
IMPLEMENTATION OF ALGORITHM FOR ANALYSIS OF MULTI

TRAP RANDOM TELEGRAPH NOISE IN MOSFETs

A Dissertation Submitted to the

Department of Electrical Engineering of IIT Madras,

In partial fulfilment of the requirements for the degree of

M.Tech in Electrical Engineering

Submitted by

S Lakshmi Tirupathi Kumari

Roll No. EE19M052

Supervisor:

Dr. Deleep R Nair

Department of Electrical Engineering

Indian Institute of Technology, Madras

Department of Electrical Engineering

 Indian Institute of Technology, Madras

 Chennai 600036, Tamil Nadu, India

 June 2021.

Acknowledgement

 The present project work is submitted in fulfilment of the requirements for the degree of

Master of Technology of Indian Institute of Technology, Madras (IITM). I express my deepest

gratitude to my supervisor Dr. Deleep R Nair of Indian Institute of Technology, Madras for his

inestimable support, encouragement, profound knowledge, largely helpful conversations and also

for providing me a systematic way for the completion of my project works. I am also extremely

grateful to the Pavan Ch, PhD student of IITM, for his continuous help and support throughout the

project.

IITM

June 2021

 (S Lakshmi Tirupathi Kumari)

 Department of Electrical Engineering

 Indian Institute of Technology, Madras.

ABSTRACT

Reliability of MOSFETs has become a major concern in scaled technologies. The potential of

innovative technologies and processes can be realized only if the reliability constraints are in

tolerable limits. Some of the important reliability aspects in scaled MOSFETs are bias and

temperature instability (BTI), random telegraph noise (RTN), stress induced leakage currents

(SILC), hot carrier degradation (HCD). One of these aspects, namely random telegraph noise has

attracted attention of researchers as it poses a reliability challenge for scaled devices. It is defined

as fluctuation in source-drain current of a MOSFET due to trapping and detrapping of charge

carrier from the channel into a gate oxide trap. This results in fluctuation in threshold voltage of

the device (∆VT). A single trap in the gate insulator can cause fluctuation involving two discrete

levels in drain current. If n-traps become active, it can result in 2n-1 +1 to 2n discrete levels in the

drain current. RTN can impact digital circuits, SRAMs and Flash memory cells.

Multi trap RTN is also referred to as complex RTN and it can cause large shifts in threshold voltage

of the device. Further, the analysis also gets complicated for multi trap RTN. One of the important

steps in multi trap RTN analysis is to decompose the multi-level RTN as a superposition of two

level RTNs. Some of the algorithms used are based on bayesian inference, hidden markov models.

These are probability based algorithms which are computationally intensive and time consuming.

So, non-probabilistic algorithms are more preferred.

One such algorithm is implemented in this thesis which is based on a patent. This thesis is focused

on implementation of an algorithm for analysis of multi-trap RTN. The implementation of the

algorithm is divided into two stages-histogram based analysis and transition based analysis. The

multi trap RTN data is given to first stage whose output will be the number of traps, RTN

amplitude of each trap, time constants ratios of each trap. After this, the second stage processing

involves identification of transitions between traps and computing individual time constant

values of each trap.

The input to the algorithm is a multi-trap RTN measured on a pFET. The aim of the algorithm

implemented in this work is to extract the individual trap components-its RTN amplitude and

time constants. As part of the project, first stage analysis is implemented in MATLAB and results

were shown.

CONTENTS

CHAPTER 1 INTRODUCTION TO RTN 5

1.1 Introduction to Random Telegraph Noise (RTN) in MOSFET 6

 1.1.1 Physical mechanism of RTN

 1.1.2 Time domain and frequency domain properties

 1.1.3 Relation between flicker noise and RTN

 1.1.4 Impact of RTN

 1.2 Multi trap RTN …………………………………………………………………………………….10

 1.2.1 Introductions to multi trap RTN

 1.2.2 Algorithms for multi trap RTN

CHAPTER 2 DESCRIPTION OF ALGORITHM FOR MULTI TRAP RTN DATA

ANALYSIS 12

 2.1 Introduction to the algorithm...13

 2.2 First stage analysis..14

 2.2.1 Extraction of characteristic physical constants…………………..……............................14

 2.2.2 Recursive method of assigning peak index values..15

 2.2.3 Calculation of amplitude and time constant ratio for individual traps...................17

 2.3 Second stage analysis...19

 2.3.1 Calculation of time constants through transition-based analysis..........................19

 2.3.2 Look-up table to define allowed next- state transitions from each state...............21

CHAPTER 3 IMPLEMENTATION OF ALGORITHM IN MATLAB 23

CONCLUSIONS 42

REFERENCES 43

CHAPTER 1

 INTRODUCTION TO RTN

1.1 Introduction to Random Telegraph Noise (RTN) in MOSFET

Random Telegraph Noise (RTN) is an important reliability aspect in scaled MOSFETs which has

attracted the attention of researchers. It was first observed in drain current of MOSFET in the

year 1984 and the physical mechanism was been identified as trapping and detrapping events

occurring between the charge carriers in the channel and gate oxide traps or interface traps[1,2].

1.1.1 Physical mechanism of RTN

 Random Telegraph Noise (RTN) is caused by random trapping and detrapping of a single charge

carrier from channel into gate oxide traps. This manifests as a two level fluctuation in drain

current of MOSFET. A typical diagram depicting the RTN is shown below in Fig.1. RTN has become

a reliability concern for digital circuits[3], SRAM[4,5], Flash memories[6].

Fig 1.1 : Schematic representing the capture and emission of an electron from the channel into

gate oxide trap

 1.1.2 Time domain and frequency domain properties of RTN

 Any noise can be characterized in time domain as well as frequency domain. A typical RTN

waveform is shown below. In time domain, it is characterized by three primary parameters-

namely capture time, emission time and RTN amplitude. The capture time is defined as average

time to capture a charge carrier (electron or hole) into the gate oxide trap, emission time is the

average time to emit the charge carrier into channel.

Fig 1.2: Typical RTN waveform denoting the capture and emission time constants. The figure in

the inset shows the histogram of drain current RTN with two gaussian peaks(Courtesy: Pavan

Ch)

RTN is a random process and the time durations of trap being empty and full (capture and

emission durations) follow exponential distribution [1]. The capture and emission times are the

mean values extracted by fitting the capture and emission durations to exponential distribution

as illustrated in the figure below.

Fig 1.3: Schematic showing the exponential distribution of capture and emission durations[1]

RTN amplitude is defined as the difference of the discrete levels observed in RTN. It is computed

as difference of peaks in the histogram as shown in figure below. Further, the RTN amplitude can

be transformed into threshold voltage fluctuation (∆VT) given as

∆𝑉𝑇 =
∆𝐼𝐷

𝐺𝑚

where ∆ID is the difference in the discrete levels in the histogram, Gm is the transconductance of

the device.

The impact of RTN for a given technology is expressed in terms of RTN induced ∆VT. Specifically

statistical measurements are performed and statistical averages of ∆VT is obtained.

In frequency domain, the RTN is characterized by a lorentzian spectrum as shown below. The

important parameters of PSD denoted as S(f) are S(0) which indicates the constant plateau at

lower frequencies, fo represents the corner frequency. The PSD falls with 1/f2 for frequencies

greater than fo.

Fig 1.4: Schematic showing the Lorentzian spectrum for RTN

The PSD is given as

Where the corner frequency is related to time constants as

𝒇𝒐 =
𝟏

𝟐𝝅
(

𝟏

𝝉𝒄
+

𝟏

𝝉𝒆
)

The above equation also represents the relation between time domain and frequency domain

parameters of RTN.

𝑺(𝒇) =
𝑺(0)

1 + (
𝒇

𝒇𝒐
)

2

1.1.3 Relation between flicker noise and RTN

Low Frequency Noise(1/f noise) can be expressed as a summation of Lorentzians with a specific

distribution of time constants that is uniform on a log scale.[7] RTN dominates for small areas

devices, while LFN for larger area devices.

Fig 1.4: Superposition of lorentzians caused due to individual trap results in 1/f spectrum[8].

1.1.4 Impact of RTN

RTN has become a reliability challenge at scaled devices. A brief outline of RTN impact is given

below.

 1) The RTN induced threshold voltage ∆VT increases at lower gate lengths, which indicates that

RTN can pose a serious challenge at lower nodes [9]

2) RTN can induce performance fluctuations in CMOS circuits[3,10]

3) RTN affects the SRAM stability and also minimum operating voltage Vmin [4,11]

4) RTN can cause fluctuations in read current in flash memory cells [12]

1.2 Multi Trap RTN

1.2.1 Introduction to multi trap RTN

A single trap in the gate oxide produces two discrete levels in the drain current of a MOSFET. If

more than one trap is active in trapping and detrapping of inversion layer carriers, then it leads

to more than two levels in the RTN measurement. In general, if there are n-traps it can cause

2n-1 +1 to 2n levels. Multi trap RTN also called as complex RTN. It can cause large ∆VT values of the

device. Some example of RTN with two traps are shown below. It can be observed from the figure

that two traps resulted in four discrete levels in drain current of MOSFET.

Fig 1.5 : Example of a four level RTN due to two traps measured on pMOSFET (Courtesy : Pavan Ch)

Fig 1.6 Example of a four level RTN due to two traps measured on pMOSFET (Courtesy : Pavan Ch)

1.2.2 Algorithms multi-trap RTN data

 For multi trap RTN, the first and important step is to decompose the multi trap RTN into

superposition of two-level RTNs. An example of such a decomposition is shown below[13]. It

can be observed that the discrete levels (shown in red color) have been identified from the

measured multi trap RTN (shown in black color). Further, it is decomposed into superposition of

two traps, each of the trap being a two level RTN.

Fig 1.7 Decomposition of 4-level RTN into superposition of two-level RTNs[13]

The algorithm for analysis of multi trap RTN can be categorized into two groups-probability based

and non-probabilistic algorithms.

Some of the examples of probability based algorithms are hidden markov models[14,15],

factorial hidden markov models[16,17], Bayesian inference[18]. These are computationally

intensive, time consuming.

The other group of algorithms are mostly based on dynamic thresholding techniques [19]. These

are not time consuming and can run in reasonable time even with large number of data points in

the measurement. Hence, these are preferred.[20]

CHAPTER 2

DESCRIPTION OF ALGORITHM FOR MULTI TRAP RTN DATA

ANALYSIS

 2.1 Introduction to the algorithm

This algorithm is implemented in two stages. A brief overview of the two stages is shown in the

figure 2.1. The input and output of each of the stages is also depicted.

The first stage involves histogram based analysis. The measured RTN data is taken and histogram

is obtained. Based on the number of peaks in the histogram, number of traps are identified. The

number of traps, RTN amplitude of each trap and ratio of time constants of each trap are

obtained as outputs of first stage.

Further, the second stage is referred to as transition based analysis. It involves assigning each

data point in the RTN time series is assigned to the stable states obtained in the first stage.

Further, the transitions for each of the traps are identified and time constants are computed for

each of the traps.

 Fig 2.1 Schematic of two stage analysis of algorithm[20]

2.2 First stage analysis

 In first stage analysis of the algorithm, histogram is obtained for RTN data time series. The

number of peaks are counted in the histogram to identify number of traps. If there are n-traps it

can result in 2n-1 +1 to 2n levels (peaks) in the histogram. The first stage analysis involves three

steps, each step can be explained using a flowchart.

2.2.1 Extraction of characteristic physical constants

The process of implementation of first stage analysis is depicted in the flowchart as shown below

in figure 2.2

Fig 2.2 Flowchart for extraction of physical constants of RTN[20]

The measured time series RTN data is taken and binning is performed to obtain histogram. A counter

representing number of traps in initiated with an initial value of 1. (Ntrap=1). Then, the algorithm proceeds

to search peaks of the histogram using standard deviation values. Number of peaks in histogram gives the

information about number of traps. For example, if we have 2 states, it indicates presence of only one

trap present. Similarly, if there are 4 states and 8 states, it corresponds to two and three traps respectively.

In the next step, each peak in the histogram is assigned a binary index value. Further, amplitude and a

time constant ratio is calculated for each of the traps. The theoretical intensities are then determined for

each of the peaks.

In the next step, the algorithm verifies whether the theoretical intensities are determined for all peaks.

Further, reproduced theoretical peak intensities are verified. If not, then the number of traps determined

is incremented by 1, and the steps from peak search in histogram to checking of peak intensities are

repeated. If the theoretical peak intensities have been reproduced correclty, then the method determines

the number of traps present, the method of the first stage determines a number of traps based on a

correspondence between the calculated amplitude and time constant ratio for each trap and the

theoretical intensity for each peak associated with each trap.

2.2.2 Recursive method of assigning peak index values

Fig 2.3 flowchart for recursively assignment of peak indexes [20]

 The step of assigning a peak index value can be performed according to various techniques. For

example, Fig2.5 is a flowchart of a recursive method of assigning peak index values in the first stage.

 Referring to fig2.5, the method of recursively assigning a peak index value includes obtaining the peak

positions from the time series and constructing an initial set of peak positions. The trap number count is

set to 0. Then, peak indexes are assigned recursively using the next procedure. For example, the recursive

assignment of peak indexes determining if the number of peaks is less than two, if so, then this step has

been completed. If not, then this step includes assigning a lowest peak index value to one of the states in

which all of the states is comprised of a first state value indicating the empty trap condition (for example,

0) and a second state value indicating the capture condition (for example, 1).

 The transition from the first state value to the second state value represents capture of an electron by

an associated trap, and a transition from the second state value to the first state value represents release

of an electron from the associated trap. The drain current of the semiconductor device changes between

at least two stable states in response to each transition.

 The method continues by assigning the first state value indicating the empty condition to a lowest peak

other than the next lowest peaks associated with next step. An offset value (An) is calculated as the

difference in position between the lowest and the next lowest peaks in the next step. The number of

peaks is then decremented by 2, and the method checks to see if there are any remaining peaks to be

assigned. If there are more peaks to be assigned, then the method determines a peak which is at the

lowest position in the remaining peaks, and the nearest in position in which the peak value is the lowest

peak plus the offset value An determined. In next step the lowest peak is given an empty state with respect

to the trap number of interest. The other peak which is positioned at An from the lowest peak is given an

occupied state similarly. The steps from checking of Npeak value to checking of if there are any remaining

peaks to assign, are repeated for all peaks in the histogram.

 The method of recursive assignment continues by classifying all peaks in the histogram into one of a

first set consisting of peaks assigned the first state value indicating the empty condition and as second set

consisting of peaks assigned the second state value indicating the capture condition in next step. Then

increase the n value indicating the next bit assignment of each peak. In further steps perform the recursive

assignment for both first set and second set to assign further bit assignment.

Fig 2.4 illustration of recursive assignment of peak indexes[20]

2.2.3 Calculation of amplitude and time constant ratio for individual traps

Fig 2.5 Flowchart for calculating amplitude and time constant for each trap[20]

The step of calculating an amplitude and a time constant ratio for each trap can be performed according

to various techniques. Fig 2.7 is a flowchart of a method of calculating an amplitude and a time constant

ratio for each trap in the first stage.

 Referring to fig2.7, the method of calculating an amplitude and a time constant ratio of each trap can

include obtaining or reading the peak intensities and indices at initial step, and setting an initial index

value to 0 as taking n value as zero. Then at next step, it is determined if the index value is less than the

number of traps. If not, then the result has been completed. If so, then the method further includes

obtaining or reading the first set (consisting of peaks assigned the first state indicating the empty

condition) and the second set (consisting of peaks assigned the first state value indicating the capture

condition). Next, for each trap, the difference in position between corresponding peaks in the first set and

the second set are calculated. Based on the difference, an amplitude is determined. Next, a first sum is

calculated based on intensities of the peaks of the first set, and a second sum is calculated based on

intensities of the peaks of the second set. Then, a ratio of the first and second sums is determined. Based

on the ratio, time constant ratio is determined. the index value n is incremented by 1, and the method

returns to checking of n value whether it is less than the number of traps at which the steps checking of

index value through increment of n value are repeated.

Fig 2.6 illustration of the calculating an amplitude and a time constant ratio for each trap[20]

2.3 Second stage analysis

 2.3.1 Calculation of time constants through transition-based analysis

 Fig 2.7 flowchart for calculating time constant through transition-based analysis

 Referring to Fig2.9, a method can include reading or inputting the number of traps and their amplitudes

from the first stage (refer to fig 2.4), and then estimating initial values for the corresponding time

constants. Next, the method includes creating a look-up table defining a number of allowed next-state

transitions from each state Then, an index value is assigned to each sampled point or value of the time

series, and the number of transitions for each trap is determined. Following this determination, the time

constants are calculated for each trap using the relationship between average holding time and transition

rate, which is explained at Equation (1). Then, a revised look-up table defining the allowed next-state

transitions from each state is computed, followed by revised index value assignment to each sampled

point or value of the time series. Next, the number of transitions for each trap is determined again. Then

in next step if the number of transitions determined for each trap is different from the previous

determination, then steps from calculating time constant to checking of number of transition value are

repeated recursively until the number of transitions determined is unchanged from the previous

determination, in which case the method ends. In this way, the assignment of states is uniquely

determined.

Fig2.8 illustrate method of inhibiting next-state transitions in creating a look-up table defining

allowed state transitions[20]

Fig 2.9 illustrate a method of determining transition-based assignments[20]

2.3.2 Method of creating a look-up table defining number of allowed next- state

transitions from each state.

Fig 2.10 flowchart for Method of creating a look-up table defining number of allowed next-

state transitions from each state[20]

 Referring to Fig 2.12, the method of creating a look-up table defining a number of allowed next-state

transitions from each state includes obtaining or reading peak parameters such as, for example, peak

position, intensity, and associated time constants.

 Initially, a previous state counter is set to 0. Then it is determined if the look-up table contents for all

previous states have been calculated. If not, then the method further includes creating a set of allowed

destination states as discussed here in above with respect to fig2.10. Next, the bin for the destination

state being processed is set initially to 0. Then at next state, it is determined if all bins for the state being

processed have been calculated. If so, then the method returns to checking of previous states transition.

If not, then the method continues to next step at which the transition probability is calculated for all

allowed states, and then to next step at which the holding probability is calculated for the holding state,

as described, for example, with respect to figs2.11. Next, the most probable next state is stored in a

computer –readable storage medium or memory, the bin counter is incremented by 1, and the method

returns to state at which checking of bins calculation.

CHAPTER 3

 PROGRAMMING TO CALCULATE RTN TIME CONSTANT

Origin Graphic tool to draw histogram and calculate standard deviation of

measured data:

Matlab code for two trap:

clc;

clear all;

close all;

format long;

filename='C:\Users\laksh\Documents\MATLAB\50usec_Channel101.csv';

delimiter = ','; startRow = 1; endRow = inf;

Noise=importdata(filename, startRow, endRow);

Time=Noise(:,1);

Id=abs(Noise(:,2));

[binpos,ftshist]=hist(Id,80);

plot(ftshist,binpos);

List_peaks = 1E-06*[3.7357,3.8078,3.8783,0];

% List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6 3.72 3.79 3.85 4.0 3.46 3.15 2.75 3.33];

% List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6];

Npeak=length(List_peaks);

Nvalue=Npeak;

Nbit=log2(Npeak);

res=zeros((Nbit+1),Npeak);

% set0=zeros(1,Npeak/2);

% set1=zeros(1,Npeak/2);

for i=1:Npeak

res(1,i)=List_peaks(1,i);

end

result=recursive(Nvalue);

result1=myrecursive(List_peaks);

N1=length(result1);

for k=1:(N1/2)

 set0(1,k)=result1(1,k);

 set1(1,k)=result1(1,(k+(N1/2)));

end

for i=1:Npeak

 for j=1:Npeak

 if res(1,i)==result1(1,j);

 res(2,i)=result1(2,j);

 end

 end

end

result2=myrecursive(set0);

result3=myrecursive(set1);

result1=[result2,result3];

for i=1:Npeak

 for j=1:Npeak

 if res(1,i)==result1(1,j);

 res(3,i)=result1(2,j);

 end

 end

end

% N2=length(result2);

% for k=1:(N2/2)

% set2(1,k)=result2(1,k);

% set3(1,k)=result2(1,(k+(N2/2)));

% set4(1,k)=result3(1,k);

% set5(1,k)=result3(1,(k+(N2/2)));

% end

% result2=myrecursive(set2);

% result3=myrecursive(set3);

% result4=myrecursive(set4);

% result5=myrecursive(set5);

% result6=[result2,result3];

% result7=[result4,result5];

% result1=[result6,result7];

% for i=1:Npeak

% for j=1:Npeak

% if res(1,i)==result1(1,j);

% res(4,i)=result1(2,j);

% end

% end

% end

% N3=length(result5);

% for k=1:(N3/2)

% set6(1,k)=result2(1,k);

% set7(1,k)=result2(1,(k+(N3/2)));

% set8(1,k)=result3(1,k);

% set9(1,k)=result3(1,(k+(N3/2)));

% set10(1,k)=result4(1,k);

% set11(1,k)=result4(1,(k+(N3/2)));

% set12(1,k)=result5(1,k);

% set13(1,k)=result5(1,(k+(N3/2)));

% end

% result2=myrecursive(set6);

% result3=myrecursive(set7);

% result4=myrecursive(set8);

% result5=myrecursive(set9);

% result6=myrecursive(set10);

% result7=myrecursive(set11);

% result8=myrecursive(set12);

% result9=myrecursive(set13);

% result10=[result2,result3];

% result11=[result4,result5];

% result12=[result6,result7];

% result13=[result8,result9];

% result14=[result10,result11];

% result15=[result12,result13];

% result1=[result14,result15];

% for i=1:Npeak

% for j=1:Npeak

% if res(1,i)==result1(1,j);

% res(5,i)=result1(2,j);

% end

% end

% end

%//code for caluculating amplitude and time constant ratio of each trap//

dummy0=0;

 dummy1=0;

 new_set0=zeros(Nbit,(Nvalue/2));

 new_set1=zeros(Nbit,(Nvalue/2));

 timeconstant_ratio_trap=zeros(1,Nbit);

 amplitude=zeros(Nbit,(Nvalue/2));

 j=1;l=1;

 for i=1:1:Nbit

 for k=1:1:Nvalue

 if res((i+1),k)==0

 dummy0=dummy0+res(1,k);

 new_set0(i,j)=res(1,k);

 j=j+1;

 if j==((Nvalue/2)+1)

 j=1;

 end

 else if res((i+1),k)==1

 dummy1=dummy1+res(1,k);

 new_set1(i,l)=res(1,k);

 l=l+1;

 if l==((Nvalue/2)+1)

 l=1;

 end

 end

 end

 end

 timeconstant_ratio_trap(1,i)=(dummy0/dummy1); %output ratio of two time constants for

each trap

 amplitude=new_set0-new_set1;

 end

 for i=1:Nbit

 for k=1:(Nvalue/2)

 if amplitude(i,k)<0

 amplitude(i,k)=-amplitude(i,k); % output amplitude for each trap

 end

 end

 end

 Output of the code:

1) trap count:

Fig: four-level RTN waveform and its histogram

2) peak index assigning:

 Fig :Assignment of peaks with binary indexes

Peak value (µA) Binary value

5.11 00
5.149 10

5.198 01

5.23 11

Table 1: peak assignment

3) Amplitude and time constant ratio of each trap from 4-level RTN

Trap RTN amplitude RTN amplitude Time constant ratio

Trap-1 39 nA 32 nA 0.9932

Trap-2 88 nA 81 nA 0.9985

Matlab code for calculating number of traps and assigning peak indexing in first

stage (it works for max four traps):

% For analysis purpose here we are taking 16 peak stages of data

clc;

clear all;

close all;

format long;

filename='C:\Users\laksh\Documents\MATLAB\50usec_Channel101.csv';

delimiter = ','; startRow = 1; endRow = inf;

Noise=importdata(filename, startRow, endRow);

Time=Noise(:,1);

Id=abs(Noise(:,2));

[binpos,ftshist]=hist(Id,80);

plot(ftshist,binpos);

initialset=1E-06*[3.7357,3.8078,3.8783,0]; %actual peak values calculated using origin tool

List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6 3.72 3.79 3.85 4.0 3.46 3.15 2.75 3.33];

% List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6];

Npeak=length(List_peaks);

Nvalue=Npeak;

Nbit=log2(Npeak);

res=zeros((Nbit+1),Npeak);

% set0=zeros(1,Npeak/2);

% set1=zeros(1,Npeak/2);

for i=1:Npeak

res(1,i)=List_peaks(1,i);

end

result=recursive(Nvalue);

result1=myrecursive(List_peaks);

 N1=length(result1);

for k=1:(N1/2)

 set0(1,k)=result1(1,k);

 set1(1,k)=result1(1,(k+(N1/2)));

end

for i=1:Npeak

 for j=1:Npeak

 if res(1,i)==result1(1,j);

 res(2,i)=result1(2,j);

 end

 end

end

result2=myrecursive(set0);

result3=myrecursive(set1);

result1=[result2,result3];

for i=1:Npeak

 for j=1:Npeak

 if res(1,i)==result1(1,j);

 res(3,i)=result1(2,j);

 end

 end

end

N2=length(result2);

for k=1:(N2/2)

 set2(1,k)=result2(1,k);

 set3(1,k)=result2(1,(k+(N2/2)));

 set4(1,k)=result3(1,k);

 set5(1,k)=result3(1,(k+(N2/2)));

end

result2=myrecursive(set2);

result3=myrecursive(set3);

result4=myrecursive(set4);

result5=myrecursive(set5);

result6=[result2,result3];

result7=[result4,result5];

result1=[result6,result7];

for i=1:Npeak

 for j=1:Npeak

 if res(1,i)==result1(1,j);

 res(4,i)=result1(2,j);

 end

 end

end

N3=length(result5);

for k=1:(N3/2)

 set6(1,k)=result2(1,k);

 set7(1,k)=result2(1,(k+(N3/2)));

 set8(1,k)=result3(1,k);

 set9(1,k)=result3(1,(k+(N3/2)));

 set10(1,k)=result4(1,k);

 set11(1,k)=result4(1,(k+(N3/2)));

 set12(1,k)=result5(1,k);

 set13(1,k)=result5(1,(k+(N3/2)));

end

result2=myrecursive(set6);

result3=myrecursive(set7);

result4=myrecursive(set8);

result5=myrecursive(set9);

result6=myrecursive(set10);

result7=myrecursive(set11);

result8=myrecursive(set12);

result9=myrecursive(set13);

result10=[result2,result3];

result11=[result4,result5];

result12=[result6,result7];

result13=[result8,result9];

result14=[result10,result11];

result15=[result12,result13];

result1=[result14,result15];

for i=1:Npeak

 for j=1:Npeak

 if res(1,i)==result1(1,j);

 res(5,i)=result1(2,j);

 end

 end

 End

Recursive function to calculate Ntrap value:

function output=recursive(N)

List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6 3.72 3.79 3.85 4.0 3.46 3.15 2.75 3.33];

Nlength=length(List_peaks);

Nbit=log2(Nlength);

output=zeros((Nbit+1),N);

set0=zeros((Nbit+1),(N/2));

set1=zeros((Nbit+1),(N/2));

array=List_peaks;

j=1;n=0;

for i=1:Nbit

for k=1:((N/2)+1)

 if N==0

 output=[set0,set1];

 n=n+1

 else

 set0(1,k)=array(1,j);

 set1(1,k)=array(1,j+1);

% if k>(n+1)

% l=fix(k/(n+1));

% else

% l=1;

% end

 set0(i+1,k)=0;

 set1(i+1,k)=1;

 end

 j=j+2;

 N=N-2;

end

N=Nlength;

j=1;

end

End

Myrecursive function to assign peak indexing value:

function f=myrecursive(array)

% List_peaks = 1E-06*[2.5 2.62 2.8 2.9 2.98 3.4 3.52 3.6 3.72 3.79 3.85 4.0 3.46 3.15 2.75 3.33];

% load(new_pgm.m,List_peaks);

% Nlength=length(List_peaks);

N=length(array);

Nbit=log2(N);

f=zeros((Nbit+1),N);

set0=zeros((Nbit+1),(N/2));

set1=zeros((Nbit+1),(N/2));

% array=List_peaks;

bit=zeros(Nbit,N);

j=1;n=0;

for k=1:((N/2)+1)

 if N==0

 f=[set0,set1];

 array=f;

 n=n+1

 else

 set0(1,k)=array(1,j);

 set1(1,k)=array(1,j+1);

 set0(2,k)=0;

 set1(2,k)=1;

 end

 j=j+2;

 N=N-2;

End

Outputs for this code:

 number of traps =4

1) Assigning of peak index for each peak:

2.5 2.62 2.8 2.9 2.98 3.40 3.52 3.6 3.72 3.79 2.85 4.0 3.46 3.15 2.75 3.33

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1

Code for calculating amplitude and time constant ratio for each trap:

%//code for caluculating amplitude and time constant ratio of each trap//

dummy0=0;

 dummy1=0;

 new_set0=zeros(Nbit,(Nvalue/2)); % new sets to take index value is zero and index value one

seperately

 new_set1=zeros(Nbit,(Nvalue/2));

 timeconstant_ratio_trap=zeros(1,Nbit);

 amplitude=zeros(Nbit,(Nvalue/2));

 j=1;l=1;

 for i=1:1:Nbit

 for k=1:1:Nvalue

 if res((i+1),k)==0

 dummy0=dummy0+res(1,k);

 new_set0(i,j)=res(1,k);

 j=j+1;

 if j==((Nvalue/2)+1)

 j=1;

 end

 else if res((i+1),k)==1

 dummy1=dummy1+res(1,k);

 new_set1(i,l)=res(1,k);

 l=l+1;

 if l==((Nvalue/2)+1)

 l=1;

 end

 end

 end

 End

 timeconstant_ratio_trap(1,i)=(dummy0/dummy1); %output ratio of two time constants for each

trap

 amplitude=new_set0-new_set1;

 end

 for i=1:Nbit

 for k=1:(Nvalue/2)

 if amplitude(i,k)<0

 amplitude(i,k)=-amplitude(i,k); % output amplitude for each trap

 end

 end

 end

Output for amplitude and time constant ratio for each traps from 16-level RTN:

1) RTN Amplitude for each trap:

Trap-1 0.12 0.1 0.42 0.08 0.07 0.15 0.31 0.58

Trap-2 0.3 0.28 0.54 0.2 0.13 0.21 0.71 0.18
Trap-3 0.48 0.78 0.72 0.7 0.26 0.64 1.1 0.67

Trap-3 1.22 1.17 1.05 1.1 0.48 0.25 0.77 0.27

2) Time constant ratio for each trap:

Trap Time constant ratio

Trap-1 0.9548

Trap-2 0.9563
Trap-3 0.9705

Trap-3 0.9436

CONCLUSION

 An apparatus and method for characteristic physical constant extraction for determining

multiple trap defects in a semiconductor device, including receiving signal representing a change

in a drain current of the semiconductor device over time, the signal comprising a time series of

values, constructing a histogram representation, each peak being associated with a state of a

Random Telegraph Noise (RTN) signal caused by a plurality of bistable traps of mobile charge

carriers in the semiconductor device. Assigning a peak index value for each peak; calculating an

amplitude and a time constant ratio for each trap; determining theoretical intensities for each

peak; and determining a number of traps based on a correspondence between the calculated

amplitude and time constant ratio for each trap and the theoretical intensity for each peak

associated with each trap. Embodiments of an apparatus for extracting characteristic physical

constants from a complex Random Telegraph Noise (RTN) signal includes a first stage configured

to resolve a number of stable states in a time series, the stable states being associated with a

plurality of defects, the time series comprising a plurality of data points, and the first stage also

configured to determine an activation status of each defect; and a second stage configured to

calculate a transition preference table based on physically allowed transitions, and to uniquely

assign each data point of the time series to one of the stable states using the transition

preference table, each defect comprising a bistable trap of a mobile charge carrier in the

semiconductor device, and the plurality of defects causing Random Telegraph Noise (RTN) in a

voltage threshold of one or more gates of the semiconductor device.

REFERENCES

[1] M. Kirton and M. Uren, “Noise in solid-state microstructures: A new perspective on

individual defects, interface states and low-frequency (1/ƒ) noise,” Advances in Physics, vol. 38,

no. 4, pp. 367–468, 1989, doi: 10.1080/00018738900101122.

[2] K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M.

Tennant, “Discrete resistance switching in submicrometer silicon inversion layers: Individual

interface traps and low-frequency (1 f ?) noise,” Phys. Rev. Lett., vol. 52, pp. 228–231, Jan

1984, doi:10.1103/PhysRevLett.52.228.

[3] M. Luo, R. Wang, S. Guo, J. Wang, J. Zou, and R. Huang, “Impacts of random telegraph noise

(RTN) on digital circuits,” IEEE Transactions on Electron Devices, vol. 62, no. 6, pp. 1725–1732,

June 2015, doi:10. 1109/TED.2014.2368191.

[4] S. O. Toh, T. K. Liu, and B. Nikolic, “Impact of random telegraph signaling noise on SRAM

stability,” in 2011 Symposium on VLSI Technology - Digest of Technical Papers, June 2011, pp.

204–205.

 [5] Naoki Tega et al., "Impact of threshold voltage fluctuation due to random telegraph noise

on scaled-down SRAM," 2008 IEEE International Reliability Physics Symposium, Phoenix, AZ,

2008, pp. 541-546.

[6] H. Kurata, K. Otsuga, A. Kotabe, S. Kajiyama, T. Osabe, Y. Sasago, S. Narumi, K. Tokami, S.

Kamohara, and O. Tsuchiya, “The impact of random telegraph signals on the scaling of

multilevel flash memories,” in 2006 Symposium on VLSI Circuits, 2006. Digest of Technical

Papers., June 2006, pp. 112–113, doi:10.1109/VLSIC.2006.1705335

[7] P Dutta, P M Horn, "Low-frequency fluctuations in solids: 1/f noise ,“ in Reviews of Modern

Physics, vol. 53, no. 3, pp. 497-516, July 1981.

[8] J. P. Campbell et al., "Random telegraph noise in highly scaled nMOSFETs," 2009 IEEE

International Reliability Physics Symposium, Montreal, QC, 2009, pp. 382-388.

[9]K. Ito, T. Matsumoto, S. Nishizawa, H. Sunagawa, K. Kobayashi and H. Onodera, "The impact

of RTN on performance fluctuation in CMOS logic circuits," 2011 International Reliability Physics

Symposium, 2011, pp. CR.5.1-CR.5.4, doi: 10.1109/IRPS.2011.5784563.

[10] N. Tega et al., "Increasing threshold voltage variation due to random telegraph noise in

FETs as gate lengths scale to 20 nm," 2009 Symposium on VLSI Technology, 2009, pp. 50-51.

[11] Seng Oon Toh, Y. Tsukamoto, Z. Guo, L. Jones, T. K. Liu and B. Nikolić, "Impact of random

telegraph signals on Vmin in 45nm SRAM," 2009 IEEE International Electron Devices Meeting

(IEDM), 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424228.

 [12] S. H. Gu et al., "Read Current Instability Arising from Random Telegraph Noise in Localized

Storage, Multi-Level SONOS Flash Memory," 2006 International Electron Devices Meeting,

2006, pp. 1-4, doi: 10.1109/IEDM.2006.346820.

[13] H. Miki et al., "Statistical measurement of random telegraph noise and its impact in scaled-

down high-κ/metal-gate MOSFETs," 2012 International Electron Devices Meeting, 2012, pp.

19.1.1-19.1.4, doi: 10.1109/IEDM.2012.6479071.

[14]L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, Feb 1989.

[15] D. J. Frank, “Random telegraph noise : Measurement, analysis and consequences,” in

International Reliability Physics Symposium, 2012, Tutorial.

[16] Ghahramani, Z., Jordan, M.I. Factorial Hidden Markov Models. Machine Learning 29, 245–

273 (1997). https://doi.org/10.1023/A:1007425814087.

[17] F. M. Puglisi and P. Pavan, "RTN analysis with FHMM as a tool for multi-trap

characterization in HfOX RRAM," 2013 IEEE International Conference of Electron Devices and

Solid-state Circuits, 2013, pp. 1-2, doi: 10.1109/EDSSC.2013.6628059.

[18] H. Awano, H. Tsutsui, H. Ochi and T. Sato, "Multi-trap RTN parameter extraction based on

Bayesian inference," International Symposium on Quality Electronic Design (ISQED), 2013, pp.

597-602, doi: 10.1109/ISQED.2013.6523672.

[19] T. Kitagaki, “Method for analyzing random telegraph signal and threshold level

determination method therefor,” Dec. 24 2013, US Patent 8615034B2.

[20] Miki, “Method of extracting a time constant from complex random telegraph signals,” Jan. 27, 2011,

US 2011/0022339 A1.

https://doi.org/10.1023/A:1007425814087

