
Verification and support custom CSR’s to

SHAKTI Ecosystem

A project report

Submitted by

KARABALWAD GANESH HANAMNLU

In the partial fulfilments of the requirements

For the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

JUNE 2021

2

THESIS CERTIFICATE

This is to certify that the thesis titled Verification and support custom CSR’s to SHAKTI

Ecosystem, submitted by KARABALWAD GANESH HANAMNLU, to the Indian Institute

of Technology, Madras for the award of the degree Master of Technology, is a bonafide record

of the research work done by him under our supervision. In full or in parts, the contents of this

thesis have not been submitted to any other University or Institute for the award of any degree

or diploma.

Prof. V. Kamakoti

Project guide

Department of Computer Science

IIT, Madras – 600 036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

 I wish to express my sincere thanks to Prof. V. Kamakoti for providing me all the necessary

facilities for the project.

 I place on record my sincere thanks to my mentor Mr. Sathyanarayan for continuous

encouragement.

 I am also grateful for the SHAKTI hardware and software team. I am extremely thankful and

indebted to them for sharing their expertise, and sincere and valuable guidance and

encouragement extended to me.

ii

ABSTRACT

In this thesis, information regarding custom registers present in the c class core is provided.

We need custom registers to control and monitor the system state. CSR’s can be read and

written, and the bits can be set and reset. CSR’s are different than regular registers used for the

standard computations such as arithmetic. They need a perticular way to enable them. We need

assembly language to enable them. After enabling, verification takes place to check whether

they are working as per required functionality.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

ABSTRACT... ii

LIST OF TABLES .. v

LIST OF FIGURES ... vi

ABBREVIATIONS ..vii

1 INTRODUCTION .. 1

1.1 Introduction to C Class? .. 1

1.2 Introduction to CSR’s .. 2

2 ESSENTIAL LEARNINGS ... 3

2.1 Bluespec .. 3

2.2 RISC-V ASM .. 3

2.3 Verilator .. 4

2.4 GDB Setup .. 4

3 Introduction to CSR’s and Configuration files ... 6

4 DEBUGGING ... 9

4.1.1 Spike .. 9

4.1.2 OpenOCD ... 9

4.1.3 Debug adapter ... 9

4.1.4 RISC-V GDB ... 10

5 Experiments and Results.. 11

5.1 Debugging of an ASM Program... 11

5.1.2 Object dump file for the compiled ASM Program ... 12

iv

5.1.3 Debugging an ASM program with Spike ... 12

5.1.4 Debugging an ASM Program with GDB ... 13

5.2 Debugging of a C Program .. 14

5.2.1 Simple C code .. 14

5.2.2 Output of the C code ... 14

5.2.3 Debugging of C code using GDB .. 15

5.3 C Class on Verilator .. 16

5.3.1 C code .. 16

5.3.2 Output of the C code ... 16

v

LIST OF TABLES

Table 3. 1 Bit position and description .. 6

vi

LIST OF FIGURES

Figure 1. 1 Block diagram of a C-Class Core... 2

Figure 4. 1 Connection of GDB and OpenOCD to hardware ... 10

Figure 5. 1 First ASM Program .. 11

Figure 5. 2 Object Dump file after compiling the ASM Program .. 12

Figure 5. 3 Debugging of an ASM program using Spike ... 12

Figure 5. 4 Debugging of an ASM using GDB ... 13

Figure 5. 5 A simple code for debugging .. 14

Figure 5. 6 Output of the simple C code ... 14

Figure 5. 7 Debugging of a C code using GDB ... 15

Figure 5. 8 Simple C code to debug using GDB ... 16

Figure 5. 9 Output on GDB debugger ... 16

vii

ABBREVIATIONS

SoC System On Chip

CSR Control and Status Register

RISC Reduced Instruction Set Computer

BSV Bluespec System Verilog

DMA Direct Memory Access

ASM Assembly Language

ISA Instruction Set Architecture

1

CHAPTER 1

INTRODUCTION

SHAKTI project is an open-source initiative by the Reconfigurable Intelligent Systems

Engineering (RISE) group at IIT-Madras. The SHAKTI project is trying to build a family of

six processors. It is based on the RISC-V ISA. The current SoC developments are for the

Controller (C-Class) and Embedded (E- Class) classes.

1.1 Introduction to C Class?

C-class is a part of the SHAKTI family of processors. It is a highly configurable and

commercial-grade-5-stage in order core supporting the standard RV64GCSUN ISA

extensions. The core generator in this repository can configure the core to generate a

large range of design instances from the same high-level source code. The design

instances can serve domains ranging from embedded systems, motor-control, IoT,

storage, industrial applications to low-cost, high-performance Linux-based applications

such as networking, gateways, etc.

There have been a lot of successful silicon prototypes of the different instances of the

c-class; thus proving its versatile property. The more significant parameterization of the

design in conjuction with using an HLS like BSV makes it easy to continually add new

features and design points.

2

Figure 1. 1 Block diagram of a C-Class Core

1.2 Introduction to CSR’s

The Control and Status Register (CSR) are the system registers. RISC-V provides them

to control and monitor system states. We can read the CSR’s, and write on them. Bits

can be set or cleared. RISC-V provides distinct CSR’s for every privilege level. Each

CSR has a particular name, and they are assigned a unique function. Processor operation

will get affected when we read or write on CSR’s. We can’t use normal registers for all

the operations; hence CSR’s are used where we can’t use regular registers. Such

processes can be like knowing about system configuration; they can handle exceptions

or switch to different privilege modes and handling interrupts, etc. They can’t be read

or written the way a standard register can. They need a unique set of instructions called

CSR instructions. CSR instructions require an intermediate base register for any

operation on CSR registers. It is again possible to write immediate values to CSR

registers.

3

CHAPTER 2

ESSENTIAL LEARNINGS

2.1 Bluespec

BSV (Bluespec System Verilog) is a language used to design of electronic

systems such as ASICs, FPGAs, etc. BSV is used for the spectrum of

applications such as processors, memory subsystems, interconnects, DMA’s

and data movers. It is used in multimedia and communication I/O devices,

multimedia and communication codecs and processors as well. It is used in

accelerators, high-performance computing accelerators, signal processing

accelerators, etc. It is also used across markets, from low-power, portable

consumer items to enterprise-class server-room systems.

It is used in many design activities because it is both a very high-level language

as well as it synthesizes fully to hardware. The combination of high level and

full synthesizability enables many of these activities that were previously only

done in software simulation now to be moved easily to FPGA-based execution.

It can help us to speed up performance by three to six orders of magnitude. Such

a dramatic speed not only accelerates existing activities but enables new

activities that were not feasible before.

The entire core is implemented in BSV. BSV guarantees synthesizable circuits,

BSV also gives a high-level abstraction, like going from assembly to C. It

enables to work at a much higher level, thereby increasing throughput.

2.2 RISC-V ASM

RISC-V pronounced as “RISC-five,” is an open-source standard Instruction Set

Architecture (ISA). It is designed based on Reduction Instruction Set Computer

(RISC) principles. It has a flexible architecture so that it is used to build systems

ranging from a simple microprocessor to complex multi-core systems, and

hence RISC-V caters to any market. It provides two specifications, one, the User

Level Instructions, which guides in development of simple embedded systems

4

and connectivity applications. And another is the Privilege Level Instructions,

which suggests in building secure systems, kernel, and stacks of protected

softwares.

It currently supports three privilege levels, they are Machine/Supervisor/User,

each group having dedicated CSR’s to observe the system state and it’s

manipulation. In addition, RISC-V provides 31 write and registers. Well, they

all can be used as general-purpose registers, and they have commited functions

also. RISC-V is divided into various categories based on the maximum width

of registers the architecture can support. For example, RV32 provides registers

whose maximum width is 32-bits whereas for RV64 the maximum width is of

64-bits. The Processors with larger register widths can support data and

instructions of smaller widths sizes. Hence, RV64 platform supports both RV32

and RV64.

2.3 Verilator

Verilator is open-source software tool which is used to convert Verilog to a

cycle-accurate behavioral model in C++ or System C. It is fastest Verilog or

SystemVerilog simulator. It accepts synthesizable Verilog or SystemVerilog. It

performs lint code-quality checks and compiles into multithreaded C++, or

SystemC. It does not simply convert Verilog HDL to C++ or SystemC, rather,

verilator compiles the code into a much faster optimized and optionally thread-

partitioned model, which is in turn wrapped inside a C++ or a SystemC module.

The results are an assembled Verilog model that executes even on a single-

thread over 10x faster than standalone SystemC. On a single thread it is about

100 times faster than interpreted Verilog simulators such as Icarus Verilog. By

multithreading, 2-10x speedup can be gained.

2.4 GDB Setup

GDB, the GNU Project debugger, allows us to see what is going on ‘inside’

another program when it is executing a program. It also checks, what another

program doing at the moment it crashed.

It can do four main types of things to help us to catch bugs in the program:

• Start the program, specifying anything that may affect its behavior.

• Make the program halt on a stated constraints.

• Inspect what happened, when the program has stopped.

• Change things in your program, so we can experiment with correcting

the effects of one bug and go on to learn about next.

5

Those programs might be executing on the same machine as GDB (native), on

another device (remote), or a simulator. GDB can run the most popular UNIX

and Microsoft Windows variants, as well as on Mac OS X.

6

CHAPTER 3

Introduction to CSR’s and Configuration files

3.1 Custom CSR’s available in C-Class

The C-class includes the following custom CSR's implemented in the non-standard

space for extra control and unique features.

 Custom control csr (0x800)

 The CSR is used to enable or disable the caches, branch predictor, and

arithmetic exceptions at run-time.

Bit position Reset Value Description

0 From config Enable or disable the data cache

1 From config Enable or disable the instruction cache

2 From config Enable or disable the branch predictor

3 Disabled Enable or disable arithmetic exceptions

Table 3. 1 Bit position and description

 dtvec csr (0x7c0)

 XLEN register, which indicates the address of the debug loop when the

debugger stops the core.

 denable csr (0x7c1)

 1-bit csr indicating if the debugger can break the core.

 mhpminterrupten csr (0x7c2)

 XLEN bit register following the same encoding as

‘mcounteren/mcountinhibit.’ A bit set to 1 indicates an interrupt will be

generated when the corresponding counter reaches the value 0.

 dtim base address csr (0x7c3)

 An XLEN bit register is holding the base address of the data tightly integrated

scratch memory. It should correspond to the physical address space and not the

virtual.

7

 dtim bound address csr (0x7c4)

 An XLEN bit register is holding the bound address of the data tightly

integrated scratch memory. It should correspond to the physical address space

and not the virtual.

 itim base address csr (0x7c5)

 An XLEN bit register is holding the base address of the instruction tightly

integrated scratch memory. It should correspond to the physical address space

and not the virtual.

 itim bound address csr (0x7c6)

 An XLEN bit register is holding the bound address of the instruction tightly

integrated scratch memory. It should correspond to the physical address space

and not the virtual.

3.2 Understanding the CONFIGURATION FILES

A configuration file, often shortened to ‘config file’, defines the parameters,

options, settings, and preferences applied to operating systems, infrastructure

devices, and applications.

Hardware and software devices can be profoundly complex, supporting

countless options and parameters. The operator must explicitly delineate settings

and choices appropriate for the specifics of the data center, cloud, or user

environment. Configuration file information specifies, for example, where log

files from an application are stored via the storage path, which plug-in are

allowed in a given program, and ever the color scheme and dashboard widget

preferences in a user interface.

The C- class core is configurable and highly parameterized. By changing a

single configuration, one can generate core instances ranging from embedded

micro-controllers to Linux-capable high-performance cores. The user in a

YAML file should specify the configuration. Sample YAML files are available

in the ‘sample_config/’ directory of the c-class repository. At times the user may

specify conflicting configurations which are illegal and can be detected only

during compile or simulation time. To catch them early, the configurator

maintains a schema of valid structures and alerts the user when an illegal

configuration is provided. The source code is compiled only when a legal

arrangement is detected.

8

The output of the configurator is a makefile. inc file, which contains necessary

variables, to be used in the master Makefile for bluespec compilation, verilator

linking, simulation, verification, and other collateral information.

9

CHAPTER 4

 DEBUGGING

4.1 Debugging with RISC-V GDB and Spike

Debugging takes place as part of both hardware and software development. In

hardware development, peripherals, the memory, registers are initialized, and

we instantiate a platform for development of an application. Software debugging

is more accessible because, care of logs and memory dumps is taken by OS. Yet,

the hardware debugging is challenging because it has to be done over bare metal

with limited memory and specific capabilities.

 4.1.1 Spike

Spike is a RISC-V instruction set simulator. When we don’t have the

physical device, then we can use spike for development of applications.

Hence, the code can be easily migrated to real hardware later. Spike

simulates the processor development environment

 4.1.2 OpenOCD

The Open On-Chip Debugger (OpenOCD) is a chunk of software which

provides an interface for the RISCV-GDB to connect to the target device.

It allows the RISC-V GDB to connect to the target microcontroller

through a debug adapter.

 4.1.3 Debug adapter

In order to allow the Host Computer to communicate and introspect the

target hardware, we need an additional hardware. These devices are often

attributed as a Debugger devices/Debug adapters. Using the debugger

devices, the compiled program is transferred to the target hardware.

10

 4.1.4 RISC-V GDB

RISC-V GDB is the GNU debugger for RISC-V platforms. A debugger

allows us to pause a program, examine various addresses, change

variables, and step through the code. In this way, we can find the exact

location and cause of the problem. The GDB controls the target

hardware, while debugging. We can pass instructions through gdb to

control the target device.

4.2 How OpenOCD and RISC-V GDB works in

SHAKTI?
1. The FPGA board which is connected is the hardware, that can use many

kinds of serial interfaces like SPI or JTAG, or GPIO.

2. Firstly, connect the FPGA board to PC using a USB cable.

3. Then run OpenOCD on your PC, which supports remote GDB protocol.

4. OpenOCD listens for GDB connections on the default port 3333. In RISC-

V GDB, connect to OpenOCD by typing target remote localhost:3333.

5. It would cause RISC-V GDB to connect to the gdbserver on the local PC

using port 3333. Now RISC-V GDB sends the commands it knows and

receives data it understands.

Figure 4. 1 Connection of GDB and OpenOCD to hardware

Thus RISC-V GDB and OpenOCD work together to interact with the device and

perform any operation.

11

CHAPTER 5

Experiments and Results

5.1 Debugging of ASM Program

5.1.1 First ASM Program

Figure 5. 1 First ASM Program

12

 5.1.2 Object dump file for the compiled ASM

Program

Figure 5. 2 Object Dump file after compiling the ASM Program

 5.1.3 Debugging an ASM program with Spike

Figure 5. 3 Debugging of an ASM program using Spike

13

 5.1.4 Debugging an ASM Program with GDB

Figure 5. 4 Debugging of an ASM using GDB

14

5.2 Debugging of a C Program

 5.2.1 Simple C code

Figure 5. 5 A simple code for debugging

 5.2.2 Output of the C code

Figure 5. 6 Output of the simple C code

15

 5.2.3 Debugging of C code using GDB

Figure 5. 7 Debugging of a C code using GDB

16

5.3 C Class on Verilator

 5.3.1 C code

Figure 5. 8 Simple C code to debug using GDB

 5.3.2 Output of the C code

Figure 5. 9 Output on GDB debugger

