
DEPARTMENT OF ELECTRICAL
ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY
MADRAS
CHENNAI - 600036

ON THE USE OF APPROXIMATE
MULTIPLIER IN ERROR-TOLERANT

APPLICATIONS

A Project Report

Submitted by

KISHORE VANKUDOTHU

In the partial fulfilment of requirements

For the award of the degree

Of

MASTER OF TECHNOLOGY

June 18, 2021



DEDICATION

To my beloved family



CERTIFICATE

This is to undertake that the Project report titled ON THE USE OF APPROXIMATE

MULTIPLIER IN ERROR-TOLERANT APPLICATIONS, submitted by me to the

Indian Institute of Technology Madras for the award of M.Tech, is a bonafide record

of the research work done by me under the supervision of Dr. Vinita Vasudevan. In

whole or in parts, the contents of this Project report have not been submitted to any

other Institute or University for the award of any degree or diploma.

Place: Chennai 600 036

Date: 18th June 2021
KISHORE VANKUDOTHU

EE19M048

Prof. Vinita Vasudevan

Project Guide

©2021 Indian Institute of Technology Madras



ACKNOWLEDGEMENTS

First and foremost, I want to express my gratitude to Dr.Vinita Vasudevan, Professor in

the Department of Electrical Engineering at IIT Madras, who has supported me through-

out the project and provided me with valuable guidance and assistance with tremendous

patience over the last twelve months. Whenever I had problems with the project, she

would give me suggestions by conducting weekly meets and sending emails. Prof.

Vinita Vasudevan had such a significant impact on me with her hard work, dedication

to perfection and excellence, and enthusiasm for research, which will also significantly

impact my future work in the industry. Thanks a lot for being so patient in explaining

things and thank you for being strict, which made me give the best out of me.

I would like to express my sincere gratitude to Janaki Madam for providing all

facilities to do this project.

I wish to thank my friends for helping me get through the difficult times and for

all the emotional support, entertainment, and care they provided during my MTech.

Finally, I love to dedicate this work to my family members for their sacrifice, coopera-

tion, support, affection, and patience shown during the course work, making it possible

to complete this work in time.

Thank you all VANKUDOTHU KISHORE

i



ABSTRACT

Approximate computing is a growing topic of study that involves compromising an ap-

plication’s accuracy in order to make it more efficient. It involves a deliberate effort

to make an application inaccurate in order to save cost and resources. Approximation

techniques may include the use of arithmetic circuits such as approximate adders and

approximate multipliers. As the multiplier is more computationally intensive than the

adder, therefore approximate multiplier is considered for this study.

Approximate multiplier have been explored as a possible solution for error-tolerant ap-

plications to trade off accuracy for gains in other circuit-based metrics, such as area,

power, and delay. Existing approximate multiplier designs have improved many of

these operating features significantly. This report presents a comparative evaluation of

existing approximate multipliers. Multipliers are evaluated based on Error metrics such

as the Mean Error Distance (MED), Normalized Mean Error Distance (NMED), and

Mean-Squared Error (MSE) which are obtained using these monte carlo simulations.

In order to assess the effectiveness of these approximate multipliers, few error-tolerant

applications are considered. In error-tolerant applications, linear image processing ap-

plications such as image sharpening and smoothing are used to demonstrate the effec-

tiveness of the approximation multipliers. The effect of introducing an approximate

multiplier in a non linear system is evaluated using an adaptive LMS filter is examined

with reference to an accurate multiplier. The filter was used for system identification.

Finally, use of approximate multipliers in Neural Network was examined.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The motivation for approximation computing stems from the fact that the level of accu-

racy offered by the computer system in many applications, such as multimedia, signal

processing, and machine learning, is greater than the degree of accuracy required by the

end-user. As a result, rather than doing exact computations and consuming excessive

resources, a small approximation can be used to reduce resources while maintaining

acceptable service quality.

In many systems loss of precision is inherent for example noisy components/inputs. In

Approximation, on the other hand, errors are deliberately introduced to allow for re-

source savings at the expense of imprecise results. There are some applications that are

suitable to loosing accuracy due to humans inability to distinguish between accurate

and inaccurate computation. Multimedia applications, for example, have a lot of room

for approximation. Even if the results are incorrect, human senses may be unable to

detect the difference, and the service quality may be acceptable. Because the majority

of these applications use computationally demanding DSP blocks, adopting approxi-

mate hardware would save a significant amount of resources. Approximate computing

is motivated by all of these applications.

1.2 Objective

The objective of this work is to have a look at the existing designs of approximate

multipliers in the literature and to provide a comparative evaluation of their error char-

acteristics in terms of their error metrics. Approximate multipliers are considered in

error-tolerant applications to assess their performance in such applications.



1.3 Problem Statement

To evaluate the effectiveness of using approximate multipliers in linear and nonlinear

systems. The systems considered were image sharpening, LMS adaptive filter for sys-

tem identification, and neural networks.
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CHAPTER 2

LITERATURE SURVEY

A digital processor’s core components are arithmetic circuits (e.g., adders and multipli-

ers). This survey aims to showcase the current landscape of approximate multipliers,

including a solid overview of approximate multipliers in literature.

Approximate multiplier designs primarily employ three approximation techniques: i)

approximation in partial product generation, ii) truncation in the partial product tree,

and iii) accumulating partial products with approximate adders and or compressors.

2.1 Approximation in Generating Partial Products

The Underdesigned Multiplier (UDM)

By changing one entry in a 2x2 multiplier’s K-Map, Kulkarni et al. (2011) proposed an

approximate 2x2 multiplier block. Larger Underdesigned Multipliers (UDMs) can be

produced using the 2x2 block by recursive multiplication. While the adder tree remains

accurate, this multiplier design creates error in generating partial products.

2.2 Approximation in the Partial Product Tree

Truncation Multiplier

The area requirement and the power consumption of an array multiplier can be lowered

by estimating the least significant columns of the multiplier and adding a correction

constant. The least significant columns are set to 0 without generating partial prod-

ucts. This approach was suggested by King and Swartzlander (1997) looking into two

types of errors: reduction and rounding error. The correction constant is calculated by

calculating expected rounding and reduction errors.



Broken-Array Multiplier (BAM)

The Broken-Array Multiplier (BAM) is a bio-inspired inaccurate multiplier proposed

in Mahdiani et al. (2009)]. BAM works by eliminating certain lines of carry-save adder

cells both horizontally and vertically in the carry-save adder tree.

Error-Tolerant Multiplier (ETM)

The Error-Tolerant Multiplier (ETM) proposed by Kyaw et al. (2010) is split into two

parts: one is multiplication part and another is non-multiplication part, a control block

is used to deal with two cases: i) if the product of the MSBs is zero, then a standard

(accurate) multiplier is used to process the LSBs, and ii) if the product of the MSBs is

non-zero, a standard multiplier is used to multiply the MSBs while a simple approxi-

mate multiplier is used to process the LSBs.

Static Segment Multiplier (SSM)

A similar partition approach (ETM) was used to propose the static segment multiplier

(SSM) proposed by Narayanamoorthy et al. (2014). In contrast to ETM, the SSM does

not apply any approximation to the LSBs. Depending on whether each operand’s MSBs

are all zeros, the MSBs or LSBs of each operand are accurately multiplied.

Approximate Wallace Tree Multiplier (AWTM)

Bhardwaj et al. (2014) proposed a bit-width aware approximate multiplication and

a carry-in prediction method are used to create a power and area-efficient Approxi-

mate Wallace Tree Multiplier (AWTM). Four n/2-bit sub-multipliers implement an n-

bit AWTM, with the most significant n/2-bit sub-multiplier being further implemented

by four n/4-bit sub-multipliers. The AWTM is configured into four different modes by

the number of approximate n/4-bit sub-multipliers in the most significant n/2-bit sub-

multiplier. The approximate partial products are then accumulated by a Wallace tree.

4



Radix-4 Approximate Booth Multiplier (R4ABM)

Liu (2014) proposed two approximate Booth encoders and analyzed for error-tolerant

computing. Approximate Booth multipliers are designed based on approximate radix-4

modified booth encoding algorithms. A Booth multiplication takes place in three parts:

partial product generation using Booth encoder, partial product accumulation and final

product generation using fast adder. Here few LSBs of partial products are generated by

these booth encoders and MSBs partial products are generated by exact modified booth

encoder.

2.3 Using Approximate Adders in the Partial Product

Tree

Approximate Multiplier with Configurable Partial Error Recovery (AM)

Liu (2014) presented a basic, yet fast approximate multiplier built using fast approxi-

mate adder. This newly constructed adder can process data in parallel by breaking the

carry propagation chain (and thus, introducing an error). This adder computes the sum

while also generating an error signal; this feature is intended to lower the multiplier’s

final result error. In the approximation multiplier, a basic tree of approximate adders

is employed for partial product accumulation, and error signals are used to correct for

inaccuracies for improved accuracy.

Inaccurate Counter based Multiplier (ICM)

Lin and Lin (2013) proposed inaccurate counter based multiplier (ICM), an approximate

(4:2) counter is proposed for an inaccurate 4-bit Wallace multiplier. The carry and sum

of the counter are approximated as “10” (for “100”) when all input signals are ‘1’. The

inaccurate 4-bit multiplier is then utilised to build larger multipliers that include error

detection and correction circuits.

5



Approximate Compressor based Multiplier (ACM)

In the compressor based multiplier, accurate (3:2) and (4:2) compressors are improved

to speed up the partial product accumulation stage proposed by Baran et al. (2010).

Better energy and delay characteristics for a multiplier can be obtained by employing

improved compressors. To further reduce delay and power, two approximate (4:2) com-

pressor designs (AC1 and AC2) are presented in Momeni et al. (2014).

6



CHAPTER 3

Evaluation of Approximate Multipliers

Arithmetic circuits (e.g., adders and multipliers) are key components of a DSP proces-

sor. This chapter reviews existing approximate multiplier designs. The key approximate

arithmetic computing design problem is to develop an efficient low precision comput-

ing unit and sometimes an error compensation unit to significantly reduce energy, delay,

and or area overhead while achieving a low degree of error. While the area and energy

consumption of a given multiplier can often be easily estimated, the key challenge is

developing insights on the error to optimize the error compensation scheme, which is

focused on in the following section.

The organization of this chapter is as follows. Section 3.1 describes the error metrics

for characterizing the performance of the approximate multiplier. Section 3.2 deals with

the review of approximate multipliers in the literature.

3.1 Error Metrics

In this section, an analytical framework is presented for assessing the arithmetic multi-

plier accuracy, i.e., the Mean Error Distance (MED) and Normalized Mean Error Dis-

tance (NMED), and Mean Squared Error (MSE) of the approximate multipliers. These

results are then used to estimate the Peak Signal-to-Noise Ratio (PSNR) in image pro-

cessing for image sharpening application discussed in the next chapter.

The Error Distance (ED) and the Mean Error Distance (MED) and Mean Squared

Error are proposed by Liang et al. (2012) to evaluate the arithmetic performance of

approximate circuits.



3.1.1 Error Distance

For an n-bit approximate multiplier, the ED is defined as the absolute value of the

difference between the approximate (a) and accurate value b, i.e.,

ED(a, b) = |a− b| =

∣∣∣∣∣
n−1∑
i=0

a[i]2i −
n−1∑
j=0

b[j]2j

∣∣∣∣∣ (3.1)

3.1.2 Mean Error Distance

The MED (dm) is defined as the average ED for a given set of input vectors, i.e.,

dm =
1

N

N−1∑
i=0

ED[i] (3.2)

Where N is the number of inputs.

3.1.3 Normalized Mean Error Distance

The MED increases exponentially when the number of approximate bits increased.

Therefore, MED is an unfair metric when a comparison is made between multiplier

with different sizes. To overcome this limitation, a normalized MED, referred to as a

normalized error distance, is defined as follows:

dn =
dm
D

(3.3)

Where dm is the MED, and D is the maximum value of error.

3.1.4 Mean-Squared Error

Mean-Squared Error (MSE) is defined as the average of the squared ED values:

MSE =
1

N

N−1∑
i=0

(ED[i])2 (3.4)
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3.2 Approximate Multipliers

Three design methodologies are applicable to approximate a multiplier: i) approxima-

tion in generating the partial product, ii) approximation (including truncation) in partial

product tree, and iii) using approximate designs of adders, counters, and or compressors

to accumulate the partial products.

3.2.1 Error-Tolerant Multiplier (ETM)

Multiplication Algorithm for ETM

Error Tolerant Multiplier proposed by Kyaw et al. (2010). This multiplication algorithm

is can be explained via an example shown in Fig. 3.1. Firstly, The input operands are

split into a multiplication part that includes higher order bits and a non-multiplication

part which is made up of the remaining lower order bits. In the example inputs operands

divided into two equal parts, and each of which contains 6 input bits. It is called ETM-6

(6 indicated number of bits in the non-multiplication part).

Fig. 3.1: Multiplication algorithm of ETM Kyaw et al. (2010)

A special scheme is applied to non-multiplication part - no partial products gener-

ated and carry propagation has been removed. From MSB to LSB of non-multiplication

9



part checked and if either or both of the two operands are "1", the checking is brought

to an end and from that bit onwards, all product bit positions are set to "1". If both

operand bits occurs to be "0", the corresponding product bit set to "0".

Fig. 3.2: Architecture of a 12-bit Error-Tolerant Multiplier (ETM) Kyaw et al. (2010)

The ETM is divided into a multiplication section for the MSBs and a non-multiplication

section for the LSBs. A NOR gate based control unit is used to deal with two scenar-

ios: i) if the product of MSBs is zero, then non-multiplication part LSBs are accurately

multiplied without any approximation, and ii) if the product of MSBs is nonzero, the

non-multiplication section is used as an approximate multiplier to process the LSBs,

while the multiplication section is activated to multiply the MSBs.

ETM error analysis

The 8×8 and 16×16 bit ETM multiplier was simulated using Monte Carlo Simulation

with 106 random input combinations, uniformly distributed between 0 to 2n−1 − 1 was

used. The program was written in python and run on Intel(R) Core(TM) i7-7700 CPU

with 32GB RAM machine. Table 3.1 and Table 3.2 shows MED, NMED and MSE as a

function of number of approximate bits. The error grows non-linearly with number of

approximate bits.

10



No. of approximate bits MED NMED log10(MSE)

1 123.96 1.90× 10−3 4.45

2 365.11 5.61× 10−3 5.32

3 822.20 1.26× 10−2 6.00

4 1644.59 2.52× 10−2 6.61

5 2962.32 4.55× 10−2 7.14

6 4620.64 7.10× 10−2 7.56

7 5847.21 8.99× 10−2 7.83

Table 3.1: 8×8 bit ETM error analysis as a function of the number of approximate bits.

No. of approximate bits MED NMED log10(MSE)

1 32787.15 7.63× 10−6 9.29

2 98365.51 2.29× 10−5 10.17

3 229173.78 5.33× 10−5 10.88

4 491020.61 1.14× 10−4 11.53

5 1015564.23 2.36× 10−4 12.16

6 2058723.93 4.79× 10−4 12.77

7 4145772.08 9.65× 10−4 13.37

8 8286424.02 1.92× 10−3 13.98

9 16468685.48 3.83× 10−3 14.57

10 32392373.86 7.54× 10−3 15.17

Table 3.2: 16× 16 bit ETM error as a function of number of approximate bits.

3.2.2 Static Segment Multiplier (SSM)

Narayanamoorthy et al. (2014) proposed an approximate multiplication technique that

takes m consecutive bits (i.e., m-bit segment) from each n-bit operand, where m is equal

to or greater than n/2. An m-bit segment can start from one of two or three fixed bit

positions depending on where the leading "1" bit is located for a positive number. This

technique can provide much higher accuracy than one simply truncating the LSBs, be-

11



cause this technique can capture more noteworthy bits.

Fig. 3.3: Examples of 16× 16 multiplications based on 8-b segments with two possible
starting bit positions for 8-b segments. The shaded cells represent 8-b seg-
ments and the aligned position of 8× 8 multiplication results Narayanamoor-
thy et al. (2014)

With two m-bit segments from two n-bit operands, we can perform a multiplication

using anm×mmultiplier instead of n×n. Furthermore, anm×m bit consumes much

lesser energy compared to an n× n bit multiplier, because the complexity of multiplier

increased quadratically with n. The segment for each operand is taken from one of the

two possible segments in an n-bit operand, a 2m-bit result can be expanded to a 2n-bit

result by left-shifting the 2m-bit result by one of three possible shift amounts: 1) no

shift when both segments are from the lower m-bit segments; 2) (n–m) shift when two

segments are from the upper and lower ones, respectively; and 3) 2×(n−m) shift when

both segments are from the upper ones, as shown in Fig. 3.3. Table 3.3 shows MED,

NMED, and MSE as a function of number of m-bit segments for a 8× 8 bit multiplier.

Table 3.4 shows MED, NMED, and MSE as function of number of m-bit segments for

a 16× 16 bit multiplier.

12



SSM error analysis

No. of bits in the segment MED NMED log10(MSE)

4 1783.25 2.74× 10−2 6.67

5 857.21 1.13× 10−2 6.04

6 373.63 5.74× 10−3 5.33

7 125.56 1.93× 10−3 4.46

Table 3.3: 8× 8 bit SSM error analysis as a function of m-bit segment multiplier.

No. of bits in the segment MED NMED log10(MSE)

8 8329640.00 1.93× 10−3 13.98

9 4154038.50 9.67× 10−4 13.38

10 2063377.18 4.80× 10−4 12.77

11 1014671.27 2.36× 10−4 12.16

12 491350.76 1.14× 10−4 11.53

13 229437.64 5.34× 10−5 10.88

14 98357.14 2.29× 10−5 10.17

15 32764.98 7.62× 10−6 9.29

Table 3.4: 16× 16 bit SSM error as a function of m-bit segment multiplier.

3.2.3 Approximate Wallace Tree Multiplier (AWTM)

Bhardwaj et al. (2014) proposed a power and area-efficient approximate Wallace tree

multiplier (AWTM) is based on a bit-width aware approximate multiplication and a

carry-in prediction method. An 2b-bit AWTM is implemented by four b-bit sub-multipliers,

and the most significant b-bit sub-multiplier is further implemented by four b/2-bit sub-

multipliers.

Recursive Multiplication

Multiplication of an multiplier and an multiplicand can be recursively done by smaller-

size multiplications, each of these can be performed in same clock cycle. Let A be the

13



multiplicand and X be the multiplier and both are 2b bits each. Now A and X can be

written as A = AHAL and X = XHXL where AH , AL, XH , and XL are of b bits each.

The 2b× 2b multiplication is is performed recursively as shown in Fig. 3.4a.

(a) Recursive Multiplication (b) Approximate Multiplication

AWTM Approximate Multiplication

In order to get higher accuracy multiplier AHXH made accurate and ALXH , AHXL,

ALXL as b × b approximate multiplier. For b × b approximate multiplier upper b bits

are accurate to high extent, to make upper 2b bits of final 4b bit product achieve high

accuracy. An example of ALXL b × b multiplier shown in Fig. 3.5a. The carry-in C is

computed by OR of inputs from critical column.

(a) Approximate ALXL (b) Accurate ALXL

In this approximate multiplication, again we divide the b × b accurate multiplier

AHXH into 4 smaller b/2 multiplier. This is done because, when AHXH performed in

parallel with AHXL, ALXH and, ALXL the critical path is still determined by the ac-

curate multiplier b× b (AHXH) multiplier. Therefore, recursively reducing this AHXH

as b/2× b/2 will make approximate b× b multiplier decide the critical path.
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Accuracy Configuration Modes

We can vary the accuracy of AWTM by varying the number of multipliers that are

accurate in AHXH multiplication. But in any case AHHXHH kept accurate, so that

accuracy doesn’t fall below a certain level. This is so because accuracy of AWTM

can be adjusted according to error tolerance of the application. For different modes of

operation of AWTM are shown Table 3.5. Where ’A’ stands for accurate multiplier and

I stands for inaccurate multiplier.

Multiplier Mode AHHXHH AHHXHL AHLXHH AHLXHL

AWTM-4 4 A I I I

AWTM-4 3 A A I I

AWTM-2 2 A A A I

AWTM-1 1 A A A A

Table 3.5: Modes of operation for accuracy configuration multiplier

AWTM error analysis

8-bit AWTM 16-bit AWTM

Mode MED NMED log10(MSE) Mode MED NMED log10(MSE)

AWTM-1 390.74 0.5920 5.23 AWTM-1 66377.08 0.1335 9.82

AWTM-2 1091.04 0.6478 6.10 AWTM-2 834475.84 0.4544 11.91

AWTM-3 3905.03 0.6756 7.21 AWTM-3 13716722.41 0.5872 14.34

AWTM-4 6717.02 0.6801 7.67 AWTM-4 25552180.30 0.6040 14.86

Table 3.6: AWTM error analysis as a function of mode of operation of AHXH multi-
plier.

Table 3.6 shows that MED, NMED, and log10(MSE) as a function of mode of operation

of AHXH multiplier.
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3.2.4 Approximate Radix-4 Booth Multiplier (R4ABM)

Liu et al. (2017) proposed two approximate Booth encoders and analyzed for error-

tolerant computing. Approximate Booth multipliers are designed based on approxi-

mate radix-4 modified booth encoding algorithms. A Booth multiplication takes place

in three parts: partial product generation using Booth encoder, partial product accumu-

lation and final product generation using fast adder.

Booth encoders has been proposed to enhance the performance of two’s complement

binary numbers multiplication. It has been further improved radix-4 Booth encoding

scheme. Booth encoder plays an vital role in Booth multiplication by reducing the par-

tial product rows by half. Consider a N-bit multiplication with a multiplicand A and a

multiplier B in two’s complement given as follows:

A = −aN−12
N−1 +

N−2∑
i=0

ai2
i (3.5)

B = −bN−12
N−1 +

N−2∑
i=0

bi2
i (3.6)

In the Booth encoder, each group is decoded by selecting the partial products as -2A,

-A, 0, A, 2A. The output (partial products, ppij) of booth encoder is given by:

ppij = (b2i ⊕ b2i−1)(b2i+1 ⊕ aj) + (b2i ⊕ b2i−1)(b2i+1 ⊕ b2i)(b2i+1 ⊕ aj−1) (3.7)

Approximate Radix-4 Booth Encoding Method-1

Table 3.7 shows the K-map of the first approximation radix-4 Booth encoding (R4ABE1)

method, where circled 0 represents an entry where a 1 is substituted by a 0. To simplify

the Booth encoding, just four entries are changed; the aim for the initial approximate

design is to make the truth table as symmetrical as possible while introducing a tiny

inaccuracy. As a result, the R4ABE1 design has the advantage of causing a very minor

error because only four entries are updated; but, all modifications change a 1 to a 0,

therefore the estimated product’s absolute value is always smaller than its precise coun-

terpart.
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PPPPPPPPPPPPPP
ajaj−1

b2i+1b2ib2i−1
000 001 011 010 110 111 101 100

00 0 0 0 0 1 0 1 0

01 0 0 0 0 1 0 1 0

11 0 1 0 1 0 0 0 0

11 0 1 0 1 0 0 0 0

Table 3.7: KMAP of ABE1

So from the modified truth table the output of R4ABE1 is given as follows:

ppij = ajb2i+1b2ib2i−1 + ajb2i+1b2ib2i−1 + ajb2i+1b2ib2i−1 + ajb2i+1b2ib2i−1 (3.8)

ppij = (b2i ⊕ b2i−1)(b2i+1 ⊕ aj) (3.9)

R4ABE1 can significantly lower both the complexity and the critical path latency of

Booth encoding when compared to the precise MBE (Eq. 3.7).

Approximate Radix-4 Booth Encoding Method-2

Table 3.8 shows the truth table for the second approximate radix-4 Booth encoding

(R4ABE2) technique, where circled "1" signifies a 0 entry that has been substituted by

a where 1; eight K-map elements have been updated to simplify the Booth encoding

logic. The method for R4ABE2 is to have as few prime implicants (indicated by rect-

angle) as possible, in addition to having a symmetric truth table with a smaller error.

Although the error created by R4ABE2 is approximately double that of R4ABE1, the

modification is accomplished by changing not just a 1 to a 0, but also a 0 to a 1. As a

result, the approximate product can be larger or smaller than the precise product, and

inaccuracies in the partial product reduction process might complement each other. As

a result, when employing R4ABE2 in a Booth multiplier, the error may not be as sig-

nificant as when using R4ABE1.
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PPPPPPPPPPPPPP
ajaj−1

b2i+1b2ib2i−1
000 001 011 010 110 111 101 100

00 0 0 0 0 1 1 1 1

01 0 0 0 0 1 1 1 1

11 1 1 1 1 0 0 0 0

11 1 1 1 1 0 0 0 0

Table 3.8: KMAP of ABE2

So from the modified truth table the output of R4ABE2 is given as follows:

ppij = ajb2i+1 + ajb2i+1 = b2i+1 ⊕ aj (3.10)

When compared to R4ABE1, R4ABE2 reduces the complexity and critical path latency

even more.

Design of Approximate Booth Multiplier

The approximate Booth encoders, namely R4ABE1 and R4ABE2, are employed in the

first phase of the approximate Booth multiplier to generate inexact partial products. As

a result, an approximation factor p (p=1, 2,..., 2N) is defined as the number of least sig-

nificant partial product columns formed by the approximate Booth encoders. The exact

adders are used to add up the approximate partial products.

1. R4ABE1 (to generate the p least significant partial product columns) and the regu-

lar approximate partial product array are used in the first approximation radix-4 Booth

multiplier (R4ABM1). The 2N-p most significant partial product columns are generated

using the exact MBE. Both approximation and exact partial products are accumulated

using accurate adders.

2. The second approximation radix-4 Booth multiplier (R4ABM2), like R4ABM1,

makes use of R4ABE2 (to generate the p least significant partial product columns), the

regular approximate partial product array, and precise adders.
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Results of R4ABM1

Table 3.9 shows MED, NMED, and log10(MSE) as a function of approximate bits for

R4ABM1 multiplier.

8-bit Approximate Booth Multipliers 16-bit Approximate Booth Multipliers

p MED NMED log10(MSE) p MED NMED log10(MSE)

2 127.41 0.00245 5.07 2 64467.08 0.0008275 8.12

4 669.73 0.0062 5.91 4 96318.86 0.005214 10.12

6 1668.82 0.0122 6.94 6 267812.32 0.009872 11.34

8 2422.18 0.0369 8.13 8 474612.54 0.01007 12.86

Table 3.9: R4ABM1 error analysis.

Results of R4ABM2

Table 3.10 shows MED, NMED, and log10(MSE) as a function of approximate bits for

R4ABM2 multiplier.

8-bit Approximate Booth Multipliers 16-bit Approximate Booth Multipliers

p MED NMED log10(MSE) p MED NMED log10(MSE)

2 119.28 0.0024 3.62 2 66382.95 0.002335 9.06

4 975.47 0.0104 4.21 4 110871.43 0.009278 10.41

6 3107.41 0.0239 5.65 6 307943.31 0.01673 12.04

8 5697.56 0.0616 6.08 8 602354.62 0.04896 13.53

Table 3.10: R4ABM2 error analysis.

3.2.5 Approximate Multiplier with Configurable Partial Error Re-

covery (AM)

Liu et al. (2014) proposed an approximate multiplier using a simple, yet fast approxi-

mate adder. By breaking the carry propagation chain, this newly built adder can process

data in parallel (and thus, introducing an error). Its critical path delay is shorter than
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that of a traditional one-bit full adder. This adder computes the sum and generates an

error signal at the same time; this feature is used to reduce the error in the multiplier’s

final result. A simple tree of approximate adders is employed for partial product accu-

mulation in the approximation multiplier, and error signals are used to correct for the

inaccuracy for improved accuracy.

Approximate Adder

This adder works with a collection of inputs that have been pre-processed. The in-

terchangeability of bits with the same weights in different addends is the basis for in-

put pre-processing (IPP). Consider the following two sets of inputs for a 4-bit adder:

i)A = 1010, B = 0101 and ii)A = 1111, B = 0000. Clearly, adding i) and ii) yields

the same result. Because the corresponding bits in the two operands are interchange-

able, the two input bits AiBi = 01 are identical to AiBi = 10 (with i being the bit

index).

Ȧi = Ai +Bi (3.11)

Ḃi = AiBi (3.12)

By breaking the carry propagation chain, this adder can process data in parallel. When

Ḃi = 1, ˙Ai+1 = 1, and ˙Bi+1 = 1, a carry propagation chain begins at the i-th bit. Si+1

is 0 with an exact adder, and the carry is propagated to the higher bit. In the suggested

approximate adder, however, Si+1 is set to 1 and an error signal Ei+1 = 1 is created. As

a result of this the carry signal is unable to propagate to higher bits. By doing so, only

the generate signal produces a carry signal, i.e. Ci = 1 only when Ḃi = 1, and it only

propagates to the next higher bit, i.e. the (i+1)-th position.
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Ḃi
˙Bi−1 00 01 10 11

Ȧi Ȧi Ȧi 1 1

Ci−1/ ˙Bi−1 0 1 0 1

Si Ȧi 1 0 1

Ei 0 Ȧi 0 0

Table 3.11: Truth table of approximate adder

The logic function of Table 3.11 given by

Si = ˙Bi−1 + ḂiȦi (3.13)

Ei = Ḃi
˙Bi−1Ȧi (3.14)

Replacing Ȧi and Ḃi with 3.11 and 3.12, the logic functions with respect to original

inputs given by

Si = (Ai ⊕Bi) + Ai−1Bi−1 (3.15)

Ei = (Ai ⊕Bi)Ai−1Bi−1 (3.16)

Partial Product Accumulation

The ease with which approximate adders can be used in partial product accumulation is

a key characteristic of this approximate multiplier.

Error Reduction

The error signals can be added using precise adders, and the accumulated error can

thus fully compensate for the final product. To reduce complexity, an approximate error

accumulation is introduced. The sum of the errors for a single bit is approximated using

an OR gate.

Ei = E1iORE2iOR...OREmi (3.17)

An accumulated error vector is added to the adder tree output using a conventional

adder to lessen the error (e.g. a carry look-ahead adder). To further reduce the total
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complexity, only a few (e.g. k) MSBs of the error signals are used to compensate the

outputs. In an 8× 8 adder tree, there are a total of 7 error vectors formed by the tree of

7 approximate adders. Because the MSBs of some vectors are less significant than the

least significant bits of the k MSBs, not all of the bits in the 7 vectors must be added.

In the case of Fig. 3.6, 4 MSBs (i.e. the 11-14th bits) are taken into account for error

recovery, resulting in 4 error vectors (i.e. the error vectors of adders A3, A4, A6 and

A7).

Fig. 3.6: An approximate multiplier with OR-gate based partial error recovery using 4
MSBs of the error vector Liu et al. (2014).

Table 3.12 shows MED, NMED, and MSE as a function number of bits for error

compensation.
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8-bit AM 16-bit AM

k MED NMED MSE (log10) k MED NMED MSE (log10)

2 992.80 0.2682 6.55 2 70001875.52 0.3851 16.22

4 485.98 0.2330 5.75 4 35391438.34 0.3550 15.44

6 147.27 0.1959 4.65 6 12574934.09 0.3360 14.43

7 66.52 0.1186 3.98 8 3788425.16 0.2979 13.33

10 1045270.54 0.2476 12.18

12 270007.69 0.1904 10.99

14 64850.57 01224. 9.75

Table 3.12: AM error analysis as a function of number of bits for error compensation.

MED plot of 8× 8 bit multipliers:
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NMED plot of 8× 8 bit multipliers
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MSE plot of 8× 8 bit multipliers
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Clearly, the plot shows that the error grows non-linearly with number of approxi-

mate bits.
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CHAPTER 4

APPLICATIONS

In this chapter, Image sharpening, Least Mean Square (LMS) adaptive filter, and Ap-

proximate Artificial Neural Network (ApproxANN) for handwritten digit recognition

are the applications implemented with approximate multiplier used in place of an exact

multiplier is illustrated.

4.1 Image Processing Application: Image Sharpening

Digital images are often degraded by noise during the image acquisition and transmis-

sion stage. So as a pre-processing step, the noise should be removed without degrading

image details such as edges and textures. Noise smoothing aims at identifying noisy

pixels and modifying their intensity values using some prescribed rules. Gaussian filter

is one such filter that is a widely used filter for smoothing noise from digital images. It

is used as an initial step for many edge detection algorithms such as Canny and Marr

and Hildreth (Canny, 1986).

The filters to blur an image are the average filter and the low pass filter. The average

filters replaces the pixel value by the average of neighborhood pixel intensity, but cases

side effects, blurring the edge. Some pixels are more important, as the low pass filter

provides the average weight value, not the average value. Instead, the importance of

other pixels is sacrificed. Before detecting the object, blurring the image is used as a

preprocessing to eliminate the useless detail and connect the unnatural part.

Approximate circuits can be used in error-tolerant applications such as image process-

ing; image sharpening and smoothing applications are studied next. Since multiplica-

tion is the arithmetic operation under investigation; approximate multipliers replace an

accurate multiplier. All other operations such as addition are kept accurate.



4.1.1 Image Sharpening

The sharpening algorithm of Lau et al. (2009) is simulated using both exact and ap-

proximate multipliers. Let I be the image to be enhanced. First, Gaussian smoothing

is performed on I. This is done by convolving I with the following matrix in the spatial

domain.

G =



1 4 7 4 1

4 16 26 16 4

7 26 41 26 7

4 16 26 16 4

1 4 7 4 1


The Gaussian smoothing produces the following image:

R(x, y) =
1

273

2∑
i=−2

2∑
j=−2

G(i+ 3, j + 3)I(x− i, y − j) (4.1)

The factor 1
273

is for normalization. For approximate smoothing, the multiplication in

the convolution is performed by an approximate multiplier, and the other operations,

such as addition and division, are all deterministic. Finally, the sharpened image S is

obtained by S = 2I - R. Multiplication of I by 2 can be performed by bit-shifting, and

hence multiplication is not required to obtain S from R.

In the results shown in Figure. 4.1, approximate multipliers with different numbers of

approximate bits are evaluated, and an improvement in performance is achieved when

the number of approximate bits is less or the number of error reduction bits is increased.

The degradation of quality is evident for ETM-6 i.e., when the approximate number of

bits increased to 6 bits, the output quality is bad. The performance of AWTM-4 and

AWTM-3 is good, whereas AWTM-2 and AWTM-1 are bad. This is because for these

multiplier upper half of the bits are accurate to a large extent.
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4.1.2 Peak Signal-to-Noise Ratio (PSNR)

PSNR is widely used in many DSP applications (such as image processing) as an im-

portant figure of merit. In image processing, if I is the noise-free image and K is the

noisy image, the PSNR is defined as :

PSNR = 20 log
MAXI√
MSEK

(4.2)

where MAXI is the maximum possible pixel value of image I and MSE is the mean

squared error defined as

MSEK =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(j, k)−K(j, k)]2 (4.3)

When approximate circuits are used for image processing, I can be the resulting image

using an exact computation, while K is the image obtained by approximate computing.

The considered approximate multipliers are applied to image sharpening as an appli-

cation. Some of the sharpened images are shown in Fig. 4.1. The quality of sharpened

by ETM-6, AWTM-3, AWTM-4 are not very high dues to their low accuracy (i.e., by

large NMEDs and MREDs). Likewise, The multipliers with higher accuracy (i.e., with

smaller NMEDs and MREDs), AM2-13, AM1-13, ETM-2, AWTM-1, show better im-

age sharpening. As it is difficult to distinguish the quality, so PSNR is computed as

shown in Table 4.1.
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(a) Original (b) Accurate

(c) ETM-2 (d) ETM-4

(e) ETM-6 (f) SSM-6

(g) AWTM-1 (h) AWTM-4

(i) AM2-13 (j) AM1-13

Fig. 4.1: Image sharpened using different multipliers.
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Multiplier PSNR (dB)

AM-15 53.23

AM-13 44.57

R4ABM1-4 41.76

R4ABM2-4 38.92

AWTM-1 38.06

ETM-2 34.76

SSM-6 30.01

ETM-4 28.85

AM-10 27.46

AWTM-2 26.86

AWTM-3 14.76

AWTM-4 8.89

Table 4.1: PSNR of the sharpened images using approximate multipliers

4.2 Approximate Multiplier in LMS Adaptive Filters

In this section, approximate LMS adaptive filters are explored by employing approx-

imate multipliers. A system identification scenario is adopted to assess the algorithm

behavior. Adaptive filtering based on the Widrow-Hoff LMS algorithm finds appli-

cation in DSP for channel adaptive equalization, system identification, adaptive noise

cancellation, etc. The LMS algorithm exhibits numerical stability, satisfactory conver-

gence error and, computational simplicity. An LMS adaptive filter comprises an FIR

filter (due to its inherent stability) whose coefficients are updated by the LMS algorithm

(Fig. 4.2).

The LMS is a recursive algorithm to minimize the MSE between the FIR filter

output and the desired signal. The minimization requires MSE gradient computation,

which, in the LMS algorithm, is computed in an approximated way, causing the so-

called gradient noise [Haykin (2008)]. Therefore, the LMS algorithm is characterized

by an inherent grade of noise and constitutes a fertile ground to employ approximate
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Fig. 4.2: Adaptive LMS filter Esposito et al. (2018)

hardware circuits.

4.2.1 Review of The LMS Algorithm

Consider an M-tap FIR filter, with weights wk(n), kε0, 1, ...,M − 1 and inputs x(n) =

[x(n), x(n− 1), ..., x(n−M + 1)]. The output at each n can be written as:

y(n) =
M−1∑
k=0

wk(n).x(n− k) (4.4)

Note that the difference between non-adaptive filters and adaptive filters is weights are

a function of time instant n. In this filter (Fig. 4.2), the difference between the actual

filter output y(n) and the desired signal d(n) defines the error signal e(n):

e(n) = d(n)− y(n) (4.5)

Error signal e(n) is used by LMS in finding the updated filter tap weights wk(n), as

follows

wk(n+ 1) = wk(n)− µ.e(n).x(n− k) (4.6)

where µ is the step size parameter determines the trade-off between convergence speed

and convergence error of the algorithm. Fig. 4.3 shows an adaptive LMS filter from a

circuital perspective.
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Fig. 4.3: Adaptive LMS filter-hardware overview.

4.2.2 Application scenario: System Identification

In this section, the effect of introducing an approximate multiplier in an adapative LMS

filter is examined with reference to an accurate multiplier. To assess the performance of

the LMS algorithm, when approximations are introduced, a system identification appli-

cation is considered.

Fig. 4.4: System Identification [Esposito et al. (2018)].

In Fig. 4.4 system identification scenario is shown; the system to identify is an IIR

filter. In this case the LMS algorithm minimizes error e(n) by adjusting FIR filter coeffi-

cients wk(n) to mimic IIR impulse response. In this case, an IIR 6th order Butterworth

low-pass filter with stop-band attenuation of -40dB and with a cutoff frequency of 0.6π.

The IIR filter identified using an LMS FIR filter that uses 125 taps.
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Exact and approximate implementation of adaptive LMS filters of Fig. 4.4 in 16-bit

fixed-point representation was implemented in python and evaluated the convergence

performance of the algorithm in terms of MSE. The input to IIR filter and adaptive

LMS filter is a white Gaussian signal with zero mean and 0.3 standard deviation ( so

the input x(n) has a range [-1,1) ).

In Fig. 4.5 shows that magnitude response for system identification scenario with one of

the multiplier. The acronym k after ETM is the number of approximate bits for a 16-bit

multiplier. The 125-Tap FIR filter able to converge to IIR filter up to 8 approximate

bits. Beyond this, did not converge. Also reported the MSE at the output of the filter in

Table 4.2.

(a) ETM-2 (b) ETM-4

(c) ETM-6 (d) ETM-8

Fig. 4.5: Magnitude response of IIR filter and magnitude response of 125-Tap FIR filter
implemented with ETM.
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Multiplier MSE

ETM-2 6.1341× 10−3

ETM-4 6.8145× 10−3

ETM-6 8.4312× 10−3

ETM-8 6.0229× 10−2

SSM-10 6.1960× 10−3

SSM-8 7.0972× 10−3

AWTM-4 5.9563× 10−3

AWTM-3 6.0836× 10−3

AWTM-2 9.3842× 10−3

AWTM-1 8.9884× 10−2

AM-10 6.0862× 10−3

AM-8 6.1817× 10−3

Table 4.2: MSE between the desired signal and output signal for system identification
scenario in Fig. 4.4

Fig. 4.6: Error convergence for ETM-2 multiplier as a function of number of input se-
quences applied.
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4.3 ApproxANN: Approximate Artificial Neural Network

Artificial Neural Networks (ANNs) are one of the most well-established machine learn-

ing techniques with a wide range of applications in recognition, mining, and synthesis.

ANNs are computationally intensive and has a large amount of neurons. Most of these

applications are error-tolerant with noisy input datasets and or involving human inter-

faces with limited perceptual capability. Therefore approximate computing has been

advocated for these applications. So, by relaxing computational exactness for neurons

in ANNS, we can still achieve minor loss in the accuracy at the application level while

gaining significant saving in power and delay.

4.3.1 Artificial Neural Network

ANNs are nothing but a system of interconnected computational nodes called neurons,

as shown in Fig. 4.7. Each neuron generates a single output by operating on an input

vector, denoted by x (b0 is the bias). The input vector associated with a weight vector

(denoted by w), indicates each entry’s numerical importance. Mathematically the neu-

rons will first compute a weighted sum and then performs a non-linear activation (e.g.,

sigmoid function) on the weighted sum to generate output a.

output = f(
d∑

i=1

xi.wi + b0) = f(wt.x) (4.7)

f(z) =
1

1 + e−z
, (4.8)
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Fig. 4.7: Artificial Neural Network.

4.3.2 Neuron Criticality Analysis

Zhang et al. (2015) proposed efficient theoretical-based criticality analysis for neurons

in output and hidden layers. We can say a neuron is critical if a small change in input of

this neuron introduces a large final output quality degradation; otherwise, it is resilient.

To support criticality analysis, we have the notation as follows. Hidden layer output yj

is given by

yj = f(nethj) (4.9)

nethj =

xd∑
i=1

xi.wji + wj0 (4.10)

The output of output layer zk is given by

zk = f(netok) (4.11)

netk =

nH∑
i=1

yi.wki + wk0 (4.12)

The final network’s cost function given by

E =
1

2

c∑
k=1

(tk − zk)2 =
1

2
‖t− z‖2 (4.13)

35



Where c is the number of neurons in the output layer and t is desired output from the

network.

The i-th neuron’s criticality, denoted by nci (includes ncoi and nchi for output and

hidden neurons, respectively, can be represented by the derivative of networks cost

function E with respect to neti, as illustrated by Equation below

nci =
∂E

∂neti
(4.14)

For the neurons in the output layer:

ncok =
∂E

∂netok
=
∂ 1

2

∑c
k=1(tk − zk)2

∂zk
.
∂zk

∂netok
= −(tk − zk).f

′
(netok) (4.15)

For the neurons in the hidden layers:

∂E

∂yj
=

∂

∂yj
[
1

2

c∑
k=1

(tk − zk)2] = −
c∑

k=1

(tk − zk).
∂zk

∂netok
.
∂netok
∂yj

= −
c∑

k=1

ncokwkj

(4.16)

nchj =
∂E

∂yj
.
∂yj

∂nethj
= −f ′

(nethj).
c∑

k=1

ncokwkj (4.17)

So from Eq. 4.17 and Eq. 4.15, we can calculate the criticality factor of neurons in each

hidden layer and output layer after the training phase fixes all weights and biases, even

for a large-scale neural network.

A neuron is less critical if the accuracy requirement relaxation leads to lower final qual-

ity degradation. So a less critical neuron will have the higher priority to be approxi-

mated. Based on this analysis, we will sort all the neurons in the hidden layer and output

layer in ascending order and finally get the criticality ranking vector s = s1, s2, ..., sn

for a given network. An entry sm indicates that neuron has m-th priority to be approxi-

mated.
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4.3.3 ApproxANN for Handwritten Digit Recognition: MNIST-I

Architecture with Sigmoid Activation Function

Approximate ANN for handwritten digit recognition is implemented using the MNIST

database (LeCun and Cortes, 2010) and a three-layer neural network is used. Training

data for the network will consist of 28 by 28 pixel images of scanned handwritten digits,

so the input layer contains 784=28×28 neurons.

Number of neurons in the input layer: 784

Number of neurons in the hidden layer-1: 30

Number of neurons in the output layer: 10

Activation function: Sigmoid

Baseline network accuracy: 95.46%

Number of neurons approximated: 25% (In the hidden layer)

Results with 14 × 8 bit multiplier:

First, the network is trained with an exact multiplier (Full weight considered). Then

Approximate neurons are introduced to an already-trained network. The accuracy will

be low. So again, the network is retrained with approximate multipliers in place so that

it can learn from these errors for better accuracy.

Retrained with training set. After each epoch, tested for accuracy and and choose the

weights with highest accuracy.

Baseline Network Accuracy – 95.46%

Accurate 14× 8 Multiplier Accuracy - 95.28% (epoch-6)

Truncated-18: For a 14× 8 bit multiplier, 18 LSBs in the output set to 0.

1s in LSBs-18: For a 14× 8 bit multiplier, 18 LSBs in the output set to 1.

Truncation-18 94.61% (Epoch-5) 1s in LSBs-18 92.59% (Epoch-6)

Truncation-16 94.70% (Epoch-5) 1s in LSBs-16 94.37% (Epoch-5)

Truncation-14 94.73% (Epoch-4) 1s in LSBs-14 94.38% (Epoch-3)
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Results with 8 × 8 bit multiplier:

Baseline Network Accuracy – 95.46%

Accurate 8× 8 Multiplier Accuracy - 95.22% (epoch-6)

Truncated-12: For an 8× 8 bit multiplier, 12 LSBs in the output set to 0.

1s in LSBs-12: For an 8× 8 bit multiplier, 12 LSBs in the output set to 1.

Truncation-12 94.12% (Epoch-4) 1s in LSBs-12 92.01% (Epoch-5)

Truncation-10 94.30% (Epoch-1) 1s in LSBs-10 93.75% (Epoch-5)

Truncation-8 94.44% (Epoch-3) 1s in LSBs-8 94.31% (Epoch-2)

Clearly, for large number of approximate bits zeros in LSB is better than ones in

LSB.

Results with 6 × 6 bit multiplier:

Baseline Network Accuracy – 95.46%

Accurate 6× 6 Multiplier Accuracy - 95.16% (epoch-5)

Truncated-8: For a 6× 6 bit multiplier, 8 LSBs in the output set to 0.

1s in LSBs-8: For a 6× 6 bit multiplier, 8 LSBs in the output set to 1.

Truncation-8 94.23% (Epoch-4) 1s in LSBs-18 91.63% (Epoch-1)

Truncation-6 94.49% (Epoch-5) 1s in LSBs-16 93.76% (Epoch-3)

Truncation-4 94.32% (Epoch-4) 1s in LSBs-14 94.39% (Epoch-4)

4.3.4 ApproxANN for Handwritten Digit Recognition: MNIST-I

Architecture with Relu Activation Function

Number of neurons in the input layer: 784

Number of neurons in the hidden layer-1: 30

Number of neurons in the output layer: 10

Activation function: Relu

Baseline network accuracy: 96.75%
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Number of neurons approximated: 25% (In the hidden layer)

Results with 14 × 8 bit multiplier:

Baseline Network Accuracy – 96.75%

Accurate 14× 8 Multiplier Accuracy - 96.63% (epoch-5)

Truncated-18: For a 14× 8 bit multiplier, 18 LSBs in the output set to 0.

1s in LSBs-18: For a 14× 8 bit multiplier, 18 LSBs in the output set to 1.

Truncation-18 96.11% (Epoch-2) 1s in LSBs-18 88.58% (Epoch-1)

Truncation-16 96.47% (Epoch-3) 1s in LSBs-16 91.67% (Epoch-4)

Truncation-14 96.53% (Epoch-3) 1s in LSBs-14 95.43% (Epoch-2)

Results with 10 × 8 bit multiplier:

Baseline Network Accuracy – 96.75%

Accurate 10× 8 Multiplier Accuracy - 96.60% (epoch-8)

Truncated-14: For a 10× 8 bit multiplier, 14 LSBs in the output set to 0.

1s in LSBs-14: For a 10× 8 bit multiplier, 14 LSBs in the output set to 1.

Truncation-14 96.40% (Epoch-6) 1s in LSBs-14 73.98% (Epoch-3)

Truncation-12 96.48% (Epoch-3) 1s in LSBs-12 92.58% (Epoch-1)

Truncation-10 96.58% (Epoch-5) 1s in LSBs-10 96.35% (Epoch-5)

Results with 8 × 8 bit multiplier:

Baseline Network Accuracy – 96.75%

Accurate 8× 8 Multiplier Accuracy - 96.59% (epoch-7)

Truncated-12: For a 8× 8 bit multiplier, 12 LSBs in the output set to 0.

1s in LSBs-12: For a 8× 8 bit multiplier, 12 LSBs in the output set to 1.
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Truncation-12 96.16% (Epoch-4) 1s in LSBs-12 79.11% (Epoch-6)

Truncation-10 96.51% (Epoch-2) 1s in LSBs-10 86.87% (Epoch-5)

Truncation-8 96.56% (Epoch-5) 1s in LSBs-8 95.41% (Epoch-3)

4.3.5 ApproxANN for Handwritten Digit Recognition: MNIST-I

Architecture with Relu Activation Function (all neurons ap-

proximated)

Number of neurons in the input layer: 784

Number of neurons in the hidden layer-1: 30

Number of neurons in the output layer: 10

Activation function: Relu

Baseline network accuracy: 96.75%

Number of neurons approximated: 40 (all including output neurons)

Results with 14 × 8 bit multiplier:

Baseline Network Accuracy – 96.75%

Accurate 10× 8 Multiplier Accuracy - 96.61% (epoch-5)

Truncated-18: For a 14× 8 bit multiplier, 18 LSBs in the output set to 0.

1s in LSBs-18: For a 14× 8 bit multiplier, 18 LSBs in the output set to 1.

Truncation-18 87.07% (Epoch-2) 1s in LSBs-18 66.58% (Epoch-4)

Truncation-16 90.13% (Epoch-3) 1s in LSBs-16 88.29% (Epoch-4)

Truncation-14 92.68% (Epoch-6) 1s in LSBs-14 89.44% (Epoch-2)

Results with 10 × 8 bit multiplier:

Baseline Network Accuracy – 96.75%

Accurate 10× 8 Multiplier Accuracy - 96.53% (epoch-7)

Truncated-14: For a 10× 8 bit multiplier, 14 LSBs in the output set to 0.
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1s in LSBs-14: For a 10× 8 bit multiplier, 14 LSBs in the output set to 1.

Truncation-14 86.72% (Epoch-6) 1s in LSBs-14 71.28% (Epoch-3)

Truncation-12 89.68% (Epoch-4) 1s in LSBs-12 82.53% (Epoch-1)

Truncation-10 91.11% (Epoch-5) 1s in LSBs-10 86.35% (Epoch-4)

Results with 8 × 8 bit multiplier:

Baseline Network Accuracy – 96.75%

Accurate 8× 8 Multiplier Accuracy - 96.43%

Truncation-12: For a 8× 8 bit multiplier ,12 LSBs in the output set to 0.

1s in LSBs-12: For a 8× 8 bit multiplier, 12 LSBs in the output set to 1.

Truncation-12 85.16% (Epoch-4) 1s in LSBs-12 72.11% (Epoch-6)

Truncation-10 88.51% (Epoch-4) 1s in LSBs-10 83.87% (Epoch-5)

Truncation-8 90.06% (Epoch-4) 1s in LSBs-8 87.41% (Epoch-6)

4.3.6 ApproxANN for Handwritten Digit Recognition: MNIST-II

Architecture

Number of neurons in the input layer: 784

Number of neurons in the hidden layer-1: 1020

Number of neurons in the hidden layer-2: 1020

Number of neurons in the output layer: 10

Activation function: Relu

Baseline network accuracy: 97.42%

Number of neurons approximated: 25% (In the hidden layer-1)

Number of neurons approximated: 25% (In the hidden layer-2)

• Network Accuracy with 14×8 bit accurate multipliers : 97.34% (Epoch - 6)
Truncation-18: For a 14× 8 bit multiplier, 18 LSBs in the output set to 0.
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Truncation-18 96.83% (Epoch-3)
Truncation-16 96.97% (Epoch-2)
Truncation-14 97.18% (Epoch-5)

• Network Accuracy with 10×8 bit accurate multipliers : 97.13% (Epoch - 4)
Truncation-14: For a 10× 8 bit multiplier, 14 LSBs in the output set to 0.

Truncation-14 96.86% (Epoch-6)
Truncation-12 96.93% (Epoch-3)
Truncation-10 97.06% (Epoch-1)

• Network Accuracy with 8×8 bit accurate multipliers : 97.04% (Epoch - 5)
Truncation-12: For a 8× 8 bit multiplier, 12 LSBs in the output set to 0.

Truncation-12 96.68% (Epoch-5)
Truncation-10 96.85% (Epoch-2)
Truncation-8 96.97% (Epoch-4)

It is shown that many of these applications are error-tolerant, where approximate

computing is naturally used to achieve significant energy savings with minor loss in

accuracy.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

Error-tolerant applications were implemented using approximate multipliers. The ex-

perimental results show that the output quality is within tolerable limits. Intuitively

there was an improvement in the area, power, and delay metrics of the approximate

application over the accurate application. However, the output quality keeps reduc-

ing with the increasing number of approximated bits. So, the output quality required

should be carefully weighed against the amount of area and power savings and the de-

lay reduction. The results for error-tolerant applications have shown a lot of scope for

approximation in these applications to get better performance for the application.

The current work has been done using the same approximation in the application, i.e.,

the same number of approximate bits for all multipliers. The future scope of the work

is to find out the less critical adders and or multipliers that contribute less to output

quality degradation. A multiplier and or adder is less critical if the accuracy require-

ment relaxation leads to less final quality degradation. Those less critical adders and

or multipliers have to be approximated with the higher number of approximate bits to

make the application highly cost-effective.
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