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ABSTRACT

Massive device connectivity is a must for Internet of Things networks, which are made

up of a huge number of devices that have intermittent traffic. Joint device activity

detection and channel estimation are of main concern in such scenario. Also due to

the huge number of users, we need to allot non-orthogonal signature sequences to the

devices. In this work, to detect active devices and estimate their channels, we use a

group-structured sparsity estimation approach. This decreases the length of the signa-

ture sequence while allowing for huge connection and erratic traffic. We use the phase

transitions behavior of the group sparsity estimation issue to identify the appropriate

signature sequence length. Simulated results provide an optimal way of choosing ac-

ceptable signature sequence length in practise. The results presented in this work are

implemented with reference to the approach mentioned in [1]

KEYWORDS: Massive device connectivity, Phase transitions, Activity Detection, Chan-

nel estimation, Machine-type Communication(MTC), Signature Sequence length.
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CHAPTER 1

INTRODUCTION

1.1 Need for IoT

Internet of Things is a recent technology that creates a global network of machines and

devices that are capable of communicating and exchanging data with each other. Be-

cause it enhances productivity and lowers costs, the Internet of Things has been hailed

as an economic development engine. As the Internet of Things (IoT) gains traction in

the industry, the number of devices deployed is increasing. IoT platform provides so-

lutions in the domains of smart cities, smart grids, smart homes, and connected cars

that could bring a qualitative improvement in people’s lives by collaborating physical

sensing with data processing to create significant information.

The Internet of Things (IoT), which is projected to provide a variety of services,

will be made possible by devices that are equipped with sensing and communication

capabilities. Connecting a home automation system to the Internet, for example, allows

us to control and manage various gadgets in order to save energy. Many IoT-related

applications exist, including smart homes, smart cities, and smart healthcare, among

others.

IoT comprises of many technologies which includes near field, short range and

wide-area communication networks; device to device communication; device tech-

nologies for sensing, actuation, and energy harvesting; device and application software

platforms for big data, security, and cloud processing.

1.2 Applications of IoT

A growing number of physical devices are being connected to the Internet at an in-

creasing rate, utilizing the concept of the Internet of Things (IoT). The IoT enables the
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devices to see, hear, think and perform jobs by having them communicate with each

other, to share information and to coordinate decisions. The IoT transforms these ob-

jects from being traditional to smart by exploiting its underlying technologies such as

ubiquitous and pervasive computing, embedded devices, communication technologies,

sensor networks, Internet protocols and applications [2].

Fig.1.1 illustrates the overall concept of the IoT in which every domain specific

application is interacting with domain independent services, whereas in each domain

sensors and actuators communicate directly with each other. While the concept of IoT

has been in use for a long time, a group of recent advances in a number of different

technologies has made it practical.

Figure 1.1: Applications of IoT
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For example, detection of active devices will improve the efficiency of data trans-

mission in IoT networks. Technological enhancements that support this incredible

growth include the speed and bandwidth of the underlying networks, extended bat-

tery life of IoT devices, broader capabilities of wireless communication protocols, and

more secure management of devices and networks. These advancements have allowed a

significant number of industries to replace expensive, and often unreliable, wired com-

munication with wireless communication.

1.2.1 Emerging Technologies

Access to low-cost, low-power sensor technology. Affordable and reliable sensors are

making IoT technology possible for more manufacturers.

Connectivity. A host of network protocols for the internet has made it easy to con-

nect sensors to the cloud and to other “things” for efficient data transfer.

Cloud computing platforms.The increase in the availability of cloud platforms en-

ables both businesses and consumers to access the infrastructure they need to scale up

without actually having to manage it all.

Machine learning and analytics. With advances in machine learning and analyt-

ics, along with access to varied and vast amounts of data stored in the cloud, businesses

can gather insights faster and more easily. The emergence of these allied technologies

continues to push the boundaries of IoT and the data produced by IoT also feeds these

technologies.

Conversational artificial intelligence (AI). Advances in neural networks have brought

natural-language processing (NLP) to IoT devices (such as digital personal assistants

Alexa, Cortana, and Siri) and made them appealing, affordable, and viable for home

use.

Department of Electrical Engineering, IIT Madras, June 2021 3
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1.3 Proposal Definition

A huge variety of application areas bring new challenges for IoT networks design.To

provide universal connectivity to enable such IoT-based applications, massive machine-

type communications(MTC) and ultra reliable and low latency communications become

critical in the upcoming 5G networks. In many scenarios, there are large numbers of

devices to be connected to the Internet through the BS. Thus, supporting massive device

connectivity is a crucial communication prerequisite for IoT networks.

Machine-centric communications have two distinctive features as compared to con-

ventional human-centric communications:

(i) the overall system needs to support massive connectivity - the number of devices

connected to each cellular base-station (BS).

(ii) the traffic pattern may be sporadic at any given time,it implies only a small

fraction of all physical devices are active.

For such a network, accurate user activity detection and channel estimation are cru-

cial for establishing successful communication between the IoT devices and the Base

Station.

To identify active devices and to estimate their channels, each device has to be

assigned a unique signature sequence. However,large number of potential devices puts

limitation on coherence time and frequency in the wireless fading channel, making it

impossible to assign mutually orthogonal signature sequences to all users.Therefore, we

assign non-orthogonal signature sequences to each device .

In this work, by utilizing the concept of sparsity of device activity patterns, we im-

plement a group-structured sparsity formulation to solve the joint active device identifi-

cation and channel estimation problem in massive IoT networks.This method does not

depend on the prior information of channel distribution. This is achieved by using con-

vex optimization to characterize the phase transition behavior of the group-structured

sparsity estimation problem.The whole problem formulation mentioned in this work is

in reference to [3].

Department of Electrical Engineering, IIT Madras, June 2021 4
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1.4 Literature Survey

Various strategies for dealing with enormous device connection and the high-dimensional

channel estimation challenge have been developed in recent research. By utilising the

sparsity of channel structures in the time, frequency, angular, and Doppler domains,

compressed sensing (CS)-based channel estimate approaches have been developed.

[4],[5]. In a dense wireless cooperative network, the spatial and temporal prior in-

formation was also used to tackle the high-dimensional channel estimation problem

[6].

Nevertheless, in IoT networks with a short channel coherence time, it’s vital to take

use of the device sparse activity pattern to improve channel estimation. [7], [8], thereby

reducing the training overhead. Because of the huge nature of IoT communications, de-

veloping efficient techniques to address the computation issue is particularly crucial.[1].

The topic of sporadic device activity detection has lately been looked into.

The random access strategy was researched in the context of cellular networks in

order to deal with the high overhead incurred by the large number of devices[9], [10].

If the orthogonal signature sequence randomly picked by the active device is not used

by other devices, a connection between the active device and the BS must be created in

the random access method.[1].

To accommodate a large number of devices, we focus on the non orthogonal multi

user access (NOMA) strategy, which uses non orthogonal resource allocation to simul-

taneously service numerous devices. In [11], the opportunities and problems of using

NOMA to provide large connection are examined. Furthermore, by deploying more

radio access points in IoT networks [12], network densification [13] appears to be a po-

tential solution to boost network capacity, enable low-latency mobile apps, and support

enormous device connectivity.

[14] looked at the information theoretical capacity of vast connection. The spar-

sity activity pattern generates a CS-based formulation to recognise active devices and

estimate channels[8] , [15]. CSI refers to the distribution information in the linked state-

ments of "previous knowledge of CSI." [16] suggested a neural network approach for

predicting channel conditions for unmanned aerial vehicle communication.

Department of Electrical Engineering, IIT Madras, June 2021 5
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In [8], and [6], a joint design of channel estimation and user activity detection was

developed using the approximate message passing (AMP) algorithm, which uses sta-

tistical channel information and large-scale fading coefficients to improve the Bayesian

AMP algorithm with rigorous performance analysis. However, in order to reduce sig-

nalling cost, the technique mentioned in [1] does not require prior knowledge of CSI

distribution.

The research work in [1] focuses on recognising active devices in vast IoT networks,

whereas the previous work [17] suggested an effective channel reservation strategy for

hand-off to minimise the probability of dropping and blocking calls. The joint user

detection and channel estimation strategy for cloud radio access network through the

alternate direction method of multipliers (ADMM) algorithm was introduced in [18]

without performance study, assuming no prior information of the distribution of CSI.

[1] offer a structured group sparsity estimation approach to tackle the JADE prob-

lem without prior knowledge of the CSI distribution to avoid the overheads of gathering

large scale fading coefficients and statistical channel information. It provides the exact

characterization for phase transition behaviours in the structured group sparsity estima-

tion problem to estimate the best signature sequence length.

In [19], a convex geometry technique was used to generate precise estimates of

the number of measurements needed for correct and reliable structured signal recovery.

This technique, on the other hand, can only ensure the success conditions for signal

recovery. Following that, based on the theory of conic integral geometry, the phase

transition of a regularised linear inverse problem with random measurements was ad-

dressed in [20] and [21], which established both the success and failure conditions for

signal recovery. In particular, the location and width of the transition are essentially

controlled by the statistical dimension of a descent cone associated with the convex

regularizers. However, these results are only applicable in the real domain[1].

When tackling the JADE issue with a fixed time budget, the enormous number of

devices in IoT networks presents distinct computational challenges. Unfortunately, due

to their limited scalability, second order approaches like the interior point method are in-

applicable non large-scale optimization situations. First-order approaches, on the other

hand, such as gradient methods, proximal methods[22], ADMM algorithm [23], and

Department of Electrical Engineering, IIT Madras, June 2021 6
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rapid ADMM algorithm [24], are particularly useful for tackling large-scale issues.

Accelerating the convergence rate without raising the computational cost of each

iteration is a different technique. [25] demonstrated that with more data, the step-size

in the projected gradient approach may be increased, resulting in a faster convergence

rate. Smoothing approaches like convex relaxation [26] or just adding a good smooth

function to smooth the nondifferentiable goal function [27] achieve a faster convergence

rate in general. To ensure the performance of sporadic device activity detection in IoT

networks, the level of smoothing should be carefully determined.

By speeding the convergence rate, the smoothing method will be used in [1] to

solve the high-dimensional group sparsity estimation issue with a fixed time budget.

As a result, there is a trade-off between computing cost and estimation accuracy, as

increasing the smoothing parameter reduces estimation accuracy.

1.5 Organization

The project flow has been clearly indicated below for the purpose of better understand-

ing. The thesis report comprises of four chapters.

This chapter has the basic introduction to the project and the necessity of IoT, along

with the literature survey done prior to selecting the paper. In chapter 1, we discussed

about the proposal definition which gives more insight to the work. Before attempting

any project or designing it, it is essential to learn its system model. The system model,

phase transitions, different forms of optimality conditions has been discussed in detail

in chapter 2.

In chapter 3, we presented the experimental results depicting the phase transition

behaviour. We also found out the optimal signature sequence length from the phase

transition plot. Finally, chapter 4 concludes the work and also future scope is discussed.

Department of Electrical Engineering, IIT Madras, June 2021 7



CHAPTER 2

SYSTEM MODEL AND ANALYSIS

2.1 System Model

IoT network with one BS serving N single antenna IoT devices, where the BS is

equipped with M antennas is considered. The channel vector from device i to the BS is

denoted by hi ∼ CM , i = 1,...,N. Since IoT data traffic is sporadic, only a few devices

are active out of all devices as shown in Fig.2.1. We consider the synchronized wire-

less system with block fading. That is, each device is active during a coherence block,

and is inactive otherwise[1]. In each block, we define the device activity indicator as

follows:ai = 1 if device i is active, otherwise ai = 0.

Figure 2.1: IoT Network with sporadic traffic devices
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Received Signal is given by,

y(l) =
N∑
i=1

hiaiqi(l) + n(l) (2.1)

for all l=1,2,...,L. Here qi(l) ∈ C is the signature symbol transmitted from device i at

time slot l, y(l) ∈ CM is the received signal at the BS,and n(l) ∈ CM is the additive

noise distributed as CN(0,σ2I).

With massive devices and a limited channel coherence block, the length of the signa-

ture sequence(L) is typically smaller than the total number of devices(N)i.e, L << N .

It is thus impossible to assign mutually orthogonal sequences to all the devices. There-

fore, we generate the signature sequences from i.i.d. complex Gaussian distribution

with zero mean and variance one, i.e., each device i is assigned a unique signature

sequence qi ∼ CN (0, 1) [1]. Note that these sequences are non orthogonal.

Let Y = [y(1), ..., y(L)]T ∈ CLXM denote the received signal across M antennas,

H = [h1, ..., hN ]T ∈ CNXM be the channel matrix from all the devices to the BS an-

tennas, and Q = [q(1), ..., q(L)]T∈ CLXN be the known signature matrix with q(l) =

[q1(l), ..., qN(l)]T ∈ CN .

We can rewrite equation 2.1 as

Y = QAH +N (2.2)

where A = diag(a1, ..., an) ∈ CNXN is the diagonal activity matrix and N = [n(1), .

. . , n(L)] ∈ CLXM is the additive noise matrix.We need to jointly estimate the channel

matrix H and then detect the activity matrix A.

Let Θ0 = AH ∈ CNXM . This matrix has the structured group sparsity pattern in its

rows. The above linear model 2.2 can further be written as

Y = QΘ0 +N (2.3)

Department of Electrical Engineering, IIT Madras, June 2021 9
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To estimate Θ0, we make use of l1/l2-norm in the form of:

R(Θ) =
N∑
i=1

‖θi‖2 (2.4)

This norm will help to induce a group sparsity structure in the solution. Thus the group

sparsity problem can be formulated as the following convex optimization problem:

P : min
Θ∈CNXM

R(Θ)

subject to ‖QΘ− Y ‖F ≤ ε

(2.5)

where ε is an upper bound on ‖N‖F and we assume it is known a priori[1].

Given the estimate matrix Θ̂ , the activity matrix can be recovered as Â = diag(a1, ..., an),

where ai = 1 if ‖θ̂i‖2 ≥ γ0 for a small enough threshold γ0(γ0 ≥ 0); otherwise,ai = 0.

The estimated channel matrix for the active devices is thus given by Ĥ with its ith row

as ĥi = θ̂i where i ∈ {j|âj = 1}

2.2 Phase Transitions

As we have limited resources, it is important to find optimal signature sequence length

needed for massive device connectivity. As we have limited resources, it is important

to find optimal signature sequence length needed for massive device connectivity. This

can be accomplished by solving a convex optimization problem to precisely locate the

phase transition zone of the formulated issue statement.

An example of such scenario is depicted in Fig.2.2,where BS has two antennas,

total number of IoT devices is 100 and number of active devices are 10. We considered

noiseless case here. We observe that optimal signature sequence length depends on

number of active devices and also on number of antennas associated with the base

station(BS).

Department of Electrical Engineering, IIT Madras, June 2021 10
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Figure 2.2: Empirical success probability via CVX in noiseless case[1]

From Fig.2.2,we can see that the signature sequence length around 30 is sufficient

to achieve exact signal recovery for 100 devices out of which 10 are active. This huge

reduction in signature sequence length is due to exploitation of group sparsity estima-

tion method. Thus, by finding the location of phase transition precisely, we can choose

optimal signature sequence length thereby supporting massive connectivity.

The conic integral geometry approach is only applicable in the real field scenario,

hence it can’t be used directly for issue P in the complex field. To solve this problem,

we aim to approximate the original complicated estimation problem P with a genuine

estimation problem, then do accurate phase transition analysis using conic integral ge-

ometry [20].

Department of Electrical Engineering, IIT Madras, June 2021 11
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2.3 Optimality Conditions

2.3.1 Noiseless Case

We consider different forms of optimality conditions to solve the sparsity problem via

convex optimization. First of all, we consider the optimization problem in real domain

as follows:

Pr : min
Θ̃∈R2NXM

RG(Θ̃)

subject to ‖Q̃Θ̃− Ỹ ‖F ≤ ε

(2.6)

where the linear observation in the real domain is given by Ỹ = Q̃Θ̃0 + Ñ The reg-

ularizer is defined as RG(Θ̃) =
∑N

i=1 ‖Θ̃V i‖F . Here,Θ̃V iis the row sub matrix of Θ̃

consisting of rows indexed by Vi = {i,i+N}.

We can further approximate Pr as the following structured group sparse estimation

problem with group size 2M:

Papprox : min
Θ̃∈R2NXM

RG(Θ̃)

subject to ‖Q̄Θ̃− Ỹ ‖F ≤ ε

(2.7)

where Q̄ ∈ R2LX2N ∼ N (0,0.5I) is a Gaussian random matrix. The distribution of

the randomly measured matrix has very little effect on the locations of phase transitions.

Therefore, we focus on characterizing the phase transitions of the approximate problem

Papprox in the real field.

We rewrite the approximate problem in noiseless case as follows:

Pa : min
Θ̃∈R2NXM

RG(Θ̃)

subject to Ỹ = Q̃Θ̃.

(2.8)

In the noiseless case, we can see that the proposed formulation Pa gives perfect

signal Θ0 recovery with exponentially high probability if and only if the number of

signature sequence length L exceeds the range of phase transition. Second, increasing

Department of Electrical Engineering, IIT Madras, June 2021 12



CHAPTER 2. SYSTEM MODEL AND ANALYSIS EE19M029

the number of antennas M in BS will narrow the range of phase transition[1].

Figure 2.3: Heap map for noiseless case[1]

In Fig.2.3, the empirical success probability as function of number of active devices

and signature sequence length. The brightness corresponds to the empirical recovery

probability (white = 100%, black = 0%). On top of this heap map, the empirical curves

of 5%, 50%, 95% are success probabilities calculated from data.

As the number of antennas at the BS grows to infinity, the size of the transition

area can be lowered to zero asymptotically. As a result, massive MIMO is well suited

to facilitating vast IoT connectivity by accurately forecasting phase transition location.

As a result, the results of the sharp phase transition can be used to guide the duration of

the signature sequence.[1].

2.3.2 Noisy Case

Let the estimated matrix be Θ̃∗ of the ground truth matrix Θ̃0.To measure the accuracy

of the above estimation problem, we evaluate average squared error given by,

R(Θ̃∗) =
1

2LM
‖Q̃Θ̃∗ − Q̃Θ̃0‖2

F (2.9)

Department of Electrical Engineering, IIT Madras, June 2021 13
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In noisy case, we formulate the problem statement as follows:

Pb : min
Θ̃∈R2NXM

‖Q̃Θ̃− Ỹ ‖2
F

subject to R(Θ̃) ≤ RΘ̃0.

(2.10)

The problem statement in 2.10 is equivalent to Papprox for some value of the parame-

ter ε. The behavior of empirical estimation error R̂(Θ̃∗) provides guidance for choosing

parameter ε in problem Papprox.

Figure 2.4: Normalized Prediction error[1]

In noisy case, we considered to evaluate the average prediction error as mentioned

in the eq.2.9. This error is normalized using the noise variance as normalizing factor.the

prediction error as a function of signature sequence length is plotted as shown in Fig.2.4.

The normalized error can be used to measure the accuracy of the estimation prob-

lem.From Fig.2.4, we can say that normalised squared error begins to reduce when

the signature sequence length is optimum enough to get successful connectivity among

massive number of devices. Therefore it can be used as a parameter to measure the

accuracy of the estimation problem.

Department of Electrical Engineering, IIT Madras, June 2021 14
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SIMULATION RESULTS

The whole simulation process is carried out in MATLAB. For solving sparsity esti-

mation problem using convex optimization, we made use of CVX package[28] where

necessary changes were made according to the problem statement.

3.0.1 Noiseless Case

To get the phase transitions behaviour, we considered the case where the BS has two

antennas and total number of IoT devices is 100.

To solve the optimization problem in noiseless case, the channel matrix and signa-

ture matrix are generated as H ∼ CN (0,I) and Q ∼ CN (0,I), respectively.We declare a

event as successful if ‖Θ̂−Θ0‖F <= 10−5.

Figure 3.1: Phase Transition in Noiseless Case

In Fig 3.1, the plot shows the empirical success probability as a function of signa-

ture sequence length. The process is repeated 50 times before plotting the final result.

Fig.3 depicts, in an IoT network consisting of 50 devices out of which only 8 devices
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are active, an optimal signature sequence length of 15 is sufficient in order to achieve

massive device connectivity.

3.0.2 Noisy Case

In noisy case, we considered the scenario where the BS is equipped with three an-

tennas and total number of IoT devices is 30. The channel matrix is generated as H

∼ CN (0,I), the signature matrix as and Q∼ CN (0,I) and the additive noise matrix as N

∼ CN (0,0.001I) . A case is declared as successful if ‖Θ̂− Θ0‖F <= 10−5. Simulated

result of noisy case is as shown in Fig.3.2.

Figure 3.2: Phase Transition in Noisy Case

When noise is considered while solving optimization problem, to get the same op-

timal signature sequence length as in the noiseless case, we increase the number of

antennas at base station(BS). Here, we increased the number of antennas at base sta-

tion(BS) from two (in previous case) to three.

Department of Electrical Engineering, IIT Madras, June 2021 16
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Figure 3.3: Average Prediction Square error

In this case, we evaluate the average prediction square error as mentioned in the

eq.2.9. This error is normalized using the noise variance(assumed as 0.001) as normal-

izing factor. The prediction error as a function of signature sequence length is plotted

as shown in Fig.3.3.

The prediction error R̂(Θ̃∗) starts decreasing when sequence length is 15 as shown

in fig 3.3. Also 15 is the optimal sequence length in this case. Therefore,this normalized

prediction error can be used as a means to assess the accuracy of our experimental

results. Also, we can interpret the location of phase transition. From fig.3.3, we can

interpret the optimal signature sequence length as 15 which is same when interpreted

from the plot fig.3.2. Thus, we can say the simulated results achieved by solving the

formulated optimization problem are accurate.

Department of Electrical Engineering, IIT Madras, June 2021 17



CHAPTER 4

CONCLUSION AND FUTURE SCOPE

4.1 Conclusion

To handle the combined activity detection and channel estimation problem in vast IoT

networks, we implemented a structured group sparsity estimation approach with refer-

ence to [1]. We were able to do so by taking advantage of the sparsity pattern in the

device activity pattern. The optimal value for signature sequence length was determined

using the phase transition plot.

Simulated results provide a way of locating phase transition region for choosing ap-

propriate signature sequence length. Also, each device has been assigned non-orthogonal

sequences[8] thereby paving a way to increase the number of devices in the network.

4.2 Future Scope

User privacy and low-latency communications are high demands in emerging mobile

apps, which can be met by adopting more generic mathematical models and formula-

tions. Sparse (low rank) optimization models were investigated. However, applying

these findings to generic optimization issues is complex. As a result, this work could

lead to new queries with the use of more randomised algorithms.
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