fractional bits 

which can estimate the outputs with less degradation in accuracy. 
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Figure 41 : Histogram of weights and biases of CNN-2 

The weights and biases are having the range of values shown in Figure-5.5.1. Most of the 

weights and bias values lies between the range of -0.2 to 0.2. To resolve this with minimal 

errors, 7 bits of decimal points. This can resolve numbers up to 2−7= 0.0078125. 

Similar analysis is done for the intermediate activations of all the convolutional layers. The 

intermediate outputs of the convolutional layers of random 100 input images are analysed. It 

can be seen that the range of values in the first layer of CNN is concentrated more near -0.5 to 

0.5. This means that a greater number of bits are required in the decimal portion to resolve 

these values.  

As we go deeper in the network, the range of values begin to spread out across a wider range 

with less emphasis on the resolution. The range of values is spread from -25 to 15. It means 

more decimal bits are required to represent these values. This means we need 5 decimal bits to 

represent these values accurately. 
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Figure 42 Histogram of activations of 100 random images of each layer 

Going with this technique requires 1 sign bit, 5 decimal bits and 7 fraction bits to accurately 

estimate the activation values. To reduce the total data width from 13, another suitable 

approach is implemented. 

The filter weights and biases of the trained network from each of the layer is scaled by a certain 

scale factor. Scaling weights and biases of a convolutional layer equally scales the activations 

obtained from that convolutional layer by that scale factor. This in no way affects the 

performance of the system but actually helps in representing these values with more accuracy 

with a smaller number of bits. 

The number of bits chosen were as 1 sign bit, 2 decimal bits and 7 fraction bits initially. The 

maximum and minimum values which can be represented by this configuration is 3.9921875 

and -4 respectively. Any value above the maximum value will be saturated to the maximum 

value and any value below the minimum value will be under flowed to the minimum value. 

This can make a good fraction of the total activations be wrong values. Propagating these 

activations through the network will worsen the accuracy drastically. The network was found 

to have an accuracy of 73.9% with the above quantisation. There is a reduction of 23.54% for 

the quantised network. 

To improve the accuracy, the weights and biases were scaled by scale factors. Let the scale 

factor of 2nd,3rd and 4th layers be v1, v2 and v3 respectively. In order to find the scale factors 

giving best accuracy, a brute force algorithm which searches through the scale factors was 
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implemented. Forward propagation results were checked on the 1000 random images from the 

validation set and following results were obtained. 

v3 v2 v1 Accuracy 

1 1 1 73.9 

1 1 1.25 89 

1 1 1.5 94.5 

. . . . 

1 1.75 1.25 95 

1 1.75 1.5 96.1 

1 1.75 1.75 96.6 

1 1.75 2 96.2 

1 1.75 2.25 96.3 

. . . . 

4 4 3.5 92.3 

4 4 3.75 92.2 

4 4 4 92.1 

Table 2 The accuracy values for various scale factors 

By changing the values of the scale factors, the accuracy was seen to improve. This is because 

of better approximation of the activations with the available number of bits. The scale factors 

which showed the best results were v1=2, v2=1.75, v3=1.75. The accuracy with these scale 

factors was 96.6% which is just 0.84% below the original accuracy. The activations after 

scaling are as below. 

 

Figure 43 Histogram of activations of 100 random images of each layer after scaling 

It can be seen that there are very a smaller number of activations outside the maximum and 

minimum range.  
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The similar method was also checked for 8-bit representation to see the extend of the 

improvement. 1 sign bit,1 decimal bit and 6 fractional bits were given. The scale of 

improvement in accuracy was drastic from 46.1% when using default values to 94.5% when 

the scale factors of v1=1, v2=1.5 v3=3 was used. 

5.5 Extension to Devanagari Dataset 

A similar convolutional layer only architecture was extended to identify handwritten 

Devanagari script. Devanagari script consists of 36 consonants and 16 vowels. Each character 

has a line on top of it which is used to connect characters and form a word. Unlike the English 

digits, the shapes of this script are complex with much more loops, curves and edges. The 

database for this script was developed by ISI Kolkata. It consists of 36 Devanagari letters 

except the vowels. Each letter has a total of 72000 scanned samples.  

For training, the sample is divided into 1800 training samples, 100 validation samples and 100 

test samples.  A convolutional layer-based architecture was trained to predict the letters. The 

number of training samples per class is 1800 compared to 5000 in MNIST data set. This could 

affect the accuracy of the network. Previous works were able to obtain a peak of 95% for 

Devanagari character identification. 

A sample from each class is shown below. 

 

 

 

 

 

 

 

 Figure 44 Sample of Devanagari data set 
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All the convolutional filters used were of size 3x3. The number of channels in each layer is 

different compared to that of MNIST. The out-channel length of the first layer was again fixed 

to 10 as the number of activations from this layer is highest and determines BRAM capacity 

along with number of learnable. In channels less than 10 was found not give good accuracy. 

The number of neurons in the outer channel is also different as we have 36 different classes for 

the Devanagari script. The following architecture showed the best result for a convolutional 

layer only network. 

The network was trained with following parameters. 

Batch size=50, epochs=10, learning rate=3e-4, gradient factor=0.9; 

Figure 45 Configuration of Devanagari framework 

Figure 46 Accuracy and loss function for Devanagari framework 
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The performance of the system was as following 

 Validation accuracy = 93.14 

 test accuracy = 90.86 

 Average F1 score = 0.9135 

 Number of data points to be stored = 14776 

 Total number of Multipliers=9 

 Total number of operations=603936 

5.5.1 Data Quantisation  

The similar data quantisation method was used for the Devanagari data set. Using the 3.7 fixed 

point format without any scale factor gave a test accuracy of 53.72 %.  A brute force algorithm 

to check various scale factors was implemented for this data set. The following result was 

obtained. Applying scale factors of (v1, v2, v3) = (2,1.25,2) gave an accuracy of 84.89%. The 

peak accuracy could not be improved beyond this point.  

 

v3 v2 v1 Accuracy 

1 1 1 53.72222 

1.25 1.25 1.25 69.75 

. . . . 

2 1.25 1.25 69.5 

2 1.25 2 84.88889 

2 1.25 2.75 82.72222 

. . . . 

3.5 3.5 2 54.72222 

3.5 3.5 2.75 54.72222 

3.5 3.5 3.5 49.97222 

Table 3 The accuracy values for various scale factors in 3.7 format 

Since the 3.7 format was not able to give good accuracy result, the 3.7 format was changed to 

3.9 format. Since the multipliers inside the FPGA are of 18 bits, this won’t be an issue as far 

as the FPGA is concerned. The percentage of slice consumption would be increased to 

accommodate more number bits. The memory requirement also will be increased by a factor 

of 20%. The 3.9 format gave an accuracy of just 35.77 % without scaling. The results with 

scale factors were as following.  
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v3 v2  v1 Accuracy 

1 1 1 35.77778 

1 1 1.5 59.61111 

1 1 2 77.75 

. . . . 

3.5 1.5 2 86.38889 

3.5 1.5 2.5 89.47222 

3.5 1.5 3 89.88889 

3.5 1.5 3.5 89.38889 

3.5 1.5 4 89.11111 

. . . . 

4 4 3 86.16667 

4 4 3.5 84.38889 

4 4 4 82.94444 

Table 4 The accuracy values for various scale factors in 3.9 format 

The scale factors of (v3, v2, v1)= (3.5,1.5,3) were used while implementing in the FPGA. 

5.6 Summary 

The parameters which measure the performance of the network was defined at the beginning 

of the chapter. The parameters that have to be kept in mind during the FPGA implementation 

was also defined. After this, various deep network architectures were trained and these 

parameters were identified for MNIST data set. 

It was seen that the performance of the shallow fully connected network was the least. It was 

seen that the performance of the deep networks increased with increase in depth but at the cost 

of memory and computational time.  Convolutional networks gave good performance with 

limited memory requirement but at the cost of more computational time. The best results were 

achieved when both convolutional and fully connected layers were used.  

Based on these results, suitable architectures for character recognition of MNIST and 

Devanagari script was chosen. 
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6  VLSI ARCHITECTURE DESIGN FOR FPGA 

 

In this chapter, the VLSI architecture implemented in the FPGA will be discussed. A 

comparison between non-systolic architecture-based design and improvement in performance 

will also be discussed. Finally, the design of systolic based architecture will be discussed in 

depth along with the simulation results. 

Different elements constituting FPGA board and its specifications is explained briefly below 

so that hardware utilization of architecture can be analysed and compared.  

6.1 Xilinx Spartan-3e FPGA Board 

Spartan 3E family of FPGA are designed so as to suite for cost effective design applications. 

Architecture of FPGA board consists of 5 fundamental programmable functional elements, 

CLBs, IOBs, BRAM, Multiplier blocks and DCM blocks. Spartan-3e XC3S500 FPGA has 

4650 slices, 9312 slice flipflops and 4 input LUTs and 66 bonded IOBs.  

Configurable Logic Blocks (CLBs) has Look Up Tables (LUTs) to perform logic functions and 

Flipflops that act as storage element. It functions as logic device for wide variety of logical 

functions. Input Output Block (IOBs) control data flow between input/output pins and internal 

logic device. Digital Clock Manager (DCM) provide perform distribution, delaying, 

multiplying, dividing, phase shifting etc of clock signals. Each functional element has 

associated switch matrix that controls multiple connections to routing. FPGA is programmed 

by loading configuration data to static CMOS Configuration Latches (CCLs). It is stored 

externally in non-volatile memory such as PROM. 

The Spartan-3e XC3S500 has 20 dedicated 18x18 multipliers which helps to implement fast 

and efficient arithmetic function (multiplication) with minimal use of general-purpose 

resources. Both signed and unsigned multiplication of 18-bit inputs can be performed with 

multiplier. Since multiplier blocks are located adjacent to RAM blocks and share routing 

resources with them, access of memory for multiplication can be efficiently utilised.   

6.2 Storage Elements 

6.2.1 Distributed RAM 

LUTs in the FPGA can be programmed as Distributed RAM. As the name suggests small 

blocks of memory will be synthesized at different parts of board. It is useful for the applications 
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where small amounts of memories have to be associated with different portions of hardware 

modules.   

6.2.2 Block RAM 

 Spartan 3e FPGA contain 360Kb BRAM which is organized as 20 blocks of 18 kb memories. 

These block ram memories offer fast and flexible storage of large amounts of on chip data. 

Read and write operations are synchronous to clock. It can be configured to function as single 

port or dual port RAM. In dual port values stored in two different addresses can be accessed 

simultaneously with read and write enable signals associated with each of the access. A name 

of the form RAMB16_S9_S8 is identified as dual port with 9 and 8 width data ports. Similarly, 

single port can be identified with RAMB16_S8 if data port width is 8. 

6.2.3 Memory for CNN architecture 

As large blocks of data are required to be stored in the handwritten character inference task, 

Block RAM is preferred over distributed RAM. Since distributed RAM uses LUTs, availability 

of resources for logic design might be less if distributed RAM is used. In the below figure, 

schematic and resource utilization of Memory that stores input features for character 

recognition named as ‘infeature_memory’ is given. The module is synthesized as dual port 

RAM. As maximum size for feature storage is in the first layer (26 X 26 X10), input feature 

and output feature memories are allocated 8000 with address width of 13 and datawidth of 10. 

 

Figure 47 Schematic of input feature memory synthesized as dual port RAM 

Memory module is synthesized with 5 BRAM blocks of RAMB16S_2S2 each as shown below. 

It means that each data port of one block RAM is of width 2 and hence with 13 address lines 
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213 × 2 = 16 𝑘𝑏 is possible. Since one block is of size 18 kb this corresponds to one block of 

RAM.  

 

 

 

 

 

 

Figure 48 Single BRAM in memory module 

  

Figure 49 Resource allocation 

Similarly, output feature map needs another 5 BRAM for storage. Hence remaining 10 BRAMs 

can be allocated for Weights and biases storage if datawidth of quantization is 10.  

6.3 Overall Architecture 

 

 

Figure 50 Overall implemented architecture in FPGA 
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The above figure represents the basic architecture which is implemented in the FPGA. It mainly 

consists of two functional blocks namely convolutional block and Maxpool block.  

The input image is read from the external memory directly into the Block RAM of the FPGA. 

The BRAM is divided into two parts to store the input features and the output features obtained 

after convolving the input features with the convolutional filters.  

The weights and biases are also stored in the BRAM and is configured as Read only memory. 

The necessary inputs are read per requirement with the help of an address generator and control 

block and is fed into the convolutional layer. The outputs obtained from the convolution block 

is stored into the output features. Once the entire convolutional operations are finished, the 

control block enables the Maxpool block and disables the convolutional block. 

The output features serve as the input to Maxpool block. The output from the Maxpool block 

is saved and overwritten in the input feature BRAM as these values are not required anymore 

for the further calculation. The reuse of memory is required because of the limited memory 

resources available to store the intermediate features extracted by the convolutional layer. Once 

the entire maxpooling is finished, the convolutional block is enabled back and Maxpool block 

is disabled. The process repeats depending on the CNN architecture till the end of iteration. 

The final layer in the CNN architecture is a SoftMax layer which is used during the training of 

the neural network. Implementing a nonlinear function in FPGAs are done with the help of 

LUTs. But this again consumes extra hardware. Even though SoftMax layers are useful in 

training the network, it can be replaced with a max finding layer in the forward propagation to 

find the predicted output.  

The input image, the intermediate features and the filter weights are 2D inputs. As the BRAM 

of the Xilinx FPGAs support address in 1 dimension. All the features are those converted from 

2D format to 1D format and is stored inside the FPGA. The address generator generates the 

index variables which is used to access the data as per required. 

6.4 Non-systolic architecture for the Convolutional Layer 

An architecture where a tree of multipliers and adders connected together to perform 

convolution is shown below. 
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Figure 51 A Non systolic architecture for convolution 

In the above example, a 2D convolution is performed between a 3x3 input and 3x3 filter. Since 

9 multiplications are done parallelly, 3 × 3 convolution result will be available immediately 

whereas 9 clock cycles are required if only one MAC unit is present.  Hence single 3D 

convolution output can be obtained when this process is repeated number of times 

corresponding to size of input channel length. Although this architecture uses 9 multipliers, its 

performance is restricted by memory bandwidth. For each computation, 9 different inputs and 

9 different filters are required. As all inputs and filters can’t be read in single clock cycle, each 

computation can happen only after specific number of clock cycles (after reading 9 inputs and 

filters). In convolution, each input data and filter value are required to be used multiple times. 

Since this architecture does not make use of reutilizing inputs and weights after reading once, 

memory cost of reading inputs and filters still remains same. So, an architecture which makes 

use of reutilizing input data and filter values and also reducing partial sum storage is required. 

In that way memory read and write operations can be reduced along with parallelism and better 

performance can be obtained. Systolic architecture suits better for such applications. 

6.5 Systolic Architecture 

The systolic architecture consists of a set of interconnected PEs which performs a simple 

operation in the input data.  
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Figure 52 Systolic architecture PE structure 

The communication with the external memory takes place only in the boundary cells. After the 

data has been read from the memory, it passed through several PEs i.e., reused multiple times. 

The flow of data can be linear, two dimensional or in any other form depending on the 

application. Usage of multiple PEs along with the data reuse increases the throughput of the 

system without increasing the memory bandwidth.  

Another key feature of systolic architecture is the design of simple and regular PEs. The 

performance of the architecture therefore can be adjusted by changing the number of PEs 

proportionally. This makes designing the custom architecture based on systolic system easy to 

scale based on the hardware availability. 

6.5.1 2D convolution using systolic Design 

Consider the convolution between the input x and the filter f. 

X =  

[
 
 
 
 
 
𝑥11 𝑥12 𝑥13 . . . 𝑥1𝑛
𝑥21 𝑥22 𝑥23 . . . 𝑥2𝑛
. . . . . . .
. . . . . . .
. . . . . . .
𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 . . . 𝑥𝑛𝑛]

 
 
 
 
 

  f = [

𝑓11 𝑓12 𝑓13
𝑓21 𝑓22 𝑓23
𝑓31 𝑓32 𝑓33

] 

  

 A single cell designed as follows contains the filter values preloaded into it.  Each PE has two 

inputs namely Xin and Yin. X is the current input inside the PE. The outputs are calculated at 

each cycle as 

  

 

 
Figure 53 Function of a simple PE 
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A set of such simple cells are combined to form kernel cell as follows. Five rows of the input 

are fed into the kernel cell with the scheduling shown below. At t=0, the set of inputs x11, x12, 

x13 enters the first kernel. The weighted outputs of the inputs with the corresponding filter 

value stored in the cell is obtained as the output from the adder.   

 

The first output corresponding to the first row of the output is obtained after the 3rd cycle from 

the first kernel.  The outputs of the second row of the outputs are obtained from the second 

kernel and so on. The input x21, x31, x41 reaches the second kernel after the 4th cycle. The 

entire submatrix required to obtain the first output from the second kernel will be available 

after the 6th cycle. For the above example the entire first three rows of the output are obtained 

after n+9 cycles. 

After this the outputs corresponding to 4th,5th and 6th row can be computed by feeding the inputs 

from the 4th row to 8th row and so on till we reach the end of the input signal. 

The number of kernels can be changed according to the availability of hardware with necessary 

changes in the scheduling. 

For computing 4d convolutions for the CNN, 3 levels of parallelism can be implemented. 

1. Kernel level parallelism- Multiple kernels compute the 2d convolutions 

independent as shown above. Increasing the number of kernels also increases the 

number of data points to be accessed at each time by the same amount.  

2. Input channel parallelism- The pattern implemented for 2d convolution is 

replicated along the third dimension (along input channels).  There is a need for 

reading the new set of inputs as well the filter values. For example, consider a 

convolution between an input of size 5x5x10 and filter of 3x3x10. If we replicated 

the above PE pattern 10 times along the input channel, the number of inputs which 

Figure 54 Dataflow in 2D convolution using systolic architecture 
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has to read from memory at a time period also increases by 10 times. This could 

become a bottleneck in terms of bandwidth if increased drastically. 

3. Output channel parallelism- Replicating the PEs along the output channels. The 

same input read at an instant can be fed along the output channels. Only the filter 

values stored inside the PEs change as we move along output channel. 

 

6.6 Systolic Architecture for convolutional layer 

Design and implementation details of hardware modules for convolutional layer part of the 

network is examined below. 

6.6.1 Single PE 

20 dedicated 18x18 multipliers in Spartan-3e XC3S500 can be used to create the basic PE 

required. A PE computes the output as shown below for a particular time instance. Once a Xin 

read from the BRAM, it is stored in temporary registers near the PE and is fed into the PE as 

per requirement.  

 

 

 

 

Figure 55 Single PE module 

MAC is cascaded with two extra selection MUX to accept Bias value and to hold the previous 

output. PE is initialised to Bias value as output when a reset (‘Conv_rst’ in figure) is enabled. 

This happens at start of each 3D convolution to add bias to convolution of filters and inputs. 

When another control signal (‘Pause_ring’ in figure) is enabled PE hold onto the obtained 

result. This helps when 2D convolution results are obtained in lesser number of cycles than the 

next set of inputs arrival time. If both control signals are disabled, PE add multiplication result 

of filter ‘f’ and input ‘x’ to ‘Bias_in’ and gives output.  
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Figure 56 Resource utilization for single PE 

6.6.2 PE Array 

All the filters used in the CNN architecture is of size 3x3. So, a total of 9 multipliers are used 

to make a cell of PEs as shown below. 

 

Figure 57 conv PE array module 

We can obtain a maximum of 9 outputs after 9 clock cycles from the PEs. So, a 5x5 submatrix 

is called from the input in every 9 clock cycles. And the result of convolution between 5x5 

input and 3x3 filter will be obtained at 9 PE. The scheduling of in the inputs for the first 9 clock 

cycles is as shown below. 
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Filter weights T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 T=9 

PE-1(f11) X11k X33k X32k X31k X23k X22k X21k X13k X12k 

PE-2(f12) X13k X12k X34k X33k X32k X24k X231k X22k X14k 

PE-3(f13) X15k X14k X13k X35k X34k X33k X25k X24k X23k 

PE-4(f21) X31k X23k X22k X21k X43k X42k X41k X33k X32k 

PE-5(f22) X33k X32k X24k X23k X22k X44k X43k X42k X34k 

PE-6(f23) X35k X34k X33k X25k X24k X23k X45k X44k X43k 

PE-7(f31) X51k X43k X42k X41k X33k X32k X31k X53k X52k 

PE-8(f32) X53k X52k X44k X43k X42k X34k X33k X32k X54k 

PE-9(f33) X55k X54k X53k X45k X44k X43k X35k X34k X33k 

                              Table 5 Scheduling of the inputs inside the PE 

Since BRAM support dual port access and 25 inputs have to be read from memory, 13 cycles 

are required to read first set of 25 input values. After 13 cycles next set of inputs and filters are 

fed into registers. PE ring holds onto previous value from 9 to13 cycles when module has to 

wait for next set of inputs. This process is repeated until input channel length is reached at 

which 9 3D convolution results are obtained. After result is obtained, 5x5 window slides by 3 

units and next submatrix is called and the process is repeated. 

It can be seen that for the first convolution phase, the input read from the rows 1 to 5 and 

columns 1 to 5 of x input. After the 9 results are obtained, the set of inputs needed are the rows 

4 to 8 and columns 1 to 5.  

This architecture enables to perform 9 3D convolutions parallelly without need of large 

temporary registers to store intermediate 2D convolution partial results. Each filter value is 

reused 9 number of times for 9 clock cycles. Input is also reused after storing in temporary 

register. 2 such PE arrays are designed parallelly with same inputs broadcasting to both of 

them. 

If 𝑛1 is the row and column size of output feature map for one convolutional layer, 𝐶𝑖𝑛 is the 

input channel length, 𝐶𝑜𝑢𝑡 is the input channel length with filters of size 3 × 3 

Time of computation for one convolutional layer with one MAC and no parallelism 

                                                                = 𝑛1 × 𝑛1 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 × 3 × 3 
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With 𝑝 PE arrays of with each having 9 PEs as shown above,  

𝑇𝑐𝑜𝑛𝑣 = ⌈
𝑛1
3
⌉ × ⌈

𝑛1
3
⌉ × 𝐶𝑖𝑛 × ⌈

𝐶𝑜𝑢𝑡
𝑝
⌉ 

   p=2 is used in the implemented architecture so that 18 out of 20 available multipliers are 

utilized. 

  

 

Figure 58 Resource utilization of one convolution PE array module 

6.6.3 RELU 

The results of convolution are given to ‘RELU+Truncate’ hardware. The RELU operation is 

implemented simply by checking the MSB of the final result. The value is written as it is into 

the BRAM if the value of MSB is 0. Else the value 0 is written. This is implemented easily in 

the FPGAs with a set of LUTs corresponding to a number of MUX array.  

On multiplying 2 numbers (filter values and inputs) of the size x, the output will be of the size 

2x from the hardware. Adding such 2x sized outputs across the in-channels further increases 

the size. For example, in MNIST data set, the filter, input and bias values are set to be of size 

10 bits. Let the number of in channels be 10. The output obtained after the 3d convolution can 

be take up to size of 20 bits. This value has to be truncated back to the original 10 bits by 

compression.  

The 10-bit data is in 2’s complement with MSB for the sign bit, the next 2 bits for the decimal 

part and the next 7 bits for the fraction part.  

                  

On multiplying such two numbers following is the configuration for the output.  



 

78 
 

 

 

 

 

 

The result has two sign bits of same value depending on the sign of the output. Out of this 

either one can be used. The 2 LSB 9(y15, y14) is selected out of the 4 decimal bits for the 

outputs. The first 7 MSB bits (y13: y7) of the fractional part is selected for the decimal part of 

the output. If the sign bit is 0 (i.e., the output is positive), and if either of the 2 MSB bits of the 

decimal part (y17 and y16) is set to 1, it means that the output has overflown. In this case, the 

output is saturated to maximum value. A similar method is used to take care of the under 

flowing of the output also. This is implemented with a number of MUX arrays. 

 

 

Figure 59 RELU+ Truncate components 

After obtaining result of Relu, it has to be written in ‘outfeatures’ memory. Control blocks 

involved in the convolution and Relu operation and their interconnection to convolution 

module and memory modules are shown below. 
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Figure 60 Block diagram for convolutional layer 

 When a control signal (‘Maxpool_on’) is disabled, convolution modules perform convolution. 

A set of counters are used to increment address indices for Infeatures, outfeatures, Weight 

memory and Bias memory blocks. Infeatures memory is initialized with input image. Input 

data values are read from Infeatures using the address generated with address generation 

components. Address generation components converts the 3D address indices to 1D index for 

the BRAM. In address generation, when multiplication by maximum dimension along row, 

column etc was required, it can be done either by using shifting operation or by using small 

multiplier modules. 2 Address values given to memory in each cycle is determined by selector 

components (MUX array). The values read from Infeatures and Weights are stored in a 

temporary register bank and are given to convolution module after reading 25 inputs and 9 

filters. This allows reading of 25 inputs and 9 filters to happen parallelly while convolution for 

previously read inputs are performed. After 9 convolution results are ready, they are stored in 

outfeatures as per the generated address. Memory writing process in outfeatures also happen 

parallel to convolution and memory reading process from Infeatures. 

6.7 Max Pooling 

After convolution and Relu is finished, result is read fed to Maxpool layer. Control blocks for 

Max pooling operation is shown below. 
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Figure 61 Block diagram for Maxpool layer 

When Maxpooling is enabled, set of counters used for address index in Maxpool are 

incremented and addresses for input and output of Maxpool window are generated. 4 inputs 

are read from outfeatures where convolution results are written. These inputs are given to 

Maxpool module and result obtained is written back to Input feature memory again. The 

updated values in Infeatures memory are used for convolution in adjacent layer. 

Single Maxpool module which picks one maximum value out of 4 is shown below. 

 

Figure 62 Maxpool module 

It is implemented with 3 comparators which find greatest number. The module also gives the 

index of maximum value.  
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Figure 63 Maxpool module resource utilisation 

6.8 Max-finder Module 

After final layer convolution is performed, 10 results are stored in registers and they are given 

to Maxpool module to find index of maximum value as shown below. Maxpool module is made 

to perform computation for 3 set of values to obtain maximum index of 10 values. 

 

 

Figure 64 Block diagram for Max finder 

In this way requirement of another module for max finder is avoided since index of maximum 

value is also generated to Maxpool module. The index of maximum after this operation is 

finished will correspond to the predicted digit/character. 

6.9 Experimental Results 

6.9.1 MNIST data set 

Results of simulation when Input feature memory was given with an image file of digit 7 is 

shown below. 
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Figure 65 Prediction result for digit 7 

Predicted number show the digit CNN architecture classifies. When prediction is done, it is 

indicated with a signal. 

 

 

Figure 66 Prediction result for digit 2 

Hardware utilization on spartan 3E FPGA after synthesis for with 2 different address generation 

circuits are shown below. 

 

Figure 67 Resource utilization with shifting in address generation. 
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Figure 68 Hardware with shifting used in address generation 

 

 

Figure 69 Resource utilization with small multipliers used in address generation 
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Figure 70 Hardware utilization with small multipliers used in address generation 

 

It can be observed that total memory required is 14 BRAMs. This corresponds to 5 BRAMs 

for Infeatures and outfeatures with 8000 values and 3 for 2790 Weights and 1 for Bias storage. 

With use of shift instead of multiplication by constant number in the address generation of 

architecture LUT consumption is 7% less. But this has limited option to vary the number of 

channels as number of channels in each layer should be same with this hardware. Hence small 

multiplier modules are used in address generation part to accommodate any change in channel 

length.   

6.9.2 Devanagari character task 

Simulation results for Devanagari character classification showing which class the character 

belongs to out of 36 consonants is given below.  
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Figure 71 Prediction result for Devanagari dataset 

As the number of channels is increased in each layer, number of weights also increases. This 

leads to change in storage space requirement. It also leads to changes in LUT logic utilisation 

as compared to MNIST data since number of bits required to represent address is changed. 

Resource utilization for character classification is shown in below figure. 
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Figure 72 Resource utilization for Devanagari character recognition using 12 bit 

 

12-bit quantization is used in Devanagari character classification due to considerable accuracy 

drop in 10-bit. With change in data quantization also there is a change memory utilization along 

with some extra LUT resource utilisation. 

 

Figure 73 Resource utilization of Devanagari recognition with 10-bit quantization 

From two figures, it can be observed that number of Slices increased 7% and BRAM 

requirement increased 15% by changing from 10-bit to 12 bits. As with 12 bits BRAM is almost 

used, datawidth can’t be increased further with this architecture. So, 12-bit quantization gives 

better accuracy with maximum effective utilization of resources. 
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6.10 Summary 

Hardware architecture details for inference of handwritten digit and character recognition tasks 

were discussed. After obtaining suitable CNN architecture with good accuracy and limited 

memory requirement, the way it can be transferred to hardware implementation was explored 

in this chapter The goal was to make use of parallelism and reduce memory access in 

computation. Fast and flexible storage with BRAM was effectively utilized. The limited 

resources availability of low-end FPGAs was taken care while selecting convolutional 

networks. We have seen that systolic architectures can be very useful in hardware 

implementation of convolution since cost of reading and writing in external memory plays key 

factor in convolution operations. Basic idea of what systolic architectures intends to do and 

levels of parallelisms possible in CNN were discussed. Block RAMs in FPGA were discussed 

briefly to get basic idea of how it can be used as memory element while implementing 

hardware. We have seen different layers of CNN i.e., convolution, Pooling and Activations can 

be implemented as hardware and how computational blocks are connected to memory blocks. 

Design aspects in dealing with Fixed-point data used in FPGA were also mentioned.  
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7  CONCLUSION AND FUTURE WORK 

7.1 Contribution of the Thesis 

In this project, a CNN architecture for digit recognition on MNIST dataset and Devanagari 

Character recognition for a low end FPGA device were presented. Strategic approaches to 

obtain optimal performance and accuracy were demonstrated along with experimental results. 

Quantization strategy for fixed data points were also presented with experimental results. Then 

a VLSI architecture and implementation of character recognition on Low end FPGA device 

were presented. Design flow of different components along with experimental results were 

presented. A study on CNN algorithms and optimization with numerical examples were also 

carried out.  

In third chapter, fundamental approaches in machine learning and optimization algorithms 

were discussed. A multi-layer perceptron model with mathematical details of the gradient 

computations were examined. In fourth chapter, Advantages of inclusion of convolutional 

layers into deep learning networks and their computational details were examined with 

numerical example. The effects of Maxpooling, strides and padding in convolution were also 

discussed. 

In fifth chapter, Training the CNN algorithms for MNIST and Devanagari datasets for 

improved performance by taking hardware design constraints into consideration were 

presented with experimental details. Quantization strategy to reduce accuracy loss while 

dealing with fixed data points were examined with experimental results. 

In sixth chapter, a VLSI architecture for digit and character recognition tasks using systolic 

design for convolution were presented. Design process of Convolution, Maxpooling and RELU 

components along with control blocks were discussed. The experimental results of 

implemented architecture along with design process of different components such as 

convolutions, Maxpooling and RELU were presented. 

 

7.2 Future Work and Extension 

Architecture should be made reconfigurable to accommodate different filter sizes other than 

3x3 filters. Scalability of the architecture to adapt into different devices with different memory 

and multiplier resources should be explored. Interfacing the implemented design on FPGA with 

image capturing devices, external storage devices etc. to deploy in real life applications has to 
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be carried out. Scope of different activation functions which can reduce accuracy drop in 

quantization without need of any quantization strategy can be explored. Scope of any 

customized activation functions with less computational complexity to use in final layer in 

place of computationally/memory expensive SoftMax which can give approximate prediction 

probabilities along with predicted class can also be explored. The same architecture can be 

employed to do both forward and backward propagation to train the deep network using 

FPGAs. 
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