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ABSTRACT

Communications have grown at a breakneck pace in the modern era. Online banking,

personal digital assistants, mobile communication, smart-cards, and other applications

have highlighted the importance of security in resource-constrained contexts. Despite

there being protocols for security purposes such as RSA, the ECC is gaining popularity

for its smaller key sizes offering the same level of security.

Hardware efficient architectures are put together to form the processor. For finite field

multiplication, General Karatsuba which efficient for smaller bit size multiplications

and Simple Karatsuba suitable for large bit size multiplications, are combined together

as Hybrid Karatsuba, to gives best performance.

Multiplicative inverse being another crucial operation in ECC, is implemented us-

ing Quad-Itoh Tsujii algorithm instead of the conventional Itoh-Tsujii algorithm. This

ensures least time for computation.

The above two proposed hardware primitives in Chester’s work are implemented to

form an accelerator. The performance of this accelerator is significantly enhanced due

to these proposed primitives. Further, this accelerator is modified to be resistant from

Simple timing and Power analysis side channel attacks.
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CHAPTER 1

INTRODUCTION

Communications across wired and wireless networks have increased dramatically in

this period. With people preferring online shopping, the daily transactions have in-

creased. These transactions involve sensitive data such as account details, which need

to be kept private, and also authorised users should only be able to initiate these trans-

actions. Also, there has been recent rise in Cryptocurrency investment, there is a need

to ensure that funds can only be spent by their rightful owners. Hence, there is need of

robust security framework.

Cryptology is the science concerned with data communication and storage in en-

crypted form. This ensures only authorised users with the right key can decrypt the

encrypted data. Cryptology comprises of Cryptography and Cryptanalysis. The for-

mer entails the study and application of techniques, which encrypt the data, making it

accessible only to the intended user. Cryptanalysis, on the other hand, is the study of

decrypting crypto systems and recovering the hidden data.

Based on the key, cryptography can be classified as Symmetric and Asymmetric. In

Symmetric key algorithms, a single key is use for both encryption and decryption. This

ensures fast process but the secret key has to be shared between parties for communica-

tion. On the other hand, Asymmetric key algorithms uses two keys, public and private.

The former is used to encrypt the data and also it is generally known whereas the latter

is used to decrypt and is kept confidential. Hence, asymmetric key algorithms are com-

plex and slow but, the underlying primitives used are based on integer factorization and

discrete logarithm problems which are hard to crack. ECC also belongs to this category.

Another component of Cryptology, Cryptanalysis deals with exploiting the crypto-

graphic algorithms weakness to get the secured data. Conventional brute force method



to get the encrypted data isn’t feasible anymore as it would require large data and also

computation time. Hence, recent Cryptanalysis techniques focus on implementation

of algorithms to attack. These techniques include gathering information from timing,

power, acoustic, radiation characteristics of the systems and using them to get the se-

cret key. Optimised architectures are more prone to these side channel attacks. Hence,

we need to take care of these side channel attacks while designing our cryptographic

systems.

1.1 Motivation

Efficient implementation of algorithms is required to take care of the complex math-

ematical computations. There are two ways to achieve this: Software and Hardware.

Software implementation [Rebeiro et al. (2006)] is low cost and easy to tweak. How-

ever, due to architecture limitations of microprocessor on which this is implemented,

this scheme cannot perform certain large computations efficiently. Therefore, a ded-

icated Hardware implementation is suitable for public key cryptographic algorithms

which involve such large computations. However, design of hardware is expensive and

time consuming process, also memory being the problem. Hence, design which can

utilise the resources of FPGA efficiently and as well take care of timing constraints, be

preferred. With the increasing security threats there is also a need to design architec-

tures and algorithms which are not susceptible to attacks.
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CHAPTER 2

Mathematical Background

To understand Elliptic Curve Cryptography (ECC) we need to know about the underly-

ing mathematical operations of Finite field, Elliptic curve group, scalar multiplication

and ECC primitives. Fig. 2.1 shows the various operations involved in building ECCP.

Fig. 2.1: Hierarchy

Rebeiro (2009)

First of all, we need a field(or commutative ring) which has finite number of ele-

ments to work upon. Hence, we choose finite fields also known as Galois fields de-

noted by GF(pm). Here p(prime number) is known as the characteristic of the field and

m ≥ 0. The Order of finite field is the number of elements present in that field and is

equal to pm.

There are two kinds of finite field which are popular in Cryptography: Prime field

and Binary finite field. In prime fields, m=1, whereas in binary fields, p=2. Binary

Galois field (GF (2m )) elements can be represented using m bits, which is not possible

in prime fields. Also, in binary fields the hardware required for arithmetic operations

like addition and squaring is quite simpler. Therefore, we choose to work on binary

fields.



2.1 Binary Finite Fields

Any GF(2m) element can be expressed as, a(x) = am−1 xm−1 + . . . + a1x + a0, where

the coefficients belong to GF(2).

Alternatively, a(x) can be represented as binary number (am−1, ..., a1, a0) which

allows for easy storage and computation. Consider the polynomial in the fieldGF (212),

x11 + x8 + x5 + x3 + x+ 1. This can also be represented as (100100101011)2.

Various arithmetic operations can be performed with ease in Binary finite field. Ad-

dition and Subtraction are similar in GF(2) as there is no carry forwarding involved,

hence these are computed using XOR operation. Some of the arithmetic operations are

discussed below.

Addition/Subtraction : Consider two elements in the field GF(2m) as shown below,

c(x) =
m−1∑
i=0

cix
i d(x) =

m−1∑
i=0

dix
i

the addition/subtraction of these is given by

c(x)± d(x) =
m−1∑
i=0

(ci ⊕ di)xi (2.1)

Squaring : Considering the same element c(x) ∈ GF(2m) mentioned above, its square

is given as follows.

c(x)2 =
m−1∑
i=0

cix
2imod p(x) (2.2)

After squaring the length of the input increases such that, for m bits input the output

would be of 2m-1 bits as shown in Fig. 2.2.

4



Fig. 2.2: Squarer

Rebeiro (2009)

Multiplication is not so straightforward as addition and squaring. Multiplying the

above elements c(x) and d(x) would give,

c(x).d(x) = (
n−1∑
i=0

d(x)cix
i)mod p(x) (2.3)

We will look at finite field multiplier and inversion with great detail in the following

chapters.

Modular Reduction : The squaring and multiplication results have bit sizes greater

than m for GF(2m). Hence, to get back the result to intended number of bits a modular

operation is required. This is done by dividing the output with an irreducible polyno-

mial. [Mahboob (2004)]

5



Fig. 2.3: Modular Reduction

Rebeiro (2009)

Consider the irreducible trinomial xm + xn + 1, which has a root α (1 < n < m/2),

giving αm + αn + 1 = 0. Therefore,

αm = 1 + αn

αm+1 = α + αn+1

.

.

α2m−3 = αm−3 + αm+n−3

α2m−2 = αm−2 + αm+n−2

(2.4)

For example, consider the irreducible trinomial x233 + x74 + 1 [National Institute of

Standards and Technology (1994)]. The multiplication or squaring of the elements in

GF(2233) would result in maximum of 465 bits. These 465 bits can be reduced to 233

bits as shown in Fig. 2.3 using Equation 2.4.

6



2.2 Elliptic Curves

Definition 2.2.1 The simplified form of the Weierstrass equation yields an elliptic curve

(in GF(2m)). The Weierstrass equation in its simplest form is :

y2 + xy = x3 + ax2 + b (2.5)

with the coefficients a and b in GF(2m) and if b 6= 0 it is known as non-singular curve.

Elements of Elliptic curve doesn’t form a group as such, unless, we introduce one

more element known as point at infinity (O). It also acts as an identity element of the

group. Given below are the operations that can be performed on this group.

Point Inversion : The inverse of a point P(x1, y1) is found as shown in Fig. 2.4. The

coordinates of −P are (x1, x1 + y1).

Fig. 2.4: Inverse of an elliptic curve point.

Rebeiro (2009)

Point Doubling : To compute the double of a point P(x1, y1) on an elliptic curve, a

tangent to the curve is drawn passing through this point. The tangent would intersect

the curve at another point which is −2P as shown in Fig. 2.5 taking the inverse of this

point would give us the required result. The equations for 2P(x3, y3) are as follows:

7



x3 = λ2 + λ+ a = x1
2 +

b

x12

y3 = x1
2 + λx3 + x3

(2.6)

where λ = x1 + (y1/x1).

Fig. 2.5: Double of an elliptic curve point

Rebeiro (2009)

Point Addition : The addition of points on elliptic curve say P(x1, y1) and Q(x2, y2) is

found out as shown in Fig. 2.6. A line is drawn passing through these points, intersect-

ing the curve at a third point, which is the inverse of (P + Q). Taking the inverse of this

point would give us the result. Suppose R(x3, y3) = (P + Q), then

x3 = λ2 + λ+ x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1

(2.7)

where λ = (y1 + y2)/(x1 + x2). For P = −Q, the addition would result in O.

8



Fig. 2.6: Addition of elliptic curve points

Rebeiro (2009)

Scalar/Point Multiplication : Point multiplication of a point(P) on elliptic curve with

a scalar(k) is nothing but adding P with itself k − 1 times. Since this would take a lot

of time to compute, many algorithms are suggested in literature. Among these we are

implementing Left to Right or MSB first algorithm, given in Algorithm 2.1.

Algorithm 2.1 : Left to Right algorithm

Input : Basepoint P = (px, py) and Scalar k = (km−1, km−2, ..., k0)2, where km−1 = 1

. Output : Point on the curve Q + kP

1 Q = P

2 for i = m-2 to 0 do

3 Q = 2 . Q

4 if ki = 1 then

5 Q = Q + P

6 end

7 end

Mukhopadhyay and Chakraborty (2014)

The Table 2.1 illustrates Algorithm 2.1, considering k = 25 or (11001)2.

9



Table 2.1: Left to right algorithm illustration

i ki Operation Q

3 1 Double and Add 3P

2 1 Double only 6P

1 1 Double only 12P

0 0 Double and Add 25P

For every iteration i doubling operation takes place, while addition is carried out only

when ki = 1. From Equations 2.6 and 2.7 we can see that doubling as well as addition

require 2 multiplications along with 1 inversion. The number of additions is directly

proportional to the number of 1’s present in the scalar key, which would also mean the

number of inversions going up.

2.2.1 Projective Coordinate Representation

Finite field inversion is the most complicated operation. So, there is need to reduce

these operations to the extent possible. The equations discussed till now in section 2.2

dealt with only two point coordinate system (x, y) also known as Affine coordinates. By,

introducing a third point in the coordinate system i.e (X, Y, Z) there is a scope to reduce

the number of Inversions. This coordinate system is known as Projective representation.

In general, x and y are replaced with X
Zc and Y

Zd respectively. Various representations

are suggested in literature to make one to one correspondence from affine to projective

representations by changing the values of c and d. In this work, c = 1 and d = 2 and the

resulting points are known as López-Dahab(LD) coordinates[Menezes et al. (1996)].

Equations 2.5, 2.6 and 2.7 are modified accordingly (x → X
Zc , y → Y

Zd ) to get Equa-

tion 2.8, 2.9 and 2.10.

Y 2 +XY Z = X3 + aX2Z2 + bZ4 (2.8)

10



For Point Inversion, with P(X1, Y1, Z1), the inversion point−P has coordinates (X1, X1Z1+

Y1, Z1). In LD, the point at infinity, O is represented as (1, 0, 0).

When the point P in LD is doubled, the result is the point 2P with coordinates (X3, Y3, Z3),

given by the equations below. The number of multiplications have gone up by 3 whereas

the inversions have reduced to zero.

Z3 = X1
2.Z1

2

X3 = X1
4 + b.Z1

4

Y3 = b.Z1
4.Z3 +X3.(a.Z3 + Y1

2 + b.Z1
4)

(2.9)

The equations for Addition involving one point in affine, Q(x2, y2) and another in

LD coordinate systems, P(X1, Y1, Z1), P + Q = (X3, Y3, Z3) (with Q 6= ±P) are given as

follows:

A = y2.Z1
2 + Y1

B = x2.Z1 +X1

C = Z1.B

D = B2.(C + a.Z1
2)

Z3 = C2

E = A.C

X3 = A2 +D + E

F = X3 + x2.Z3

G = (x2 + y2).Z3
2

Y3 = (E + Z3).F +G

(2.10)

The number of multiplications have gone up by 7 whereas the inversions have re-

duced to zero.

The advantage of using LD coordinates is that, no intermediate inversions are required

other than one inversion at the end to convert the LD to affine coordinate representation.

11



CHAPTER 3

Finite Field Multiplier

We have increased the number of finite field multiplications by opting LD coordinate

system. So, we have to choose the multiplier which is efficient, as the multiplier has

longest latency and it decides the operating frequency. Finite field multiplication es-

sentially involves two steps. Firstly, multiplying two elements of field which results in

output not belonging to GF(2m) . Secondly, the result produced is reduced using an

irreducible polynomial to get the output in GF(2m).

Consider C(x), D(x) and P(x) ∈ GF(2m), where P(x) is an irreducible polynomial. Let

M′(x) = C(x) . D(x). The result M′(x) /∈ GF(2m), hence it is reduced as shown below.

M(x) =M ′(x)mod P(x)

= C(x).D(x)mod P(x)
(3.1)

After going through a lot of literature work, Karatsuba Multiplier was found to be

efficient for high performance applications as it has a sub-quadratic space complexity

(O(mlog23), m being the number of operand bits). The same was implemented in Rebeiro

(2009)

3.1 Karatsuba Multiplication

This multiplier performs small bit size multiplications by splitting the operands and

finally combining the partial results appropriately. The m bit multiplicands C(x) and

D(x) are split into two m/2 bits as shown in Equation 3.2. Ch, Cl, Dh and Dl are of m/2

bits each.
C(x) = Chx

m/2 + Cl

D(x) = Dhx
m/2 +Dl

(3.2)

As we can see from Equation 3.3, we don’t need m bit multiplication to get the result

rather using three m/2 multiplications would get the job done.



M ′(x) = (Chx
m/2 + Cl)(Dhx

m/2 +Dl)

= ChDhx
m + (ChDl + ClDh)x

m/2 + Clbl

= ChDhx
m

+ ((Ch + Cl)(Dh +Dl) + ChDh + ClDl)x
m/2

+ ClDl

(3.3)

The generated partial products are then combined to get the final result as shown

below in the Fig. 3.1.

Fig. 3.1: Computing M ′(x)

Rebeiro (2009)

This M ′(x) is further reduced by irreducible polynomial as given in Section 2.1.

This splitting of multiplicands can be further carried out with m/4 bits each. Then

we would require a total of nine m/4 multiplications. This recursive application of

Karatsuba multiplication can be applied till the multiplicands are of 2 bits. Then the

final recursion can be achieved using AND gates. Hence, m being a power of 2 would

be best suited for Karatsuba multiplication and is known as Basic Karatsuba Multiplier.
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3.2 Karatsuba Multipliers in ECC

Since the fields used in ECC have a prime degree, the Basic Karatsuba cannot be

applied for finite field multiplication. There are two ways to use this multiplication

technique for our ECCP:

• Sequential circuit approach, where the output is fed back into the same circuit
at every clock cycle. This approach requires less hardware but at the expense of
consuming more clock cycles.

• Combinational circuit approach, which can produce the output in one clock cycle
at the expense of large area.

Second approach is implemented in this work as we are interested in making a per-

formance optimised ECC processor.

The Simple Karatsuba multiplier[Weimerskirch and Paar (2006)] is similar to basic

Karatsuba multiplier. The m bit multiplicands are divided as shown in Equation 3.1.

Hence, we need three m/2 bit multiplications to generate partial products.

General Karatsuba multiplier[Weimerskirch and Paar (2006)], does follow recursion

but instead of splitting the multiplicands into two terms it does it in more than two.

The proposed multiplier in [Rebeiro (2009)] is a combination of the above two variants,

which I too have implemented. This combined multiplier is known as Hybrid Karatsuba

Multiplier. For, multiplicands with bits sizes < 29, the general Karatsuba algorithm is

applied as it ensures maximum LUT’s utilisation. And for bit sizes greater than 29, sim-

ple Karatsuba is invoked as it makes sure least gate count for higher bi multiplications.

The recursion for 233 bit Hybrid Karatsuba multiplier is as shown below in Fig. 3.2.

Fig. 3.2: Hybrid Karatsuba Multiplier for 233 bits

Rebeiro (2009)
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Algorithms for implementing general Karatsuba and Hybrid Karatsuba are given

below in Algorithm 3.1 ad 3.2 respectively.

Algorithm 3.1: gkmul (General Karatsuba Multiplier)

Input: A and B =⇒ m bits

. Output: C =⇒ (2m − 1) bits

/* Define : Mx → AxBx */

/* Define : M(x,y) → (Ax + Ay)(Bx + By) */

1 begin

2 for i = 0 to m − 2 do

3 Ci = C2m−2−i = 0

4 for j = 0 to [i/2] do

5 if i = 2 j then

6 Ci = Ci + Mj

7 C2m−2−i = C2m−2−i + Mm−1−j

8 else

9 Ci = Ci + Mj + Mi−j + Mj,i−j

10 C2m−2−i = C2m−2−i + Mm−1−j + Mm−1−i+j + Mm−1−j,m−1−i+j

11 end

12 end

13 end

14 Cm−1 = 0

15 for j = 0 to [(m-1)/2] do

16 if m-1 = 2 j then

17 Cm−1 = Cm−1 + Mj

18 else

19 Cm−1 = Cm−1 + Mj + Mm−1−j + M(j,m−1−j)

20 end

21 end

22 end

Mukhopadhyay and Chakraborty (2014)
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Algorithm 3.2: hmul (Hybrid Karatsuba Multiplier)

Input: A and B =⇒ m bits

. Output: C =⇒ (2m − 1) bits

1 begin

2 if m < 29 then

3 return gkmul (A,B,m)

4 else

5 l = [m/2]

6 A ′ = A[m−1,...,l] + A[l−1,...,0]

7 B ′ = B[m−1,...,l] + B[l−1,...,0]

8 Cp1 = hmul (A[l−1,...,0],B[l−1,...,0],l)

9 Cp2 = hmul (A ′,B ′,l)

10 Cp3 = hmul (A[m−1,...,l],B[m−1,...,l],m-l)

11 return (Cp3 < < 2l) + (Cp1 + Cp2 + Cp3) < < l + Cp1

. /* < < indicates left shift */

12 end

13 end

Mukhopadhyay and Chakraborty (2014)
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CHAPTER 4

Finite Field Inversion

In GF(2m), the inverse of any non zero element a is such that a · a−1 = a−1 · a = 1, with

a−1 ∈ GF(2m). In spite of reducing the number of inversions by introducing LD coor-

dinate system, we cannot completely eliminate field inversion operation. Therefore, it

is necessary to design an efficient multiplicative inverse technique. Extended Euclidean

algorithms (EEA) and the Itoh-Tsujii (ITA) are the most widely used algorithms to

compute multiplicative inverse. In this work, Itoh-Tsujii algorithm is implemented as

it is faster compared to EEA, but at the expense of using multiplier which consumes

large area . Since we require finite field multiplier in our ECCP, we don’t need extra

multiplier for computing inversion separately. The same multiplier unit can be used to

compute inversion. Hence, ITA is the best choice.

4.1 Itoh-Tsujii Algorithm

According to Fermat’s little theorem, the inverse of an element a ∈ GF (2m) can be

determined as given in Equation 4.1. This forms the basis for ITA.

a−1 = a2m−2 (4.1)

Implementing a−1 using the rudimentary method necessitates (m−1) squares and (m−2)

multiplications. The number of multiplications need to be reduced as it has the longer

latency. This can be achieved by using addition chains. A sequence of integers (n ∈ N )

can form an addition chain if the following properties are satisfied.

U = (u0 u1 u2 . . . ur).

• uo = 1

• ur = n

• ui = uj + uk , where k ≤ j < i



If j = i − 1 in above condition then the addition chains are known as Brauer chains.

There are many ways to form an addition chain for given n but the one with minimum

length is said to be optimal.

Reusing the notations from [Rodríguez-Henríquez et al. (2007)] for βk(a), Equation 4.1

can be expressed as below.

a−1 = (a2
m−1−1)2

βk(a) = a2
k−1 ∈ GF (2m), k ∈ N

a−1 = [βm−1(a)]
2

βk+j(a) ∈ GF(2m) can be resolved as shown in Equation 4.2. This property along

with addition chain is used in recursive manner to compute multiplicative inverse.

(Note: βk(a) is denoted as βk)

βk+j(a) = (βj)
2kβk = (βk)

2jβj (4.2)

For a ∈GF (2233), the inverse is obtained by squaring β232(a), where β232 (a) = a2232−1.

A Brauer chain for 232 is as considered below.

U1 = ( 1 2 3 6 7 14 28 29 58 116 232 ) (4.3)

β232(a) computation is shown in Table 4.1. It requires a total of 231 squarings and 10

multiplications.

In general for GF(2m), with addition chain of length l, we need a total of m−1 squar-

ings and l−1 multiplications. The addition chain length,l is related to m as l ≤ [log2m].

As a result, the ITA requires a substantially smaller number of multiplications than the

conventional technique.
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Table 4.1: Generic ITA for GF (2233)

βui (a) βuj+uk
(a) Exponentiation

1 β1(a) a

2 β2(a) β1+1(a) (β1)
21β1 = a2

2−1

3 β3(a) β2+1(a) (β2)
21β1 = a2

3−1

4 β6(a) β3+3(a) (β3)
23β3 = a2

6−1

5 β7(a) β6+1(a) (β6)
21β1 = a2

7−1

6 β14(a) β7+7(a) (β7)
27β7 = a2

14−1

7 β28(a) β14+14(a) (β14)
214β14 = a2

28−1

8 β29(a) β28+1(a) (β28)
21β1 = a2

29−1

9 β58(a) β29+29(a) (β29)
229β29 = a2

58−1

10 β116(a) β58+58(a) (β58)
258β58 = a2

116−1

11 β232(a) β116+116(a) (β116)
2116β116 = a2

232−1

4.2 Quad Itoh-Tsujii Algorithm

The generic ITA discussed earlier uses squarer circuits for computation, but we can also

use any 2n circuit in that place. In general, for any a ∈ GF(2m), k ∈ N, we define

αk(a) = a2
nk−1

The following properties are used to compute the inverse.

• For any element a ∈ GF(2m), αk1(a) = a2
nk1−1 and αk2(a) = a2

nk2−1 then

αk1+k2(a) = (αk1(a))
2n

k2

αk2(a)

where k1, k2 and n ∈ N

• For any element a ∈ GF(2m), its inverse is given by

a−1 =

{
[αm−1

n
(a)]2 when n|(m− 1)

[(αq(a))
2rβr(a)]

2 when n - (m− 1)

where nq + r = m− 1 and n, q and r ∈ N.
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In Quad ITA, we set n = 2, such that αk(a) = a4
k−1. Now to compute the inverse of

any element a ∈ GF(2233), we need to compute [α 233−1
2

(a)]2 = [α116(a)]
2 (by property

mentioned above).

The computation of [α116(a)] is given in Table 4.2. Squaring this would result in the

final inverse. The algorithm to compute this is also given below in Algorithm 4.1.

Table 4.2: Quad-Itoh Tsujii for GF (2233)

αui (a) αuj+uk
(a) Exponentiation

1 α1(a) a3

2 α2(a) α1+1(a) (α1)
41α1 = a4

2−1

3 α3(a) α2+1(a) (α2)
41α1 = a4

3−1

4 α6(a) α3+3(a) (α3)
43α3 = a4

6−1

5 α7(a) α6+1(a) (α6)
41α1 = a4

7−1

6 α14(a) α7+7(a) (α7)
47α7 = a4

14−1

7 α28(a) α14+14(a) (α14)
414 α14 = a428−1

8 α29(a) α28+1(a) (α28)
41α1 = a4

29−1

9 α58(a) α29+29(a) (α29)
429α29 = a4

58−1

10 α116(a) α58+58(a) (α58)
458α58 = a4

116−1

In general, for l length addition chain Quad-ITA would require (l−1) multiplications

and 2 multiplications for precomputation. Therefore, a total of l+1 multiplications and

[m−1
2
− 1] quad operations are required to compute inverse.
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Algorithm 4.1: qitmia (Quad-ITA)

Input: The element a ∈ GF(2m) and the Brauer chain

. U = {1 , 2 , . . . , m−1
2

, m-1 }

. Output: The multiplicative inverse a−1

1 begin

2 l = length (U)

3 a2 = hmul(a , a); /* hmul : Hybrid Karatsuba multiplier */

4 αu1 = a3 = a2 . a

5 foreach ui ∈ U (2 ≤ i ≤ l-1) do

6 p = ui−1

7 q = ui - ui−1

8 αui
= hmul (α4q

p ,αq)

9 end

10 α−1 = hmul (αul−1
, αul−1

)

11 end

Mukhopadhyay and Chakraborty (2014)

4.3 Quad Block

The Hardware architecture for Quad block is as shown in Fig. 4.1. The quad circuits

are cascaded and the individual quad circuit outputs are connected to the multiplexer

inputs. The qsel decides which of the 14 powers gets selected as output. The number of

cascades id decided such that the delay of all the cascades can be at max equal to that

of Karatsuba multiplier.

Let (Delay)q be the delay of one quad circuit and let us consider us number of such

cascades. Let (Delay)m be the multiplier delay. Then,

(Delay)q.us ≤ (Delay)m

.
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Fig. 4.1: Quad block

Rebeiro (2009)

Each quad circuit is as simpler as squarer circuit discussed before. Here, the input

to is spread out by inserting three zeros in between adjacent bits which would result in

the output /∈ GF (2233).

Therefore, to get the result in GF (2233) modular reduction needs to be performed on

the result obtained after inserting zeros.
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CHAPTER 5

Elliptic Curve Crypto Processor

The basis for any cryptography application involving elliptic curves is the Scalar/-

Point multiplication. So, the main purpose of this work is to design a hardware which

computes that. The elliptic curve is chosen from the National Institute of Standards and

Technology (1994) standard curves over GF(2233).

y2 + xy = x3 + ax2 + b (5.1)

The same can be represented in LD coordinate system as follows.

Y 2 +XY Z = X3 + aX2Z2 + bZ4 (5.2)

The Algorithm 2.1 discussed earlier is implemented in this Processor using the primitive

operations such as point doubling, point addition.

Fig. 5.1: Elliptic Curve Crypto Processor

Rebeiro (2009)



The block diagram of the processor is shown in Fig. 5.1. It takes key, k and base-

point, P as the inputs and produces kP as the output after performing scalar multi-

plication. The elliptic curve constants such as x and y coordinates of basepoint, P and

constant, b are stored in ROM. At every clock cycle, control signals are generated which

determine the following:

• Data that should be fed to Arithmetic unit (AU).

• Computation that should be performed by the AU on the data it received.

• AU results to be stored in which registers.

5.1 Blocks of Cryptoprocessor

5.1.1 Register Bank

Fig. 5.2: Register File for Elliptic Curve Crypto Processor

The register bank can be divided into three banks, bank A, bank B, and bank C as shown

in above Fig. 5.2. Since, this processor is designed to implement ECC algorithm for
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233 bits, all the eight registers are of 233 bits size.

Reading: Each register is a dual ported which can facilitate asynchronous read. The

values on out1 and out2 correspond to the addresses on ad1 and ad2.

Writing: A value din can be written into register only if we signal is high. The address

line ad1 decides which register gets written.

At every clock cycle, this register module gives out five values A0, A1, A2, A3, Qin

depending on the select lines of out multiplexers. It also takes three inputs from Arith-

metic unit which are then passed on for updation of registers based on select lines of

input multiplexers.

Table 5.1 describes the role of each register.

Table 5.1: Role of Registers

Register Description

RA1 1. Initially to store Px.

2. Stores the x coordinate of the result.

3. Intermediate result storage.

RA2 Stores Px

RB1 1. Initially to store Py.

2. Stores the y coordinate of the result.

3. Intermediate result storage.

RB2 Stores Py

RB3 Intermediate result storage.

RB4 Stores the curve constant b.

RC1 1. Initialised to 1.

2. Stores z coordinate of the projective result.

3. Intermediate result storage.

RC2 Intermediate result storage.
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5.1.2 Arithmetic Unit

It is capable of performing finite field operations discussed in previous chapters. It

comprises of the following blocks:

• Squarer

• Adder: which performs bitwise XOR operation

• Hybrid Karatsuba multiplier

• Quad block: comprising of 14 cascade quad circuits as shown in Fig. 4.1.

The quad block is used only during the final conversion of result. The AU takes five

inputs from the register bank and produce three results namely, C0, C1 and Qout.

Fig 5.3 shows the AU structure. Select lines of mux A and B, decide which data should

be fed into Karatsuba multiplier. And the select lines of mux C and D, decide which

data is output.

Fig. 5.3: Arithmetic Unit
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5.1.3 Control Unit

The control unit generates 33 bits control word(c) every clock cycle depending on the

operation to be performed. The data flow is controlled by these control words, which

also determine the operations that are done on the data. The Arithmetic unit is controlled

by bits c[13:0] and the remaining bits control the reading and writing of register bank.

5.2 Implementing Point Arithmetic

5.2.1 Point Doubling

As mentioned in chapter 2, the doubling operation is performed in projective represen-

tation. The Equation 5.3 are implemented here. We need a total of five multiplications

but since the value of a is 1 in our chosen elliptic curve, we need only four multiplica-

tions. As we have only one multiplier in our design and to ensure its high utilisation

efficiency, we need to schedule a multiplication operation every clock cycle. Hence, we

require atleast four clock cycles to finish the doubling operation. The Algorithm 5.1

depicts this implementation.

Z3 = X2
1 .Z

2
1

X3 = X4
1 + b.Z4

1

Y3 = b.Z4
1 .Z3 +X3.(a.Z3 + Y 2

1 + b.Z4
1)

(5.3)

Algorithm 5.1: Implementation of Point Doubling

Input: LD Point P(X1 , Y1 , Z1) =⇒ (RA1 , RB1 , RC1)

. The curve constant b =⇒ RB4.

. Output: LD Point 2P(X3 , Y3 , Z3) =⇒ (RA1 , RB1 , RC1).

1 RB3 = RB3 . RC4
1

2 RC1 = RA2
1 . RC2

1

3 RA1 = RA4
1 . RB3

4 RB1 = RB3 . RC1 + RA1 . (RC1 + RB2
1 + RB3)
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The operations mentioned in above algorithm can be parallelised as shown in Ta-

ble 5.2. Since, AU is capable of giving out three outputs, one of these can give out

multiplication result and the others can give out quad or squarer or adder results.

Table 5.2: Scheduling of Point Doubling operations

Clock Operation 1 (C0) Operation 2 (C1)

1 RC1 = RA2
1.RC

2
1 RB3 = RC4

1

2 RB3 = RB3.RB4

3 RC2 = (RA4
1 +RB3).(RC1 +RB2

1 +RB3) RA1 = (RA4
1 +RB3)

4 RB1 = RB3.RC1 +RC2

5.2.2 Point Addition

The following Equation 5.4 are implemented in ECCP. The equations involve point ad-

dition of two points, among which one is in affine coordinate and the other in projective

coordinate system.

A = y2.Z1
2 + Y1

B = x2.Z1 +X1

C = Z1.B

D = B2.(C + a.Z1
2)

Z3 = C2

E = A.C

X3 = A2 +D + E

F = X3 + x2.Z3

G = (x2 + y2).Z3
2

Y3 = (E + Z3).F +G

(5.4)
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Algorithm 5.2: Implementation of Point Addition

Input: LD point P(X1, Y1, Z1) =⇒ (RA1, RB1, RC1).

. Affine point Q(x2, y2) =⇒ (RA2, RB2).

Output: LD Point P+Q=(X3, Y3, Z3) =⇒ (RA1, RB1, RC1).

1 RB1 = RB2.RC1
2 +RB1

2 RA1 = RA2.RC1 +RA1

3 RB3 = RC1.RA1

4 RA1 = RA1
2.(RB3 +RC1

2)

5 RC1 = RB3
2

6 RC2 = RB1.RB3

7 RA1 = RB1
2 +RA1 +RC2

8 RB3 = RA1 +RA2.RC1
2

9 RB1 = (RA2 +RB2).RC1
2

10 RB1 = (RC2 +RC1).RB3 +RB1

The Algorithm 5.2 depicts the implementation of point addition. The total number

of multiplications involved according to Equation 5.4 are nine, but since a is 1 we need

only eight multiplication operations. And these are scheduled in eight clock cycles.

Similar to point doubling, operations in addition algorithm can also be parallelised as

shown in Table 5.3.
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Table 5.3: Parallel LD Point Additionon the ECCP

Clock Operation 1 (C0) Operation 2 (C1)

1 RB1 = RB2.RC1
2 +RB1 -

2 RA1 = RA2.RC1 +RA1 -

3 RB3 = RC1.RA1 -

4 RA1 = RA1
2.(RB3 +RC1

2) -

5 RC2 = RB1.RB3 RA1 = RB1
2 +RA1 +RB1.RB3

6 RC1 = RB3
2 RB3 = RA1 +RA2.RB3

2

7 RB1 = (RA2 +RB2).RC1
2 -

8 RB1 = (RC2 +RC1).RB3 +RB1 -

5.3 Finite State Machine

The ECCP involves the following steps:

• Initialisation: In this state, the curve constants such as x & y coordinates of base
point and constant b are stored in registers. This operation takes three clock cycles
depicted by three different states. Also, the position of leading ’1’ in the scalar
key is found out.

• Point Double: We need four clock cycles for this operation, which are shown as
four states in Fig. 5.4.

• Point Addition: This operation require eight clock cycles for computation and
hence shown using eight different states.

• Inversion: Final scalar multiplication result is obtained in LD coordinates and to
get back the result in affine coordinate we need this operation. This involves 24
clock cycles in total.

Once the initialisation is done, the scalar multiplication algorithm starts with state

D1. Once the state D4 is reached, the current bit of key, ki is checked.

If its 1 then the next state would be A1 else D1. This flow is continued until the last bit

of key is reached. If last bit is 0 then after D4 the next state would be inversion I1. If

the last bit is 1 after completing the addition the next state would be I1.
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Fig. 5.4: FSM for ECCP

Rebeiro (2009)

Consider the following example to know how to compute the number of clock cycles

required.

Let scalar key, k = 8’b00101001.

The leading ’1’ is found at position i = 5. Hence the algorithm starts from i = 4. There

are five bits after the leading one. And for each bit doubling is performed. There are

only two 1’s so the addition states are traversed twice. 3 clock cycles for initialisation

and 24 clock cycles at the end for inversion.

ClockCycles = 3 + 4(5) + 8(2) + 24

= 63
(5.5)

The register module outputs and inputs at each state of FSM are given in Table 5.4.

The corresponding control words generated for these states are given in Table 5.5.

31



Table 5.4: Register Module Input and Outputs,[Mukhopadhyay and Chakraborty
(2014)]

State A0 A1 A2 A3 Qin Register Module Inputs
Init1 - - - - - C0:RA1=Px;C1:RB1=Py;RC1 = 1
Init2 - - - - - C0:RA2=Px;C1:RB2=Py

Init3 - - - - - C1:RB4 = b
D1 RA1 RC1 - - - C0:RC1=RA2

1 . RC2
1 ;C1:RB3=RC4

1

D2 - RB4 RB3 - - C0: RB3 = RB3.RB4

D3 RA1 RB3 RB1 RC1 - C0:RC2= (RA4
1 + RB3).(RC1 + RB2

1 + RB3)
C1: RA1 = (RA4

1 + RB3)
D4 RB3 RC1 - RC2 - C0: RB1 = RB3 . RC1 + RC2

A1 RB2 RC1 RB1 - - C0:RB1 = RB2.RC1
2+RB1

A2 RA1 RC1 RA2 - - C0:RA1 = RA2.RC1 +RA1

A3 RA1 - - RC1 - C0:RB3 = RC1.RA1

A4 RA1 RC1 RB3 - - C0:RA1 = RA1
2.(RB3 +RC1

2)
A5 RA1 RB3 RB1 - - C0:RC2 = RB1.RB3

C1:RA1 = RB1
2 +RA1 +RB1.RB3

A6 RA1 RB3 RA2 - - C0:RC1 = RB3
2;C1:RB3 = RA1 +RA2.RB3

2

A7 RB2 RC1 RA2 - - C0:RB1 = (RA2 +RB2).RC1
2

A8 RB3 RC1 RB1 RC2 - C0:RB1 = (RC2 +RC1).RB3 +RB1

I1 - RC1 - - - C0:RC1 = RC1
2.RC1

I2 - RC1 - - - C0:RB3 = RC1
4 . RC1

I3 - RC1 RB3 - - C0:RB3 = RB3
4 . RC1

I4 - - - - RB3 Qout:RC2=RB3
3

I5 - RC2 RB3 - - C0:RB3=RC2.RB3

I6 - RC1 RB3 - - C0:RB3=RB3
4.RC1

I7 - - - - RB3 Qout:RC2=RB3
7

I8 - RC2 RB3 - - C0:RB3=RC2.RB3

I9 - - - - RB3 Qout:RC2=RB3
14

I10 - RC2 RB3 - - C0:RB3=RC2.RB3

I11 - RC1 RB3 - - C0:RB3=RB3
4.RC1

I12 - - - - RB3 Qout:RC2=RB3
14

I13 - - - - RC2 Qout:RC2 = RC2
14

I14 - RC2 RB3 - - C0:RB3=RC2
4.RB3

I15 - - - - RB3 Qout:RC2=RB3
14

I16 - - - - RC2 Qout:RC2 = RC2
14

I17 - - - - RC2 Qout:RC2 = RC2
14

I18 - - - - RC2 Qout:RC2 = RC2
14

I19 - - - - RC2 Qout:RC2 = RC2
2

I20 - RC2 RB3 - - C0:RB3=RC2.RB3

I21 - RB3 - - - C0:RC1=RB3
2

I22 RA1 RC1 - - - C0:RA1=RA1.RC1

I23 RB1 RC1 - - - C0:RB1=RB1.RC1
2
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Table 5.5: Control Words,[Mukhopadhyay and Chakraborty (2014)]

State Regfile MUXIN Regfile MUXOUT Regbank signals Quadblock AU Mux C and D AU MUX A and B
[c32:c29] [c28:c25] [c24:c14] [c13:c10] [c9:c6] [c5:c0]

Init1 1010 00xx 1x01xx001x0 xxxx 0000 000000
Init2 1010 00xx 0xx1xx011x1 xxxx xxxx xxxxxx
Init3 1x10 xxxx 0xx1xx110xx xxxx xxxx xxxxxx

D1 001x 00x0 1x01xx100x0 xxxx 1000 001001
D2 000x x10x 0xx111100xx xxxx xx00 000010
D3 00x1 0100 101010001x0 xxxx 1100 100100
D4 000x 00x1 010110000xx xxxx xx11 000000

A1 000x 0001 0x0101000xx xxxx xx01 001000
A2 00x1 0010 0x00xx00110 xxxx 00xx 000010
A3 00xx 00x0 00x1xx100x0 xxxx xx00 101000
A4 00x0 0000 0100xx101x0 xxxx xx00 010001
A5 00x1 0100 1x1010001x0 xxxx 0100 000010
A6 001x 0100 1x011010010 xxxx 0010 001010
A7 000x 0011 0x01010001x xxxx xx00 001011
A8 000x 0001 010110000xx xxxx xx01 011000

I1 00xx 00xx 1x0xxxxx0xx xxxx xx00 001101
I2 000x 000x 0x01xx100xx xxxx xx00 000110
I3 000x 000x xx01xx100xx xxxx xx00 110101
I4 01xx 000x 1x10xx100xx 0011 xxxx xxxxxx
I5 000x 000x 0x11xx100xx xxxx xx00 000010
I6 000x 000x 0x01xx100xx xxxx xx00 110101
I7 01xx 000x 1x10xx100xx 0111 xxxx xxxxxx
I8 000x 00xx 0x11xx100xx xxxx xx00 000010
I9 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx

I10 000x 00xx 0x11xx100xx xxxx xx00 000010
I11 000x 000x 0x01xx100xx xxxx xx00 110101
I12 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx
I13 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I14 000x 000x 0x11xx100xx xxxx xx00 111010
I15 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx
I16 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I17 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I18 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I19 01xx 100x 1x10xxxx0xx 0010 xxxx xxxxxx
I20 000x 000x 0x11xx100xx xxxx xx00 000010
I21 000x 010x 1x0010xx0xx xxxx xx10 xxxxxx
I22 00x0 00x0 0x00xxxx1x0 xxxx xx00 000000
I23 000x 00x1 0x0100xx0xx xxxx xx00 001000
I24 000x 0000 0xx0xx000x0 xxxx xxxx xxxxxx

33



5.4 Results

The Elliptic Curve chosen for the implementation is given below along with base-point

and constants.National Institute of Standards and Technology (1994)

y2 + xy = x3 + ax2 + b

where,

x = 233’h0fac9dfcbac8313bb2139f1bb755fef65bc391f8b36f8f8eb7371fd558b

y = 233’h1006a08a41903350678e58528bebf8a0beff867a7ca36716f7e01f81052

a = 1

b = 233’h066647ede6c332c7f8c0923bb58213b333b20e9ce4281fe115f7d8f90ad

The design was simulated using Bluespec Compiler and synthesised using Xilinx

Vivado. The results for both are reported subsequently.

5.4.1 BSV Simulation results

The design was implemented using BSV. The simulation results for key values 2 and

2233 − 1 are given below in Fig 5.5 and Fig 5.6 respectively.

Fig. 5.5: Simulation result for key = 2
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Fig. 5.6: Simulation result for key = 2233 − 1

We can see from the above simulation results that the number of clock cycles re-

quired to compute the scalar multiplication varies with the key value. We can conclude

that this design is prone to timing attacks. This issue is addressed in next chapter and

architecture is modified accordingly.

5.5 Synthesis Report

The implemented BSV code was converted to verilog and then synthesised using Xilinx

Vivado software. The resources utilised by the Elliptic curve crypto processor are as

shown below in Fig. 5.7.

Overall, 22296 LUTs and 1713 Flip-flops are required for this design.

Fig. 5.7: ECCP resource utilisation
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The resources utilised by the individual blocks within this processor are discussed

in following sections.

5.5.1 Arithmetic Unit

The designed AU is a combinational circuit capable of giving the output within a clock

cycle. However, the clock cycle is dictated by the Hybrid Karatsuba Multiplier as it

has the longest latency. The overall AU consumes 19444 LUTs for its operation. The

synthesis report is shown in Fig. 5.8.

The resources utilised by constituents of AU are given below:

• Hybrid Karatsuba Multiplier consumes a total of 12804 LUTs. Its synthesis re-
port is shown in Fig. 5.9.

• Quad block which comprises of 14 cascade quad circuits require 3505 LUTs as
shown in Fig. 5.10.

• Squarer block require 79 LUTs for computation as shown in Fig. 5.11.

Fig. 5.8: AU resource utilisation
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Fig. 5.9: Hybrid Karatsuba Multiplier resource utilisation

Fig. 5.10: Quad block resource utilisation
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Fig. 5.11: Squarer circuit resource utilisation

5.5.2 Register Module

Register module is a sequential block which has storage elements. It requires 2340

LUTs and 1864 FFs as shown in Fig. 5.12.

Fig. 5.12: Register module resource utilisation
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CHAPTER 6

Side Channel Attack Resistant ECCP

Side channel attack on systems can be of many types. In this work, attack based on sim-

ple power analysis(SPA)/timing is analysed and rectified. To make our design resistant

to this attack, the architecture is tweaked to result in a new version of existing processor

called as SPA resistant ECCP(SR-ECCP).

6.1 Timing analysis

From the FSM discussed in last chapter, we can see that the changing of states depend

on the key bit(0 or 1), which makes the design prone to attacks. To demonstrate this,

lets consider the example for two different key values.

1. key, k1=8’b00101001 Double states are traversed five times while addition states

twice (since there are two 1’s after leading MSB 1). Hence the number of clock cycles

required for this key is given below.

ClockCycles = 3 + 4(5) + 8(2) + 24

= 63
(6.1)

2. key, k2=8’b00111101 Double states are traversed five times while addition states

four times (since there are four 1’s after leading MSB 1). Hence the number of clock

cycles required for this key is given below.

ClockCycles = 3 + 4(5) + 8(4) + 24

= 79
(6.2)

Therefore, we can see that in spite of the key lengths being of same size, the number

of clock cycles required vary. Hence, this design is prone to timing attacks or even in

terms of power consumption, as more computation is involved for ki = 1 than ki = 0.



6.2 Solution for timing attack

To overcome the timing attacks, we need to make the FSM free from key bit depen-

dency. This can be done by performing addition for every bit as doubling is done and

considering the double or addition result based on the value of bit in process. For this

we need to have an intermediate registers to store double result. This solution is shown

pictorially in Fig 6.1.

Fig. 6.1: Always Add Method to Prevent SPA

Rebeiro (2009)

The above proposed solution works only if the leading MSB ’1’ is at the same

position. Since the left to right algorithm for scalar multiplication starts after the leading

MSB ’1’. To illustrate this problem consider the following example.

1. key, k1=8’b01001001 Here the leading 1 is fount at 6th bit position. So the double

and addition states are traversed six times. Hence the number of clock cycles required

for this key is given below.

ClockCycles = 3 + 4(6) + 8(6) + 24

= 99
(6.3)

2. key, k1=8’b00101001 Here the leading 1 is fount at 5th bit position. So the double

and addition states are traversed five times. Hence the number of clock cycles required
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for this key is given below.

ClockCycles = 3 + 4(5) + 8(5) + 24

= 87
(6.4)

We can see from the above example that just removing bit dependency from FSM

doesn’t make the design side channel resistant.

To overcome this we require dummy double and addition operations for the bits pre-

ceding the leading MSB ’1’. Only initialisation of the register bank takes place when

the leading 1 is being processed . Therefore, for key length l, l − 1 times double and

addition takes place. Thus ensuring same clock cycle requirement for all key of same

size. For 8 bit key sizes,

ClockCycles = 3 + 4(7) + 8(7) + 24

= 111
(6.5)

irrespective of the key value the 111 clock cycles are required.

6.3 Modified ECCP

The above proposed solution is implemented in this modified version. To store the

intermediate double result, bank D is added to the Register module. These registers

store double result for every bit. When the current bit is 0, the next cycle would require

the values stored in bank D, else the addition result from bank A, B and C are read.

The modified bit independent FSM is shown in Fig. 6.2. Dummy double and additions

are performed unless a leading ’1’ is detected. Once the leading ’1’ is detected, the

state sequence is changed to Init1....Init3 for register initialisation and again back to

D1. Once all bits are processed, inversion starts with the values stored in bank A, B and

C if the last bit is 1 else from the values stored in bank D.
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Fig. 6.2: Modified FSM

Rebeiro (2009)

The modified register module is shown in Fig. 6.3 . Additional muxes are required

to read and write the appropriate values into registers.

Fig. 6.3: Modified Register Module
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Since additional muxes are introduced, the control words which were of 33 bits

earlier, would now be of 43 bits size. The extra 10 MSB bits correspond to the additional

hardware. Control words vary for each state depending on the preceding bit. If the

preceding bit is 1, then we have to read from bank A, B and C. If the preceding bit is 0,

then we have to read from bank D. These control words are given in Table 6.1 and 6.2.

Table 6.1: Control Words when the preceding key bit is 1

State Additional lines Regfile MUXIN Regfile MUXOUT Regbank signals Quadblock AU Mux C and D AU MUX A and B
[c42:c33] [c32:c29] [c28:c25] [c24:c14] [c13:c10] [c9:c6] [c5:c0]

Init1 xxx001xx00 1010 00xx 1x01xx001x0 xxxx 0000 000000
Init2 xxx011xx01 1010 00xx 0xx1xx011x1 xxxx xxxx xxxxxx
Init3 xxx101xx10 1x10 xxxx 0xx1xx110xx xxxx xxxx xxxxxx

D1 0x0101xx10 001x 0010 1x01xx100x0 xxxx 1000 001001
D2 00xxx0xxxx 000x x10x 0xx111100xx xxxx xx00 000010
D3 000001xx00 00x1 0100 101010001x0 xxxx 1100 100100
D4 000011xx01 000x 00x1 010110000xx xxxx xx11 000000

A1 xxxxxxxxxx 000x 0001 0x0101000xx xxxx xx01 001000
A2 xxxxxxxxxx 00x1 0010 0x00xx00110 xxxx 00xx 000010
A3 xxxxxxxxxx 00xx 00x0 00x1xx100x0 xxxx xx00 101000
A4 xxxxxxxxxx 00x0 0000 0100xx101x0 xxxx xx00 010001
A5 xxxxxxxxxx 00x1 0100 1x1010001x0 xxxx 0100 000010
A6 xxxxxxxxxx 001x 0100 1x011010010 xxxx 0010 001010
A7 xxxxxxxxxx 000x 0011 0x01010001x xxxx xx00 001011
A8 xxxxxxxxxx 000x 0001 010110000xx xxxx xx01 011000

I1 000xxxxxxx 00xx 00xx 1x0xxxxx0xx xxxx xx00 001101
I2 000xx0xxxx 000x 000x 0x01xx100xx xxxx xx00 000110
I3 000xx0xxxx 000x 000x xx01xx100xx xxxx xx00 110101
I4 000xx0xxxx 01xx 000x 1x10xx100xx 0011 xxxx xxxxxx
I5 000xx0xxxx 000x 000x 0x11xx100xx xxxx xx00 000010
I6 000xx0xxxx 000x 000x 0x01xx100xx xxxx xx00 110101
I7 000xx0xxxx 01xx 000x 1x10xx100xx 0111 xxxx xxxxxx
I8 000xx0xxxx 000x 00xx 0x11xx100xx xxxx xx00 000010
I9 000xx0xxxx 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx

I10 000xx0xxxx 000x 00xx 0x11xx100xx xxxx xx00 000010
I11 000xx0xxxx 000x 000x 0x01xx100xx xxxx xx00 110101
I12 000xx0xxxx 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx
I13 000xx0xxxx 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I14 000xx0xxxx 000x 000x 0x11xx100xx xxxx xx00 111010
I15 000xx0xxxx 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx
I16 000xx0xxxx 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I17 000xx0xxxx 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I18 000xx0xxxx 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I19 000xx0xxxx 01xx 100x 1x10xxxx0xx 0010 xxxx xxxxxx
I20 000xx0xxxx 000x 000x 0x11xx100xx xxxx xx00 000010
I21 000xx0xxxx 000x 010x 1x0010xx0xx xxxx xx10 xxxxxx
I22 000xx0xxxx 00x0 00x0 0x00xxxx1x0 xxxx xx00 000000
I23 000xx0xxxx 000x 00x1 0x0100xx0xx xxxx xx00 001000
I24 000xx0xxxx 000x 0000 0xx0xx000x0 xxxx xxxx xxxxxx
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Table 6.2: Control Words when the preceding key bit is 0

State Additional lines Regfile MUXIN Regfile MUXOUT Regbank signals Quadblock AU Mux C and D AU MUX A and B
[c42:c33] [c32:c29] [c28:c25] [c24:c14] [c13:c10] [c9:c6] [c5:c0]

Init1 xxx001xx00 1010 00xx 1x01xx001x0 xxxx 0000 000000
Init2 xxx011xx01 1010 00xx 0xx1xx011x1 xxxx xxxx xxxxxx
Init3 xxx101xx10 1x10 xxxx 0xx1xx110xx xxxx xxxx xxxxxx

D1 1x11010010 001x 0010 1x01xx100x0 xxxx 1000 001001
D2 000xx0xxxx 000x x10x 0xx111100xx xxxx xx00 000010
D3 0110010100 00x1 0100 101010001x0 xxxx 1100 100100
D4 000011xx01 000x 00x1 010110000xx xxxx xx11 000000

A1 xxxxxxxxxx 000x 0001 0x0101000xx xxxx xx01 001000
A2 xxxxxxxxxx 00x1 0010 0x00xx00110 xxxx 00xx 000010
A3 xxxxxxxxxx 00xx 00x0 00x1xx100x0 xxxx xx00 101000
A4 xxxxxxxxxx 00x0 0000 0100xx101x0 xxxx xx00 010001
A5 xxxxxxxxxx 00x1 0100 1x1010001x0 xxxx 0100 000010
A6 xxxxxxxxxx 001x 0100 1x011010010 xxxx 0010 001010
A7 xxxxxxxxxx 000x 0011 0x01010001x xxxx xx00 001011
A8 xxxxxxxxxx 000x 0001 010110000xx xxxx xx01 011000

I1 100xx00010 00xx 00xx 1x0xxxxx0xx xxxx xx00 001101
I2 000xx0xxxx 000x 000x 0x01xx100xx xxxx xx00 000110
I3 000xx0xxxx 000x 000x xx01xx100xx xxxx xx00 110101
I4 000xx0xxxx 01xx 000x 1x10xx100xx 0011 xxxx xxxxxx
I5 000xx0xxxx 000x 000x 0x11xx100xx xxxx xx00 000010
I6 000xx0xxxx 000x 000x 0x01xx100xx xxxx xx00 110101
I7 000xx0xxxx 01xx 000x 1x10xx100xx 0111 xxxx xxxxxx
I8 000xx0xxxx 000x 00xx 0x11xx100xx xxxx xx00 000010
I9 000xx0xxxx 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx

I10 000xx0xxxx 000x 00xx 0x11xx100xx xxxx xx00 000010
I11 000xx0xxxx 000x 000x 0x01xx100xx xxxx xx00 110101
I12 000xx0xxxx 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx
I13 000xx0xxxx 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I14 000xx0xxxx 000x 000x 0x11xx100xx xxxx xx00 111010
I15 000xx0xxxx 01xx 000x 1x10xx100xx 1110 xxxx xxxxxx
I16 000xx0xxxx 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I17 000xx0xxxx 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I18 000xx0xxxx 01xx 100x 1x10xxxx0xx 1110 xxxx xxxxxx
I19 000xx0xxxx 01xx 100x 1x10xxxx0xx 0010 xxxx xxxxxx
I20 000xx0xxxx 000x 000x 0x11xx100xx xxxx xx00 000010
I21 000xx0xxxx 000x 010x 1x0010xx0xx xxxx xx10 xxxxxx
I22 001xx000xx 00x0 00x0 0x00xxxx1x0 xxxx xx00 000000
I23 001xx00100 000x 00x1 0x0100xx0xx xxxx xx00 001000
I24 000xx0xxxx 000x 0000 0xx0xx000x0 xxxx xxxx xxxxxx
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6.4 Results

6.4.1 BSV Simulation results

The design was implemented using BSV. The simulation results for key values 2 and

2233 − 1 are given below in Fig 6.4 and Fig 6.5 respectively.

Fig. 6.4: Simulation result for key = 2

Fig. 6.5: Simulation result for key = 2233 − 1

We can see from the above simulation results that irrespective of key value, the

number of clock cycles required for scalar multiplication are same.

6.4.2 Synthesis Report

In SR-ECCP, the Register module was modified to accommodate bank D for storing

doubling operation result for every key bit iteration. So, extra hardware and control

lines were introduced to take care of this. The AU and its sub-modules are not modified,
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hence the resource utilisation of those remain the same as given in section 5.5.1.

This modified register module require 3980 LUTs and 2563 FFs as shown in Fig. 6.6.

Fig. 6.6: Modified Register Module resource utilisation

Overall, the side channel resistant version require 24417 LUTs and 2662 FFs. The

synthesis report is given below in Fig. 6.7.

Fig. 6.7: SR-ECCP resource utilisation
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