
DEPARTMENT OF ELECTRICAL
ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY
MADRAS
CHENNAI - 600036

A Provably Secure True Random Number
Generator

A Project Report

Submitted by

CHINDAM BALRAJ

In the partial fulfilment of requirements

For the award of the degree

Of

MASTER OF TECHNOLOGY

June 2021

CERTIFICATE

This is to undertake that the Thesis (or Project report) titled A PROVABLY SECURE

TRUE RANDOM NUMBER GENERATOR, submitted by me to the Indian Institute

of Technology Madras, for the award of M.Tech, is a bonafide record of the research

work done by me under the supervision of Prof Veezhinathan Kamakoti and Dr. An-

barasu Manivannan. The contents of this Thesis (or Project report), in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma.

Place: Chennai 600 036

Date: 18 June 2021
CHINDAM BALRAJ

EE19M044

Prof. Veezhinathan Kamakoti

Project Guide

Dr. Anbarasu Manivannan

Project Co-Guide

©2021 Indian Institute of Technology Madras

ACKNOWLEDGEMENTS

Foremost, I would like to thank my guide prof. Kamakoti who gave me an opportunity

to be a part of Shakti Project.

I am grateful to Project Associates Arjun menon and Sadhana for their encouragement,

advice, and help whenever needed. I appreciate their constant involvement in my project

from scratch.

I would like to take this opportunity to acknowledge my school friends,B.tech friends

and madras batch-mates for helping me out in this pandemic situation. I would like to

thank my family for their love and encouragement, without their support this M.Tech

program would not have been possible.

Chindam Balraj

i

ABSTRACT

Good random numbers are required for good cryptography. This study assesses the True

Random Number Generator (TRNG), which is based on hardware, for use in crypto-

graphic applications. Each and every cryptographic prorocol in need of random num-

bers,which are unkown to predictor. TRNG generates the random numbers which are

used as padding bytes,nonces,challenges.The most important requirement is that attack-

ers, even those who are familiar with the RNG design, must be unable to forecast the

TRNG outputs in any practical way.

In this project TRNG is splitted into Entropy source and Deterministic Random num-

ber Generator(PRNG).Entropy source is based on sampling jitter in combination of

Ring oscillators and PRNG uses Advanced Encryption Algorithm for encrypting.In this

paper Random numbers are generated with high speed, which are unable to forecast by

the attackers.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . i

ABSTRACT . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

ABBREVIATIONS . vii

CHAPTER 1: INTRODUCTION . 1

1.1 Motivation . 2

CHAPTER 2: Background . 3

2.1 Entropy . 3

2.2 Deterministic Random Bit Generators 4

2.3 The need for non-deterministic random bit generators 5

CHAPTER 3: Advanced Encryption Algorithm 6

3.1 Cipher . 8

3.1.1 SubBytes() . 8

3.1.2 ShiftRows() . 9

3.1.3 Mix Columns() . 9

3.1.4 AddRoundKey() . 10

3.1.5 Key Expansion for AES-128 11

CHAPTER 4: Architecture . 14

CHAPTER 5: Blocks of TRNG . 16

5.1 Ro based Entropy source . 16

5.1.1 Combining Ro outputs to exploit randomness of phase jitter 17

5.1.2 Urn model to detect no of Ros 18

iii

5.2 Von Neumann Corrector . 21

5.3 Health checks . 21

5.3.1 Repetition Count Test . 22

5.3.2 Adaptive Proportion Test 22

5.4 Conditioning . 24

5.5 Counter based DRBG based on Block Ciphers 26

5.5.1 Instantiate . 27

5.5.2 Generation . 28

5.5.3 Reseeding . 29

CHAPTER 6: Implementation of TRNG 30

6.1 Implementation using two AES hardware modules 30

6.1.1 Synthesis Report . 31

6.2 Implementation using only one AES hardware module 31

6.2.1 Synthesis Report . 32

6.3 Results . 33

6.3.1 BSV Simulation results . 33

REFERENCES . 36

LIST OF TABLES

Table Title Page

5.1 Number of urns for certain Entropy 19
5.2 Von Neumann Corrector . 21
5.3 Health bounds for 256-bits . 23

v

LIST OF FIGURES

Figure Title Page

3.1 The state array input and output 7
3.2 Block size key combinations . 7
3.3 SubBytes() . 8
3.4 S-box to each indice of the State. 9
3.5 Shift rows() . 9
3.6 Mix columns() . 10
3.7 Add Round Key . 10
3.8 Hardware utilization of AES . 13

4.1 Block diagram of RNG . 14

5.1 RO based Entropy source . 16
5.2 Periodic square wave with jitter marked as lines 17
5.3 A single jitter event . 19
5.4 Hardware for entropy source . 20
5.5 Updating CE . 25
5.6 Mechanism of DRBG . 26
5.7 Instantiate of DRBG . 27
5.8 Generation of DRBG . 28

6.1 Number of cycles for 1024*128 random numbers 31
6.2 Hardware utilisation of TRNG(2 AES modules) 31
6.3 Number of cycles for 1024*128 random bits 32
6.4 Hardware utilisation of TRNG(1 AES module) 32
6.5 Simulation results of TRNG . 33
6.6 Simulation results of TRNG . 34
6.7 Simulation results of TRNG . 35

vi

ABBREVIATIONS

TRNG True Random Number Generator

AES Advanced Encryption Algorithm

OSTE Online Self Test Entropy

CE Conditioning Entropy

DRBG Deterministic Random Bit Generator

PRNG Pseudo Random Number Generator

vii

CHAPTER 1

INTRODUCTION

Cryptographic systems rely on secret bits and keys for their security. These bits must be

random to avoid guessing, hence this secret bits are generated by TRNGs.The produc-

tion of random numbers is monitored by several standards and technological require-

ments as a crucial security function.TRNGs (or RNGs) are digital true random number

generators that may be implemented using only digital components in semiconductor

technology. They are particularly cost effective and flexible.TRNGs which built by

digital components are very easy to construct and takes less power while TRNG with

analog components is critical to analyze and consumes more power.

Pseudorandom number generators (PRNGs), which use a deterministic process to ex-

tend a brief random string into a set of random looking numbers, are adequate for many

purposes.For cryptographic applications, however, it is critical to create pseudo random

bits that are unpredictably recognised even by the most powerful attacker.Furthermore,pseudo

Random Number Generator with quality output which is tolerance to attacks can be

built,which is called TRNG. We need to seed this PRNG with high quality seed which

have good entropy(greater than 0.5 bits of entropy for one bit).

For asymmetric methods like RSA and DSA, random number generators are nec-

essary to construct public/private keypairs. Randomly generated keys for symmetric

and hybrid cryptosystems are also generated.Many cryptographic systems employ as

much key material as ciphertext and require a fully random procedure to produce the

keystream.

In this project, we focus on practical design of TRNG,which have possibility of im-

plementation on Asic and fpga.We develop a Trng which splits into three components

Entropy source,health checks and post processing.The quality of Trng depend on this

three components.initially the seed is generated from entropy source then it is continu-

ously checked by health tests and if the given seed is healthy then this seed value is used

to seed the Prng, which continuously produce high quality random outputs with certain

frequency.This outputs Produced by proposed Trng is unpredictable even if knew the

previous outputs.

1.1 Motivation

The primary factor considered for carrying out this work is the problem of generation

of secure random numbers.Realted work in this domain consuming much resources and

does not have any stable entropy source, which is producing seed with better entropy.

Day by Day electronic gadgets are shrinking in terms of area so my aim is to design a

Trng with as less resources as possible and with quality(good entropy) random numbers.

2

CHAPTER 2

Background

To understand True Random Number Generartor (TRNG) we need to know about the

terms Entropy, Health checks, Conditioning and DRBG. Diffrent TRNG designs used

difftrent types of Entropy sources and diffrent DRBG mechanism to produce random

numbers.

2.1 Entropy

The entropy of a process is a measure of how random it is. While there are various

approaches to quantify entropy, shannon entropy is easy to quantify,so we use shannon

entropy here [Shannon (1948)].

Hj =
m∑
j=1

pjlog2pj

H∞ = minm
j=1(−log2pj)

The probability of the process being in the jth of n possible states or returning the jth of

n potential outputs is given by pj in the above formulations.We measure entropy in bits

by applying a base-2 logarithm.Shannon entropy is a metric that estimates the average

amount of data needed to describe a condition,Min-entropy on the other hand, quantifies

the likelihood that an attacker can guess the state with a single guess.

pj is the probability that an output equals j, where 0<j<2k, where 0<j<2.Let the ran-

dom number generator produces q binary bits.As a result, pj = 2−q for a perfect random

number generator.The output’s Shannon entropy and min-entropy are both equal to q

bits in this situation, implying that all conceivable outcomes are likely equally.On av-

erage,output information cannot represented in less than k bits and With a probability

larger than 2−k, an output cannot guess by the attacker.

To computationally bounded adversaries, a RNG for cryptographic applications should

appear as near to a flawless RNG as possible.

2.2 Deterministic Random Bit Generators

Pseudo Random number Generators(PRNGs) uses a known algorithm to generate a

huge numbers,which are completely random from a small quantity of unpredictability

numbres called seed.PRNGs splitted into two parts cryptographic and non cyptogaro-

hic.The linear congruential generators present in many programming libraries are non-

cryptographic PRNGs.this libaries statistically acceptable random numbers, but they

can’t used for cryptographic keying applications.This PRNGs takes input as seed and

gives output.The seed used for PRNG is mathematically derived so we can derive the

internal state and output of PRNG easily.Attacker can easily predict the outputs if he

knew previous outputs so there are security problems associated with PRNG.

Cryptographic PRNGs are also known as DRBGs. AES and SHA are good exam-

ple of a strong cryptographic algorithm,which produces random numbers from random

seed.DRBGs produces large quantity outputs from an seed state initally using determin-

istic processes.The entropy of the seed is always greater than the seed entropyx since

the output is entirely deterministic process.If DRBG seeded well we can’t differentiate

between DRBG and ideal RNG.

The attacker who could successfully guess the seed with 100 percent can easily pre-

dict the complete output of RNG.The seed of DRBG is 256 bits,which are very tough

to predict.The probablity of detecting 256 bit seed is 1
2256

.Cryptographic applications

frequently need exceptionally high output quality, demanding meticulous development

and testing and algorithms.The specifications required for DRBG memtioned in this

NIST paper [E.Barker and J.Kelsey (2012)].

4

2.3 The need for non-deterministic random bit genera-

tors

A nondeterministic irregular bit generator employments a nondeterministic source to

produce randomness.Most of the randomness(random seed)produced by unpredictable

natural process such as atmospheric noise,jitter noise and nuclear decay.The major per-

formance of TRNG depends upon the quality of seed produced by entropy source.

We can create randomness from with in Determinstic system.DRBG itself is not se-

cure if it is not randomly seeded.seeding of TRNG requires complete randomness.

computers which doesn’t have hardware entropy source try to obtain seed from em-

bedded devices of hardware like keyboard and hard drives.The entropy derived from

the sources like keyboard is not at all sufficient,so it is better to have hardware entropy

source. The health checks and DRBGs can be software since they are Deterministic

algorithms.

computationally bounded test that can assess a RNG’s output and authoritatively af-

firm that the output is random,since no test is perfect to detect randomness so defects

are frequently overlooked.Entropy source should produce output regularly with some

frequency.some software system stores a seed value in hardware which have security

problems,since there are some problems with entropy source.Hardware that provides a

well-designed, efficient, and easy-to-use hardware entropy source is the greatest answer

to these problems.

5

CHAPTER 3

Advanced Encryption Algorithm

The Advanced Encryption Standard (AES) states a cryptographic algorithm,which is

utilised to safeguard electronic data.AES algorithm[FIPs (2001)] is used for both de-

crypting and encrypting by using symmetric cipher.The process of encryption changes

the data into unrecognisable form called cipher text and decryption converts tha data

from unrecognisable form to normal data called plain text.The AES utilises 3 key

lengths,which are specifically 128,256,192 bits to encrypt and decrypt.The method can

be used with any of the three key lengths listed. As it uses 3 lengths we call them as

AES-128,AES-192,AES-256.

AES algorithm uses 128-bit sequences (digits with values of 0 or 1) for both in-

put and output.These sequences are frequently referred to as blocks, and their length

refers to the amount of bits they contain.The AES algorithm’s Cipher Key is of 3 bit

lengths,which are 128, 192, or 256 bits. The AES algorithm has restriction of those key

lengths.There are standards for AES algorithm to use specified key lenghts,In this paper

we used AES-128 Algorithm.

AES operations are carried out on a 2D array of bytes known as the State.The state

array consists of 4 rows,where each row consists of Nb number of bytes(8 bits for

bytes).The Nb value for AES 128 is 4.The byte in the state is denoted by specific row

and column by using alphabet s,which consists of two indices, with a row r,which is

ranging from 0<row<4 and a column number c,which is ranging from 0<cmn<Nb(4).We

can denote state as sr,c.The state array input, output is shown in figure 3.1.

As a result, the input array, in, is transferred to the State array at the start of the

Cipher, as follows:

srow,cmn = input[row + 4cmn] for 0 < row, cmn < 4

similarly after calculating the AES,the state array is transferred to output array as:

output[row + 4cmn] = srow,cmn for 0 < row, cmn < 4

Fig. 3.1: The state array input and output

Then number of rounds that are performed during the AES algorithm is completely

depends on the length of the key..when Nk=4 we have to perform Nr=10 rounds,similarly

for Nk=6,8 we have to perform Nr=12,14 rounds respectively. the number of rounds is

denoted by Nr.Number of rounds are explained in below figure.

Fig. 3.2: Block size key combinations

The AES algorithm performs a round function comprised of four distinct byte ori-

ented transforms:

• substitution table is used which is called S-box..

• The shifting of rows performed by different offsets according to procedure.

• The xoring operations performed with in the same state.

• The final step is adding round key.

7

3.1 Cipher

In this section we discuss about encrypting(Cipher) the given data.The input is trans-

ferred to the State array by following the rules at the starting of the Cipher.The State

array undergo some operations and it is modified by performing a round function 14,

12, or 10 times(it depends upon key length of AES) after an initial addition Round Key

.After Nr number of rounds the state array is copied again into output array.

The cipher is performed step wise.The steps include SubBytes(),mixColumns(),shiftRows(),AddroundKey().This

steps are used for key generation and for encrypting.This steps explained below detailly

in section wise.

3.1.1 SubBytes()

This a non linear subByte transformation that uses a substitution table to act separately

on each and every byte of the S-box.The subByte transformation is caluclated using the

below equation.That SubByte is explained in fig 3.3.

b
′

j = bj ⊕ b(j+4)mod8 ⊕ b(j+5)mod8 ⊕ b(j+6)mod8 ⊕ b(j+7)mod8 ⊕ cj

Fig. 3.3: SubBytes()

The state array after performing subbytes is shown in below figure 3.3.

8

Fig. 3.4: S-box to each indice of the State.

3.1.2 ShiftRows()

Bytes in the State’s rows are moved roundly across varying quantities of bytes.The shift

rows are performed according to below equation and shown in figure 3.5.

S
′

row,cmn = Srow,(cmn+shift(row))mod4 for 0 < cmn, row < 4

Fig. 3.5: Shift rows()

3.1.3 Mix Columns()

Every column in the State array is treated as a four-term polynomial by the Mix-

Columns() transformation, which works column by column.How mixcolumns preformed

is explained in below figure 3.6.

9

Fig. 3.6: Mix columns()

After performing dot product between state array and numbers,we have to perform

xor like this equation.

S
′

0,cmn = (03.s1,cmn)⊕ (02.s0,cmn)⊕ s2,cmn ⊕ s3,cmn

3.1.4 AddRoundKey()

AddroundKey use a xor operations bitwise which are very simple to perform.Nb words(128

bits (4*32) since one word consists of 4 bytes(32 bits)) from the key make up each

Round Key.Each of the Nb words is added to the State’s columns, resulting in

[s
′

3,cmn, s
′

2,cmn, s
′

1,cmn, s
′

0,cmn] = [s3,cmn, s2,cmn, s1,cmn, s0,cmn]⊕ [Kround∗Nb+cmn]

Fig. 3.7: Add Round Key

Ki is the value of key sheduled which is explained later in this section and round

is value which is in between 0 ≤ round ≤ Nr.the process of cipher is when Nr=0

the intial round value takes place else the process of Addroundkey starts when Nr in

10

between 1 and Nr.The process explained in below figure 3.7.

3.1.5 Key Expansion for AES-128

The AES algorithm generates a key schedule using the Cipher Key of 128 bits us-

ing a Key Expansion procedure.The Nr and Nb value for key expansion is 10 and 4

respectively.Aes-128 bit totally generates 4*(10+1) 4-Byte words. One word consists

of 32 bits(4 bytes).The 4 words are used for performing one round.Totally we require

41 four byte words,which is denoted by word[j],where j ranges from 0 to 41.

AES key generation code uses terms Sword,Rword,Rowcon.In this paragraph we

discuss detailly about this terms.Sword is similar to Subbyte,where as in subbyte we

apply s-box for entire state here we apply s-box to one word(4 bytes).

Rword is used in key generation.Rword is a simple shifting of bytes in a words.let as-

sume word=[b0,b1,b2,b3],if we aplly Rword to this,the resultant word=[b1,b2,b3,b0].Rowcon[i]

is =2i−1,0,0,0.Rowcon[i] is performed in key expansion only when i mod Nk=0.

In key expansion,for AES-128 we fill the word[j],for 0<j<5 we fill direct key into

word,after filling first 4 words,then we perform xor operations to get word[i],for 4<j<45

except multiples of 4.For multiples of 4 we perform additional operations,before doing

simple xor.The additional operations are performing Rword to previous word followed

by Sword,then we perform xor operation with Rowcon[j/Nk].This process is repeated

for 40 times.The algorithm is explained in below pseudo code.

Algorithm 3.1: pseudo code for key expansion

Key expansion(Word word[44],Byte K[16],)

1 begin

2 Word tmp;

3 j=0;

4 while(j<4)

5 begin

6 word[j]=Word[K[4*j],K[4*j+1],K[4*j+2],K[4*j+3]];

11

7 j=j++;

8 end

9 j=4;

10 while(j<44)

11 begin

12 tmp=word[j-1];

13 if(j mod 4 ==0)

14 tmp = Sword(Rword(tmp))⊕Rowcon[j/4];

15 word[j] = word[j − 4]⊕ tmp;

16 j=j++;

17 end

18 end

The next step after key generation is encrypting the data.Now we have expanaded key

of Word length 40.We use this key in encrypting the data,which is for performed for 10

rounds for AES-128 bit algorithm.In this pseudo code first we copy the input into state

array as explained above.The initial Add round key performed when Nr=0.After per-

forming intial add round key,ten rounds of SubBytes,ShiftRows,MixColumns and Ad-

dRound key is performed,followed by one additional round of SubBytes,ShiftRows and

Additional round Key.This total process completes the encryption of data.The pseudo

code for encrypting is explained below in Algorithm 3.2

Algorithm 3.2: Pseudo code for Data encryption

Cipher(Word word[44],Byte input[16],output[16])

1 begin

2 Byte st[4,4];

3 st=input;

4 ARK(st,word[0,3])

5 r=1

6 while(r<10)

12

7 begin

8 SB(st); 9 SR(st); 10 Mix(st);

11 ARK(st,Word[r*4,(r+1)*(Nb)-1]);

12 end while

13 SB(st);

14 SR(st);

15 ARK(st,Word[40,43]);

16 output=st

17 end

In the above Algorithm SR,SB,Mix,ARK stands for ShiftRows, SubBytes, Mix-

Columns, AddRoundKey respectively.

The hardware utilisation of AES module is explained in below figure 3.8. This AES

module is consuming 3532 LUTs and 2564 slice Registers.

Fig. 3.8: Hardware utilization of AES

13

CHAPTER 4

Architecture

This section describes the complete architecture of True Random Number Genera-

tor.This section describes each and every block of Trng briefly. A block diagram is

shown in figure 4.1.

Fig. 4.1: Block diagram of RNG

Most RNGs comprises of an Entropy source followed by corrector and Digital post

processing,which includes health tests,conditioning and DRBG.Entropy source output

typically has visible biases and other aberrations that differentiate it from random binary

data.The goal of the post-processing logic is to turn this raw output into random data

with a lower bitrate but greater quality.

The DRBG proposed in this paper is cryptographically very strong.This DRBG is

strong in such that it produces quality numbers even if the entropy source is completely

degraded.To prevent exploitable holes caused by flaws in the entropy source, the post-

processing employs strong cryptography.The RNG, in particular, keeps an entropy pool

that is seeded with a huge quantity of data from the ES.

The proposed RNG work as follows

• The Entropy sources continuously produces bits with constant speed,this bits are
used for seeding DRBG.

• Random bits generated by Entropy source are corrected by corrector which ap-
proximately decreases the bit rate by 1

4
.

• The bits corrected form the corrector are grouped into 128 bits are moved to
lower OSTE[127:0] followed by partially conditioning.Full conditioning needed
256 bits of OSTE.

• The 256 bits collected from corrector(2 times) are processed to full OSTE buffer.

• OSTE buffer undergo health tests and completes conditioning(waiting for upper
oste) parallelly. The 256 bit values are moved to CE buffer after conditioning if
it passes health test.

• If OSTE buffer passes health test then the conditioned values are used for seed-
ing DRBG,else conditioning process repeats until health test passed or fresh oste
collected from corrector.

• The DRBG generates the outputs in blocks of 128 bits after seeding.

15

CHAPTER 5

Blocks of TRNG

This chapter describes about each and every block in detail.

5.1 Ro based Entropy source

Oscillators are a simple and effective way to generate Entropy source.A digital oscil-

lator is designed by connecting odd number of inverters in ring manner.Ring oscillator

output fluctuates in between zero and one and forms a square wave due to the feedback

route.hence we obtain a square wave with time cycle T .The diagram of ring oscillator

is shown in figure 5.1.

Fig. 5.1: RO based Entropy source

The characterstics of square wave produced by ring oscillator are
• The output signal O should ideally be a square wave with certain period,The

period of the generated wave is determined by inverters number and delay of one
inverter .That is T = nτ O(t) = O(t + T), where T represents the time period and
τ signifies the one inverter delay.

• Square wave produced by Ro is not exactly square wave since designed inverters
are not ideal.The jitter is produced when the square is rising from 0 to 1 or falling
from 1 to 0.

• The generated wave behaves in random manner in time domain t = T + T ”

, where T ” is consirderd as a random variable, which takes noise values when
square wave is falling or rising.

• Jitter is the fluctuation(vibration) in the square wave represented by T ”,random
variable.T” is very small compared to T(approximately 4 percent).

The general output of square wave with jitter shown in below figure 4.2.

Fig. 5.2: Periodic square wave with jitter marked as lines

5.1.1 Combining Ro outputs to exploit randomness of phase jitter

We have r distinct number of ring oscillators, where each ring consists of fixed odd

number of inverters to generate square wave.The r no of ring oscillators produce r square

waves.The output of r oscialltors Xor-ed to produce a single wave,which is sampled

with sampling frequency fs regularly.

The notion of sampling the output of a Xor-ed wave of ring oscillators is used to

create a feasible arrangement for harvesting jitter.The jitter is produced in complete

time interval by Xor-ing r number of oscillators based on this below points.

• It’s difficult to match the period of the two oscillators exactly, special VLSI layout
techniques used for matching

• The two signals may wander relative to one another due to flaws. TRNG designs
become extremely vulnerable as a result of this.

Each ring’s periodic transition zones are combined in the XOR’s output.Because the

full waveforms are XORed, the result will contain predictable areas as well as zones

where jitter from distinct rings overlaps.Our goal is to fill the full spectrum with transi-

tion zones at each and every point in time interval followed by sampling.sometimes the

jitter produced by diffrent Ros may overlap in this cases may lost entropy so we should

tackle this problem selecting appropriate number of ring oscialltors.

17

5.1.2 Urn model to detect no of Ros

A random bit stream is generated by sampling the combined signal.On signals that are

precisely between 0 and 1, the XOR gate is designed to operate as a smooth interpo-

lation.The geneated xored signal is expected to be in the range of low and hign volts,

with low less than high.Suppposing T=Tj is the period of an oscillator ring Rj .Ring

oscillator produces a sqaure wave which rises from low to highat time intervals T/2,

3T/2,...and high to low from T,2T,3T...

Assumption:There exists a single moment t, where the signal value cuts (low +

high)/2 volts in a time interval ranging from (mT-T/4, mT+T/4).this t behaves as vari-

able,which is random with mean mT and varaince σ2
j

Let us take a time interval I = [c, d] and assume threshold voltage as 2.5,which is

average of low and high. The voltage value low and high denote the value of a voltage

that is recognised as logic 0 and logic 1 by a certain technology.Our objective is to use a

composite signal made up of the outputs of k oscillator rings to fill up this interval with

unpredictability.We want to make sure that for every threshold, at some time interval t in

I, there exists a ring oscillator Rj such a way that .25 < P [O = 5/2] < .6476.it suffices

to fololow this condtion that, for any integer m,|t-mTj| < 1.224σj with probability

q.The value of q should be 1 in ideal case.

Criterion A:The probablity that there exists a two integers j and m with the condition

|t−mTj| < .6476σj is with q in least case,where t is chosen randomly over the interval

I with uniform distribution.

Let us consider a time interval I.This time interval divided into equal length parts(sub

intervals) in a way that the criterion A is fulfilled with probability q=1.later we realx the

q to less than 1.For anytime t in sub interval J there should be atleast one ring oscillator

which is in transition zone.The time interval should be splitted in a way that it should

satisfy condition that whenever a transition occurs in J(sub interval) it should make the

criterion A satisfies with probabilty q=1.We call each sub interval j called urn.Let’s di-

vide the interval I = [c, d] into subintervals J1, ..Jl with same length.If there exists a ring

18

oscillator Rj in design, whose signal fulfils Oj(t)= 5/2 for some value t in sub interval

J, it is called full,else empty.The entropy of entropy source depends upon on number of

subintervals called urns explained in table 4.1.

Table 5.1: Number of urns for certain Entropy

Target entropy Tolerance number of urns

.98 .144σ 172

0.96 .256σ 95

0.94 .337σ 73

0.91 .481σ 50

0.79 .691σ 34

0.51 1.224σ 19

Criterion A is satisfied provided that

• lenght>(d-c)/.6471σj for 0.8 bits of entropy.

• The urns filled should be grater than q*length.

Fig. 5.3: A single jitter event

19

The ring oscillatorRj fills one time out of each Πj = lTj/(d-c) urns(Πj is combinato-

rial period of ring oscillator).There exists a some probability that overlap of tarnsitions

produced by two ring oscillators.Due to the non-deterministic aspects (phase drift and

initial time delay), it is exceedingly unlikely that two same ring oscillators would con-

tribute to the jitter in the same way.single transition caused by ring oscillator is shown

as normal distribution in figure 4.3.

Filling of jitter in Interval I using similar length ring oscillators is related to com-

binatorial urn model.This urn model is called coupon collectors problem.There are N

distinct coupons, but each one has an endless supply. A coupon collector gathers one

coupon every day, selecting one at random from the N coupons, with replacement.The

goal is to figure out how many days (r) will complete before the coupon collector

(time interval)has filled with at least one copy(one transition) of each and every of

coupons(N).

We would want to find the lowest number of rings r = M (N, f, p) required for N

number of urns, a specified fill rate which is in range between 0<f<1 and with confi-

dence of probability 0<p<1, so filling N urns with fill rate of f and p probability. For f

= 1,According to coupon collectors formula We need to use Nlog2N ring oscillators to

fill N number of urns in order to satisfy the criterion A with q=1.

For this designed TRNG the digital post processing expects atleast 0.5 bits of en-

tropy.if we consider .9 bits of entropy the urn width should be 0.335σ therfore we need

atleast 50 urns.The number of inverters in ring oscillators are 5 in this proposed entropy

source.For exact 0.9 bits of entropy the fill rate should be 1, so we need 50log250 no of

Ros.We need atleast 0.5 bits of entropy here so let us assume we need 0.5 then we can

decrease the fill rate to 0.6 ,for this fill rate we need 36 Ros.In this entropy source we

are using 36 ring oscillators,where each Ro consists of 5 number of inverters.

Fig. 5.4: Hardware for entropy source

20

This proposed entropy source consuming 228 Luts and 1 flipflop.

5.2 Von Neumann Corrector

The von Neumann corrector is most well-known and widely used postprocessing meth-

ods for removing localised biases.It extracts bit pairs from a random bit stream.It elim-

inates them from the stream of random bit pairs if they have the same value (‘11’ bits

or ‘00’ bits).If pair of bits are different then it takes one of bit from them(starting bit

or ending bit).For example if is 10,consider it as 1 if is 01 take it as 0(consideing first

bit).This corrector decreasing the speed of the bitrate by some rate if we consider it on

average it is decreasing by 1/4.The von Neumann corrector[von Neumann (1963)] has

a significant benefit in that it is simple to implement.The corrector is shown in table 4.2.

Table 5.2: Von Neumann Corrector

Random bit pair corrected bit

00 reject

01 0

10 1

11 reject

5.3 Health checks

Health checks are an important aspect of the TRNG architecture since they guarantee

that the noise source and the overall entropy source continue to function properly.The

purpose of evaluating the entropy source is to ensure that faults of the ES are detected

fastly and with a high likelihood.Noise sources can be delicate, and as a result, they

might be impacted by changes in the device’s working circumstances, such as tempera-

ture, humidity, or electric field, resulting in unanticipated behaviour,so we need to chekc

the health of entropy source regularly.

21

Before any conditioning, the outputs of a noise source are subjected to health test-

ing.Because these tests are executed continually on all digitised samples collected from

the noise source, they must have a very low chance of generating a wrong alarm during

correct operation.Health tests includes 2 tests based on this paper[Kelsey (2018)] they

are Repetition Count test, and the Adaptive Proportion test.

The data corrected from Von Neumann Corrector is grouped into 256 bits,which is

stored in Online Self Test Entropy(oste) buffer.Each 256-bit sample’s health is assessed

by the health check unit.Here we discuss detailly about adaptive proportion test and

repetition count test.

5.3.1 Repetition Count Test

This test is designed to detect whether entropy source is stuck at either 0 or 1.Catas-

trophic failures which are reason for stuck test are detected by using this test.It’s a

modernised version of the "stuck test" that was once necessary for RNGs.This test goal

is to detect a complete defection of noise source.If a sample is repeated C or more times,

the test announces an error.

The samples here we consider are 0 and 1. if we get continuous zeros or ones then test

raises alarm that the entropy source is stuck at either 0 or 1. The lowest number meeting

the condition α ≥ 2
1

H(C−1) assures that the chance of receiving a series of identical

values from C successive noise source samples is at most.α is acceptable false-positive

probability(chance of showing true as false).If we take H=0.5,α = 2−8 then from that

equation we get C value 16.Therefore,if we get 16 continuous zeros or ones we can

raise a alarm.

5.3.2 Adaptive Proportion Test

This test is used to detect a significant loss of entropy caused by a hardware failure or

an environmental change that affects the noise source.The test continuously monitors

the frequent occurrence of samples,which are generated by noise source to see whether

it happens too often.As a result, the test may detect when a value occurs substantially

22

more frequently than predicted.Rather than the type of total failure found by the Repe-

tition Count Test, this test is designed to detect more environmental failures of the noise

source.

The collected samples from noise source are tested and counts how many times the

same value appears in the subsequent samples.The test reports an error if the count

crosses the cutoff value C.The cutoff value C is calculated using α(acceptable false

probability) and no of bits in sample.Let next() gives the next set of samples from noise

source and C is a cutoff value, The adaptive test is performed as explained in algorithm.

Algorithm 4.1: Adaptive Proportion Test

1 X=next();

2 Y=1;

3 For i=1 to l(number of n bit samples in 256 bits)

4 if(X=next()) Y=Y+1;

4 if(Y>C) return failure

6 go to step 1.

In this paper we selected 6 samples and calculated cutoff values for those 6 specific

samples .The 6 samples are 1,01,010,101,0110,1001.The cutoff values are calculated

and mentioned in below table 4.3 are referred from intel paper[Mike Hamburg (2012)].

Table 5.3: Health bounds for 256-bits

Sample Allowable number of occurrences per 256-bit sample

1 109<m<165

01 46<m<84

010 6<m<58

0110 2<m<40

101 6<m<58

1001 2<m<40

23

The likelihood that a random sample from a homogenous population The percent-

age of samples who fail their health checkups is around 1 pecent.The health checks

aren’t meant to be a complete entropy measurement.Instead, they wanted to see if the

entropy source was severely damaged, and whether it was stuck producing basic repeat-

ing patterns like all ones, all zeros.This health tests checks the 256 bit samples if it is

healthy,the 256 bit samples transferred to 256 bit CE buffer.

5.4 Conditioning

Noise source are not ideal,therefore they does not produce pure quality random num-

bers,there is a always chance for existence of biasing,so there should be one method

to eliminate biasing called conditioning.Debasing of biasing bits produced by entropy

source called conditioning.conditioning sometimes reduces the bit rate and entropy,the

ultimate aim of conditioning is to make the bits more random.The conditioning uses

cryptograhic algorithms which includes SHA and AES.In this paper we uses a AES-

128 bit algorithm for conditioning.

In this project,for conditioning bits are collected from corrector.The conditioning di-

vided into two parts,they are conditioning of upper CE and lower CE.The bits from

corrector grouped into 128 bits and transferred to lower OSTE[127:0].Here after col-

lecting Lower OSTE bits we start conditioning without waiting for OSTE upper bits.We

can complete 66 percent of first half conditioning without upper oste.After receiving

next group of 128 bits from correcter,we move those 128 bits into upper oste.if OSTE

is filled with 256 bits,then we continue the remaining conditioning parallelly we per-

form the health tests.if the OSTE 256 bits are healthy they are moved to CE, this 256

bits are used for seeding or reseeding the DRBG,else conditioning is repeated 4 more

times.Each time after one conditioning health check is performed,if it found healthy it

used for seeding DRBG,If health check fails 4 continuous times after each conditioning

,then OSTE value is discarded and wait for fresh OSTE value.

The process of conditioning is explained step wise below.First,the lower half of CE is

updated using the OSTE value.The key k′ used in this conditioning is non secret fixed

24

key,which is of 128 bits.This process requires 6 AES-128 bit operations,three each for

updating upper and lower CE. For Updating lower CE involves three steps as shown

below.

• Tmp[127:0]=AES(k′ ,CE[127:0]);

• tmp=AES(k′ ,OSTE[127:0] ⊕ tmp);

• CE[127:0]=AES(k′ ,OSTE[255:128] ⊕ tmp);

The conditioning process clearly explained in the below figure 5.5.

Fig. 5.5: Updating CE

The updating upper CE(CE[255:128]) requires 3 AES operataions and 2 bit wsie

xor operations as explained in below steps.

• Tmp[127:0]=AES(k′′ ,CE[255:128]);

• tmp=AES(k′′ ,OSTE[127:0] ⊕ tmp);

• CE[255:128]=AES(k′′ ,OSTE[255:128] ⊕ tmp);

The main advantage of updating is make CE more random,if there is any uncertainty

in OSTE.let us assume half of the bits of OSTE bits are random(128 of 256 bits).In

updating we are applying AES algorithm to FULL OSTE and CE followed by xor oper-

ations of lower OSTE and upper OSTE,so by chance if one of the bit of lower OSTE is

not random,it may become random since we are xoring it with upper OSTE.Therefore

25

we can assure that,if one of the similar position of lower or upper OSTE is random(for

example 0/128,..5/133..127/255),it becomes random since we are performing AES and

xor operations.Therfore we are increasing randomness in conditioning.

If the entropy source producing at least 0.5 bits of entropy(128 out of 256 bits are

random) then we can assure that CE is probably random.conditioning never increases

the entropy,it just increases the randomness by performing operations.

5.5 Counter based DRBG based on Block Ciphers

Counter DRBG[Elaine Barker (2015)] based on Block cipher involves AES opera-

tions.In this DRBG we are using AES-128 encryption Algorithm.The DRBG operates

based on DRBG mechanism.The DRBG mechanism involves 3 steps they are instanti-

ate,generate and reseeding function.The mechanism is shown in fig 5.6.

Fig. 5.6: Mechanism of DRBG

The mechanism explained step wise below

• The instantiate function takes the input from entropy source(here it is condition-
ing),which is used for seeding DRBG.

• The generate function produces output after seeding.It generates number of bits
based on request.

26

• The final stage is reseed.The reseed function takes new input from entropy source
and combines it with previous states to produce a new seed or directly entropy
source output is used to seed.

The proposed Counter DRBG uses a approved encryption algorithm(Advanced en-

cryption Algorithm).The same cipher algorithm and size of key used for all operations

of DRBG.The algorithm and key size should meet the security constraints of DRBG.

The counter DRBG consists of internal state,which is updated with new entropy value

while reseeding.The internal state consists of three values.
• V is a input to the cipher(AES) algorithm,V is of Blocklen 128 bits,which is used

as internal state.

• K is a key to the cipher algorithm of 128 bits,which is used as internal state.

• The value of reseed counter.

5.5.1 Instantiate

The instantiate function uses different seed value whenever it uses for seeding DRBG.The

DRBG continuously need seeding in order to tolerance against attacks.The intial seed-

ing is explained in below equations.The instantiating function is explained in below

figure 5.7.

V[127:0]=CE[255:128]; K[]127:0]=CE[127:0];

Fig. 5.7: Instantiate of DRBG

27

5.5.2 Generation

The generation function produces random bits whenever it is instantiated or reseeded.The

generate function takes the values V of 128 bits as input to cipher and K as key to the

cipher Algorithm.The generate function performs the following steps.

• Takes the V and K(key) value from CE register.The lower CE[127:0] is used as
K.The upper CE[255:128] is used as input to the cipher algorithm

• it checks the life of seed value, for this DRBG the life time od seed is 219 bits.For
proposed DRBG we are taking 217 as seed life for safety.If generated bits exceed
the seed life the DRBG stop producing output.

• Returns the values of the V,K and reseed counter while updating new seed value.

• Returns the Generated output bits.

The pseudo code for Generation algorithm is explained below and shown in figure

5.8.

1 Counter=0;

2 if(Counter<512)

3 begin

4 V[15:0]=(V[15:0]+1)mod216;

5 counter=counter++;

6 Output=AES(K,V);

7 endif

Fig. 5.8: Generation of DRBG

28

The DRBG may reseed before the seed life(217) of seed.If every block produced by

entropy source is healthy then it reseeds after producing 30 128 bit outputs.If DRBG

not seeded after generating 217 bits,then it waits until healthy seed is produced.

5.5.3 Reseeding

The DRBG requires seeding frequently,since there is a chance to predict value based on

the previous outputs.The seed life is 217 bits for this proposed DRBG.

The reseed function performs the following steps.

• Takes the input CE[255:0] value from the conditioning.

• Takes the internal state Values from Generate function such as V,K.

• Combines the CE value with V and K to generate new seed using update func-
tion.New seed is used for reseeding DRBG.

The pseudo code for updating used is explained below.

1 V,K=Fun(Gen)

2 tmp=AES(V,K)

3 V[15:0] = (V[15:0] + 1) mod 65536;

4 K=CE[127:0] ⊕ tmp;

5 V=CE[127:0] ⊕ tmp ⊕ CE[255:128];

29

CHAPTER 6

Implementation of TRNG

The True random number Generator code is designed in Bluespec verilog code.The bsv

code is converted into verilog,which is synthesized in vivado tool.Vivado tool caluclates

the hardware (number of LUTS and Slice registers) required for designed code.The

designed code is optimised in terms of area and speed.In this code we optimised one at

a time.Optimistation of speed consuming more number of LUTs and FFs .Optimisation

of Area consuming more number of cycles(i.e less speed).

6.1 Implementation using two AES hardware modules

In this design we use two AES hardware module.The conditioning uses one AES hard-

ware module and DRBG uses one hardware module.The conditioning performs 6 AES

operations one after other using single AES module. The DRBG uses one AES mod-

ule,which generates output.While one AES module generates output, parallely other

AES module used for conditioning.

The speed is optimised here,so one can use this TRNG if their main objective is

speed.This design is taking more Area as we are using 2 AES modules.The number of

cycles for generating 1024*128 random numbers is 40138.LFSR library is used instead

of entropy source here since we can’t obtain a proper Entropy(noise) source output in

software.The number of cycles shown in Figure 6.1.

Fig. 6.1: Number of cycles for 1024*128 random numbers

6.1.1 Synthesis Report

The designed TRNG is consuming 9686 LUTS,7329 registers and muxes.The number

of Luts for 2 AES hardware modules is 6668 and number of slice registers 2 AES mod-

ules consuming is 5127.Most of the Area is consumed by 2 AES modules and remaining

part of Area is consumed by entropy source and health checks.The entropy source and

corrector is consuming 401 LUTs and 158 registers.The health checks consuming 1384

LUTs and 256 registers.The hardware utilisation shown in figure 6.2.

Fig. 6.2: Hardware utilisation of TRNG(2 AES modules)

6.2 Implementation using only one AES hardware mod-

ule

In this design we use single hardware AES module.The same AES hardware module

used both for conditioning and DRBG.Conditioning performs 6 AES operations where

as DRBG continuously uses AES module except when it is used for conditioning.First

31

priority for AES module here is conditioning.If generated bits from entropy source are

healthy,then AES used for conditioning, else AES module used for DRBG.

The area is optimised here ,so one can use this TRNG if their priority is area.The

speed is less compared to above designed module.The number of cycles for generating

1024*128 random numbers is 52815.There is a difference of 12700 cycles for generat-

ing 1024*128 bits.The number of cycles to generate 1024*128 bits is shown in figure

6.3

Fig. 6.3: Number of cycles for 1024*128 random bits

6.2.1 Synthesis Report

The designed TRNG is consuming 6287 LUTS,4779 registers and muxes.The num-

ber of LUTs and registers consumed by AES module along with all other hardware in

conditioning is 4305 and 2564 respectively.The health checks consuming 1362 LUTs

and 256 registers.The entropy source and corrector is consuming 401 LUTs and 158

registers..The hardware utilisation shown in figure 6.4.

Fig. 6.4: Hardware utilisation of TRNG(1 AES module)

32

6.3 Results

6.3.1 BSV Simulation results

The design was implemented using BSV.The results shown below are using LFSR li-

brary in BSV instead of proposed entropy source,since code can’t produce random out-

puts.The results are shown in figures 6.5,6.6 and 6.7.The results shown below are for

design of TRNG using two different AES modules. The results shown in first fig-

ure(6.5) are outputs just after stating TRNG.The variable con is counting number of

outputs produced by TRNG at given time and the variable count is counting number of

outputs after seeding TRNG by new seed.The variable value is output in the blocks of

128 bits produced by TRNG.

Fig. 6.5: Simulation results of TRNG

33

The results shown in figure 6.6 are example of reseeding TRNG.In this picture we

could able to see DRBG is successfully seeded after producing 27*128 bits by observ-

ing the value of the variable count value in figure as it became 0.

Fig. 6.6: Simulation results of TRNG

34

The results shown in figure 6.7 are example of reseeding TRNG.In this picture we

could able to see DRBG is successfully seeded after producing 24*128 bits by observ-

ing the value of the variable count value in figure as it became 0.The total bits produced

by TRNG are 298*128 bits by observing value of variable con value as it is 298.

Fig. 6.7: Simulation results of TRNG

35

REFERENCES

1. E.Barker and J.Kelsey (2012). Recommendation for Random Number Generation Us-
ing Deterministic Random Bit Generators. NIST Special Publication 800-90A.

2. Elaine Barker, J. K. (2015). Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. NIST Special Publication 800-90A.

3. FIPs (2001). ADVANCED ENCRYPTION STANDARD (AES). Federal Information
Processing Standards Publication 197.

4. Kelsey, M. S. T. E. B. J. (2018). Recommendation for the Entropy Sources Used for
Random Bit Generation. NIST Special Publication 800-90B.

5. Mike Hamburg, P. K. (2012). ANALYSIS OF INTEL’S IVY BRIDGE DIGITAL RAN-
DOM NUMBER GENERATOR. Cryptography Research.

6. Shannon, C. (1948). A Mathematical Theory of Communication. Bell System Techni-
cal Journal, vol. 27, pp. 379–423, 623-656.

7. von Neumann, J. (1963). Various techniques for use in connection with random dig-
its,von Neumann’s Collected Works. vol. 5, Pergamon, pp. 768–770.

36

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	INTRODUCTION
	Motivation

	Background
	Entropy
	Deterministic Random Bit Generators
	The need for non-deterministic random bit generators

	Advanced Encryption Algorithm
	Cipher
	SubBytes()
	ShiftRows()
	Mix Columns()
	AddRoundKey()
	Key Expansion for AES-128

	Architecture
	Blocks of TRNG
	Ro based Entropy source
	Combining Ro outputs to exploit randomness of phase jitter
	Urn model to detect no of Ros

	Von Neumann Corrector
	Health checks
	Repetition Count Test
	Adaptive Proportion Test

	Conditioning
	Counter based DRBG based on Block Ciphers
	Instantiate
	Generation
	Reseeding

	Implementation of TRNG
	Implementation using two AES hardware modules
	Synthesis Report

	Implementation using only one AES hardware module
	Synthesis Report

	Results
	BSV Simulation results

	REFERENCES

