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ABSTRACT

KEYWORDS: Ultra reliable low latency communications, massive MIMO, finite block-

length information theory, nearest neighbor decoding, saddlepoint approximation, out-

age probability, pilot contamination, MR and MMSE processing, asymptotic analysis.

Massive MIMO for high throughput communications were largely depending on un-

limited blocklength information theoretic constraints. This assumption makes it prob-

lematic for deploying Massive MIMO for ultra-reliable low latency communications

(URLLC) which use short blocklength codes. Using the saddlepoint approximation,

this thesis implements the framework for characterization of the error probability pos-

sible in both Uplink and Downlink scenarios of Massive MIMO at finite blocklength.

[fbl]. Error probability and network availability using UCA in addition to that of ULA

in the paper is shown. The framework in the paper consists of imperfect channel state

information(I-CSI), spatially correlated channels, pilot contamination and arbitrary lin-

ear spatial processing. With minimum mean square error (MMSE) processing and spa-

tially correlated channels and pilot contamination, error probability goes to zero as the

number M of antennas grows to infinity at finite blocklength, which is consistent with

previous results based on infinite blocklength bounds. When the channel covariance

matrix is not known at the receiver, then LS channel estimation followed by Regular-

ized zero forcing is done. MR processing is not sufficient for URLLC constraints.
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CHAPTER 1

INTRODUCTION

Next-generation wireless communication systems are expected to interconnect a wide

range of devices under the Internet of Things (IoT) paradigm, ranging from vehicles or

drones that will operate in high-mobility scenarios to autonomous machines or static

sensors that will operate in low-mobility scenarios Durisi et al. (2016a). Traditional

wireless communication technologies, such as fourth-generation (4G) Long-Term Evo-

lution (LTE) or WiFi, prioritise data transmission rates over latency. As a result, a

long-packet assumption is considered feasible, and capacity and outage capacity pro-

vide precise benchmarks for the throughput achievable in such systems. Furthermore,

when transferring large packets, the length of metadata (additional information sup-

plied in packets to ensure proper communication protocol operation) is insignificant in

comparison to the length of information payload contained in each packet. As a result,

less-than-optimal metadata encoding has no effect on efficiency. However, driven by

new services and applications that demand low latency and high reliability, the fifth

generation (5G) of wireless communication systems aims to deliver not only higher

data rates, but also short-packet transmission, in which metadata can play an important

role because its size is comparable to that of the information payload. Specifically, 5G

systems will support three main services, namely, enhanced mobile broadband(eMBB),

massive machine-type communications (mMTC), and ultra-reliable low-latency com-

munications (URLLC) Popovski et al. (2018)

Very high data rates as well as moderate data rates for cell edge users must be

provided in eMBB while retaining reasonable dependability, i.e., probability of error of

roughly 10−3. This service is a natural extension of 4G, in which devices are expected to

be turned on for long periods of time. As previously stated, capacity and outage capacity

are suitable benchmarks for these objectives. Enlarging the transmission bandwidth is

the simplest approach to boost data speeds. However, since the radio frequency band is



crowded, several solutions have been considered. Examples are massive multiple input

multiple output (MIMO), optical wireless communication (OWC) and the employment

of more advanced coding methods and modulations.

In mMTC, a large number of low-rate devices will be engaged sporadically over

very short periods of time, with error probabilities of roughly 10−1. As a result, this

service will necessitate the transmission of extremely small packets. The devices in

URLLC will send brief packets at low rates, aiming for error probability of less than or

equal to 10−5. The devices could transmit intermittently with periodic control messages

in URLLC, but the key distinction from mMTC is the lesser number of devices that will

be linked to the network. Traditional asymptotic information theoretical assessments

based on capacity and outage capacity do not give acceptable benchmarks for mMTC

and URLLC, which require the transmission of small packets. As a result, a more

sophisticated analysis of the maximum coding rate as a function of block length, known

as finite-block length analysis, is required for low-latency wireless communications.

1.1 Massive MIMO

Multi-user MIMO has a number of advantages over point-to-point MIMO. Multi-user

MIMO does not require a dense scattering environment, may be used with low-cost

single-antenna terminals, and resource allocation is straightforward because active ter-

minals utilise all of the time-frequency bins. However, with nearly equal numbers of

service antennas and terminals and via FDD, multi-user MIMO is not a scalable tech-

nique. Massive MIMO (also known as large scale antenna systems, very large MIMO,

hyper MIMO, full dimension MIMO, and ARGOS) deviates significantly from existing

practise by employing a huge number of service antennas over active terminals and us-

ing TDD. Extra antennas assist by concentrating energy into smaller and smaller areas

of space. This increases the efficiency and throughput of radiated energy. The expected

throughput is determined by the propagation environment, which provides the terminals

with asymptotically orthogonal channels. Larsson et al. (2014).

Other benefits of massive MIMO include
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• Massive MIMO can be built with low-power, inexpensive components.

• Massive MIMO allows for a large reduction in air interface latency.

• Massive MIMO simplifies the multiple access layer.

• MMassive MIMO improves the robustness of the system against both uninten-
tional and purposeful jamming.

Limiting Factors of Massive MIMO

• Channel Reciprocity

• Pilot Contamination

• Radio Propagation and Orthogonality of Channel Responses (Massive MIMO re-
lies on a property of the radio environment termed favourable propagation to a
great extent. Favorable propagation indicates that the propagation channel re-
sponses from the base station to distinct terminals are sufficiently diverse.)

Massive MIMO technology offers tremendous advantages in terms of energy effi-

ciency, spectrum efficiency, resilience, and dependability. It allows for the employment

of low-cost hardware at both the base station and the mobile unit side. At the base sta-

tion, expensive and powerful but power-inefficient gear is replaced by a large array of

low-cost, low-power components that work in unison. There are still hurdles remaining

to reach the full potential of the technology, for example, computational complexity, re-

alisation of distributed processing algorithms, and synchronisation of the antenna units.

1.2 State of the Art

Obtaining a closed-form statement of the maximum coding rate for the majority of

channel models of interest is out of reach. As a result, there are two basic approaches

to describing the maximum coding rate as a function of block length.

1.2.1 Non asymptotic bounds:

The area in which the maximum coding rate lies for a given error probability and block

length can be described by determining upper and lower bounds on the maximum cod-
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ing rate. These bounds are frequently described in terms of tail probabilities of sums of

independent and identically distributed (i.i.d.) random variables, and they must be com-

puted numerically using computationally costly processes. Polyanskiy et al. (2010),

Durisi et al. (2016b) contains non asymptotic bounds for a variety of channel models.

The meta-converse (MC) bound and the random coding union bound (RCUs) with pa-

rameter s are the non asymptotic bounds discussed. For a fixed error probability and

blocklength, the MC bound and the RCUs limit give an upper and lower bound on the

maximum coding rate, respectively.

1.2.2 Refined asymptotic expansions:

As the blocklength expands, perform asymptotic expansions of the error probability or

maximum coding rate that get more accurate. For a fixed coding rate, such expansions

are often accessible in closed form and describe how the maximum coding rate con-

verges to capacity or how the error probability diminishes as the block length grows.

The tail probabilities occurring in the non asymptotic bounds are frequently expanded

to achieve the refined asymptotic expansions. One alternative is to investigate the max-

imum coding rate as a function of blocklength by imposing a reliability constraint on

the blocklength and using the limit as the blocklength approaches infinity. The max

coding rate R∗(n, ε) at which data may be conveyed using an error-correcting code of a

fixed blocklength n, with a block-error probability not more than ε, can be increased as

follows for various channels with positive finite capacity C.

R∗(n, ε) = C −
√
V

n
Q−1(ε) +O

(
log n

n

)
(1)

where V denotes the channel dispersion which is variance of ı(Xj, Yj) w.r.t same

distribution given by V = V ar[ı(Xj, Yj)] = 1√
2π

∫
e−z

2/2(log2−log(1+e−2ρ−2z
√
ρ))2dz−

C2, where the random variables ı(Xj, Yj) are indep and identically distributed and Xj

is drawn according to capacity distribution and Yj is channel output and E[ı(Xj, Yj)]

is the channel capacity denoted by C = 1√
2π

∫
e−z

2/2(log2 − log(1 + e−2ρ−2z
√
ρ))2dz

for a bi-AWGN channel. Q−1(.) denotes the inverse of the Gaussian Q function, and
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O((logn)/n) comprises terms that decay no slower than (logn)/n . The approximation

that follows from (1) by omitting the O((logn)/n) term is regarded as normal approxima-

tion. If it isn’t ignored, the resulting normal approximation is known as Refined normal

approximation, and it performs better than a normal approximation. For short error-

correcting codes, the normal approximation has served as a standard. This high-SNR

normal approximation for non coherent single-antenna Rayleigh block-fading channels

is accurate for probability of error above 10−3 and SNR values more than or equal to

15 dB, as demonstrated by numerical examples in Lancho et al. (2020a). Studying the

exponential decay of the error probability by fixing the coding rate as the blocklength

approaches infinity is a second way to acquire finer asymptotic expansions.

When the rate is close to capacity and n is large, normal estimates are often correct

for moderate error probability and when the rate is close to capacity. For short block

codes, i.e. when n is small, it does not provide a good estimate. In contrast, error

exponents are correct at moderate coding rates and when the probability of error is near

to zero. URLLC services run at error probability of roughly 0−5 and SNR values of

around 0 dB Popovski et al. (2018). Both normal approximations and error exponents

may become inaccurate for these values, making them poor benchmarks for short error-

correcting codes. Using them as a benchmark for the maximum coding rate or the

probability of error in the analysis and optimization of short-packet communication

systems may result in incorrect results. As a result, with error probabilities below 10−5

and SNR values near to 0 dB, refined approximations that characterise the coding rate

are required.

Though the majority of Massive MIMO material focuses on the ergodic regime,

Karlsson et al. (2018), Bana et al. (2018) assume that the fading channel maintains con-

stant during the transmission of a codeword (quasi-static fading scenario) and utilise

outage capacity as asymptotic performance metric. Although the quasi-static fading

scenario may be a reasonable assumption for URLLC, the infinite blocklength assump-

tion may lead to inaccurate error probability calculationsYang et al. (2014). Over quasi-

static fading channels, the difference between the outage capacity and the maximum

coding rate feasible at finite blocklength approaches zero significantly faster than the
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difference between the capacity and the maximum coding rate achievable over addi-

tive white Gaussian noise (AWGN) channels Yang et al. (2014). The reason for this

is that the most common source of errors in quasi-static fading channels is deep-fade

events, which cannot be eliminated by using channel codes, as channel coding only pro-

tects against AWGN. Applying this finding to Massive MIMO can be troublesome since

channel hardening can make effective channel equivalent to an AWGN channel. The

outage-capacity framework acquires CSI by employing pilot sequences. In quasi-static

fading channels, CSI can be trained completely at the receiver in the asymptotic limit of

large blocklength with no penalty on rate . The number of pilot symbols grow sublin-

early with blocklength. Theoretically, incorporating channel-estimation overhead into

the outage configuration according to Karlsson et al. (2018), Bana et al. (2018) may not

be compelling. The framework must incorporate the use of a mismatch receiver that

treats the channel estimate obtained using a set number of pilot symbols as perfect in

the Finite blocklength regime. The typical result of interpreting the channel estimate

error as noise to bound the mutual information in the ergodic situation does not apply

to the outage scenario Lapidoth and Shamai (1999). In an outage scenario, this is due to

the channel remaining constant during the codeword, but we’re interested in computing

an outage event over fading realisations. When computing bounds on the instantaneous

spectral efficiency, the channel and its estimate must be viewed as deterministic quanti-

ties.

In the finite blocklength regime, the limitations of both outage and ergodic settings

can be avoided by undertaking a nonasymptotic analysis of the probability of error

based on the finite-blocklength information-theoretic restrictions presented in Polyan-

skiy et al. (2010) and have been extended to fading channels. in Yang et al. (2014),

Durisi et al. (2016b), Östman et al. (2019). This approach has been done in Zeng et al.

(2020), Ren et al. (2020). The analysis in these articles, however, is based on normal ap-

proximation Polyanskiy et al. (2010), whose tightness for the spectrum of probabilities

of mistake in URLLC is debatable. Furthermore, the use of the normal approximation

for the scenario of imperfect CSI in both 8854835 and Ren et al. (2020) is not convinc-

ing, because the estimate is based solely on the variance and not on the instantaneous

channel estimation error. This scenario is not adaptive if the channel remains consistent
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throughout the codeword period.

1.3 Outline

A strong upper bound on the error probability by adapting the random coding union

bound with parameter s (RCUs) described in Martinez and i Fàbregas (2011) to the

case of Massive MIMO communications. The consequence bound is true for any lin-

ear processing technique and any pilot-based channel estimation scheme, and it may

be applied to Gaussian codebooks. Consider following encoding scheme for bi-AWGN

channel: Encoder: {1, 2, . . . , 2k} → {−1, 1}n which maps an information message

∈ {1, 2, . . . , 2k} into n BPSK symbols. This set of n dimensional codewords created by

the encoder is called as codebook with blocklength n. A decoder R → {1, 2, . . . , 2k}

maps received sequence into a message or an error if it satisfies P{ĵ 6= j} < εwhere ε is

packet error probability. The bounds are numerically impractical to evaluate since they

exist in the form of integrals that are unknown in closed form. An readily computed

approximation is obtained using the saddlepoint method. wfe. With the use of poor

channel state information, pilot contamination, and spatially correlated channels, the

error probability in the uplink (UL) and downlink (DL) of a Massive MIMO network is

then analysed using the bound. Both maximum ratio (MR) and minimum mean-square

error (MMSE) processing are taken into account. If the transmitter does not have chan-

nel correlation mtx, the base station utilises the LS estimator followed by regularised

ZF. The saddlepoint approximation comprises closed-form described quantities Lancho

et al. (2020b). As a result, the evaluation procedure is extremely efficient. The average

error probability tends to zero as M → ∞ at finite blocklength. When MR is applied,

however, the result converges to a positive integer. These results are indistinguish-

able from those obtained in the infinite-blocklength regime for Massive MIMO ergodic

rates Björnson et al. (2018) and Sanguinetti et al. (2020).Numerical experiments can

be used to evaluate the error probability feasible for limited values of M, as well as the

impact of spatial correlation and pilot contamination. The fraction of UE placements

metric, which is defined as the fraction of UE installations for which the per-link error
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probability, averaged over small-scale fading and additive noise, is below a set thresh-

old equivalent to network availability, can be used as a performance statistic Haenggi

(2016). This amount is obtained in an asymptotic outage setting by describing the meta

distribution of the signal to interference ratio (SIR) Haenggi (2016). The metadistribu-

tion of the generalised information density at limited blocklength is related to network

availability. Martinez and i Fàbregas (2011).

For finite values of M, it is critical to account for spatial correlation in order to

generate reasonable estimates of the error probability. Only by designating as many

pilot symbols as the total number of UEs in the network and preventing pilot contam-

ination can MMSE processing in UL and DL achieve network availability above 90%.

When all cells employ the identical pilot sequences, network availability is just above

50%, however the shorter duration of the pilot sequences allows for a greater number of

channel uses in the data phase. Even when pilot contamination is avoided, the network

availability with MR precoding/combining remains below 50% for both UL and DL.

First, the finite-blocklength framework is constructed, which is utilised to investi-

gate the impact of pilot contamination, spatial correlation, and the number of BS anten-

nas on the error probability of a single-cell network with two UEs. The same is then

implemented in a multicell multiuser context, as described in the paper fbl.
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CHAPTER 2

RCUs ON THE PROBABILITY OF ERROR AT

FINITE BLOCKLENGTH

wfe presents a numerical calculation of a finite-blocklength upper bound on the error

probability based on the saddlepoint approximation. A simple situation is considered

in which the received signal is a superposition of a scaled version of the intended signal

and additive Gaussian noise. The analysis of a Massive MIMO network is done using

this simple channel model.

2.1 RCUs for Deterministic and Random Channels

Consider a discrete complex-valued additive channel given by

v[k] = gq[k] + z[k], k = 1, . . . , n. (2)

where q[k] ∈ Candv[k] ∈ C are the input and output over channel use k, respectively,

and n is the codeword length, g ∈ C is During the transmission of the n length code-

word, the channel gain remains constant. The additive noise variables are distributed in

i.i.d. CN (0, σ2). Following assumptions are made:"

(a) The receiver does not know the channel gain g but has an estimate ĝ of g which
is treated as perfect.

(b) To determine the transmitted codeword q = [q[1], ..., q[n]]T , the receiver identifies
the codeword q̃ from the codebook C that is the closest to the received vector
v = [v[1], ..., v[n]]T ∈ Cn in Euclidean distance sense."

q̂ = arg min
q̃∈C

∥∥v − ĝ(q̃)
∥∥2
. (3)

fbl A receiver working according to (3) is known as mismatched scaled nearest-
neighbor (SNN) decoder Lapidoth and Shamai (1999). Note that it coincides with
the optimal maximum likelihood decoder iff ĝ = g.



To find an upper bound on the error probability ε = P[q̃ 6= q] is achieved by the SNN

decoding rule, a random-coding approach rgg. Gaussian random code ensemble is used

where each codeword is drawn independently from a CN (0, ρ) distribution. (Note that

this ensemble is not optimal at finite blocklength, not even if ĝ = g. It is, nonetheless,

widely utilised to derive tractable statements and insights into the functioning of com-

munication systems mas,fun, uni. This analysis can be extended to other ensembles,

e.g., Östman et al. (2019)). Here, ρ is the average transmit power. The channel gain

g in (2) can be modelled as a random or a deterministic variable. The former case is

generally called as quasi static fading setting Biglieri et al. (1998).

Theorem 1: Assume that g ∈ C and ĝ ∈ C in (2) are deterministic. A coding

scheme with m = 2b codewords of length n operating according to the mismatched

SNN decoding rule (3), whose error probability ε is upper-bounded by

ε = P[q̃ 6= q] ≤ P

[
n∑
k=1

ıs(q[k],v[k]) + log(u) ≤ log(m− 1)

]
(4)

for all s >0. Here, u is a random variable that is uniformly distributed over the

interval[0,1] and ıs(q[k],v[k]) )is the generalized information density, given by

ıs(q[k],v[k]) = −s|v[k]− ĝq[k]|2 + s
|v[k]|2

1 + sρ|ĝ|2
+ log

(
1 + sρ|ĝ|2

)
(5)

Assume now that g ∈ C and ĝ ∈ C in (2) are random variables drawn according

to an arbitrary joint distribution. Then, for all s > 0, the error probability ε is upper-

bounded by

ε = P[q̃ 6= q] ≤ Eð,ð̂

[
P

[
n∑
k=1

ıs(q[k],v[k]) ≤ log(m− 1)

u

∣∣∣g, ĝ]] (6)

where the average is taken over the joint distribution of g andĝ. If ĝ is deterministic

and g is a random variable ,the average in (6) is only taken over the distribution of gfbl.

According to RCUs bound introduced in Martinez and i Fàbregas (2011) for the case

where g and ĝ are deterministic. The upper bound for random g and ĝ is calculated by

10



taking an expectation over the joint distribution of g and ĝ.

In the finite-blocklength domain, the probability of error can be expressed in terms

of the probability that the empirical average of the generalised information density ıs

is less than the specified rate R= (logm)/n, whereas in infinite-blocklength regime, the

outage probability is given by probability that the empirical average of the generalized

mutual information Is = E[ıs(q[1], v[1])] is less than the chosen rate R= (logm)/n Lapi-

doth and Shamai (1999). If g is known at the receiver, i.e.,ĝ = g , from the decoding

rule (3) that ε→ 0 when the SNR grows boundlessly, ρ/σ2 →∞.

Lemma 1: If g = ĝ, then

lim
ρ/σ2→∞

P

[
n∑
k=1

ıs(q[k],v[k]) ≤ log(m− 1)

u

]
= 0 (7)

The upper bounds in (4) and (6) involve computing the closed form of a tail proba-

bility that is unknown and must be computed numerically. They can be made tighter by

optimising over the parameter s >0, which must be done numerically as well. All this

numerical evaluation is computationally intensive, particularly low latency applications

are dealt. This problem can be reduced by using a saddlepoint approximation.

2.2 Saddlepoint Approximation of RCUs bound

To numerically approximate (4) and (6) we need to perform a normal approximation

on the probability term based on the Berry-Esseen central limit theorem because of

evaluation of sum of tail probabilities [wfe,Ch. XVI.5]

P

[
n∑
k=1

ıs(q[k],v[k]) ≤ log(m− 1)

u

]
= Q

(
nIs − log(m− 1)√

nVs

)
+ o

(
1√
n

)
(8)

where Is = E[ıs(q[1], v[1])] is generalized mutual information Lapidoth and Shamai

(1999),

Vs = E[|ıs(q[1], v[1])− Is|2] (9)
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is the variance of the information density computed with respect to the same distribu-

tion, typically referred to as channel dispersion Polyanskiy et al. (2010) and o(1/
√
n)

is for terms that decay faster than 1/
√
n as n → ∞. This normal approximation ob-

tained by neglecting the o(1/
√
n) in (8) is accurate only when R= (logm)/n is close to

Is Lancho et al. (2020b). If we do not neglect the o(1/
√
n), it is called as refined nor-

mal approximation which is slightly beter than normal approximation because we are

not ignoring any terms. However, to achieve the needed low error probabilities at SNR

values of practical interest, we operate at speeds substantially lower than Is in URLLC

(Lancho et al. (2020b) Fig 3). The saddlepoint technique provides a more accurate es-

timate for all R values. The saddlepoint method’s fundamental idea is to execute an

exponential tilting on the random variables ıs(q[k],v[k]),k= 1,...,n, which brings their

mean closer to the desired rate R. This ensures that a future application of the normal

approximation produces modest mistakes[wfe, Ch. XVI.7] .

The approximations of the RCUs bound can be obtained by using saddlepoint method

Scarlett et al. (2014), Lancho et al. (2020b). To derive the error probability, it is suf-

ficient to check that the third central moment of ıs(q[k], v[k]) is bounded (which is the

case in this situation ), The presence of a saddlepoint approximation necessitates the

more severe requirement that the third derivative of −ζıs(q[k], v[k]) moment generat-

ing function (MGF) be in the neighbourhood of zero. It is deemed necessary that there

exist two values ζ < 0 < ζ̄ such that

sup
ζ<ζ<ζ̄

d3

dζ3

∣∣∣E [e−ζıs(q[k],v[k])
] ∣∣∣ <∞ (10)

where

ζ = −
√

(βB − βA)2 + 4βAβB(1− ν) + βA − βB
2βAβB(1− ν)

(11)

ζ̄ = −
√

(βB − βA)2 + 4βAβB(1− ν)− βA + βB
2βAβB(1− ν)

(12)

βA = s(ρ|g − ĝ|2 + σ2) (13)

βB =
s

1 + sρ|ĝ|2
(ρ|g|2 + σ2) (14)
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ν =
s2|ρ|g|2 + σ2 − g∗ĝρ|2

βAβB(1 + sρ|ĝ|2)
(15)

fbl The saddlepoint approximation in Theorem 2 below depends on the cumulant gen-

erating function(CGF) of ıs(q[k], v[k])

κ(ζ) = logE[e−ζıs(q[k],v[k])] (16)

and on its first derivative κ′(ζ) and second derivative κ′′(ζ). Closed form of these

quantities for all ζ ∈ (ζ, ζ̄) are given by

κ(ζ) = −ζlog(1 + sρ|ĝ2|)− log(1 + (βB − βA)ζ − βAβB(1− ν)ζ2) (17)

κ′(ζ) = −log(1 + sρ|ĝ2|)− (βB − βA)− 2βAβB(1− ν)ζ

1 + (βB − βA)ζ − βAβB(1− ν)ζ2
(18)

κ′′(ζ) =

[
(βB − βA)− 2βAβB(1− ν)ζ

1 + (βB − βA)ζ − βAβB(1− ν)ζ2

]2

+
2βAβB(1− ν)

1 + (βB − βA)ζ − βAβB(1− ν)ζ2

(19)

κ(ζ) coincides with the Gallager’s E0 function for the mismatched case [Martinez and

i Fàbregas (2011), Eq. (22)] Is = κ′(0). The critical rateRcr
s (see [rgg, Eq. (5.6.30)]) is

given by

Rcr
s = −κ′(1) (20)

The saddlepoint expansion of the RCUs bound (4) is given by

Theorem 2: Let m = enR for some R >0, and let ζ ∈ (ζ, ζ̄) be the solution to the

equation R = κ′(ζ) (from (18). If ζ ∈ [0,1], then Rcr
s ≤ R ≤ Is and

P

[
n∑
k=1

ıs(q[k], v[k]) ≤ log
enR − 1

u
= en[κ(ζ)+ζR]

[
Ψn,ζ(ζ) + Ψn,ζ(1− ζ) + o(

1√
n

)

]]
(21)

where

Ψn,ζ(u)
∆
= en

u2

2
κ′′(ζ)Q

(
u
√
nκ′′(ζ)

)
(22)

and o(1/
√
n) comprises terms that vanish faster than 1/

√
n and are uniform in ζ If ζ

13



>1, then R < Rcr
s and

P

[
n∑
k=1

ıs(q[k], v[k]) ≤ log
enR − 1

u
= en[κ(1)+R]

[
Ψ̃n(1, 1) + Ψ̃n,(0,−1) +O(

1√
n

)

]]
(23)

where

Ψ̃n(a1, a2) = ena1[Rcrs −R+
κ′′(1)

2
]Q

(
ua1

√
nκ′′(1) + a2

n(Rcr
s −R)√
nκ′′(1)

)
(24)

and O(1/
√
n)comprises terms that are of order 1/

√
n and are uniform in ζ . If ζ <0,

then R > Is and

P

[
n∑
k=1

ıs(q[k], v[k]) ≤ log
enR − 1

u

]
= 1−en[κ(ζ)+ζR]

[
Ψn,ζ(−ζ)−Ψn,ζ(1− ζ) + o(

1√
n

)

]
(25)

fbl [Scarlett et al. (2014), App.E] [Lancho et al. (2020b), App. I].

Approximations obtained by ignoring the o(1/
√
n) terms and the O(1/

√
n) terms

in (21), (23), and (25) are called as saddlepoint approximations. The exponential term

on the right hand side of (21) and of (23) correspond to the Gallager’s error exponent for

the mismatch decoding scenario [Kaplan et al. (1991)]. The saddlepoint method’s main

idea is to isolate the Gallager error-exponent term, which determines the exponential

decline of the probability of error as a function of blocklength, i.e., the exponential

termin (21), (23), and (25). The Berry-Esseen central-limit theorem is then used to

characterise solely the pre-exponential component, that is, the factor that multiplies the

exponential term. wfe. Here, it can be noted that evaluating saddlepoint approximation

for a ζ and its corresponding rate R = κ(ζ) warrants computational complexity same

as that of the normal approximation as all quantities in (21), (23), and (25) are known

is closed form.

The normal approximation and the saddlepoint approximation can both be tightened

by doing an optimization over s, which is time consuming. Choosing a s that is optimal

in an asymptotic regime is one technique to lessen the complexity of optimising s.

Setting a value for s where generalised mutual information is maximised is one example.
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In closed form, the corresponding value for s can be found. [Lapidoth and Shamai

(1999) Eq. (64)].

2.3 Outage Probability

The error probability achievable for short blocklengths can be evaluated with bound

(6) and we can check if outage probability is an accurate performance metric in Mas-

sive MIMO systems for URLLC apps. FA single-UE multiantenna system with a huge

number M of antennas is explored for simplicity’s sake. Between the UE and the

BS array, there is a channel h ∈ CM and modelled as uncorrelated Rayleigh fading

h ∼ CN (0M , βIM) where β is large-scale fading gain mas. If the receiver has perfect

CSI and the detection is done by MR combining, the input-output relationship for UL

channels can be written as

v[k] =
hH

‖h‖
hq[k] +

hH

‖h‖
z′[k], k = 1, . . . , n (26)

where z′[k] ∼ CN (0M , σ
2IM) is the thermal noise over the antenna array as a function

of channel usage k. (26) can be transformed into (2) by setting g = hH

‖h‖h = ‖h‖&z[k] =

hH

‖h‖z
′[k] ∼ CN (0, σ2). We have ĝ = g = ‖h‖ since h is perfectly known at the receiver.

ĝ = g = ‖h‖. The probability term in (6) in the limit n → ∞ is equal to 1 once the

parameter s has been tuned if log(1 + ρ|g|2/σ2) < R and 0 otherwise. As a result, the

bound in (6) approaches the outage probability

P
[
log

(
1 +

ρg2

σ2

)
< R

]
(27)

Here, the probability is evaluated with respect to the random variable g = ‖h‖.

15



CHAPTER 3

SCENARIO FOR SINGLE-CELL TWO-UE MASSIVE

MIMO

A single-cell network is examined, in which the BS has M antennas and serves K= 2

single-antenna UEs. hi ∈ CM is the channel vector between the BS and UE i for i=

1,2. A correlated Rayleigh fading model hi ∼ CN (0M ,Ri) is regarded constant for the

duration of a codeword transmission. The normalized trace βi = tr(Ri)/M determines

the average large-scale fading between the BS and the UEi, while the eigen structure

of Ri explains the spatial channel correlation between the two. [mas Sec.2.2]. It is

assumed that R1 and R2 are known at the BS. Sanguinetti et al. (2020), Björnson et al.

(2016) describe practical estimation methods.

3.1 Uplink transmission

The standard time division duplex (TDD) Massive MIMO technique is used, with UL

and DL transmissions each receiving n channel uses, divided into np channel uses for

UL pilots, nul channel uses for UL data, and ndl = n − nul channel uses for DL data.

The np length pilot sequence φi ∈ Cnp with φHi φi = np is used by UE i for channel

estimation. The elements of φi are transmitted over np channel uses and are scaled by

the square root of the pilot power
√
ρul. After pilot sequences are transmitted by UEs,

received pilot signal Ypilot ∈ CM×np is

Ypilot =
√
ρulh1φ

H

1
+
√
ρulh2φ

H

2
+ Zpilot (28)

where Zpilot ∈ CM×np is the additive noise with independent and identical distributed

elements as CN (0, σ2
ul). Assuming that R1 and R2 are well-known at the BS, and hi’s



MMSE estimate is [mas]

ĥi =
√
ρulnpRiQ−1

i (Ypilotφ
i
) (29)

for i = 1,2 with

Qi = ρulR1φ
H

1
φ
i
+ ρulR2φ

H

2
φ
i
+ σ2

ulIM (30)

The MMSE estimate ĥi and the estimation error h̃i = hi − ĥi are independent random

vectors, distributed as ĥi ∼ CN (0,Φi) and h̃i ∼ CN (0,Ri −Φi), consecutively, Φi =

ρulnpRiQ−1
i Ri.

If φH1 φ2 = 0, i.e. There is no interference if the two UEs use orthogonal pilot se-

quences, but if they use the same pilot sequence (phi1 = phi2), they interfere, which

is known as pilot contamination and has two primary repercussions in the channel esti-

mation process. [masSec. 3.2.2].The first is a reduction in estimating quality, while

the second is a correlation between the estimations ĥ1 and ĥ2. If φ1 = φ2, then

Ypilotφ1 = Ypilotφ2 and Q1 = Q2 = Q with Q = ρulnpR1 + ρulnpR2 + σ2
ulIM . ĥ2

can be denoted by R2R−1
1 ĥ1 on condition that R1 is invertible. This indicates that

the estimates are correlated, and the cross-correlation matrix is E
[
ĥ1ĥ

H

2

]
= Υ12 =

ρulnpR1Q−1R2.This holds true even if the underlying channels are statistically inde-

pendent with E
[
h1h

H
2

]
= 0M . If Ri = βiIM i.e. if no spatial correlation is present,

then the channel estimates are linearly dependent meaning they are identical up to a

scaling factor.

The received complex BB signal rul[k] ∈ CM over an arbitrary channel usage k

during the UL data transmission where k = 1, . . . , nul is given by

rul[k] = h1x
ul
1 [k] + h2x

ul
2 [k] + hul[k] (31)

where xuli [k] ∼ CN (0, ρul) is the signal that carries information (When the elements

of each codeword are picked independently from a Gaussian random code ensemble,

the error probability is calculated from CN (0, ρul) distribution) transmitted by UE i

with average UL transmit power as ρul and hul[k]CN (0, σ2
ulIM) is independent additive

noise. The signal xul1 [k] is detected by the BS using the combining vector u1 ∈ CM to
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get

yul1 [k] = uH1 r
ul[k] = uH1 h1x

ul
1 [k] + uH1 h2x

ul
2 [k] + uH1 z

ul[k] (32)

(32) is similar to (2) with v[k] = yul1 [k], q[k] = xul1 [k], g = uH1 h1 and z[k] = uH1 h2x
ul
2 [k]+

uH1 z
ul[k]. Given {h1, u1, h2}, the random variables z[k] k = 1, . . . , nul are condition-

ally i.i.d. and z[k] ∼ CN (0, σ2) with σ2 = ρul|uH1 h2|2 + ‖u1‖2σ2
ul.

It is assumed that BS treats the obtained noisy channel estimate ĥ1 as perfect. To re-

trieve the transmitted codeword (drawn from a codebook Cul), BS performs mismatched

SNN decoding with ĝ = uH1 ĥ1. Particularly, the estimated codeword x̂ul1 is given by

x̂ul1 = arg min
x̃ul1 ∈Cul

‖yul
1
− (uH1 ĥ1)x̃ul1 ‖2 (33)

with yul
1

=
[
yul1 [1], . . . , yul1 [nul]

]T and x̃ul1 =
[
x̃ul1 [1], . . . , x̃ul1 [nul]

]T . Eq. (4) establishes

a limit on the conditional error probability for UE 1 given g and ĝ. We need to take an

expectation over g to determine the average error probability g = uH1 h1, ĝ = uH1 ĥ1 and

σ2 = ρul|uH1 h2|2 + ‖u1‖2σ2
ul, which gives

εul1 ≤ E

[
P

[
nul∑
k=1

ıs(y
ul
1 [k], xul1 [k]) ≤ log(m− 1)

u

∣∣∣g, ĝ, σ2

]]
(34)

The saddlepoint approximation stated in Theorem 2 can be applied as it is to compute

the conditional probability in (34) efficiently. The average error probability for UE 2

can be computed in similar manner. The combining vector u1 is selected at the BS

based on the channel estimates ĥ1 and ĥ2. The most straightforward option would be

to use MR combining which is uMR
1 = ĥ1/M . MMSE, which is more computationally

intensive, is another option.

uMMSE
1 =

(
2∑
i=1

ĥiĥ
H

i + Z

)−1

ĥ1 (35)

where Z =
∑2

i=1 Φi +
σ2
ul

ρul
IM .
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3.2 Downlink transmission

The BS transmits to UE I with I = 1,2 using the precoding vector. The precoding vector

determines the transmission’s spatial directivity and also ensures that the normalisation

E[‖wi‖2] = 1 is met. . The received signal at UE 1 ydl1 [k] ∈ C over channel use k

during DL data transmission, where k = 1, . . . , ndl is given by

ydl1 [k] = hH1 w1x
dl
1 [k] + hH1 w2x

dl
2 [k] + zdl[k] (36)

where xdli [k] ∼ CN (0, ρdl) is the data signal for UE i and xdl1 [k] ∼ CN (0, σ2
dl) is

the receiver noise at UE 1. Again, (36) is similar to (2) with v[k] = ydl1 [k], q[k] =

xdl1 [k], g = hH1 w1 and z[k] = hH1 w2x
dl
2 [k] + zdl[k]. Given {h1, w1, w2}, the random

variables z[k] : k = 1, . . . , ndl are conditionally i.i.d. and z[k] ∼ CN (0, σ2) with σ2 =

ρdl|hH1 w2|2 + σ2
dl.

The UE does not know the precoded channel because there are no pilots to be broad-

cast in the DL. g = hH1 w1 in (36), UE, on the other hand, is presumed to have its ex-

pected value E[hH1 w] The mismatched SNN decoding is performed using this expected

value. We use ĝ = E[hH1 w1] and

x̂dl1 = arg min
x̃dl1 ∈Cdl

‖ydl
1
− ĝx̃dl1 ‖2 (37)

with ydl
1

=
[
ydl1 [1], . . . , ydl1 [ndl]

]T and x̃dl1 =
[
x̃dl1 [1], . . . , x̃ul1 [ndl]

]T . HIn order for

this option to operate well, channel hardening is required.[mas Sec 2.5.1]. Since ĝ =

E[hH1 w1] is deterministic, The following formula can be used to compute the error prob-

ability at UE 1 in the DL:

εdl1 ≤ E

[
P

[
ndl∑
k=1

ıs(y
dl
1 [k], xdl1 [k]) ≤ log(m− 1)

u

∣∣∣g, σ2

]]
(38)

The saddlepoint approximation mentioned in Theorem 2 may be used to efficiently

compute the conditional probability in (38) in the same way it can be used to com-

pute the conditional probability in (34). The upper bound (38), like the UL, applies to
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any precoder vector chosen based on the channel estimates given at the BS. Different

precoders produce different tradeoffs in terms of the error probability achieved at the

UEs. A common heuristic comes from UL-DL duality [mas Sec. 4.3.2] This implies

that the precoding vectors wi should be chosen as a function of the combining vectors

as wi = ui/
√

E[‖ui‖2]. If the MR precoding technique is selected ui = uMR
i and

ui = uMMSE
i if MMSE precoding scheme is chosen.

The finite blocklength bound stated in Theorem 1 is used to investigate the impact

of imperfect CSI, pilot contamination, and spatial correlation for both UL and DL. The

setting as mentioned in the paperfbl is considered. K= 2UEs are within a square area

of 75m×75m is considered with the BS at the center of the square. The BS is equipped

with a horizontal uniform linear array (ULA) with antenna elements separated by half

a wavelength. For a circular array of N=8 antenna elements evenly spaced on a circle

of radius R = Nd/2π. This radius is chosen to obtain approximately half a wavelength

spacing of the elements, equivalent to that used for the linear array. For Unifrom circu-

lar array (UCA), the nominal angle considered is 40 degrees and ASD (power azimuth

spectrum standard deviation)is 25 degrees is used to plot network availability with re-

spect to target probability of error. Because the antennas and UEs are in the same

horizontal plane, learning the directivity requires only an azimuth angle. IScatterers are

considered to be evenly dispersed throughout the angular interval [ϕ−4, ϕ+4] where

ϕ is the nominal angle of arrival (AoA) of UE i and4 s the angular spread. Hence, the

(m1,m2)th element of Ri is equal to [mas, Sec. 2.6]

[Ri]m1,m2 =
βi
24

∫ 4
−4

ejπ(m1−m2)sin(ϕi+ϕ̄)dϕ̄ (39)

4 = 25◦ is assumed and large-scale fading coefficient, measured in dB is

βi = −35.3− 37.6log10

(
di

1m

)
(40)

distance between UE i and BS di. Parameters considered are receiver noise power of

-94dBm in both uplink and downlink at both UEs and BS. The Uplink and Downlink

transmit powers are equal and equal to 10mW and number of channel uses are 300 and
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160 information bits are to be conveyed. These parameters are in agreement with the

stringent low-latency setups described in [ser].

The error probability of MR combining in the UL is found to be higher than that of

MR precoding in the DL. By comparing the input output relations in (32) and (36) for

the situation of perfect CSI at both BS and UEs, this occurrence can be explained. When

the desired signal fades deeply, the UL interference remains unaffected, however the DL

interference decreases. As a result, UL has a higher mistake probability than DL. The

same logic holds true for both pilot contamination and faulty CSI. This occurence does

not occur when MMSE combining/precoding is used. In contrast, because DL decoding

relies on channel hardening, the DL performs slightly worse than the UL when using

MMSE precoding.

η = Pε ≤ εtarget] (41)

η shows the probability that the target error probability εtarget s attained on a link be-

tween a BS and randomly positioned UE in the presence of randomly positioned inter-

fering UEs (just one in this case). TGiven the UEs location, the network availability is

estimated with regard to random UE locations, whereas the error probability ε is aver-

aged with respect to small-scale fading and additive noise. Network availability with

and without pilot contamination is considered.

3.3 Error Probability as M →∞

The interference generated by pilot contamination restricts the spectral efficiency of

Massive MIMO in the large blocklength ergodic configuration for spatially uncorre-

lated Rayleigh fading channels as M →∞ and the number of UEs K is fixed, for both

MR and MMSE combining/precoding Marzetta (2010), Hoydis et al. (2011). How-

ever, when the spatial correlation displayed by practically relevant channels is taken

into account, Björnson et al. (2018) shows that Massive MIMO with MMSE combin-

ing/precoding is not asymptotically restricted by pilot contamination.
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When M → ∞ and K = 2 (simple case), a similar conclusion applies for the aver-

age error probability in the finite blocklength regime. AsM →∞, the error probability

vanishes in the presence of spatial correlation when MMSE combining is used. Follow-

ing two assumptions are made in fbl:

Assumption 1: For i = 1,2, lim inf
M

1
M
tr(Ri) > 0 and lim supM ‖Ri‖2 <∞

Assumption 2: For (λ1, λ2) ∈ R2 and i = 1,2,

lim inf
M

inf
{(λ1,λ2):λi=1}

1

M
‖λ1R1 + λ2R2‖2

F > 0. (42)

Assumption 1’s first condition means that the array collects a quantity of signal

energy proportional to M. The second criterion entails that the enhanced signal energy

is dispersed across a large number of spatial dimensions, i.e., the rank of Ri must be

proportional to M Björnson et al. (2018). In the asymptotic analysis of Massive MIMO,

these two requirements are frequently mentioned Hoydis et al. (2011). Assumption 2

needs asymptotically linear independence for R1 and R2. Sanguinetti et al. (2020).

If there is no pilot contamination, the likelihood of mistake vanishes as M → ∞

with MR combining, as demonstrated in in below Theorem 3. i.e. if the two UEs

transmit orthogonal pilot sequences. If there is pilot contamination, i.e. if they have the

same pilot sequence, it converges to a positive constant.

Theorem 3: Let c > 0 be a positive realvalued scalar. If MR combining is used with

uMR
1 = 1

M
ĥ1, then under Assumption 1,

lim
M→∞

εul1 = 0, if φH1 φ2 = 0, (43)

lim
M→∞

εul1 = c, if φ1 = φ2, (44)

fbl

Even in the presence of pilot contamination, the error probability vanishes as M →

∞ with MMSE combining, as stated in Theorem 4.

Theorem 4: If MMSE combining is used with uMMSE
1 given by (35), then under
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Assumption 1 and Assumption 2, the average error probability εul1 goes to zero as M →

∞ both when φH1 φ2 = 0 and when φ1 = φ2. fbl

When the two UEs transmit at the same power, are at the same distance from the

BS, and use the same pilot sequence, the UL error probability is numerically evaluated

to validate the asymptotic analysis provided by Theorems 3 and 4 and to quantify the

impact of pilot contamination for values of M of practical interest.
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CHAPTER 4

MASSIVE MIMO NETWORK

The case will now be a Massive MIMO network with L cells, each with a BS with

M antennas and K UEs. The channel between UE i in cell l and the BS in cell j is

hjli ∼ CN (0M , R
j
li). The np length pilot sequence of UE i in cell j is denoted by the

vector φji ∈ Cnp and satisfies ‖φji‖2 = np. It is assumed that a cell’s K UEs employ

mutually orthogonal pilot sequences, and that these pilot sequences are reused in 1/f of

the L cells with np = Kf. The MMSE estimator is used to estimate the channel vectors.

[mas, Sec 3.2].

4.1 Uplink Transmission

The data signal from UE i′ in cell l at any point in time k is denoted by xjli′ [k] ∼

CN (0, ρul) where ρul is transmit power. For the detection of xji[k], BS j selects precod-

ing vector vji ∈ CM , which is multiplied with the received signal y
j
[k] to get

rji[k] = vHjiyj[k] =

gq[k]︷ ︸︸ ︷
vHjih

j
jixji[k]︸ ︷︷ ︸

Desired signal

+

z[k]︷ ︸︸ ︷
K∑

i′=1,i′ 6=i

vHjih
j
ji′xji′ [k]︸ ︷︷ ︸

Intra-cell Interference

+

z[k]︷ ︸︸ ︷
L∑

l=1,l 6=j

K∑
i′=1

vHjih
j
li′xli′ [k]︸ ︷︷ ︸

Inter-cell Interference

+

z[k]︷ ︸︸ ︷
vHjizj[k]︸ ︷︷ ︸

Noise

(45)

for k = 1, . . . , np. (45) can be put in the same form as (2) if we set v[k] =

rji[k], q[k] = xji[k], g = vHjih
j
ji, ĝ = vHji ĥ

j

ji and z[k] =
∑K

i′=1,i′ 6=i v
H
jih

j
ji′xji′ [k] +∑L

l=1,l 6=j
∑K

i′=1 v
H
jih

j
li′xli′ [k] + vHjizj[k]. The random variables z[k] : k = 1, . . . , nul



are iid given all channels and combining vectors and z[k] ∼ CN (0, σ2) with σ2 =

σ2
ul‖vji‖2 + ρul

∑K
i′=1,i′ 6=i |vHjih

j
ji′|2 + ρul

∑L
l=1,l 6=j

∑K
i′=1 |vHjih

j
li′|2. Theorem (1) is

then used to calculate an upper bound on the error probability εulji , which is subse-

quently averaged over g, ĝ, σ2. This bound is true for any vji. value.

4.2 Downlink Transmission

The Downlink signal xj[k] is transmitted by the BS in cell j xj[k] =
∑K

ji′=1wji′xji′ [k],

where xji′ [k] ∼ CN (0, ρdl) is the Downlink data signal planned for UE i′ in cell j over

the time index k, assigned to a combining vector wji′ ∈ CM which satisfies ‖wji′‖2 = 1

and ρdl is the power transmitted. The received signal yji[k] ∈ C for k = 1, . . . , ndl at

UE i in cell j is given by

yji[k] = vHji yj[k] =

gq[k]︷ ︸︸ ︷
(hjji)

Hwjixji[k]︸ ︷︷ ︸
Desired signal

+

z[k]︷ ︸︸ ︷
K∑

i′=1,i′ 6=i

(hjji)
Hwji′xji′ [k]︸ ︷︷ ︸

Intra-cell Interference

+

z[k]︷ ︸︸ ︷
L∑

l=1,l 6=j

K∑
i′=1

(hlji)
Hwli′xli′ [k]︸ ︷︷ ︸

Inter-cell Interference

+

z[k]︷ ︸︸ ︷
zji[k]︸ ︷︷ ︸
Noise

(46)

where zji[k] ∼ CN (0, σ2
dl) is the receiver noise. The desired signal to UE i in cell j

transmits over the combined channel gji = (hjji)
Hwji. The UE does not know gji and re-

lies on channel hardening to estimate it with its mean value E[gji] = E[(hjji)
Hwji]. Sim-

ilar to Uplink case, (46) can be put in the same form as (2) if we set v[k] = yji[k], q[k] =

xji[k], g = (hjji)
Hwji, ĝ = E[(hjji)

Hwji] and z[k] =
∑K

i′=1,i′ 6=i(h
j
ji)

Hwji′xji′ [k] +∑L
l=1,l 6=j

∑K
i′=1(hlji)

Hwli′xli′ [k] + zji[k]. Given combining vectors and all channels,

the random variables z[k] : k = 1, . . . , ndl are conditionally i.i.d. and z[k] ∼ CN (0, σ2)

with σ2 = σ2
dl + ρul

∑K
i′=1,i′ 6=i |(h

j
ji)

Hwji′ |2 + ρul
∑L

l=1,l 6=j
∑K

i′=1 |(h
j
ji)

Hwji′|2. The-

orem (1) is then used to calculate an upper bound on the error probability εdlji, which is

subsequently averaged over g and σ2. This constraint holds for any wji. value.
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CHAPTER 5

Simulation results

5.1 RCUs bound on the Error probability

In 5.1a, the probability of error as a function of number of antennas M is plotted with

a fixed SNR of 1 dB. Other parameters are taken as- rate is 0.6 bits per channel use,

codeword length is 100. In addition to the normal approximation shown in the paper,

I also implemented refined normal approximation and also fig c. From the figure we

can observe that outage capacity is followed by normal approximation or even refined

normal approximation in that matter for only small values of number of antennas. The

saddlepoint approximation provides a better bound for all values of M as observed in

the figure.

In 5.1b, the probability of error as a function of number of antennas M without fixed

SNR is plotted so that average SNR increases as number of antennas increases. Trans-

mit power is fixed at -24dBm. Here, it can be observed that the saddlepoint approxima-

tion provide better bounds than normal approximation or refined normal approximation

for upto probability of error of 10−4.

In 5.1c, the probability of error as a function of rate is plotted. Parameters are

blocklength is 128, with SNR -24dB and number of antennas are 200. In this plot,

we can clearly observe that for short block lengths, the outage capacity moves away

from theoretical Shannon channel capacity. So, for short block length codes, we cannot

take outage capacity as a benchmark. In presence of imperfect CSI, these approxima-

tions become even more questionable. The nonasymptotic bound (6), which may be

efficiently computed using the saddlepoint approximation, can be used to completely

eliminate this difficulty. How the simple input output relation (2) may be utilised to

analyse practical Massive MIMO networks with faulty CSI, spatial correlation among

antennas, pilot contamination, and both inter-cell and intra-cell interference.
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Fig. 5.1: Average error probability in the UL of a single UE multiantenna system
whenĝ = g = ‖h‖ with h ∼ CN (0M , βIM), n=100,R=0.6 bits per channel
use. (a)ε vs M (Fixed average received SNR= 1 dB). (b) ε vs M (Fixed transmit
power ρ= 24 dBm). (c) ε vs R
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5.2 RCUs bound on the Error probability for the case

of Single Cell 2 UE MIMO

Fig 5.2 a,b show the Uplink and Downlink error probability ε of UE 1 with MR and

MMSE combining, with and without Pilot contamination when M= 100 and 200. The

nominal angle of UE 1 is fixed at ϕ1 = 30◦ while the angle of UE 2 varies from 0◦

to 65◦. d1 = d2 = 36.4m and β1 = β2 = −94dB. Even if pilot contamination

influences channel estimates, a low error probability can be attained if the UEs are

properly separated in the angle domain. When compared to MR precoding, MMSE

combining/precoding achieves a significantly reduced error probability for a given angle

separation. These findings are consistent with those published in the asymptotic regime

for large packet sizes in Sanguinetti et al. (2020).

Fig 5.3 shows network availability η in Uplink and Downlink with both MR and

MMSE when M = 100 and other parameters are same as that of fig 5.2.

Fig 5.3: Regardless of the processing scheme, network availability is lowered when

there is pilot contamination. When orthogonal pilot sequences are used, MR operates

better in the Downlink compared to Uplink (similar reasoning in 5.2 above), but if there

is pilot contamination, Uplink performance is better when the UE depends on channel

hardening and slightly worse when UE has access to perfect CSI. The correlation matrix

may have a low rank due to the random UE placements. This has an impact on channel

hardening and, as a result, DL performance suffers. Because the DL relies on channel

hardening, the UL is always superior to the DL when it comes to MMSE processing.

In Fig5.4(a), average error probability as a function of M with MR and MMSE is

shown. It is assumed that the nominal angles are ϕ1 = 30◦ and ϕ1 = 40◦. Because the

angle between the two UEs is less, pilot contamination is likely to have a substantial

impact on the error probability. Parameters are similar to fig5.2. in the presence of

pilot contamination, the error probability with MR converges to a nonzero constant as

M increases, whereas the error probability with MMSE converges to 0 as M →∞ 5.4.

Error probability with respect to number of antennas are simulated for UCA case also,
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Fig. 5.2: Average error probability ε or UE1 versus the nominal angle of UE2 with pilot
contamination. The curves are obtained using the saddlepoint approximation,
the stars indicate the values of the RCUs bound, computed directly via (6).(a)
Uplink transmission. (b) Downlink transmission.
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Fig. 5.3: Network availability η with and without pilot contamination.(a) Uplink trans-
mission. (b) Downlink transmission.

it is observed that probability of error for UCA is better than probability of error when

ULA is used. But, the advantage of UCA comes at a cost, sometimes the processing

techniques that are used for ULA may not directly extend to UCA.

5.3 Network Availability for the case of 4 Cell 10 UEs

each Massive MIMO

L = 4 square cells, each of size 75m×75m, make up the simulation setup containing K

= 10 UEs each, within the cell, independently and uniformly dispersed, a distance of at

least 5 metres from the BS. A horizontal ULA is evaluated with M = 100 antennas with

half wavelength separation, similar to the Two UE Single Cell Massive MIMO scenario

analysis. Each UE’s correlation matrix and large scale fading coefficient follow the

models in (39) and (40), respectively. As in [mas, Sec. 4.1.3], a wrap-around topology

is used. Parameters are n = 300, b = 160 and transmit power both in uplink and downlink

is 10 dBm.

In fig A.1, network availability (41) for a fixed εtarget = 10−5 versus the number
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Fig. 5.4: Average error probability of UE1 versus number of antennas M with and with-
out pilot contamination. (a) Uplink transmission. (b) Downlink transmission.
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Fig. 5.5: Network availability for εtarget = 10−5. (a) Uplink transmission. (b) Down-
link transmission.
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of pilot symbols np = fK, is plotted where f is the pilot reuse factor is implemented

in line with fbl. Fig A.1 verifies that pilot contamination should be avoided and that

MMSE should be used instead of MR in most cases. With multicell MMSE in Uplink

and Downlink, a network availability of above 90 percent can be attained by setting a

pilot reuse factor of f = 4 such that np = fK = 40. In a network with L = 4 cells, this

number of np is the smallest that prevents pilot contamination. However, increasing

np has a negative impact on network availability, particularly in the downlink. Indeed,

the benefits of a more accurate CSI are negated by the corresponding reduction in the

number of channel uses ndl = (300np)/2 available for data transmission in the DL.

With multicell MMSE processing, the performance difference between UL and DL is

due to the assumption that the UE has no CSI and performs mismatched decoding by

relying on channel hardening. Additional network availability benefits can be achieved

by increasing the number of BS antennas, scheduling to avoid serving UEs that are

difficult to separate spatially using linear precoding at the same time, or reducing the

number of UEs served simultaneously. Even when there is no pilot contamination,

network availability achieved with MR is less than 50 percent, implying that MR pre-

coding/combining is too susceptible to interference to satisfy the low error probability

targets necessary in low latency networks like URLLC. If no channel covariance matrix

is available at the receiver, then LS estimator and RLF combining is used.
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CHAPTER 6

CONCLUSION

Specifically, for a BS with upto 100 antennas, it is crucial to avoid pilot contamination

and to employ MMSE precoding/combining instead of computationally less intensive

MR precoding/combining . If the receiver does not have such access, the BS can do

least square channel estimation followed by regularised zero forcing with a performance

penalty. This is based on a finite-blocklength information theory-based firm nonasymp-

totic bound on the error probability and its application to a realistic Massive MIMO

network with imperfect channel state information (I-CSI), spatially correlated chan-

nels, arbitrary linear spatial processing, pilot contamination, and randomly positioned

UEs. An accurate approximation for error probability bound based on the saddlepoint

method which is computationally efficient for the low error probabilities targeted in

URLLC applications is implemented in line with fbl. In addition to that, Error proba-

bility and network availability in the case of single cell two UE Massive MIMO case

with and without pilot contamination with UCA is also simulated. But, the advantage

of UCA comes at a cost, sometimes the processing techniques that are used for ULA

may not directly extend to UCA.



APPENDIX A

Golden section search

The RCU bound of error probability is assessed using the saddlepoint approximation

in all numerical simulations presented and optimised it over the parameter s using a

golden section search. Below is snippet of code

Fig. A.1: Golden section search code snippet
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