
COMPACT AUTOENCODER FOR END TO

END COMMUNICATION USING DIFFERENT

PRUNING TECHNIQUES

A project thesis

submitted by

Vudurupati Srikanth

in partial fulfillment of the requirements

for the award of the degree of

Master of Technology

Dept. of Electrical Engineering

IIT Madras

Chennai 600 036

Thesis Certificate

This is to certify that the thesis titled compact autoencoder for end to end

communication using different pruning techniques , submitted by Vuduru-

pati Srikanth (EE19M033), to the Indian Institute of Technology, Madras, for

the award of the degree of Master of Technology, is a bona fide record of the

research work done by him under my supervision. The contents of this thesis, in

full or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Sheetal Kalyani

Project Guide,

Associate Professor,

Dept. of Electrical Engineering,

IIT Madras, 600 036

Place : Chennai

Date : June 2021

1

Acknowledgements

I am greatly indebted to Dr. Sheetal Kalyani for guiding me through the entire

course of my M.Tech. project. she always took the time and effort to discuss the

problem and to suggest different methods to experiment. Her valuable remarks

always gave new directions to my project.

I am thankful to all the professors whose courses helped me improve my knowl-

edge in Wireless Communication and Signal Processing through the course of the

two years of my M.Tech. program. Their classes always inspired me to think beyond

classrooms into more practical scenarios.

A special thanks to Nancy and Thulasi who were my fellow associates in doing

this project. This project would not have been possible without their contributions

and insightful observations. A special word of thanks to all the wonderful people I

met at IITM without whom life would not have been the same.

2

Abstract

KEYWORDS: Autoencoder,Neural Network,weights and biases,Pruning, Fully

connected network, Sparse network,Block Error Ratio.

An autoencoder is an artificial neural network which can learn to code the data

efficiently. An autoencoder tries to learn a representation for a set of data, typically

for dimensionality reduction, by training the network to ignore internal noise. Along

with the encoding, a reconstructing side is learned, where the Autoencoder tries to

generate from the reduced encoding a representation as close as possible to its orig-

inal input. The performance of the Autoencoder can be maintained the same even

if we remove some of the weights and biases from the network also know as prun-

ing. With the pruning, the network becomes sparse. This is addressed in the thesis

where we try to apply different pruning techniques on the Autoencoder network and

compared it with a fully connected network. The Block Error Ratio(BLER) for the

output generated by each of the networks is analyzed and the results are plotted.

3

Contents

Acknowledgements 2

Abstract 3

List of Figures 5

List of Tables 6

1 DEEP LEARNING FOR THE PHYSICAL LAYER 8

1.1 Introduction . 8

1.2 AI for the physical layer . 8

1.3 Organisation of thesis . 9

2 AUTOENCODER NEURAL NETWORK 11

2.1 Introduction . 11

2.2 Overview of Autoencoder . 12

2.3 Motivation for Pruining . 14

3 SUPERVISED LEARNING OF THE AUTOENCODER 16

3.1 Introduction . 16

3.1.1 Steps involved in supervised learning 16

3.1.2 Types of supervised learning Algorithms 17

3.2 Deep Learning basics . 17

3.2.1 Forward Propagation . 17

3.2.2 Backward Propagation . 18

3.3 Input dataset . 18

4 VARIOUS PRUNING TECHNIQUES 20

4.1 Introduction . 20

4.2 magnitude based pruning . 20

4.2.1 Threshold for pruning . 20

4.3 Gradient based pruning . 21

4

4.3.1 Gradient calculation . 21

4.3.2 Sensitivity calculation . 21

4.3.3 Threshold for pruning . 24

5 SIMULATION RESULTS 25

5.1 Results of magnitude based pruning 25

5.2 Results of Gradient based pruning . 26

6 CONCLUSIONS 29

5

List of Figures

2.1 Block diagram of autoencoder . 12

2.2 A simple communications system . 13

2.3 A communications system over an AWGN channel 13

2.4 overfitting of the training data points 14

2.5 proper fitting the training data points 15

4.1 The Loss as a function of individual weight 22

4.2 Learning as motion on an error surface 23

5.1 BLER performance of magnitude based pruning 25

5.2 BLER performance of gradient based pruning 26

5.3 BLER performance of sensitivity based pruning 27

6

List of Tables

5.1 magnitude based pruning . 26

5.2 gradient based pruning . 27

5.3 sensitivity based pruning . 28

7

Chapter 1

DEEP LEARNING FOR THE

PHYSICAL LAYER

1.1 Introduction

To date, the wireless network evolution was primarily aimed for higher rates, which

mandated an increase in the network capacity. As the demand for wireless ca-

pacity will continue to grow, the development of the Internet of Everything (IoE)

systems, connecting millions of people and billions of machines is yielding a shift

from the rate centric enhanced mobile broadband (eMBB) services of yesteryears to-

ward ultra-reliable, low latency communications (URLLC) [1]. The recent upsurge

of diversified mobile applications, especially those supported by Artificial Intelli-

gence(AI), is opening the ways for the future evolution of wireless communications

[2].

The strict spectral efficiency, reliability, and latency requirements associated with

next-generation communication systems imply that manual configuration of the net-

work will no longer be possible. Rather, network intelligence and automation will

occupy centre stage, helping to build an increasingly intelligent network [3]. Along

with the exponential growth in the number of wireless devices, services, and ap-

plications, a corresponding demand for higher rate wireless communications has

burgeoned in recent times .In the past few years, the field of artificial intelligence

(AI) has witnessed rapid growth, leading to its application in a broad variety of

areas More particularly, in the the domain of wireless communications[3].

1.2 AI for the physical layer

Traditionally, physical layer modelling has been model-oriented—a manner in which

mathematical models following a specific structure are proposed and optimized un-

8

der constraints to meet a list of pre-determined performance specifications. For

example, for the channel estimation, a channel model is considered along with ad-

ditional parametric configurations. These model-based solutions normally perform

well if the derivation of mathematical models is relatively straightforward or there

exists a closed-form solution. The models can then be validated by field measure-

ments or numerical simulations. However, in real-world situations, the applicability

of such model-based solutions falls short in complex environments, due to factors

such as non-linearity inside systems and uncontrollable interference among others.

On the other hand, another approach which is based on statistics or data sets, build

the model through learning from the data. This method is particularly useful when

the theoretical analysis is intractable or when a closed-form solution is difficult to

obtain.

To date, artificial intelligence has proved its usefulness in multiple physical layer

procedures. For example, in channel estimation and symbol detection, deep learning

approaches reported in [4], [5] has explained that the proposed deep learning-based

symbol detection algorithms can provide robust and accurate results with reduced

complexity. Furthermore, a deep learning method based on the deep neural network

architecture also shows an improved channel estimation accuracy under the conse-

quences of non-linearities of power amplifiers, and quantization errors induced by

hardware impairments [6].

An autoencoder-based communication system is designed to reconstruct the

transmitted signals from channel impairment based on trained deep neural networks

in an end-to-end manner [7]. Furthermore,self-supervised learning is a growing trend

for user localization since it has been demonstrated that proper methods can signif-

icantly decrease the size of the labelled dataset for efficient processing [8]. Neural

networks can give solutions to complex problems in communications and signal pro-

cessing due to their non-linear processing, the capacity of learning and generalization

and parallel distributed architecture.

1.3 Organisation of thesis

This thesis is organised as follows:

chapter 2 explains in detail the Neural Networks and an overview of the Autoen-

coder. The definition of pruning and its necessity is explained in brief.

chapter 3 introduces the supervised learning for the Autoencoder Network. It gives

9

an idea about the network that we used and how it is being trained.

chapter 4 explains various pruning methods that we apply on the Autoencoder

Network defined in the previous chapter.

In chapter 5 the simulation set-up used for experiments is explained. each pruning

method is applied on the network with different threshold values and the results are

plotted.

chapter 6 summarizes the work done and provides some concluding remarks and

observations.

10

Chapter 2

AUTOENCODER NEURAL

NETWORK

2.1 Introduction

A neural network is a loop of algorithms that attempts to identify underlying re-

lations in a set of data within a process that simulates the way the human brain

works. In this reason, neural networks refer to systems of neurons. Neural net-

works can adjust to varying input so the network produces the best feasible result

without needing to redesign the output models. The theory of neural networks has

its origins in artificial intelligence. A neural network works likewise to the human

brain’s neural network. A “neuron” in a neural network is a mathematical function

that receives and classifies data according to a particular architecture. The network

shows a strong similarity to statistical methods such as regression analysis and curve

fitting. A neural network comprises layers of interconnected nodes. Each node is

similar to multiple linear regression. The neuron feeds the signal generated by var-

ious linear regression into an activation function that can be nonlinear.

The input layer receives input data of patterns. The output layer has output signals

or classifications to which input patterns may be mapped. Deep layers fine-tune

the input weightings till the neural network’s performance of error is smallest. It

is hypothesized that deep layers extrapolate important characteristics in the input

set of data that have predictive capability regarding classifying the outputs. This

represents feature extraction, which performs a service comparable to statistical

techniques such as principal component analysis(PCA).

11

2.2 Overview of Autoencoder

An Autoencoder is an artificial neural network that learns how to efficiently compress

and encode the set of data and learns how to build the data back from compressed

encoded representation that is closest to the original input. An autoencoder aims

to learn a representation for a set of data, generally for reducing the dimension

of the data, by training the network to neglect internal Snoise. Along with the

compression, reconstructing is learned, where the autoencoder attempts to produce

from the reduced encoding an output representation that is as close to the original

input as possible. Reducing the dimension of input is one of the features of an

autoencoder. Principle Component Analysis (PCA) uses a linear transformation

to project data into low dimensional space, unlike PCA an autoencoder can model

complex non-linear functions also.[9]

An autoencoder is used to learn suitable data codings in a supervised way. In the

figure2.1 there is an internal (deep) layer that represents a code used to represent

the input, and it is constituted by two parts: an encoder that maps the input data

into the code word, and a decoder that maps the code word to a reconstruction of

the input.

Implementing the replicating task perfectly would replicate just the signal, and

this is why autoencoders normally are limited in ways that force them to reconstruct

the input approximately, preserving only the most important features of the data in

the copy.

Figure 2.1: Block diagram of autoencoder

In a simple form, a communications system consists of a transmitter, a channel,

and a receiver, it is shown in Fig 2.2. The transmitter needs to transmit one out of M

12

available messages M = 1, 2, ..,m to the receiver with n discrete uses of channel. To

this step, it uses the transformation of the information s to produce the transmitted

signal x = f(s).

Figure 2.2: A simple communications system

Generally, the goal of an autoencoder is to represent its input in low-dimensional

code at some of the hidden layer which allows regeneration at the output with

minimum error. In this way, the autoencoder learns to compress the data non-

linearly and reconstruct the input. It tries to learn representations x of the possible

messages s that are robust to the channel conditions mapping x to y (i.e., fading,

distortion, noise etc.) so that the transmitted information can be recovered with a

minimum probability of error.

Figure 2.3: A communications system over an AWGN channel

An example of such an autoencoder is shown in Fig.2.3 Here, the transmitter has

a feedforward Neural Network with many dense layers followed by a normalization

layer. The input s to the transmitter is encoded as a one-hot vector i.e., an M-

dimensional vector, the sth position of which is equal to one and zero otherwise.

The decoded vector ŝ corresponds then to the index of the element of p with the

greatest probability. The autoencoder can be trained end-to-end using Stochastic

13

Gradient Descent on the set of all messages s ∈M using the categorical cross-entropy

loss function. Finally,by comparing the s with ŝ the Block Error Rate (BLER) of

the autoencoder for various SNR can be obtained.

2.3 Motivation for Pruining

A neural network can be considered a solution finder for any mathematical problem.

Every consecutive layer of a network is connected by weights and biases. These

weights are the degrees of freedom to approximate the relation between the input

and the output.

Figure 2.4: overfitting of the training data points

In larger networks, it often leads to a problem, since it means training a lot of

parameters that too with a scarce data set, which can easily lead to overfitting and

poor generalization.

Figure 2.4, is an illustration of classification problem where we aim to classify

“∗” and “×” data points. it is an example of setting very tight boundaries for the

classification.[10]

By reducing the degrees of freedom to approximate the required function, i.e.,

by removing some of the weights in the network, overfitting of the data points can

be reduced while maintaining the minimum effect on the error.This is called as

pruning [10]. Pruning is a data compression technique in machine learning and

search algorithms that reduces the size of Neural Network by removing sections that

14

Figure 2.5: proper fitting the training data points

are non-critical and redundant to classify instances. Pruning reduces the complexity

of the final classifier, and hence improves predictive accuracy by the reduction of

overfitting.

In figure 2.5, by reducing the number of parameters, classification is possible

with an almost similar error[10]. Hence, the removal of some of the weights from

the neural network is advantageous in two ways. Storage space required for the

network reduces and the time taken for the execution reduces.

can we blindly remove some of the weights and call it pruning? The answer is a

no. Which weights are to be removed from the network is decided by knowing the

importance of the weights in the network.

15

Chapter 3

SUPERVISED LEARNING OF THE

AUTOENCODER

3.1 Introduction

Supervised learning is a type of machine learning in which networks are trained

using well-labelled training data, and on basis of that information, machines predict

the output. The labelled data indicates some input data is already assigned with

the exact output.

In supervised learning, the training data given to the networks work as the

supervisor that teaches the networks to predict the output correctly. Supervised

learning is a method of giving input data as well as correct output data to the

machine learning model. A supervised learning algorithm tries to find a mapping

function to map the input variable x with the output variable y.In the real world,

supervised learning can be used for Image classification, Risk Assessment, spam

filtering, Fraud Detection, etc. In supervised learning, models are trained using a

labelled data, where the model learns about each type of data. Once the learning

process is completed, the model is examined based on the test dataset (a subset of

the training set), and then it predicts the output.

3.1.1 Steps involved in supervised learning

• Determine the type of training dataset.

• Collect the labelled training data.

• Divided the training dataset into a training dataset, test dataset, and valida-

tion dataset.

16

• Determine the input features of the training dataset, which should have suffi-

cient information so that the model can precisely predict the output.

• Determine the proper algorithm for the model, such as a Neural Network,

decision tree, etc.

• Perform the algorithm on the training dataset.

• Evaluate the efficiency of the model by giving the test set. If the model predicts

the correct output, which indicates our model is accurate.

3.1.2 Types of supervised learning Algorithms

Regression

Regression algorithms are applied if there is a correlation between the input variable

and the output variable. It is utilised for the prediction of continuous variables, such

as curve fitting, Weather forecasting, Market Trends, etc.

Classification

Classification algorithms are applied when the output variable is categorical, which

means there are two categories such as True-false, Yes-No etc.

3.2 Deep Learning basics

3.2.1 Forward Propagation

A Neural Network with L number of layers represents a mapping f(r0; θ) : RN0 7→
RNL of an input vector r0 ∈ RN0 to an output vector rL ∈ RNL through L repetitive

steps:

rl = fl(rl−1; θl), l = 1, ..., L (3.1)

where the mapping carried out by the lth layer is fl(rl−1; θl) : RNl−1 7→ RNl .This

mapping depends on the output of the vector rl−1 from the previous layer and also

on the set of parameters in the network θl.The parameters are weights and biases

in each of the layers.The mapping can be statistical ,i.e., fl is a function of random

variable.We denote θ = θ1, ..., θL the set of all parameters present in the network.

The lth layer which is intermediate is called fully-connected or dense if fl(rl−1; θl) is

of the form

fl(rl−1; θl) = σ(Wlrl−1 + bl) (3.2)

17

where σ(.) is an activation function Wl ∈ RNl×Nl−1 , and bl ∈ RNl [11].The set of

parameters for lth layer is θl = Wl, bl.This is the forward propagation where output of

lth layer is the input for the l + 1th layer [12]. [13] gives several other types of layers

along with their mapping functions and the parameters that are used. All layers

with random mappings generate a new stochastic mapping during each iteration. For

example, the noise layer simply adds a vector of elements with Gaussian distribution

of zero mean to the input. Thus, it generates a random output for the same input

each time it is called. The non-linearity is introduced by the activation function σ(.)

in 3.2 which is important for the so-called expressive power of the Neural Network.

There would be not much of an advantage of stacking multiple layers on top of

each other if there is no non-linearity [14].Some of the commonly used activation

functions are listed in [11].

3.2.2 Backward Propagation

Neural Networks are generally trained using training data which is labelled, i.e.,

a set of input-output vector pairs (ro, r
∗
L,i), i = 1, ..., S, where r∗L,i is the expected

output of the neural network when r0,i is given as an input. The aim of the training

is to penalize the loss function

L(θ) =
1

s
Σl(r∗L,i, rL,i) (3.3)

with respect to the internal parameters in θ, where l(u, v) : RNL × RNL 7→ R is

the loss function which results a real number indicating the loss for each iteration

and rL,i is the output of the Neural Network when r0,i is given as an input.Several

commonly used loss functions are provided in [15].The popular algorithm to find

good sets of parameters θ is the stochastic gradient descent(SGD) which starts with

some random initial values of θ = θ0 and then updates θ iteratively as

θt+1 = θt − η∇L̃(θt) (3.4)

This is the Backward propagation where η > 0 is the learning rate and L̃(θt) is the

loss function over a random mini batch examples St ⊂ 1, 2, ..., S with St as size of

mini-batch.

L̃(θ) =
1

St

∑
i∈St

l(r∗L,i, rL,i) (3.5)

3.3 Input dataset

we need to transmit 16-QAM symbols through an AWGN channel.Each symbol

requires log2(16) number of bits to transmit. we vectorize the information into one-

18

hot encoded form where each symbol s ∈ s1, s2, ..., s16 such that it is a 16 dimensional

vector,the si position of which is equal to one and zero otherwise. The input dataset

is limited to 16 in number, making it a very small dataset. The same data is shuffled

and used as mini-batches. However, the AWGN noise generated in the noise layer

is random.It adds a random noise component each time it is activated. Thus, it

mimics the practical environment.

19

Chapter 4

VARIOUS PRUNING TECHNIQUES

4.1 Introduction

In a Neural Network each pair of layers is connected by weights and biases. Our

aim is to prune some of these parameters and make the Network sparse.As all the

parameters are not equally important, decision is to be taken on which parameters

are to be pruned.

4.2 magnitude based pruning

Depending on the magnitude of each of the connection, we decide to keep them or

remove them. The reason for considering the magnitude as a parameter is that while

calculating the output of any node the equation that represents forward propagation

of a neural network is given by Y = σ(Wx)+b. where σ(.) is an activation function,

and W is the weight matrix. So, if there are some weights in the network whose

values are small and very close to zero. If we make those weights as zeros, the effect

it has on the Y values will be very minimum. Hence, the magnitude of weights is a

parameter for the pruning.

4.2.1 Threshold for pruning

From the distribution of magnitudes of parameters ,i.e, the weights and biases whose

values are close to zero are removed. The threshold here in our case is how much

percentage of weights we want to remove from the fully connected network and make

it sparse. The results for pruning by removing 5%, 10%, 15%, 20%, 25% of total

weights are removed and compared with the fully connected network.

20

4.3 Gradient based pruning

This method of pruning collects some information at the time of training itself.

During the training process, both the forward propagation and the backward prop-

agation are taken care of by the optimizer that we use. In our case, we used Adam

Optimizer with a learning rate of 1e-3.

During the forward propagation of the training, the optimizer finds the output cor-

responds to present weights and biases. But, the actual output we obtained will be

different from what is the correct output. During the backpropagation, to make the

actual output as correct output, the optimizer updates the weights accordingly to

penalize the cost function or the error by calculating the gradients for every param-

eter in the network

4.3.1 Gradient calculation

The gradient is nothing but the derivative of the cost function with respect to

each parameter in the network. The gradient indicates how the cost function will

change with respect to a change in the internal parameters (weights and biases) [16].

We aim to capture the gradients corresponding to every connection in the network

throughout the training process and find the exponential average of gradients over

all the training epochs as:

gi(t+ 1) = 0.8gi(t) + 0.2
∂L(t)

∂wi

(4.1)

4.3.2 Sensitivity calculation

The sensitivity of a weight w is the difference in error occured with and without the

weight[10].

For every wij in the network, the sensitivity Sij with respect to wij, will be

defined here as[17]

Sij = L(wij = 0)− L(wij = wf
ij) (4.2)

upon the completion of the training the final value of the connection is wf
ij.

the sensitivity Sij defined in 4.2 can be written as

S =
L(0)− L(wf)

0− wf
(0− wf) (4.3)

21

where w = wij and loss L is expressed as a function of w, considered that all other

parameters except wij are fixed.

Generally learning process does not start with w = 0, but randomly chosen initial

value wi. since L(0) is unknown, we will approximately calculate the slope of L(w)

while moving from 0 to wf by the slope measured between wi and wf , namely

S =
L(wi)− L(wf)

wi − wf
(0− wf) (4.4)

The initial and final weights,wi and wf , respectively, are readily available during

the training phase. But, for the numerator of eq(4.4), it was assumed that only one

weight, namely w, had been changed, keeping other weights as fixed.But, This is

not the case during normal learning.

To elaborate, consider an example of a network having only two weights, denoted

u and w (the extension to more weights will become obvious). For this case the

numerator in eq(4.4) is

L(uf , wi)− L(uf , wf) (4.5)

i.e., only the influence due to the changes in w is considered into account, figure 4.1

clarifies the situation.

Figure 4.1: The Loss as a function of individual weight

The error L(u,w) is illustrated by constant value contours.The initial value of

weight is designated by I in fig ?? and the learning path is the dashed line from

I to F ,the final point.For a precise evaluation of S, the numerator of eq(4.4) can

be evaluated as L(w=wf) − L(w = 0) =
∫F
A

∂L(uf ,w)
∂w

dw The integral is calculated

along the line from point A to F as an approximation, which corresponds to w=0

22

Figure 4.2: Learning as motion on an error surface

to the final weight value F . However, the training phase starts at point I rather

than at A.

We approximate the integral by summation,over the discrete iteration steps dur-

ing training.The sensitivity of the connection is

L(w = wf)− L(w = 0) ∼=
∫ F

I

∂L(uf , w)

∂w
dw (4.6)

This expression will be approximated by replacing the integral by summation. Thus

the estimated sensitivity to the removal of connection wij will be evaluated as

Ŝij =
N−1∑
0

∂L

∂wij

(n) ∆wij(n)
wf

ij

wi
ij − w

f
ij

(4.7)

where N are the number of training epochs.

The terms that the above estimate of the sensitivity uses are available during the

course of training. Also, every optimizer uses gradients to know the direction of

change, so the gradient, are available. Therefore, the only extra computational de-

mand for implementing our procedure is the summation in eq(4.7). This overhead

keeps track of the accumulated terms that build up to Sij in eq(4.7).

For our case of back-propagation, weights are updated by the Adam optimizer ac-

cording to eq(4.8)

∆wij = −η ∂L

∂wij

(4.8)

after completion of training, we are provided with a list of sensitivity numbers,

one per each connection. At this point, a decision can be taken on pruning those

weights which are having the smallest sensitivity numbers.[17]

23

If a particular weight is having very low sensitivity throughout the training

process, It means that the gradient of this weight is very small. so even if there

is any change in the value of this weight, i.e., making it to zero, the cost function is

not much affected. Hence, those weights which are having the least sensitivity can

be removed from the network.

4.3.3 Threshold for pruning

From the distribution of sensitivities of parameters ,i.e, the weights and biases whose

values are close to zero are removed. The threshold here in our case is how much

percentage of weights we want to remove from the fully connected network and

make it sparse. The results for pruning by removing 55%, 60%, 65%,70%,75% of

total weights are compared with the fully connected network.

24

Chapter 5

SIMULATION RESULTS

5.1 Results of magnitude based pruning

Figure 5.1: BLER performance of magnitude based pruning

Observations:

As per the section 4.2,depending on the magnitude of the connections in the network,

we decide to remove those conncections which have small magnitude and close to

zero. By removing respective percentage of connections,the BLER performance of

the fully connected Autoencoder is compared with the sparse Network.It is observed

that by removing upto 10 percentage of weights, the performance is nearly the

25

same.The time saved for the network to run on the test data set is also shown in

table 5.1

% of weights pruned % time saved for computation

5% 6%

10% 7%

15% 9%

20% 12%

25% 15%

Table 5.1: magnitude based pruning

5.2 Results of Gradient based pruning

pruning with respect to gradient

Figure 5.2: BLER performance of gradient based pruning

Observations:

As per the section 4.3.1,depending on the gradinet of the connections in the network,

we decide to remove those conncections which have small gradient. By removing

26

% of weights pruned % time saved for computation

20% 4%

30% 8%

35% 11%

40% 14%

45% 16%

Table 5.2: gradient based pruning

respective percentage of connections,the BLER performance of the fully Autoen-

coder is compared with the sparse Network.It is observed that by removing upto 30

percentage of weights, the performance is nearly the same.The time saved for the

network to run on the test data set is also shown in table 5.2

Pruning with respect to sensitivity

Figure 5.3: BLER performance of sensitivity based pruning

Observations:

As per the section 4.3.2,depending on the Sensitivity of the connections in the net-

work, we decide to remove those conncections which have small sensitivity. By

27

% of weights pruned % time saved for computation

55% 6%

60% 10%

65% 13%

70% 17%

75% 19%

Table 5.3: sensitivity based pruning

removing respective percentage of connections,the BLER performance of the fully

Autoencoder is compared with the sparse Network.It is observed that by removing

upto 60 percentage of weights, the performance is nearly the same.The time saved

for the network to run on the test data set is also shown in table 5.3

28

Chapter 6

CONCLUSIONS

The sensitivity-based pruning performed much better than magnitude-based prun-

ing. Because, when we use the sensitivity of weights as a criterion for the pruning,

those weights which are highly sensitive to calculate the final Loss function are con-

sidered for pruning. so, even if a connection is having a very small magnitude, we

can not remove it. Because, magnitude wise it may be small, but the Loss function

might be very sensitive to that connection. The storage space for the Network is

reduced and also the computational time required for the network to evaluate on

the test set is also reduced.

29

Bibliography

[1] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems: Ap-

plications, trends, technologies, and open research problems,” IEEE Network,

vol. 34, no. 3, pp. 134–142, 2020.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The roadmap

to 6g: Ai empowered wireless networks,” IEEE Communications Magazine,

vol. 57, no. 8, pp. 84–90, 2019.

[3] I. F. Akyildiz, A. Kak, and S. Nie, “6g and beyond: The future of wireless

communications systems,” IEEE Access, vol. 8, pp. 133 995–134 030, 2020.

[4] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel estimation

and signal detection in ofdm systems,” IEEE Wireless Communications Letters,

vol. 7, no. 1, pp. 114–117, 2018.

[5] N. Samuel, T. Diskin, and A. Wiesel, “Deep mimo detection,” 2017.

[6] T. Demir and E. Björnson, “Channel estimation in massive mimo under hard-

ware non-linearities: Bayesian methods versus deep learning,” IEEE Open Jour-

nal of the Communications Society, vol. 1, pp. 109–124, 2020.

[7] T. J. O’Shea and J. Hoydis, “An introduction to deep learning for the physical

layer,” 2017.

[8] M. Arnold, J. Hoydis, and S. ten Brink, “Novel massive mimo channel sounding

data applied to deep learning-based indoor positioning,” 2019.

[9] Y. Dai, J. Guan, W. Quan, C. Xu, and H. Zhang, “Pca-based dimensionality

reduction method for user information in universal network,” in 2012 IEEE

2nd International Conference on Cloud Computing and Intelligence Systems,

vol. 01, 2012, pp. 70–74.

[10] R. Reed, “Pruning algorithms-a survey,” IEEE transactions on neural networks,

vol. 4 5, pp. 740–7, 1993.

30

[11] B. Ding, H. Qian, and J. Zhou, “Activation functions and their characteristics

in deep neural networks,” in 2018 Chinese Control And Decision Conference

(CCDC), 2018, pp. 1836–1841.

[12] L. Buturovic and L. Citkusev, “Back propagation and forward propagation,” in

[Proceedings 1992] IJCNN International Joint Conference on Neural Networks,

vol. 4, 1992, pp. 486–491 vol.4.

[13] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolu-

tional neural network,” in 2017 International Conference on Engineering and

Technology (ICET), 2017, pp. 1–6.

[14] Z. Dlugosz and R. Dlugosz, “Nonlinear activation functions for artificial neural

networks realized in hardware,” in 2018 25th International Conference ”Mixed

Design of Integrated Circuits and System” (MIXDES), 2018, pp. 381–384.

[15] A. Demirkaya, J. Chen, and S. Oymak, “Exploring the role of loss functions

in multiclass classification,” in 2020 54th Annual Conference on Information

Sciences and Systems (CISS), 2020, pp. 1–5.

[16] M. C. Mozer and P. Smolensky, “Skeletonization: A technique for trimming

the fat from a network via relevance assessment,” in Advances in Neural

Information Processing Systems, D. Touretzky, Ed., vol. 1. Morgan-

Kaufmann, 1989. [Online]. Available: https://proceedings.neurips.cc/paper/

1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf

[17] E. Karnin, “A simple procedure for pruning back-propagation trained neural

networks,” IEEE Transactions on Neural Networks, vol. 1, no. 2, pp. 239–242,

1990.

31

https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	DEEP LEARNING FOR THE PHYSICAL LAYER
	Introduction
	AI for the physical layer
	Organisation of thesis

	AUTOENCODER NEURAL NETWORK
	Introduction
	Overview of Autoencoder
	Motivation for Pruining

	SUPERVISED LEARNING OF THE AUTOENCODER
	Introduction
	Steps involved in supervised learning
	Types of supervised learning Algorithms

	Deep Learning basics
	Forward Propagation
	Backward Propagation

	Input dataset

	VARIOUS PRUNING TECHNIQUES
	Introduction
	magnitude based pruning
	Threshold for pruning

	Gradient based pruning
	Gradient calculation
	Sensitivity calculation
	Threshold for pruning

	SIMULATION RESULTS
	Results of magnitude based pruning
	Results of Gradient based pruning

	CONCLUSIONS

