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ABSTRACT 

Reliability of MOSFETs has become a major concern in scaled technologies. The potential of 

innovative technologies and processes can be realized only if the reliability constraints are in 

tolerable limits. Some of the important reliability aspects in scaled MOSFETs are bias and 

temperature instability (BTI), random telegraph noise (RTN), stress induced leakage currents 

(SILC), hot carrier degradation (HCD). One of these aspects, namely random telegraph noise has 

attracted attention of researchers as it poses a reliability challenge for scaled devices. It is defined 

as fluctuation in source-drain current of a MOSFET due to trapping and detrapping of charge 

carrier from the channel into a gate oxide trap. This results in fluctuation in threshold voltage of 

the device (∆VT).  A single trap in the gate insulator can cause fluctuation involving two discrete 

levels in drain current. If n-traps become active, it can result in 2n-1 +1 to 2n discrete levels in the 

drain current.  RTN can impact digital circuits, SRAMs and Flash memory cells. 

Multi trap RTN is also referred to as complex RTN and it can cause large shifts in threshold voltage 

of the device. Further, the analysis also gets complicated for multi trap RTN.  One of the important 

steps in multi trap RTN analysis is to decompose the multi-level RTN as a superposition of two 

level RTNs. Some of the algorithms used are based on bayesian inference, hidden markov models. 

These are probability based algorithms which are computationally intensive and time consuming. 

So, non-probabilistic algorithms are more preferred. 

One such algorithm is implemented in this thesis which is based on a patent. This thesis is focused 

on implementation of an algorithm for analysis of multi-trap RTN. The implementation of the 

algorithm is divided into two stages-histogram based analysis and transition based analysis. The 

multi trap RTN data is given to first stage whose output will be the number of traps, RTN 

amplitude of each trap, time constants ratios of each trap. After this, the second stage processing 

involves identification of transitions between traps and computing individual time constant 

values of each trap. 

The input to the algorithm is a multi-trap RTN measured on a pFET. The aim of the algorithm 

implemented in this work is to extract the individual trap components-its RTN amplitude and 

time constants. As part of the project, first stage analysis is implemented in MATLAB and results 

were shown. 
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CHAPTER 1 

 INTRODUCTION TO RTN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.1 Introduction to Random Telegraph Noise (RTN) in MOSFET  

Random Telegraph Noise (RTN) is an important reliability aspect in scaled MOSFETs which has 

attracted the attention of researchers.  It was first observed in drain current of MOSFET in the 

year 1984 and the physical mechanism was been identified as trapping and detrapping events 

occurring between the charge carriers in the channel and gate oxide traps or interface traps[1,2].  

1.1.1 Physical mechanism of RTN 

    Random Telegraph Noise (RTN) is caused by random trapping and detrapping of a single charge 

carrier from channel into gate oxide traps. This manifests as a two level fluctuation in drain 

current of MOSFET. A typical diagram depicting the RTN is shown below in Fig.1. RTN has become 

a reliability concern for digital circuits[3], SRAM[4,5], Flash memories[6]. 

 

Fig 1.1 : Schematic representing the capture and emission of an electron from the channel into 

gate oxide trap 

 

 1.1.2 Time domain and frequency domain properties of RTN 

    Any noise can be characterized in time domain as well as frequency domain. A typical RTN 

waveform is shown below. In time domain, it is characterized by three primary parameters-

namely capture time, emission time and RTN amplitude. The capture time is defined as average 

time to capture a charge carrier (electron or hole) into the gate oxide trap, emission time is the 

average time to emit the charge carrier into channel.  



 

Fig 1.2: Typical RTN waveform denoting the capture and emission time constants. The figure in 

the inset shows the histogram of drain current RTN with two gaussian peaks(Courtesy: Pavan 

Ch)  

 

RTN is a random process and the time durations of trap being empty and full (capture and 

emission durations) follow exponential distribution [1]. The capture and emission times are the 

mean values extracted by fitting the capture and emission durations to exponential distribution 

as illustrated in the figure below. 

 

Fig 1.3: Schematic showing the exponential distribution of capture and emission durations[1] 

 

 



RTN amplitude is defined as the difference of the discrete levels observed in RTN. It is computed 

as difference of peaks in the histogram as shown in figure below. Further, the RTN amplitude can 

be transformed into threshold voltage fluctuation (∆VT) given as  

∆𝑉𝑇 =  
∆𝐼𝐷

𝐺𝑚
 

where ∆ID is the difference in the discrete levels in the histogram, Gm is the transconductance of 

the device. 

The impact of RTN for a given technology is expressed in terms of RTN induced ∆VT. Specifically 

statistical measurements are performed and statistical averages of ∆VT is obtained. 

In frequency domain, the RTN is characterized by a lorentzian spectrum as shown below. The 

important parameters of PSD denoted as S(f) are S(0) which indicates the constant plateau at 

lower frequencies, fo represents the corner frequency. The PSD falls with 1/f2 for frequencies 

greater than fo. 

 

Fig 1.4: Schematic showing the Lorentzian spectrum for RTN 

 

The PSD is given as  

 

 

Where the corner frequency is related to time constants as  

𝒇𝒐 =  
𝟏

𝟐𝝅
(

𝟏

𝝉𝒄
+

𝟏

𝝉𝒆
) 

The above equation also represents the relation between time domain and frequency domain 

parameters of RTN.                                        

𝑺(𝒇) =  
𝑺(0)

1 + (
𝒇

𝒇𝒐
)

2 



1.1.3 Relation between flicker noise and RTN 

Low Frequency Noise(1/f noise) can be expressed as a summation of Lorentzians with a specific 

distribution of time constants that is uniform on a log scale.[7] RTN dominates for small areas 

devices, while LFN for larger area devices.  

 

Fig 1.4: Superposition of lorentzians caused due to individual trap results in 1/f spectrum[8]. 

 

1.1.4 Impact of RTN 

RTN has become a reliability challenge at scaled devices. A brief outline of RTN impact is given 

below. 

 1) The RTN induced threshold voltage ∆VT increases at lower gate lengths, which indicates that 

RTN can pose a serious challenge at lower nodes [9] 

2)  RTN can induce performance fluctuations in CMOS circuits[3,10] 

3) RTN affects the SRAM stability and also minimum operating voltage Vmin [4,11] 

4)  RTN can cause fluctuations in read current in flash memory cells [12] 

 

 

 

 

 

 



 

1.2 Multi Trap RTN  

1.2.1 Introduction to multi trap RTN 

A single trap in the gate oxide produces two discrete levels in the drain current of a MOSFET. If 

more than one trap is active in trapping and detrapping of inversion layer carriers, then it leads 

to more than two levels in the RTN measurement. In general, if there are n-traps it can cause     

2n-1 +1 to 2n levels. Multi trap RTN also called as complex RTN. It can cause large ∆VT values of the 

device. Some example of RTN with two traps are shown below. It can be observed from the figure 

that two traps resulted in four discrete levels in drain current of MOSFET. 

 

Fig 1.5 : Example of a four level RTN due to two traps measured on pMOSFET (Courtesy : Pavan Ch)                      

 



Fig 1.6 Example of a four level RTN due to two traps measured on pMOSFET (Courtesy : Pavan Ch)                      

1.2.2 Algorithms multi-trap RTN data 

  For multi trap RTN, the first and important step is to decompose the multi trap RTN into 

superposition of two-level RTNs.   An example of such a decomposition is shown below[13]. It 

can be observed that the discrete levels (shown in red color) have been identified from the 

measured multi trap RTN (shown in black color). Further, it is decomposed into superposition of 

two traps, each of the trap being a two level RTN. 

 

 

Fig 1.7 Decomposition of 4-level RTN into superposition of two-level RTNs[13] 

 

The algorithm for analysis of multi trap RTN can be categorized into two groups-probability based 

and non-probabilistic algorithms. 

Some of the examples of probability based algorithms are hidden markov models[14,15], 

factorial hidden markov models[16,17], Bayesian inference[18]. These are computationally 

intensive, time consuming. 

The other group of algorithms are mostly based on dynamic thresholding techniques [19]. These 

are not time consuming and can run in reasonable time even with large number of data points in 

the measurement. Hence, these are preferred.[20] 
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 2.1 Introduction to the algorithm 

This algorithm is implemented in two stages. A brief overview of the two stages is shown in the 

figure 2.1. The input and output of each of the stages is also depicted. 

The first stage involves histogram based analysis. The measured RTN data is taken and histogram 

is obtained. Based on the number of peaks in the histogram, number of traps are identified. The 

number of traps, RTN amplitude of each trap and ratio of time constants of each trap are 

obtained as outputs of first stage.  

Further, the second stage is referred to as transition based analysis. It involves assigning each 

data point in the RTN time series is assigned to the stable states obtained in the first stage.  

Further, the transitions for each of the traps are identified and time constants are computed for 

each of the traps.  

 

                       

    Fig 2.1 Schematic of two stage analysis of algorithm[20] 

 

 

 

 



 

2.2 First stage analysis 

     In first stage analysis of the algorithm, histogram is obtained for RTN data time series. The 

number of peaks are counted in the histogram to identify number of traps. If there are n-traps it 

can result in 2n-1 +1 to 2n levels (peaks) in the histogram. The first stage analysis involves three 

steps, each step can be explained using a flowchart. 

2.2.1 Extraction of characteristic physical constants 

The process of implementation of first stage analysis is depicted in the flowchart as shown below 

in figure 2.2 

 

 

Fig 2.2 Flowchart for extraction of physical constants of RTN[20]    

The measured time series RTN data is taken and binning is performed to obtain histogram. A counter 

representing number of traps in initiated with an initial value of 1. (Ntrap=1). Then, the algorithm proceeds 

to search peaks of the histogram using standard deviation values. Number of peaks in histogram gives the 

information about number of traps. For example, if we have 2 states, it indicates presence of only one 

trap present. Similarly, if there are 4 states and 8 states, it corresponds to two and three traps respectively. 

In the next step, each peak in the histogram is assigned a binary index value. Further, amplitude and a 

time constant ratio is calculated for each of the traps. The theoretical intensities are then determined for 

each of the peaks. 



In the next step, the algorithm verifies whether the theoretical intensities are determined for all peaks. 

Further, reproduced theoretical peak intensities are verified.  If not, then the number of traps determined 

is incremented by 1, and the steps from peak search in histogram to checking of peak intensities are 

repeated. If the theoretical peak intensities have been reproduced correclty, then the method determines 

the number of traps present, the method of the first stage determines a number of traps based on a 

correspondence between the calculated amplitude and time constant ratio for each trap and the 

theoretical intensity for each peak associated with each trap. 

     

       

2.2.2 Recursive method of assigning peak index values 

 

 

Fig 2.3 flowchart for recursively assignment of peak indexes [20] 

       The step of assigning a peak index value can be performed according to various techniques. For 

example, Fig2.5 is a flowchart of a recursive method of assigning peak index values in the first stage. 

       Referring to fig2.5, the method of recursively assigning a peak index value includes obtaining the peak 

positions from the time series and constructing an initial set of peak positions. The trap number count is 

set to 0. Then, peak indexes are assigned recursively using the next procedure. For example, the recursive 

assignment of peak indexes determining if the number of peaks is less than two, if so, then this step has 

been completed. If not, then this step includes assigning a lowest peak index value to one of the states in 



which all of the states is comprised of a first state value indicating the empty trap condition (for example, 

0) and a second state value indicating the capture condition (for example, 1). 

   The transition from the first state value to the second state value represents capture of an electron by 

an associated trap, and a transition from the second state value to the first state value represents release 

of an electron from the associated trap. The drain current of the semiconductor device changes between 

at least two stable states in response to each transition. 

    The method continues by assigning the first state value indicating the empty condition to a lowest peak 

other than the next lowest peaks associated with next step. An offset value (An) is calculated as the 

difference in position between the lowest and the next lowest peaks in the next step. The number of 

peaks is then decremented by 2, and the method checks to see if there are any remaining peaks to be 

assigned. If there are more peaks to be assigned, then the method determines a peak which is at the 

lowest position in the remaining peaks, and the nearest in position in which the peak value is the lowest 

peak plus the offset value An determined. In next step the lowest peak is given an empty state with respect 

to the trap number of interest. The other peak which is positioned at An from the lowest peak is given an 

occupied state similarly. The steps from checking of Npeak value to checking of if there are any remaining 

peaks to assign, are repeated for all peaks in the histogram. 

      The method of recursive assignment continues by classifying all peaks in the histogram into one of a 

first set consisting of peaks assigned the first state value indicating the empty condition and as second set 

consisting of peaks assigned the second state value indicating the capture condition in next step. Then 

increase the n value indicating the next bit assignment of each peak. In further steps perform the recursive 

assignment for both first set and second set to assign further bit assignment. 

  

Fig 2.4 illustration of recursive assignment of peak indexes[20] 



 

 

 

2.2.3 Calculation of amplitude and time constant ratio for individual traps 

 

 

Fig 2.5 Flowchart for calculating amplitude and time constant for each trap[20] 

The step of calculating an amplitude and a time constant ratio for each trap can be performed according 

to various techniques. Fig 2.7 is a flowchart of a method of calculating an amplitude and a time constant 

ratio for each trap in the first stage. 

    Referring to fig2.7, the method of calculating an amplitude and a time constant ratio of each trap can 

include obtaining or reading the peak intensities and indices at initial step, and setting an initial index 

value to 0 as taking n value as zero. Then at next step, it is determined if the index value is less than the 

number of traps. If not, then the result has been completed. If so, then the method further includes 

obtaining or reading the first set (consisting of peaks assigned the first state indicating the empty 

condition) and the second set (consisting of peaks assigned the first state value indicating the capture 

condition). Next, for each trap, the difference in position between corresponding peaks in the first set and 

the second set are calculated. Based on the difference, an amplitude is determined. Next, a first sum is 

calculated based on intensities of the peaks of the first set, and a second sum is calculated based on 

intensities of the peaks of the second set. Then, a ratio of the first and second sums is determined. Based 



on the ratio, time constant ratio is determined. the index value n is incremented by 1, and the method 

returns to checking of n value whether it is less than the number of traps at which the steps checking of 

index value through increment of n value are repeated. 

 

 

 

  

 

Fig 2.6 illustration of the calculating an amplitude and a time constant ratio for each trap[20] 

 

 

 

 

 

 

 

 



 

 

  

 

2.3 Second stage analysis 

   2.3.1 Calculation of time constants through transition-based analysis 

 

 

 Fig 2.7 flowchart for calculating time constant through transition-based analysis 

   Referring to Fig2.9, a method can include reading or inputting the number of traps and their amplitudes 

from the first stage (refer to fig 2.4), and then estimating initial values for the corresponding time 

constants. Next, the method includes creating a look-up table defining a number of allowed next-state 

transitions from each state Then, an index value is assigned to each sampled point or value of the time 

series, and the number of transitions for each trap is determined. Following this determination, the time 

constants are calculated for each trap using the relationship between average holding time and transition 

rate, which is explained at Equation (1). Then, a revised look-up table defining the allowed next-state 

transitions from each state is computed, followed by revised index value assignment to each sampled 

point or value of the time series. Next, the number of transitions for each trap is determined again. Then 

in next step if the number of transitions determined for each trap is different from the previous 



determination, then steps from calculating time constant to checking of number of transition value are 

repeated recursively until the number of transitions determined is unchanged from the previous 

determination, in which case the method ends. In this way, the assignment of states is uniquely 

determined. 

 

 

 

 

Fig2.8 illustrate method of inhibiting next-state transitions in creating a look-up table defining 

allowed state transitions[20] 

 

 

 

 

 

 



 

 

 

  

 

 

 

Fig 2.9 illustrate a method of determining transition-based assignments[20] 

 

 

 

 

 

 

 

 

 

2.3.2 Method of creating a look-up table defining number of allowed next- state 

transitions from each state. 



 

Fig 2.10 flowchart for Method of creating a look-up table defining number of allowed next- 

state transitions from each state[20] 

 

 

  Referring to Fig 2.12, the method of creating a look-up table defining a number of allowed next-state 

transitions from each state includes obtaining or reading peak parameters such as, for example, peak 

position, intensity, and associated time constants. 

    Initially, a previous state counter is set to 0. Then it is determined if the look-up table contents for all 

previous states have been calculated. If not, then the method further includes creating a set of allowed 

destination states as discussed here in above with respect to fig2.10. Next, the bin for the destination 

state being processed is set initially to 0. Then at next state, it is determined if all bins for the state being 

processed have been calculated. If so, then the method returns to checking of previous states transition. 

If not, then the method continues to next step at which the transition probability is calculated for all 

allowed states, and then to next step at which the holding probability is calculated for the holding state, 

as described, for example, with respect to figs2.11. Next, the most probable next state is stored in a 

computer –readable storage medium or memory, the bin counter is incremented by 1, and the method 

returns to state at which checking of bins calculation. 

  

 

 



 

CHAPTER 3 

 PROGRAMMING TO CALCULATE RTN TIME CONSTANT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Origin Graphic tool to draw histogram and calculate standard deviation of 

measured data: 

 

Matlab code for two trap: 

clc;  

clear all; 

close all; 

format long; 

filename='C:\Users\laksh\Documents\MATLAB\50usec_Channel101.csv'; 

delimiter = ','; startRow = 1; endRow = inf; 

Noise=importdata(filename, startRow, endRow); 

Time=Noise(:,1);  

Id=abs(Noise(:,2)); 

[binpos,ftshist]=hist(Id,80); 

plot(ftshist,binpos); 

List_peaks = 1E-06*[3.7357,3.8078,3.8783,0]; 

% List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6 3.72 3.79 3.85 4.0 3.46 3.15 2.75 3.33];  

% List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6]; 

Npeak=length(List_peaks); 

Nvalue=Npeak; 

Nbit=log2(Npeak); 

res=zeros((Nbit+1),Npeak); 

% set0=zeros(1,Npeak/2); 

% set1=zeros(1,Npeak/2); 

for i=1:Npeak 



res(1,i)=List_peaks(1,i); 

end 

result=recursive(Nvalue); 

result1=myrecursive(List_peaks); 

N1=length(result1); 

for k=1:(N1/2) 

    set0(1,k)=result1(1,k); 

    set1(1,k)=result1(1,(k+(N1/2))); 

end 

for i=1:Npeak 

    for j=1:Npeak 

        if res(1,i)==result1(1,j); 

            res(2,i)=result1(2,j); 

        end 

    end 

end 

result2=myrecursive(set0); 

result3=myrecursive(set1); 

result1=[result2,result3]; 

for i=1:Npeak 

    for j=1:Npeak 

        if res(1,i)==result1(1,j); 

            res(3,i)=result1(2,j); 

        end 

    end 

end 

  



% N2=length(result2); 

% for k=1:(N2/2) 

%     set2(1,k)=result2(1,k); 

%     set3(1,k)=result2(1,(k+(N2/2))); 

%     set4(1,k)=result3(1,k); 

%     set5(1,k)=result3(1,(k+(N2/2))); 

% end 

% result2=myrecursive(set2); 

% result3=myrecursive(set3); 

% result4=myrecursive(set4); 

% result5=myrecursive(set5); 

% result6=[result2,result3]; 

% result7=[result4,result5]; 

% result1=[result6,result7]; 

% for i=1:Npeak 

%     for j=1:Npeak 

%         if res(1,i)==result1(1,j); 

%             res(4,i)=result1(2,j); 

%         end 

%     end 

% end 

% N3=length(result5); 

% for k=1:(N3/2) 

%     set6(1,k)=result2(1,k); 

%     set7(1,k)=result2(1,(k+(N3/2))); 

%     set8(1,k)=result3(1,k); 

%     set9(1,k)=result3(1,(k+(N3/2))); 



%     set10(1,k)=result4(1,k); 

%     set11(1,k)=result4(1,(k+(N3/2))); 

%     set12(1,k)=result5(1,k); 

%     set13(1,k)=result5(1,(k+(N3/2))); 

% end 

% result2=myrecursive(set6); 

% result3=myrecursive(set7); 

% result4=myrecursive(set8); 

% result5=myrecursive(set9); 

% result6=myrecursive(set10); 

% result7=myrecursive(set11); 

% result8=myrecursive(set12); 

% result9=myrecursive(set13); 

% result10=[result2,result3]; 

% result11=[result4,result5]; 

% result12=[result6,result7]; 

% result13=[result8,result9]; 

% result14=[result10,result11]; 

% result15=[result12,result13]; 

% result1=[result14,result15]; 

% for i=1:Npeak 

%     for j=1:Npeak 

%         if res(1,i)==result1(1,j); 

%             res(5,i)=result1(2,j); 

%         end 

%     end 

% end 



  

%//code for caluculating amplitude and time constant ratio of each trap// 

  

dummy0=0; 

   dummy1=0; 

   new_set0=zeros(Nbit,(Nvalue/2)); 

   new_set1=zeros(Nbit,(Nvalue/2)); 

   timeconstant_ratio_trap=zeros(1,Nbit); 

   amplitude=zeros(Nbit,(Nvalue/2));  

   j=1;l=1; 

   for i=1:1:Nbit 

   for k=1:1:Nvalue 

       if res((i+1),k)==0 

           dummy0=dummy0+res(1,k); 

           new_set0(i,j)=res(1,k); 

           j=j+1; 

           if j==((Nvalue/2)+1) 

               j=1; 

           end 

       else if res((i+1),k)==1 

           dummy1=dummy1+res(1,k); 

           new_set1(i,l)=res(1,k); 

           l=l+1; 

           if l==((Nvalue/2)+1) 

               l=1; 

           end 

           end 



       end 

        

   end 

       timeconstant_ratio_trap(1,i)=(dummy0/dummy1); %output ratio of two time constants for 

each trap 

       amplitude=new_set0-new_set1; 

   end 

   for i=1:Nbit 

       for k=1:(Nvalue/2) 

           if amplitude(i,k)<0 

               amplitude(i,k)=-amplitude(i,k); % output amplitude for each trap 

           end 

       end 

   end 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Output of the code: 

1) trap count: 

 

Fig: four-level RTN waveform and its histogram 

 

 

 

 

 

 

 

 

 

2) peak index assigning: 



 

                                               Fig :Assignment of peaks with binary indexes 

 

Peak value (µA) Binary value 

5.11 00 
5.149 10 

5.198 01 

5.23 11 

Table 1: peak assignment  

 

 

 

 

 

 

 



 

 

3) Amplitude and time constant ratio of each trap from 4-level RTN 

 
Trap RTN amplitude RTN amplitude Time constant ratio 

Trap-1 39 nA 32 nA 0.9932 

Trap-2 88 nA 81 nA 0.9985 

 

 

Matlab code for calculating number of traps and assigning peak indexing in first 

stage (it works for max  four traps): 

% For analysis purpose here we are taking 16 peak stages of data 

clc;  

clear all; 

close all; 

format long; 

filename='C:\Users\laksh\Documents\MATLAB\50usec_Channel101.csv'; 

delimiter = ','; startRow = 1; endRow = inf; 

Noise=importdata(filename, startRow, endRow); 

Time=Noise(:,1);  

Id=abs(Noise(:,2)); 

[binpos,ftshist]=hist(Id,80); 

plot(ftshist,binpos); 

initialset=1E-06*[3.7357,3.8078,3.8783,0]; %actual peak values calculated using origin tool 

List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6 3.72 3.79 3.85 4.0 3.46 3.15 2.75 3.33];  

% List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6]; 

Npeak=length(List_peaks); 

Nvalue=Npeak; 

Nbit=log2(Npeak); 



res=zeros((Nbit+1),Npeak); 

% set0=zeros(1,Npeak/2); 

% set1=zeros(1,Npeak/2); 

for i=1:Npeak 

res(1,i)=List_peaks(1,i); 

end 

result=recursive(Nvalue); 

result1=myrecursive(List_peaks); 

 

    N1=length(result1); 

for k=1:(N1/2) 

    set0(1,k)=result1(1,k); 

    set1(1,k)=result1(1,(k+(N1/2))); 

end 

for i=1:Npeak 

    for j=1:Npeak 

        if res(1,i)==result1(1,j); 

            res(2,i)=result1(2,j); 

        end 

    end 

end 

result2=myrecursive(set0); 

result3=myrecursive(set1); 

result1=[result2,result3]; 

for i=1:Npeak 

    for j=1:Npeak 

        if res(1,i)==result1(1,j); 



            res(3,i)=result1(2,j); 

        end 

    end 

end 

  

N2=length(result2); 

for k=1:(N2/2) 

    set2(1,k)=result2(1,k); 

    set3(1,k)=result2(1,(k+(N2/2))); 

    set4(1,k)=result3(1,k); 

    set5(1,k)=result3(1,(k+(N2/2))); 

end 

result2=myrecursive(set2); 

result3=myrecursive(set3); 

result4=myrecursive(set4); 

result5=myrecursive(set5); 

result6=[result2,result3]; 

result7=[result4,result5]; 

result1=[result6,result7]; 

for i=1:Npeak 

    for j=1:Npeak 

        if res(1,i)==result1(1,j); 

            res(4,i)=result1(2,j); 

        end 

    end 

end 

N3=length(result5); 



for k=1:(N3/2) 

    set6(1,k)=result2(1,k); 

    set7(1,k)=result2(1,(k+(N3/2))); 

    set8(1,k)=result3(1,k); 

    set9(1,k)=result3(1,(k+(N3/2))); 

    set10(1,k)=result4(1,k); 

    set11(1,k)=result4(1,(k+(N3/2))); 

    set12(1,k)=result5(1,k); 

    set13(1,k)=result5(1,(k+(N3/2))); 

end 

result2=myrecursive(set6); 

result3=myrecursive(set7); 

result4=myrecursive(set8); 

result5=myrecursive(set9); 

result6=myrecursive(set10); 

result7=myrecursive(set11); 

result8=myrecursive(set12); 

result9=myrecursive(set13); 

result10=[result2,result3]; 

result11=[result4,result5]; 

result12=[result6,result7]; 

result13=[result8,result9]; 

result14=[result10,result11]; 

result15=[result12,result13]; 

result1=[result14,result15]; 

for i=1:Npeak 

    for j=1:Npeak 



        if res(1,i)==result1(1,j); 

            res(5,i)=result1(2,j); 

        end 

    end 

   End 

 

 

Recursive function to calculate Ntrap value: 

function output=recursive(N) 

List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6 3.72 3.79 3.85 4.0 3.46 3.15 2.75 3.33];  

Nlength=length(List_peaks); 

Nbit=log2(Nlength); 

output=zeros((Nbit+1),N); 

set0=zeros((Nbit+1),(N/2)); 

set1=zeros((Nbit+1),(N/2)); 

array=List_peaks; 

j=1;n=0; 

for i=1:Nbit 

for k=1:((N/2)+1) 

    if N==0 

      output=[set0,set1]; 

       

      n=n+1 

    else 

        set0(1,k)=array(1,j); 

        set1(1,k)=array(1,j+1); 

%         if k>(n+1) 



%         l=fix(k/(n+1)); 

%         else 

%             l=1; 

%         end 

            set0(i+1,k)=0; 

            set1(i+1,k)=1; 

    end 

    j=j+2; 

    N=N-2; 

end 

N=Nlength; 

j=1; 

end 

End 

 

Myrecursive function to assign peak indexing value: 

 

function f=myrecursive(array) 

%  List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6 3.72 3.79 3.85 4.0 3.46 3.15 2.75 3.33];  

% load(new_pgm.m,List_peaks); 

% Nlength=length(List_peaks); 

N=length(array); 

Nbit=log2(N); 

f=zeros((Nbit+1),N); 

set0=zeros((Nbit+1),(N/2)); 

set1=zeros((Nbit+1),(N/2)); 

% array=List_peaks; 



bit=zeros(Nbit,N); 

j=1;n=0; 

for k=1:((N/2)+1) 

    if N==0 

      f=[set0,set1]; 

      array=f; 

      n=n+1 

    else 

        set0(1,k)=array(1,j); 

        set1(1,k)=array(1,j+1); 

        set0(2,k)=0; 

        set1(2,k)=1; 

  end 

    j=j+2; 

    N=N-2; 

End 

 

 

 

 

 

 

 

 

 

 



 

Outputs for this code: 

 number of traps =4 

1) Assigning of peak index for each peak: 

    

2.5 2.62 2.8 2.9 2.98 3.40 3.52 3.6 3.72 3.79 2.85 4.0 3.46 3.15 2.75 3.33 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 

 

 

Code for calculating amplitude and time constant ratio for each trap: 

%//code for caluculating amplitude and time constant ratio of each trap// 

  

dummy0=0; 

   dummy1=0; 

   new_set0=zeros(Nbit,(Nvalue/2)); % new sets to take index value is zero and index value one 

seperately 

   new_set1=zeros(Nbit,(Nvalue/2)); 

   timeconstant_ratio_trap=zeros(1,Nbit); 

   amplitude=zeros(Nbit,(Nvalue/2));  

   j=1;l=1; 

   for i=1:1:Nbit 

   for k=1:1:Nvalue 

       if res((i+1),k)==0 

           dummy0=dummy0+res(1,k); 

           new_set0(i,j)=res(1,k); 

           j=j+1; 



           if j==((Nvalue/2)+1) 

               j=1; 

           end 

       else if res((i+1),k)==1 

           dummy1=dummy1+res(1,k); 

           new_set1(i,l)=res(1,k); 

           l=l+1; 

           if l==((Nvalue/2)+1) 

               l=1; 

           end 

           end 

       end 

        

   End 

 timeconstant_ratio_trap(1,i)=(dummy0/dummy1); %output ratio of two time constants for each 

trap 

       amplitude=new_set0-new_set1; 

   end 

   for i=1:Nbit 

       for k=1:(Nvalue/2) 

           if amplitude(i,k)<0 

               amplitude(i,k)=-amplitude(i,k); % output amplitude for each trap 

           end 

       end 

   end 

 

 



 

Output for amplitude and time constant ratio for each traps from 16-level RTN: 

1) RTN Amplitude for each trap: 

Trap-1 0.12 0.1 0.42 0.08 0.07 0.15 0.31 0.58 

Trap-2 0.3 0.28 0.54 0.2 0.13 0.21 0.71 0.18 
Trap-3 0.48 0.78 0.72 0.7 0.26 0.64 1.1 0.67 

Trap-3 1.22 1.17 1.05 1.1 0.48 0.25 0.77 0.27 

 

2) Time constant ratio for each trap: 

Trap Time constant ratio 

Trap-1 0.9548 

Trap-2 0.9563 
Trap-3 0.9705 

Trap-3 0.9436 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CONCLUSION 

   An apparatus and method for characteristic physical constant extraction for determining 

multiple trap defects in a semiconductor device, including receiving signal representing a change 

in a drain current of the semiconductor device over time, the signal comprising a time series of 

values, constructing a histogram representation, each peak being associated with a state of a 

Random Telegraph Noise (RTN) signal caused by a plurality of bistable traps of mobile charge 

carriers in the semiconductor device. Assigning a peak index value for each peak; calculating an 

amplitude and a time constant ratio for each trap; determining theoretical intensities for each 

peak; and determining a number of traps based on a correspondence between the calculated 

amplitude and time constant ratio for each trap and the theoretical intensity for each peak 

associated with each trap. Embodiments of an apparatus for extracting characteristic physical 

constants from a complex Random Telegraph Noise (RTN) signal includes a first stage configured 

to resolve a number of stable states in a time series, the stable states being associated with a 

plurality of defects, the time series comprising a plurality of data points, and the first stage also 

configured to determine an activation status of each defect; and a second stage configured to 

calculate a transition preference table based on physically allowed transitions, and to uniquely 

assign each data point of the time series to one of the stable states using the transition 

preference table, each defect comprising a bistable trap of a mobile charge carrier in the 

semiconductor device, and the plurality of defects causing Random Telegraph Noise (RTN) in a 

voltage threshold of one or more gates of the semiconductor device. 
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