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ABSTRACT

Keywords: FPGA: Field Programmable Gate Array, IOT: Internet Of Things.

This is the age of Digital Revolution. Today devices are not only connected by wires.

They are connected wirelessly forming a network through the use of internet which

can otherwise be called as Internet of Things. Internet of Things (IOT) is diffused so

much in the fields smart home, transportation, medical and health care, agriculture,

energy management, environmental monitoring, military applications etc. which affect

our daily lives in one or the other way. As these devices are collecting, analysing

our data, they are prone to various types of attacks. In brief many of the devices in

Internet of Things are depended on peer to peer authentication where the information

is stored in non-volatile memories which becomes the vulnerable spot for attacks. This

lead to usage of a new primitive i.e. a PUF which generates and stores secret keys to

authenticate a device. A PUF is a device where given a challenge as input produces

a response as a output which is unique to that particular device. This work explains

various types of PUFs, parameters to analyse PUFs and it mainly deals with Arbiter

PUF: working, implementation on FPGA.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 INTRODUCTION:

Now a days, smart devices has grown to the point that they are profoundly embedded

in people’s lives. These smart devices are connected by building an Internet of Things

(IoT) network [Ashton et al. (2009)]. As smart devices making our daily lives effort-

less, there lies so many challenges such as efficiency, power consumption, performance,

security etc. Security of the smart devices is the most important as they are exposed to

API (Application Programming Interface) attacks, viruses, malware easily and are hard

to protect. Thus hardware security is of prime importance today. Smart devices in-

teract with each other by peer to peer identification and authentication. This is done

by storing secrets in non-volatile memory (NVM). Storing secrets in NVM works well

only in secured environments. Malicious parties use the stored information in NVM for

identity spoofing. As a result, physically unclonable function (PUF) was created. PUF

is a device that, when given a challenge, generates a response that is unique to that de-

vice as an output. They are primitives which were introduced in [Pappu et al. (2002a)],

extracts unique information from inbuilt variations like load capacitance, MOS doping

present in physical properties of the device or a chip. Though the layout masks are

same, the delay between ICs are unique because of the manufacturing process varia-

tions that incurred to them. They are both secured from malicious attacks and also are

cost-effective. PUFs can also be used to safeguard intellectual property (IP), activate

remote services, and store secret keys [Guajardo et al. (2008)]. Silicon PUFs [Gassend

et al. (2002a)] works by exploiting the intrinsic delay that are formed due to imperfec-

tions in ASICs and FPGAs during fabrication. This helps PUF to generate secret keys.

Thus we use PUF for authenticating devices and fingerprinting instead of storing se-

crets in NVM. There are so many different types of PUFS like RO PUF, Butterfly PUF,

Arbiter PUF, Glitch PUF, SRAM PUF which are either enhanced version of previous



PUFs or one of the many ways to generate challenge response pairs i.e. CRPs, and one

of the many classifications of PUFs like PUFs that are based on storage and PUFs that

are based on delay and sub classes like Strong PUFs and weak PUFs. For example,

Arbiter PUF which is a strong PUF was proposed which uses the delays that are caused

by the imperfections in identically laid-out delay paths [Lim et al. (2005)]. One more

differentiation that can be used to distinguish PUFs is based on amount of CRPs. They

are differentiated as strong PUFs and weak PUFs. With increase in challenge bit size,

the amount of CRPs of the weak PUF increases linearly and in a strong PUF it increases

in the power of 2. For example in a 128 bit arbiter PUF the maximum number of CRPs

that are possible is 2128. The generated output of the PUF which is called as response

should have low intra hamming distance and high inter hamming distance for success-

ful identification and authentication. To store this we need a large database of memory.

Previously this used to be done by using client-server based model where client used

to be an instantiation of PUF and server used to store the CRP table, that way authen-

tication use to happen among devices. In the later works the CRP table was stored in

device itself which provided some resistance to attacks. In this work it is implemented

in such a way that the challenges are generated on the spot randomly, so that the device

only stores responses there by being more resistant to malicious attacks. The PUF that

is implemented is arbiter PUF.

1.2 MOTIVATION:

Electronic devices becoming a crucial part of our life is increasing day-by-day. This has

raised concerns about device security, which is particularly critical for military systems.

Safety of the device is the number 1 parameter that is very important. Cryptography

which rely on the idea of the binary key comes into the picture which provides several

measures to this problems. As reality always differs from ideal nature , securing the

device from all these physical attacks where side channel attacks is one of the many

examples and software attacks where viruses, API attacks are the examples that results

in full security breaks [Rührmair et al. (2013)]. Previously it used to be a client-server

2



based model where NVM which is abbreviated as non-volatile memory stores all the

secrets. Since this does not resulted in a better hardware security, this lead to the in-

troduction of PUFs where there will be a prover device and verifier device to perform

authentication protocol. But even the PUF which stores CRP table in the verifier device

is not resistant to attacks.

This is the motivation that lead to the development of a PUF where only responses

are stored in the verifier device and challenges are generated randomly through the use

of a LFSR which is abbreviated as linear feedback shift register and placement of muxes

are done manually which gives a symmetrical layout of the design thereby optimising

routing.
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CHAPTER 2

RELATED WORK

From the first introduction of PUF in 2002 by [Pappu et al. (2002b)], there were many

PUFs that were introduced targeting FPGAs and ASICs according to the requirements

for the optimisation in power, performance and the security of electronic devices and

for the efficient control of information over the network. Many researchers have intro-

duced a wide variety of PUFs like SRAM PUF [Guajardo et al. (2007)], Arbiter PUF

[Gassend et al. (2002b)][Gu et al. (2016)], Latch PUF [Su et al. (2008)], Bistable Ring

PUF [Chen et al. (2011)], Flip-flop PUF [Maes et al. (2008)], RO PUF which is abbrevi-

ated as ring oscillator PUF, Reconfigurable PUF [Kursawe et al. (2009)], Configurable

RO PUF [Yu et al. (2011)], Buskeeper PUF [Simons et al. (2012)], processor-based

PUF [Maiti and Schaumont (2012)], and Butterfly PUF [Kumar et al. (2008)].

The Arbiter PUF works by the delay concept taking the difference of arrival times of

the both signals. If the first signal arrives first then the output is taken as 1 and vice versa.

The RO PUF works by taking between two identical ring oscillators for which outputs

are two incrementing counters and the output values from counters are compared using

a comparator. SRAM PUF manipulates the starting state of SRAM cells in distinct

memory blocks on multiple FPGAs to generate IDs. Despite the fact that FPGAs feature

SRAM memory, and some feature a pre-set initial state that prohibits them from booting

or starting off with a random value. As a solution to this problem, Butterfly PUF is like

an extended version of SRAM PUF that can be activated at whatever the time we want,

unlike SRAM PUF, which only can be activated at power-up of the device [Gu et al.

(2017)]. The PUF according to designs can be distinguished as strong PUF and weak

PUF. In a strong PUF, with increase of bit size in challenge the number of CRPs are

raised with the power of 2 and in weak PUF increase linearly with increase of bit size

in challenge.



CHAPTER 3

DESCRIPTION OF PUF

3.1 INTRODUCTION OF PUF

PUFs which are abbreviated as physically unclonable functions are a very few of the

most promising solutions in the security of the hardware. They could be designed, im-

plemented and authenticated in both ASICs and FPGAs. From the name itself through

the use of unclonable property, a PUF cannot be reproduced. A PUF helps the smart

device that it got embedded in by making the device uniquely identifiable. The prop-

erties of uniqueness and unclonable make a PUF as one of its kind in the field of hard-

ware security. These properties are attained in a PUF due to inbuilt variations like load

capacitance, MOS doping present in physical properties of the device or a chip while

fabrication. The word imperfection which is generally a negative word works positively

in case of the PUF by making it not replicable. PUFs are tamper-evident equipments,

as any attempt of harmful alterations on the PUFs are easily detected.

A PUF is a physical unit that works in the same way as a function, transferring a set

of challenges to a set of responses resulting in a set of CRPs which are abbreviated as

challenge-response pairs that cannot be cloned and one of a kind for any smart device

where the PUF is used. [Barbareschi et al. (2015)].

3.2 DIFFERENT TYPES OF PUF

Many researchers have developed various types of PUFs according to the requirement

and application. PUFs can be split into different types of subclasses where each may

have one or more subclasses attached to them.



PUFs, taking the physical randomness into account can be divided into 2 types:

1 Physical randomness explicitly introduced PUFs:
In this randomness is introduced from the outside. It is less affected to envi-
ronmental variations and has a far more greater ability in differentiating smart
devices when compared to (b). This is due to control of the randomness and other
parameters with the designer/user.

2 Physical randomness intrinsically present PUFs:
The intrinsic randomness arises due to imperfections that occurred during fabri-
cation. This type of randomness is inherently present in the devices. This type of
devices are easier to construct when compared to 1.

Physical randomness intrinsically present PUFs are split into two categories:

A PUFs depending on the delay:

B PUFs depending on the memory:

A PUFs depending on the delay:
These PUFs generate responses from the hidden delay information of ICs. These
are the PUFs that are operated due to the delay caused by imperfections in the
fabrication process. Since this type of PUFs are measuring delay, they need ad-
ditional hardware when compared to Memory based PUFs. Examples are arbiter
PUF, RO PUF, xor PUF,butterfly PUF.

B PUFs depending on the memory:
These PUFs generate responses from the fixed pre state values present in the
memory that caused during fabrication. These are PUFs that are operated using
the power-up values of cells of SRAM that are present or flip-flops, which are
naturally present in any IC device. SRAM PUF and flip flop PUF are some of the
examples.

PUFs according to the number of challenges and applications are split into 3 categories:

a Strong PUF

b Weak PUF

c Controlled PUF

a Strong PUF:
These are the type of PUFs which have a complex challenge-response relation.
With the raise in the hardware the maximum amount of challenges increases ex-
ponentially. These are the PUFs that are used for authentication. Examples are
arbiter PUF, xor PUF.
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b Weak PUF:
The PUFs that have a simple challenge response relation come under this cate-
gory. With the raise in the hardware the maximum amount of challenges increases
linearly. These are the PUFs that are used for the generation of secret keys and
fingerprinting of silicon devices. Example is RO PUF, SRAM PUF.

c Controlled PUF:
These are the third type of PUFs which are made up of on the backbone of a
strong PUF and a control logic that protects it. We can assume as a small box
inside a big box. Here the small box is strong PUF and the big box is controlled
PUF. Here, whatever has to be done, it has to be done through the big box. The in-
puts and outputs of the small box i.e. the strong PUF’s input which is a challenge
and output which is response cannot be directly accessed, but the logic named as
one way hash function protects it from getting accessed. The input given to the
big box i.e. The hash function pre-processes the challenges given at the input of
controlled PUF before they the Strong PUF’s input i.e. to reach to the input of
the small box and the Strong PUF’s output which are responses i.e. the outputs
of small box are post processed by the logic i.e. one way hash function before the
Controlled PUF lets them come from output. This preprocessing & postprocess-
ing steps gives more security from the modelling attacks [6].

Down are some of the PUFs with the respective year of when they were first introduced.

• IC IDENTIFICATION USING DEVICE MISMATCH was introduced in 2000.

• PHYSICAL ONEWAY FUNCTION was introduced in 2001.

• PHYSICAL RANDOM FUNCTION was introduced in 2002.

• ARBITER PUF was introduced in 2004.

• COATING PUF was introduced in 2006.

• RO PUF AND SRAM PUF was introduced in 2007.

• BUTTERFLY PUF was introduced in 2008.

• PUF USING POWER DISTRIBUTION SYSTEM OF AN IC was introduced in
2009.

• GLITCH PUF was introduced in 2010.

• MECCA PUF was introduced in 2011.

7



3.3 BRIEF DESCRIPTIONS OF SOME PUFS

3.3.1 SRAM PUF

To distinguish devices such as micro controllers from any other, it is based on the funda-

mental characteristic of conventional SRAM memory, which is present in any electronic

device. Each SRAM cell has its own preferred state when the SRAM is powered, which

is determined by random variances in threshold voltages. The starting values of SRAM

memory are determined by each SRAM cell’s own preferred state, which is produced by

randomization. Thus a SRAM response becomes unique which gives output of random

values of 0’s and 1’s which is nothing but a fingerprint of chip. This pattern of random

values or what we call fingerprint is not easily unclonable and unique to a particular

SRAM which means to a particular chip. The figure of SRAM is shown in the Figure

3.1.

Fig. 3.1: SRAM cell with process variation and noise

This unique fingerprint becomes the base of hardware security. But the problem

with this is that it contains noise. To remove noise and extract secret key, processing of

fingerprint needs to be done. In this way since the key is not stored, hence becomes a

safest way even when attacked. This way of extracting a secret key is more secured than

the conventional way of storing secret parameters in NVM [22].The figure of SRAM

PUF working is shown in the Figure 3.2.

8



Fig. 3.2: Working of SRAM PUF

BUTTERFLY PUF

The problem with the SRAM PUF is that it is not supported on all FPGAs because of

the uninitialized state of SRAM cell. So, in the FPGAs where this is not supported, the

state is initialized to a known state.

This lead to introduction of butterfly PUF which is supported on all FPGAs. Butterfly

PUF works on the concept of cross coupled circuits.

Cross coupled circuits is a fundamental design component for latches, flip flops and

SRAM that is used to construct or create them. It’s built in such a way that positive

feedback is used to store the needed bit. A figure of a cross coupled inverter is shown

below in Figure 3.3.

Fig. 3.3: Cross Coupled Inverter

9



BUTTERFLY PUF

We can observe from the Figure 3.4. that cross coupled inverter has one unstable state

and two stable states. Stable states are used to store values. We can transition from an

unstable condition to a stable or steady condition by applying an signal from outside

to the input or by altering the elements utilised to construct the circuit. This concept is

used to build butterfly PUF.

Fig. 3.4: States of Cross Coupled Inverter

BUTTERFLY PUF is designed such that during the starting phase, the notion is built

on establishing a circuit that acts similarly to an SRAM cell. Butterfly PUF requires

layout symmetry.

When the operation starts, the signal at the input is turned high. The Butterfly PUF

circuit becomes unstable as a result of this. The excite signal is turned to low after a

few clock cycles. As a result, the PUF enters one of the two stable or steady states.

By fluctuations in the connecting wire delays the stable state is determined, which are

produced by intrinsic IC features. When an attack happens, the attacker cannot know

the stable states from the bit stream since it does not contain these values and also an

attacker cannot know from chip because of the minute physical property variations in

the elements [19]. The structure of butterfly PUF is shown in the Figure 3.5.

10



Fig. 3.5: Structure of a Butterfly PUF

3.3.2 RO PUF

All the elements may not have an inbuilt memory to implement memory based PUFs.

The solution for that problem comes from the PUFs which are delay based where the

delay is because of the intrinsic process variations that were inherently present in the

device.

The RO PUF (Ring Oscillator PUF) belongs to the delay based PUFs group. A ring

oscillator-based PUF looks to be a potential option. Every challenge supplied at the

input generates an n-bit response from n ROs. The goal is to obtain a set of p bits from

11



a total of n bits that can be used as a hardware fingerprint. A good response should have

a small intra-Hamming distance but a large enough inter-Hamming distance to facilitate

identification.

MOS doping, load capacitance, and line propagation are the properties that con-

tribute to the unpredictability of a ring oscillator. This means that each RO has its own

frequency. A counter is attached to the output of a RO. Through this we can measure

frequency and when compared with another RO we extract 0 or 1 [Kodỳtek and Lórencz

(2015)]. Figure 3.6 shows the structure of an RO PUF.

Fig. 3.6: Structure of a RO PUF

To make this weak traditional PUF into a strong one, the comparator is replaced with a

logic circuit. By that for n ROs, we can get 2n or 3n bits which results in more CRPs

which makes it as a strong PUF.

3.3.3 ARBITER PUF

Arbiter PUF comes under the category of PUFs based on the delay. It requires symme-

try in layout. Because the number of CRPs fluctuates with the power of 2 in relation to

12



the number of components, it falls into the strong PUF category. A 128 bit arbiter PUF

has 2128 CRPs.

Arbiter PUF construction: The circuit of an arbiter PUF have a sequence of 2:1 muxes

(which have two inputs and one output) with a D flip flop at the end of it. An n bit arbiter

PUF contains 2n number of the muxes. These muxes are arranged such that n muxes

are at the top and the remaining muxes are at the bottom. A set of two muxes which

are above and below or the two muxes in one column is called as an arbiter switch. The

two select lines of the two muxes are combined to form single line where the challenge

is given. As a 2:1 mux has inputs i0 and i1 the dissimilar inputs of muxes i.e. say i0 of

one mux and i1 of other mux are combined to form a single wire. The circuit of arbiter

switch is shown in the Figure 3.7.

Fig. 3.7: Arbiter Switch

Similarly, a series of n arbiter switches results in a n-bit arbiter PUF. The circuit of

arbiter PUF is shown in the Figure 3.8.
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Fig. 3.8: Arbiter PUF

As can be seen in the diagram, at the end of the circuit there is a D flip flop, with top

output of final arbiter switch linked to the input of the flip flop and the bottom output of

the final arbiter switch linked to the clock pin of the D flip flop.

Working of an arbiter PUF: A rising pulse is given at the input of the arbiter PUF.

This pulse travels down the two paths. Each path come across different delays. There

is a difference in delay in the two paths because the reason of the delay is the intrinsic

imperfections that are present in the muxes. Though all are 2:1 muxes which are similar,

the intrinsic process variations formed during the fabrication process makes the delays

dissimilar. With the help of challenge bits that are given at the select lines, the paths are

swapped. If top pulse arrives first, the output is considered 1, and if the bottom pulse

arrives first, the output is considered 0.

This is worked as follows. When the top signal comes first which is connected to D

input and the bottom signal comes later which is connected to clock input , then the

setup time condition of the D flip flop is satisfied which results giving 1 as output as

the input was a rising pulse. Similarly, when the bottom signal comes first, the clock

is activated and since there is no input at D flip flop the output we will get is 0. In the

Figure 3.8 we can see the circuit of the 128 bit arbiter PUF.

14



3.3.4 XOR PUF

A xor PUF is generated by taking some number of arbiter PUFs and doing xor operation

of all the outputs. This is done to make the circuit more complex and to strengthen the

toughness of the architectures of arbiter PUFs. This helps to be more resilient from

machine learning attacks. The structure of a xor PUF is shown in the Figure 3.9.

Fig. 3.9: XOR PUF

Working: The working of a xor PUF is similar to that of an arbiter PUF. A rising pulse

is given as an input to all the arbiter PUFs at the same time, the signal passes through all

the arbiter PUFS encountering different delays that are formed due to inherent process

variations resulting a 1 bit response from each arbiter PUF. These responses are applied

to a xor gate which gives a 1 bit output which is our response of the xor PUF.

3.4 PERFORMANCE EVALUATION OF PUFS

The performance evaluation of PUFs can be done by using 4 parameters [Maiti et al.

(2013)].

1 Uniqueness

2 Uniformity

3 Reliability
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4 Bit aliasing

If the below diagram is taken as the measurement of PUF dimensions as shown in the

Figure 3.10, then the four parameters are defined as

Fig. 3.10: Dimension of a PUF in time and space

3.4.1 UNIQUENESS

PUF’s uniqueness is a feature that allows it to provide diverse responses to the same

challenge for multiple devices of same type. Calculating the Hamming Distance (HD)

between two responses or outputs collected from the two separate devices from the same

chip, also known as inter chip hamming distance, is how it’s computed. It is written as

Uniqueness =
2

p(p− 1)

p−1∑
j=1

p∑
k=j+1

HD(rj, rk)

In the equation p represents the total number of devices. For the same challenge, rj, rk

represents the responses acquired from device j and k . The evaluation of uniqueness

is shown in the Figure 3.11.
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Fig. 3.11: Uniqueness evaluation

3.4.2 UNIFORMITY

It’s a metric measuring how many regular 0’s and 1’s present in a PUF’s response. Uni-

formity in a PUF is commonly assessed in Hamming Weight (HW) of a p-bit response

and should be at 50%.Uniformity is described as

Uniformity =

p∑
i=1

ri

In the above equation ri represents the ith bit of response. The evaluation of uniformity

is shown in the Figure 3.12.

Fig. 3.12: Uniformity evaluation
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3.4.3 RELIABILITY

The degree to which PUF delivers a stable output with changes in time, power, and

temperature is referred to as reliability. By assessing PUF with the same challenge set,

a set of responses is collected, and their intra-chip HD is calculated. It’s described as

HDintra =
1

p

p∑
u=1

HD(rj, r̂j)

Reliability = 100%−HDintra%

In the above equation rj represents the n-bit response of jth device acquired in normal

condition. The evaluation of reliability is shown in the Figure 3.13.

Fig. 3.13: Reliability evaluation

3.4.4 BIT ALIASING

When aliasing of bit happens, we obtain the identical PUF replies from different chips,

which is an unwanted outcome. The bit-aliasing caused in the lth bit of a PUF is calcu-

lated as the percentage of the Hamming Weight (HW) of the identifying PUF’s lth bit
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across k devices.It is described as

(BitAliasing)l =
1

k

k∑
j=1

rj,l × 100%

In the above equation from a chip i , rj,l represents the lth binary bit of n bit response.

The evaluation of bit aliasing is shown in the Figure 3.14.

Fig. 3.14: Bit Aliasing evaluation
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CHAPTER 4

PUF BASED AUTHENTICATION

4.1 TRADITIONAL PUF BASED AUTHENTICATION

Instead of using various cryptographic algorithms we can use PUFs for the authentica-

tion of devices and also with the use of PUFs this can be made possible with the less

hardware. With the help of CRPs that are generated in the PUF a device establishes

its unique identity from other devices and makes authentication possible. The device

which needs the information is called prover because it needs to prove itself to get in-

formation. The device which provides the information is called the verifier as it verifies

the data provided by the prover.

A device can become prover as well as a verifier according to the need.

As can be observed there is a scope for the attacker to intercept the authentication pro-

cess [Barbareschi et al. (2018)].

Fig. 4.1: PUF based authentication mechanism



The authentication process composed of two steps:

1 Enrolment:
This is the first step in the PUF based authentication. Here the devices get enrolled
with CRPs. In this step, for a group of random challenges the responses are
generated from the PUF of verifier and are stored in the memory of verifier.

2 Verification:
This is performed after enrolment step. Whenever prover invokes verifier for
authentication, a challenge which is not previously used and the corresponding
response is taken and the challenge is given as input to the PUF of prover device.
When the response is generated, it is compared with the response extracted from
the verifier’s memory. If the both are equal then the authentication is successful
and the transfer of information happens. .

The important thing that needs to be noted is that the challenge once used for the au-

thentication should not be used another time to be secured from the attackers. The PUF

based authentication mechanism can be seen in the Figure 4.1.

4.2 IMPROVED PUF BASED AUTHENTICATION

The improved PUF based authentication solves the issue of using a challenge only once

to avoid malicious attacks from the attacker. Since the problem is arising at the chal-

lenge, instead of pre generating challenge and storing it can be done in such a way that

the challenge is generated randomly on the spot. The challenge can be generated ran-

domly through the use of Linear Feedback Shift Register (LFSR).

In this authentication also it consists of 2 phases:

1 Enrolment:
This is the first step in the improved PUF based authentication. Here the devices
get enrolled with CRPs. If the PUFs in both the devices are n bit then a random
n/2 bit number is generated from the prover and also the verifier. These both n/2
bit numbers concatenates forming n bit number. This is mapped to an index by
using mod operator in doing (n bit generated number) mod n. Based on the index,
LFSR is initiated with a seed value and it runs that many number of times as
the index says so, to generate challenges. For the respective index the generated
response from the PUF of verifier are stored in the memory of verifier. It is shown
in the Figure 4.2.
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Fig. 4.2: Enrolment phase

2 Verification:
This is performed after enrolment step. Whenever prover invokes verifier for
authentication, an index and the corresponding response is taken and the index is
given as input to the LFSR. LFSR runs the number of times that index said and
generates a challenge which gives as an input to the PUF of prover device. When
the response from prover device is generated, it is compared with the response
extracted from the verifier’s memory. If the both are equal then the authentication
is successful and the transfer of information happens. It is shown in the Figure
4.3.

Fig. 4.3: Verification phase

Thus the authentication happens without the need of storing challenge as challenge can

be generated instantly. Authentication security is directly proportional to the amount of

CRPs present. The bigger the number of CRPs, the more secure the system. A strong

PUF can allow for a large number of CRPs.

So, in this project the work is done on the 128 bit Arbiter PUF.
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CHAPTER 5

INTELLECTUAL PROPERTY AND MODULE USED

IN THE PROJECT

5.1 VIO

VIO expanded form is Virtual Input Output. It is an inbuilt customizable IP that is

present in the Vivado itself. In the real time VIO is used to give inputs and observe

outputs. According to the design and FPGA, the width of inputs and outputs can be

customized. The difference between ILA and VIO is that in VIO there is no need of n

chip or off chip ram.

There are two types of probes in VIO. They are

1 Input probes:
They act as input to the VIO. While doing connections the output of the circuit or
our design is connected to the input of VIO.

2 Output probe:
They act as output to the VIO. While doing connections the inputs of the circuit
is connected to the output of the VIO.

The block diagram of VIO is shown in the Figure 5.1.

Fig. 5.1: Block diagram of VIO



In the Vivado the VIO IP can be generated as follows: At the project manager which is

in the left side pane, after clicking on the IP catalog a window is opened where if u

search vio and click on it. VIO is opened. There we can the width of input and output

probes and generate the VIO.

The VIO IP is shown in the Figure 5.2.

Fig. 5.2: VIO IP

The GUI of VIO after opening the hardware manager is shown in the Figure 5.3.

Fig. 5.3: VIO GUI
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5.2 CLOCKING WIZARD

It is an inbuilt customizable IP that is present in the vivado itself. Clocking wizard IP

is a crucial IP which drives our design, LFSR, and VIO IP. This IP is used to generate

clock which satisfies the design requirements. We can set the sampling frequency ac-

cording to our requirement.

The block diagram of clocking wizard is shown in the Figure 5.4.

Fig. 5.4: Block diagram of clocking wizard

In the Vivado the clocking wizard IP can be generated as follows:

At the project manager which is in the left side pane, after clicking on the IP catalog a

window is opened where if u search clocking wizard and click on it. Clocking wizard

is opened. Over there we can set reset signal, locked signal etc and the sampling fre-

quency as per our requirement.

The clocking wizard IP is shown in the Figure 5.5.
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Fig. 5.5: Clocking wizard IP

5.3 LFSR

LFSR expanded form is Linear Feedback Shift Register. A LFSR consists of series of

shift registers connected with each other. Output of the last register with outputs of

some other register is given to a logic circuit where the output of the logic circuit is

given as the input of the first register. The logic of the logic circuit is defined by the

primitive polynomial. LFSR should have an initial value as all the shift registers in

LFSR should have an initial state which is called seed value. Since from the circuit we

can observe that there is linear feedback from the connection of output to input.

A n bit LFSR contains n shift registers and it should be initialised with n bit seed

value. With the respective shifts for each clock cycle the maximum number of runs that

an LFSR can run is 2n − 1 times. Thus the periodicity of LFSR becomes 2n − 1.

In the project for generating challenges for 128 bit Arbiter PUF, a 128 bit LFSR is

used. For the 128 bit LFSR the primitive polynomial X128 +X127 +X126 +X121 + 1

is used. Particularly this primitive polynomial is used to generate LFSR as it generates

the most random outputs.
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The figure of 128 bit LFSR with the primitive polynomial applied is shown in the Figure

5.6.

Fig. 5.6: 128 bit LFSR with primitive polynomial X128 +X127 +X126 +X121 + 1
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CHAPTER 6

BIRD VIEW OF THINGS DONE IN THE PROJECT

In this project a 128 bit arbiter PUF is implemented on the ARTY A7-100 FPGA.

First the Verilog code of 8 bit arbiter PUF was written. Clocking wizard and VIO IPs

are generated. Since an arbiter PUF requires layout symmetry, manual placement of

LUTs in a FPGA is done. After that the synthesis, implementation were done. Af-

ter knowing that the bit stream is generated successfully. I have written a python code

to generate a parameterized arbiter PUF and automatically a vivado project is generated.

What happens when we run the python code:

When we run the python code it first asks for the value of N to generate N bit arbiter

PUF. When a value of N is given it asks to input the name of the vivado project that

needs to be created. After given the name of the project it asks for the location where

all the generated files need to be stored.

After giving the location, it then runs and generates all Verilog files and a xdc file in

which manual placement of modules in FPGA information is present of the arbiter PUF.

Then automatically it takes all the Verilog files and the xdc file generates the project. It

also automatically generates the clocking wizard IP and the VIO IP and get synthesized.

That’s what happens when we run the python code.

Project work done:

In this project a 128 bit arbiter PUF is implemented on the ARTY A7-100 FPGA.

For this we run the python code. When it asks for the value of N, we give input as

128. Then we enter the name of the project and the location where all the files need

to be stored. After we open the project we can see all the verilog files and xdc fie for

128 bit arbiter PUF have already been added and the IPs of clocking wizard and VIO



have already been generated and synthesized. In this project we have two ways to give

challenges to arbiter PUF.
1 From LFSR that is generated from verilog code. A seed value should be given

as input and the primitive polynomial must be mentioned. The circuit diagram of
the whole project when LFSR used is shown in the Figure 6.1.

Fig. 6.1: Circuit diagram of the project

2 From the random number generator which was coded using tcl language. A seed
value should be given and also should mention the number of times the random
values are needed.

Since in this project 2 is a viable option because with this we can both collect the ran-

dom challenges and the outputs produced.

So in this project we use 2.

After opening project we can directly generate bit stream. After that we connect ARTY

A7–100 FPGA and open the hardware manager. We run the tcl code present in the doc-

ument and text files is created where it has the generated random challenges which are

given to the input of 128 bit arbiter PUF and also the generated responses.

As mentioned about manual placement of modules in FPGA, a detailed procedure of

how to do manual placement of modules using FPGA was mentioned in the chatper 7.

The codes that i have written for the project are present in this document.
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CHAPTER 7

MANUAL PLACEMENT OF MODULES ON FPGA

USING PBLOCKS

Our main aim here is that we need to manually place the modules or components of our

verilog code so that we can accurately place them wherever needed.

For doing this we need to use something known as pblock.

What is a Pblock?

Pblocks are rectangles that are used to contain logic for floor plan. They are used dur-

ing floor planning placement to group related logic and assign it to a region of the target

device.

How do we create a pblock?

We can draw or create a pblock either by coding in xdc file or by the use GUI (graph-

ical user interface) that is present in Vivado. If we draw a pblock by GUI and save it,

automatically a .xdc file along with code is created. So, if we want any changes we can

either do by changing code in .xdc file or by changing in GUI. So, finally the easiest

way to create a pblock is by GUI. Before getting to know more about pblock it is needed

to know about configurable logic block of a FPGA as this is needed down the line. Here

the example of FPGA taken is 7 series FPGA.

Brief Overview of CLB of a 7 series FPGA:

A configurable logic block (CLB) consists of two slices(slice_M, slice_L) which are

present side by side. slice_M is memory capable and slice_L is capable of logic and

carry.

There are four 6-input LUTs present per slice. A Single LUT in slice_M can be a 32 bit

shift register or 64X1 RAM.



There are 2 flip flops per LUT.

The figure of a slice can be shown in the Figure 7.1.

Fig. 7.1: A Slice

How to create a pblock in GUI?

Before that we need to synthesize the verilog code that is written and we need to click

open synthesized design in the left pane. In the middle pane where we have tabs such as

sources, netlist. We need to click on netlist tab and there we can see the module names

that are formed from our design. In my example, we can see s0, s1..s7. So our aim is to

do placement of these modules manually. We need to create a pblock for each module

and assign them to their respective pblocks. The figure of GUI where we can create a

pblock is shown in the Figure 7.2.

In the right pane select the device tab. To create a pblock right click on the module for

which we want to create, select floor planning and select draw pblock. After clicking

that take the cursor to device tab ( which is in right pane) and where ever needed by

clicking left mouse click and holding ,drag the mouse to determine the size needed and

release. A window to name the pblock is flashed. Set a name. Thus a pblock is created.
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Fig. 7.2: GUI where pblocks can be created

After pblock is created, right click the same module name that was done earlier, select

floor planning and select assign to pblock. A window with different pblocks that were

created is opened. Select the same pblock that was created for this module and click ok.

Thus the respective pblock is assigned to that respective module.

A pblock created is shown in the Figure 7.3.

Fig. 7.3: A pblock

The violet rectangle is the pblock.

That is how we do the same process for all the modules.

It is shown in the Figure 7.4.
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Fig. 7.4: Pblocks of different modules

After all the pblocks are created click the save button. When done that a window to set

name for constraints file (xdc file) is popped up and set the name of that xdc file. After

doing that xdc file is created and if we open the xdc file we can see the code of what all

that was done. To do changes of pblock we can either do by GUI (as in above figure) or

by doing changes in code.

After doing that a doubt arises that what is the smallest size of pblock?

what is the smallest size of pblock?

The smallest size of a pblock is size of one CLB i.e 2 slices( in case of 7 series FPGA).

Beyond that we cannot reduce the size of pblock. It is shown in the Figure 7.5.
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Fig. 7.5: Smallest pblock

Fig. 7.6: A view inside xdc file

In the above Figure 7.6 we can see the code in a xdc file. If observed line 6 is for cre-

ating pblock. We can change the size of pblock by changing the slices x, y coordinates.

For example lets take for pblock_s1. As can be seen we can resize by changing in line

8. In line 8 sliceX12Y29:sliceX17Y34 represents that pblock consists of total 36 slices

is shown in the Figure 7.7.
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Fig. 7.7: pblock_s1 containing 36 slices

How to know the names of LUTs(Look UP Tables) on which modules that are

designed are placed?

To know this we should click Run Implementation that can be seen on left pane. Click

open implemented design. In the middle pane open net list tab and in the right pane

open device tab. There we can see how the connections are made in the Figure 7.8.

Fig. 7.8: Wire connections between modules

How to see the signals, inputs, outputs of our design?

The wires of the selected signals are highlighted which is shown in the Figure 7.9.
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Fig. 7.9: Highlighted wires of selected signals

Things to be noted while writing verilog code for a better manual placement:

To do this manual placement or whatever related to synthesis, the hardware of the code

we write should be realised. For that we need to write verilog code mostly in structural

representation.

Sometimes, even after writing in structural form and if we run synthesis, sometimes

vivado optimizes the hardware and some of the hardware or modules that need to be

there might not be present. Then we need to do these following things.

1 Click on the settings that is present in the left pane. Then click on synthesis and
set the flatten_hierarchy to none. And click OK. It is shown in the Figure 7.10.
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Fig. 7.10: Setting flatten_hierarchy to none

2 Open the verilog code that was written. We need to set an attribute. Type (*
KEEP = "TRUE" *) at the starting of the line of which that should be realised in
the hardware or for the module of which the hardware is getting optimised.

By doing the above things we can make the vivado tool not optimising our design

thereby not distorting the intended design.

That is how pblocks are created and by being with some caution, we can realise the

hardware exactly how we intended and can do manual placement of that as needed.
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CHAPTER 8

RESULTS

PUF is a device used for authentication. When the same inputs were given for the PUF

of the same FPGA , ideally it should provide the same outputs each and everytime.

When the same inputs were applied for the different PUFS present on FPGAs, ideally

it should provide the different outputs each and everytime.

ARTY A7-100 FPGA board is used for the implementation of 128 bit Arbiter PUF.

For performing the experiment five boards of the ARTY A7-100 family with serial nos:

DAD2BB7, DAD2AFA, DAD2CBB, DAD2CF1 and DAD2BDB were taken.

For each board of the ARTY A7-100, 1000 same random challenges were applied for

10 times and the generated responses along with the applied challenges were stored in

the text files. This results in the generation of 10 text files with 1000 CRPs in each.

Observations were done by comparing the text files.

Expected result: When the same inputs were given for the PUF of the same FPGA ,

ideally it should provide the same outputs each and everytime.

The observations for the boards are as follows:

DAD2BB7: For the 1000 CRPs that are present in each file, 994 CRPs of all the 10 files

are identical. When the remaining 6 non identical CRPs of 10 files are observed, it is in

such a way that for a non identical CRP, only one response bit from one file among 10

response bits of 10 files is different. Remaining 9 response bits are same. It is shown in

the Figure 8.1. Just like the Figure 8.1, in all the 6 non identical CRPs only 1 response

bit from one file is different. From this it can be said that the implemented PUF is very

much accurate in producing results near to ideal expected results. The results can be

seen in this document.

https://gitlab.com/ramakishannitp/128-bit-arbiter-puf/-/blob/main/method2.tcl%20outputs/DAD2BB7method2.tcl_result.txt


Fig. 8.1: Only one response bit from one file of 10 response bits from 10 files is different

DAD2AFA: For the 1000 CRPs that are present in each file, 997 CRPs of all the 10 files

are identical. When the remaining 3 non identical CRPs of 10 files are observed, it is in

such a way that for a non identical CRP, only one response bit from one file among 10

response bits of 10 files is different. Remaining 9 response bits are same. It is shown in

the Figure 8.2. Just like the Figure 8.2, in all the 3 non identical CRPs only 1 response

bit from one file is different. From this it can be said that the implemented PUF is very

much accurate in producing results near to ideal expected results. The results can be

seen in this document.
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Fig. 8.2: Only one response bit from one file of 10 response bits from 10 files is different

DAD2CBB: For the 1000 CRPs that are present in each file, all the 1000 CRPs of all

the 10 files are identical. From this it can be said that the implemented PUF accurate

in producing results similar to ideal expected results. The results can be seen in this

document.

DAD2CF1: For the 1000 CRPs that are present in each file, all the 1000 CRPs of all

the 10 files are identical. From this it can be said that the implemented PUF accurate

in producing results similar to ideal expected results. The results can be seen in this

document.

DAD2BDB: For the 1000 CRPs that are present in each file, 997 CRPs of all the 10 files

are identical. When the remaining 3 non identical CRPs of 10 files are observed, it is in

such a way that for a non identical CRP, only one response bit from one file among 10

response bits of 10 files is different. Remaining 9 response bits are same. It is shown in

the Figure 8.3. Just like the Figure 8.3, in all the 3 non identical CRPs only 1 response

bit from one file is different. From this it can be said that the implemented PUF is very

much accurate in producing results near to ideal expected results. The results can be

seen in this document.
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Fig. 8.3: Only one response bit from one file of 10 response bits from 10 files is different

Expected result: When the same inputs were applied for the different PUFS present on

FPGAs, ideally it should provide the different outputs each and everytime.

5 different random text files of the 5 different FPGAs are taken. When the 5 text files

are compared, all the 1000 CRPs were non identical which is accurately similar to the

expected result. This experiment was done 4 times and everytime the result is same.

The results of the 4 times can be seen in document1, document2, document3, docu-

ment4. It is shown in the Figure 8.4.
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Fig. 8.4: Files from different FPGAs when compared are not identical

The python code used for comparison of files is shown in document.Thus from the

above observations the implementation of a 128 bit arbiter PUF is successful.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

By the improved PUF based authentication, the device which generates challenges in-

stantly there by decreasing the size of database is more secured from the malicious at-

tacks. And also for the authentication to be more secured the database of the prover and

verifier should contain large amount of CRPs which is possible only through a strong

PUF. So arbiter PUF which is a strong PUF is chosen for this project. When improved

PUF based authentication protocol is performed 93% percent of successful authentica-

tions can be observed [26]. In this project a 128 bit arbiter PUF is successfully imple-

mented and the generated CRPs are successfully stored in a text file. Through the tcl

code written for this project, a larger number of challenges which may be 1000,10000

or any number can be generated and the respective response of each challenge can be

stored in a text file effortlessly. In this PUF the modules or components such as muxes

are manually placed to achieve symmetry so the design can be implemented with the

minimum routing which means minimum length of wires used. This results in less de-

lay and less leakages which increase in the power efficiency. This made the arbiter PUF

more optimised. Thus from the above reasons and results in the chapter 8, the 128 bit

arbiter PUF is implemented successfully on a ARTY A7-100 FPGA.

In the future work it is proposed to do the implementation on xor PUF. In the future

work it is also proposed to implement an arbiter PUF or xor PUF on ASIC.Because on

the FPGA we can only do the manual placement but manual routing is not possible.

On an ASIC, both manual placement and manual routing are possible. Also ASICs are

more power efficient and more faster than FPGAs. These all inclusions make the PUF

more optimised. In the future work it is also proposed to perform PUF based protocol

between two devices and to be extended for multi devices.



APPENDIX A

Hardware and Software used:

Hardware used:

• FPGA : ARTY A7-100

Software used:

• Vivado for Verilog files

• Vim editor for python files

• Vim editor for tcl files
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