
MACHINE LEARNING(ML) FOR GESTURE

RECOGNITION.

A Project Report

submitted by

RAHUL MEENA

in partial fulfillment of the

requirements for the award of the

degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUNE 2021

CERTIFICATE

This is to certify that the report titledMachine Learning (ML) for Gesture Recogni-

tion, submitted by RAHUL MEENA, to the Indian Institute of Technology Madras, for

the award of the degree of Master of Technology, is a bonafide record of the work done by

him under my supervision. The contents of this report, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Place: Chennai

Date: 17-06-2021

Prof. Anil Prabhakar
Professor
Dept. of Electrical Engineering
IIT Madras, 600 036

i

ACKNOWLEDGEMENTS

I am extremely grateful to my advisor Prof. Anil Prabhakar without whose constant

support and guidance, this work would not have been possible. I am also grateful to him

for his incredible patience and for granting me the opportunity to learn multiple things

all of which have been instrumental in shaping my research interests. Further, I would

also like to thank all the members working at the Enability Company who have all, in

some way shape or form, made my work possible. In particular, I am grateful to Vel

Murugan, and Kasthuri for their illuminating insights and to Stalin whose company

made working at the lab all the more enjoyable. It would be remiss if I did not thank

my parents, whose unwavering support has encouraged me to endeavour to perform

good research and persevere through difficult times.

ii

ABSTRACT

Nowadays Gesture recognition has been widely used for the persons who have certain

disorders such as Cerebal palsy, Aphsia, Metachromatic leukodystrophy, Pelizaeus

Merzbacher etc i.e the person who have problems in speaking and those who can not

able to express what they want to say properly to let the people understand. For those

persons we can make a wearable device in particularly for hand, in order to let the

people understand what they want to speak by performing gestures using hand. So, we

can implement machine learning algorithms on the wearable device in order to get fast

and accurate predictions of gestures. The aim of this work was to learn, understand,

and implement the Machine learning algorithms in particular K-nearest neighbour

(aka KNN) and the fully connected feed-forward neural network model (aka Multi-

layer perceptron) on the collected different gesture’s (in this work we have collected

data of 5 different gestures) data with the help of IMU MPU 6050 sensor mounted on

the Robotic Arm by using BLE HM-10. Subsequently, did the comparison of above

mentioned algorithms and can be concluded that the feed-forward neural network

algorithm gave a better accuracy compared to that of K-nearest neighbour algorithm.

We have achieved the accuracy with K-nearest neighbour algorithm is 65-72% and

with feed-forward neural network model is 85-90%.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS. .i

ABSTRACT . ii

LIST OF FIGURES . iv

ABBREVIATIONS………………………………………………………………….vi

CHAPTER 1: Introduction………………………………………………………. 1

CHAPTER 2: Theory and Algorithms…………………………………………... 3

2.1 Gesture Recognition. 3

2.1.1 Background. 3

2.1.2 Definition and Types of Gesture Recognition. 4

2.1.3 Components and Gesture images. 4

2.2 Algorithms. 10

2.2.1 K-Nearest Neighbor. 10

2.2.2 Feed-Forward Neural Network(Multi Layer Perceptron). 13

CHAPTER 3: Simulation Results.……………………………………………… 19

3.1 Results by using KNN. 19

3.2 Results by using Feed-Forward Neural Network.21

CHAPTER 4: Future work and Conclusion.……………………………….……24

REFERENCES... 25

iv

LIST OF FIGURES

Figure Title Page

2.1 Interfacing MPU6050 Module with Arduino5

2.2 Connecting Arduino and HM-10 BLE Module6

2.3 Connecting Arduino, HM-10, MPU 6050, Robotic Arm6

2.4 Gesture 1 .7

2.5 Gesture 2 .8

2.6 Gesture 3 .8

2.7 Gesture 4 .9

2.8 Gesture 5 .9

2.9 Multi Layer perceptron .13

2.10 Single Neuron .14

3.1 Amount of data in five gestures. 19

3.2 Accuracy for different K values in tabular form.20

3.3 Accuracy for different K values in plotted form.20

3.4 Train accuracy for final epochs. 21

3.5 Model accuracy while training the model. 22

3.6 Model loss while training the model. .22

3.7 Real time accuracy. .22

3.8 Sample of prediction. .23

v

vi

ABBREVIATIONS

KNN K-Nearest Neighbour

NN Neural Network

FFNN Feed Forward Neural Network

IMU Inertial Measurement Unit

HGR Hand Gesture Recognition

RNN Recurrent Neural Networks

LSTM Long Short Term Memory

DTW Dynamic Time Wrapping

BLE Bluetooth Low Energy

EMG Electromyography

VBR Vision Based Recognition

SBR Sensor Based Recognition

AdaGrad Adaptive Gradient

RMSProp Root Mean Square Propagation

Adam Adaptive Moment Estimation

SGD Stochastic Adaptive Descent

ReLu Rectified Linear Unit

MSE Mean Square Error

MAE Mean of the Absolute Error

1

CHAPTER 1

Introduction

Hand gestures are precise movement of fingers and hands that represent a pa-

rticular message in a non verbal communication. Gestures also enhance verbal

communication through communication human intentions in specific convers-

ations. HGR is a intuitive calculation that enables machines to identify the h-

and movements and perform the appropriate action. Gesture recognition is an

area of active current research in computer vision and machine learning. HGR

is a field in which many researchers in the academic institutions and in the in-

dustries are working on multiple applications to make interactions more easy,

natural, accurate and convenient. Although extremely good development has

been made these days, fast and robust hand gesture popularity stays an open

trouble, on the grounds that existing techniques have not presented a sensible

compromise between the performance and the efficiency.

HGR approaches can be separated into two classes that are Vision Based

Recognition algorithms and Sensor-Based Recognition algorithms. The VBR

algorithms perform gesture recognition from images which is captured by a camera.

Although accurate classification is possible but high computational efforts may be

required to extract information from images for both training and inference

operation.

The SBR algorithms as the name suggests is based on various sensors such

inertial measurement unit(IMU) sensors, electromyography(EMG) sensors, brain

wave sensors, electrocardiograph sensors, and radar sensors. Here in this project we

have used IMU MPU 6050 sensor which is owing to their low cost and low power

characteristics. In addition, due to the fact IMU sensors can be at once attached to

the user’s body, they can obtain notably correct hand gesture data.

2

In some studies according to SBR, The accuracy of the gesture recognition

classifier was observed. However most of these techniques Serial gesture recognition

is not supported. Only individual actions can be recognized.

Recurrent neural networks(RNN), Long short term memory(LSTM), Dynamic

time wrapping(DTW), K-nearest neighbour algorithm(KNN), Naive bayes, Fully

connected feed forward neural network (FFNN)(aka Multi layer perceptron) with

Adam optimization algorithm are frequently used to recognize hand gestures with

IMU sensors. In this project we have considered two algorithms i.e KNN and FFNN

to train and classify the model based on the the sensor data. We have observed from

the results that FFNN is more efficient and give better accuracy i.e 85-90% as

compared to that of KNN i.e 65-72%.

In this report, Chapter 2 details the theoretical background of all the components

that we have used in our project, then discussed how we used them to calculate the

sensor reading and lastly discussed what are the algorithms we have used and then

explained it, in Chapter 3 we discussed the results we have got by using both of these

algorithms i.e KNN and FFNN, then finally in the Chapter 4 we discussed the future

scope of this work and then concluded the work we have done.

33

CHAPTER 2

Theory and Algorithms

This chapter presents about Theory of gesture recognition, How we have collected the

data, What are the components we have used for data collection, What are the gestures we have

considered in our project and then Lastly this chapter will focus onWhat are the algorithms that

wehave used for training and classifying the model.

2.1 Gesture Recognition

2.1.1 Background

Users interact with computers through the provided interfaces, motion or vocal. These

different interactions need to be such that information retrieval is easier and Human

Computer Interaction(HCI) is concerned with which the way humans interact with

technology. It deals with how humans work with computers and how computer

systems can be designed to best facilitate the users in achieving the goals. In future

days, Human Computer Interaction will become a field with a variety of sectors that

need to characterize it. Users will be able to use any type of interaction which is a

potential part of HCI, Interactions can be body movements, hand movements, facial

gestures and vocals.

A Human Computer Interaction(HCI) has several types of interaction and one of

those is called gestures. One simplest definition of a gesture is a non-verbal method of

communication utilised in HCI interfaces. The high target of a gesture is to design a

specific system that can identify human gestures a designedly and use these gestures

to convey information for device control. Our primary factor in this project is the

matching between the system and the real world which ensures that the system should

use the the users movements.

4

2.1.2 Definition and Types of Gesture Recognition

In the previous section Gesture Recognition were defined as non-verbal motions used

as a method of communication in HCI interfaces. Gestures are one of the significant

aspects of HCI in both interpersonally and in the device interfaces. Another definition

of gestures is physical movements or positions of human’s finger, hand, arms or full

body used to convert information. The process by which gestures are formed in

certain ways by a person, are made to known to a system, is the main principle of

gesture recognition. Commonly used Gesture Recognition techniques are: vision-

based recognition and non-vision-based recognition method. In vision based approach,

algorithms are used to derive face, hand, body pose and trajectory information and

environmental factors such as background illumination, hands occlusion, and skin

color plays a significant role during recognition process. In non-vision based scheme,

users need to wear data gloves, bands or in general wearable things and handle the

cabling part of recognizing system.

2.1.3 Components and Gesture images

The hardware components which we have used in the process of collection of data for

different gestures are: Arduino UNO microcontroller, IMU MPU 6050, HM-10 BLE

and Robotic Arm.

Arduino UNO microcontroller is the one of the most popular Arduino boards. It

consists of 14-digital I/O pins, where 6-pins can be used as PWM(pulse width

modulation outputs), 6-analog inputs, a reset button, a power jack, a USB connection

and more. It includes everything required to hold up the microcontroller, simply

attach it to a PC with the help of a USB cable and give the supply to get started with

AC-to-DC adapter or battery.

IMU MPU 6050 is a MEMS-based 6-axis motion tracking device. It has an on-

chip gyroscope and accelerometer sensors along with temperature sensor. MPU 6050

is a digital device. This module is of very small in size, has a low-power consumption

requirements, highly accurate, has high repeatability, high shock tolerance, it has

application-specific performance programmability and low consumer prices points.

5

MPU 6050 can be easily interfaced with other sensors such as magnetometers and

microcontrollers.

HM-10 BLE is a Bluetooth 4.0 Module that includes Bluetooth Low Energy(BL-

E). This module transmits over the 2.4 Ghz ISM band like traditional Bluetooth,

however Bluetooth Low Energy(BLE) uses considerably less power while still

maintaining it’s effective communication range. This makes Bluetooth Low

Energy(BLE) a viable option for IoT communication devices.

Robotic Arm is basically the Robotic manipulators resembling human arm. They

are constituted by a structure consisting of structurally robust links coupled by either

rotational joints(also referred to as revolute joints) or translating joints(also referred to

as prismatic joints) a robotic arm is thus a type of mechanical arm, usually

programmable, with similar functions to a human arm.

So we have used the above described components as our basic building blocks to

make the circuit and then by using arduino and python codes we have got the sensor

data or we can say data of 5 (five) different gestures that we have make the Robotic

Arm to perform.

There are some circuits(parts of the circuits required for final circuit) that we have

considered to make the final circuit by final circuit I mean to say that all the above

components are connected all together, that we have made it in the lab.

Arduino UNO - MPU 6050 interface:

Figure 2.1: Interfacing MPU6050 Module With Arduino

6

Arduino UNO - HM-10 interface:

Figure 2.2: Connecting Arduino and HM-10 BLE Module

Arduino UNO - Robotic Arm interface:

Figure 2.3: Connecting Arduino, HM-10, MPU 6050 and Robotic Arm

So, as you can see Figure 2.3 was our final circuit that we have used to get the

sensor data i.e the data we were getting from MPU 6050.

7

As you can see a MPU 6050 is mounted on the white color part of the Robotic

Arm i.e is in fact the wrist of the Robotic Arm. There are three motors in this Robotic

Arm i.e for Shoulder, Elbow and for Wrist.

In our final circuit as you can see there are two Arduino UNO, one Arduino is

dedicated to the Robotic and the other one is for MPU 6050 and HM-10. So, in the

above circuit what we were doing was we were given some commands to the Robotic

Arm like what will be the initial position of Robotic Arm, what will be the Baud Rate,

for every movement of any of the three motors should be synchronous i.e be it Elbow

movement, Shoulder movement or Wrist movement the time they will take will be

equal for all, we were given power supply to these servo motors by the help of

Arduino Code burn it on the Arduino UNO. So, by this we can say one Arduino was

controlling Robotic Arm. The other Arduino were collecting the values that it was

receiving from the MPU 6050 which was mounted on the Robotic Arm while the

Robotic Arm were in motion and the transmitting those received data on the computer

by Using Python code. Remember we were getting the data on computer for every

50ms.

In our work we have considered five(5) different gestures and for each and every

gesture we made the Robotic Arm to perform the same gesture hundred(100) times,

and collected the data for all the gestures.

The images of Gestures that we have taken in the consideration are given below:

Gesture 1 :

Figure 2.4: Gesture 1

8

So, we have assumed [0,80,0] was our initial position in each and every gesture,

all elements in the bracket are in degrees. The initial position means our fingers are

toward the ground i.e each of them are at rest or at Zero degree. So, Gesture 1 says

move your Shoulder with 90 degree, and then move it back to the initial position.

Gesture 2:

Figure 2.5: Gesture 2

In Figure 2.4, we have considered it as Gesture 2. In this Gesture we just have to

move our Eblow wirh 90 degree and then get it back to our initial position.

Gesture 3:

Figure 2.6: Gesture 3

9

In Figure 2.5, we have considered it as Gesture 3. In this Gesture we just have to

move Shoulder with 180 degree and then move it back to the initial position.

Gesture 4:

Figure 2.7: Gesture 4

In Figure 2.6, we have considered it as Gesture 4. In this Gesture we first move

our Shoulder with 90, then further move that to 90 degree and finally move back to

our initial position with 180 degree. Here while going from 0 to 180 degree we have

to stop at 90 degree unlike Gesture 2.

Gesture 5:

Figure 2.8: Gesture 5

In Figure 2.7, we have considered it as Gesture 5. In this Gesture from the initial

position Shoulder has to go directly with 180 degree, then while getting back to the

initial position it should have to Stop at Shoulder reaches 90 degree position, then

finally get back to Zero degree that is our initial position.

10

2.2 Algorithms

As you have seen in the above section we have got the sensor data of all the 5 gestures

and we saved that data. Now we need to train and classify the algorithms, in order to

implement these algorithms in real-time based on the sensor data(Gesture data) we

have got. So, here in our work we have considered two models i.e K-Nearest

Neighbour and Fully Connected Feed Forward Neural Network(aka Multi Layer

Perceptron). So let’s discuss those Algorithms.

2.2.1 K-Nearest Neighbor

Introduction:

K-nearest neighbor algorithm is a algorithm that comes under the category of

supervised machine learning algorithm which can be used for both classification and

regression predictive problems, but it is mostly used for classification related

problems in the industry. It is one of the most basic yet essential classification

algorithms in the machine learning. The model representation for KNN is the entire

training set i.e this algorithm has no model other than training data set that’ why here

no learning is required. The following three properties would define a KNN well-

1. Instance based learning: Here we do not learn weights from training data to

predict the data, unlike as we do in model based learning. However, here we use

entire training data to predict output for new data.

2. Lazy learning: KNN is known as lazy learning because it does not have

specialized training phase and uses all the data for training while classification.

3. Non-parametric: KNN is also a non-parametric learning algorithm because

there is no predefined form of the mapping function.

Working of KNN Algorithm:

L-nearest neighbour algorithm uses similarity of features in order to predict

the values of new query which means that the new query is going to assigned

11

the value based of how closely it matches the value in the training set. We

can understand the it’s working with the help of the following example:

The following is an example to understand the concept of K and working of

KNN algorithm.

Suppose we have a new data point and we need to put it in the required

category. Consider the below image:

Firstly, here we will choose the number of numbers let’ say k=5.

Next, we will calculate the Euclidean distance between the data points. The

Euclidean distance is the distance between the two points, which we have

already familiar about. It can be calculated as:

Euclidean distance between A and B = (�2 − �1)2 + (�2 − �1)2

By, calculating the Euclidean distance we got the nearest neighbors, as we

can see in the below image that in Category A, three neighbors are there and

in Category B, two neighbors are there. Consider the below image:

12

As we can see maximum number of nearest neighbors that is 3 are from

Category A. So, this new point belongs to Category A.

Pseudo Code For K- nearest neighbor:

1. Load the data.

2. Initialize K in order to choose the number of neighbors.

3. For each example in the data

3.1 Calculate the Euclidean distance between the new data point and the

Current example from the training data.

3.2 Add the distance and the index of the new point to an ordered collection.

4. Sort the ordered collection of distances and indices from smallest to

largest(in ascending order) by the distances.

5. Pick the first K entries from the sorted collection.

6. Get the labels of the selected K entries.

7. If Regression, returns the mean of the K labels.

8. If Classification, returns the mode of the K labels.

Advantages of KNN:

1. It is a very simple algorithm and very useful for non-linear data because

there is no assumption about data in this algorithm.

2. It has relatively high accuracy but there are much better other supervised

learning algorithms.

3. There is no need to build a model, tune several parameters or make

additional assumptions.

13

Disadvantages of KNN:

1. Higher memory storage required as compared to other supervised learning

algorithms.

2. The algorithm get significantly slower as the number of examples and

independent variables increase.

2.2.2 Feed-Forward Neural Network (Multi Layer Perceptron)

For a single perceptron there is a limitation, it can only deal with the functions which

are linearly separable. So, that is why we need Multi layer perceptron and it’s proved

that it can handle arbitrary boolean function whether linearly separable or not. So, we

will need a large number of neurons in a hidden layer. We also know that the

perceptron have the harsh thresholding logic so which makes the decision very

unnatural.

Feed-forward:

A general version of neural network is called Feed-forward neural network. The

fully connected feed forward neural network looks like the following diagram:

Figure 2.9: Multi Layer perceptron

A Feed-forward network or simple neural network the term you would have heard

basically a collection of neurons, each of these units here are neuron. Now each of

these neurons neurons or each of these layers which are concatenated vertically has

14

specific name, the very first layer is called Input Layer. Here you will have multiple

features but in our work we have 6 features i.e Acx, Acy, Acz, Gyx, Gyy, Gyz. The

intermediate layers are called Hidden Layers, as you can see in Figure 2.8 number of

Hidden Layers are 2 which is same as we have considered in our work but the number

of units or neurons is different. In our work we have considered 12 units in the first

hidden layer and 6 units in the second hidden layer. You could have multiple Hidden

Layers. If the number of Hidden Layer is greater than one, then it’s called deep

network. The final layer where you actually get the output you are interested in is

called Output Layer. Here as you can see in the Figure 2.8, the number of classes or

targets in the Output Layer are 3 but in our work we have 5 classes for 5 gestures. The

number of neurons in the Output Layer need not be equal to the number of neurons in

the Input Layer and in general each layer might have different size. Now each of these

elements here is an artificial neuron, we can even treat the Input Layer as if they were

neurons but generally it’s only after the input layer that we look at each of these

neurons and call them artificial neurons.

Figure 2.10: Single neuron

Each neuron in the Hidden Layer and the Output Layer can be split into two parts

i.e preactivation and activation. Preactivation does aggregation(linear combination)

and activation does non-linearity. Now, if I look at any neuron, it has inputs coming

from all the previous entities in the input layer. So, let’s assume each neuron has n-

inputs plus a bias unit, here in Figure 2.9 there are 3 inputs but in our work we have

already mentioned that we have 6 inputs.

Activation Functions:

These are the functions which take in some input and provides some output

depending on the speciality of the function. For example a common activation

15

function is sigmoid function. The sigmoid function squeezes the given input between

0 and 1. However, in our work we have used Relu function for the Hidden Layers and

Softmax function for the Output Layer.

Relu function is a piecewise linear function that will output the input directly if it

is positive otherwise, it will output zero.

Softmax function that converts vector of numbers into a vector of probabilities,

where the probabilities of each values are proportional to the relative scale of each

value in the vector.

The formal way of looking what happens at a single node:

Output of node = y WT ∗ X + b

Where y= Activation function, W= Weights matrix, X= Input matrix, b= Bias

term, ��= Transpose of Weight matrix.

Loss function or Cost function:

In supervised machine learning algorithms, we want to minimize the error for each

training example during the learning process. This is done using some optimization

strategies like Gradient Descent, Stochastic Gradient Descent, AdaGrad, RMSProp,

Adam etc and this error we get from the Loss function. Loss function is the average

loss over the entire training data set. The optimization strategies aim at minimizing

the cost function. Various type of Loss functions are available such as Mean square

Error(MSE), Mean of the Absolute Error(MAE), Huber Loss etc. We have used

Huber Loss function in our work.

Huber Loss combines the best properties of MSE and MAE. It is quadratic for

smaller errors and is linear(and similarly for it’s gradient). It is identified by it’s delta

parameter.

Lδ =
1
2

� − �(�) 2, �� � − �(�) ≤ �

� � − �(�) − 1
2

�2, ��ℎ������

16

Huber Loss is more robust to outliers than MSE. It is used in Robust Regression,

M-estimation, and Additive modelling.

Optimization Algorithm:

Gradient descent is an optimization algorithm that follows the negative gradient of

a Loss function in order to find the minimum of the function. A limitation of Gradient

descent is that a single step size(learning rate) for all the input variables. Improved

versions of Gradient descent like AdaGrad and RMSProp update the algorithm to use

different step sizes for all of the input variables but may result in step size that rapidly

decreases to very small values.

The Adaptive Moment Estimation(Adam) algorithm is an improved version of

Gradient descent and the combination of AdaGrad and RMSProp that automatically

adapts step size for all input variables for the Loss function and further smooths the

search process by using an exponentially decreasing moving average of the gradient

to make the update variables. We have used Adam algorithm in our work and

following the algorithm shown as:

Adam Optimizer (Learning Algorithm):

1. Initialize �0 ← 0, �0 ← 0, � ← 0

while �� not converged do

2. �� = �1 ∗ ��−1 + (1 − �1) ∗ ��

3. �� = �2 ∗ ��−1 + (1 − �2) ∗ ��2

4. �� � = ��
(1 − �1

�)

5. v�t = ��
(1 − �2

�)

6. �� = ��−1 − � ∗ �� �

��� + �

end while

return ��

17

Adam basically a combination of AdaGrad and RMSProp. The purpose of these

two algorithms combined are AdaGrad should not overshoot the global minima that is

the purpose of the RMSProp and the purpose of AdaGrad is the step size should adjust

itself accordingly, when it is near and far from the minima. Adagrad is a Adaptive

gradient optimizer which uses the first order derivative or the normal derivative ��. In

case of RMSProp it uses the square derivative ��
2 . The above algorithm you see is

taken from Adam research paper.

�� is the exponential moving averages of the gradient.

�� is the exponential moving averages of the squared gradient.

The default value of �1 and �2 is recommended by 0.9 and 0.999 respectively.

The value ϵ and α is recommended as 10−8 and 0.0001 respectively.

The meaning of Step 2 is at any give time t, we are giving more weightage to the

recent momentum and less weightage to the derivatives of momentum before that,

Same logic goes for Step 3 i.e here we are giving more weightage to ��−1 and less

weightage to the squared derivatives of the momentum before that.

The main concept of Step 2 and Step 3 lies in kind of smoothing or kind of taken

into consideration like what is the next step to be taken. Once we have computed ��

and �� , then we compute �� � and v�t . Now these two terms are known as bias

adjustment terms.

We do this bias adjustment in Step 4 and Step 5 because we have seen in the Step

1 only �0 and �0 is initialized to zero at time t=0. Hence �0 and �0 are biased

towards zero, in order to control these bias terms we use the refine term �� � and v�t. So,

�� � and v�t reduces the bias by using Step 4 and Step 5 respectively. Step 5 is nothing

but normal weight updating step. So, in this step v�t is there in the denominator, �� is

the RMSProp term means we are taking square derivation into consideration. So,

when v�t is large then this entire
�� �

��� + �
value will be less provided we have taken ��

constant, then there will be a lesser shift in the denominator, subsequently α will get

multiplied with that the weight will get adjusted.

18

Adam optimizer optimizes the function fast and in many research papers it is

observed that this optimizer works very well.

19

CHAPTER 3

Simulation Results

In this Chapter we will focus on the results which we have got by using both the

algorithms which we have discussed in section 2.2 on the same collected data i.e the

data which we have got by performing the different gestures on the Robotic Arm by

using the IMU MPU6050. So, in this Chapter we will create two sections i.e section

3.1 and section 3.2. Section 3.1 will focus on the results which we’ve got by using the

KNN and Section 3.2 will focus on the results which we’ve got by using the Neural

Network model.

3.1 Results by using KNN

Amount of data belongs to each gesture:

As we know that we have considered the number of gestures are five which we

have discussed in Chapter 2. So, first we see what amount of data we’ve got for five

different gestures i.e the data we were collecting while performing each of the five

gestures 100 times. The variation you see in the amount of data for different gestures

because some of the gestures take less time to complete a single instance. The bar plot

you can see below shows the amount of data belongs to each gesture:

Figure 3.1: Amount of data in five gestures

20

Test Accuracy:

As we know from Chapter 2 that the model representation for KNN is the entire

training data set. In other word we can say that KNN has no model other than storing

the entire data set, So there is no learning required. KNN makes the predictions using

the training data set directly.

In our work we have considered K values from 1 to 6 i.e we varied the neighbor

values from one neighbor to six neighbors and then we evaluated the corresponding

accuracy for all K values. So, table you see below is the accuracy which we have got

for all K values are:

Figure 3.2: Accuracy for different K values in tabular form

The bar plot of accuracy in percentage corresponding to each K is given below:

Figure 3.3: Accuracy for different K values in plotted form

So, from KNN algorithm we have got the highest test accuracy which is 71.29 %

that too for K=4, which is not so good accuracy that is why we need to explore some

other model which gives better accuracy compared to that of KNN. To improve the

accuracy we have considered Fully Connected Feed-Forward Neural Network model

aka Multi Layer Perceptron with Adam Learning algorithm, which we have discussed

in Chapter 2.

21

3.2 Results by using Feed-Forward Neural Network

Here in this model unlike KNN we have to train the model first by using the training

data and then we used testing data to make predictions. So, here the model is Fully

Connected Feed-Forward Neural Network model and we have trained this model by

using Adam optimization algorithm and for evaluation of loss we have used Huber

Loss which we have described in the Chapter 2. Therefore here we will have two

accuracy i.e training accuracy and test accuracy. Training accuracy we have while

training the model and it shows how good you have trained your model and this

training accuracy we have got because of training data whereas Test accuracy or we

can say it as real time accuracy is the accuracy which we have got while predicting

the model i.e how good the model predicted the class value based on the new data i.e

when data is from test data set. Since we know only training data is known to the

model not the testing data, that is why this testing accuracy is also known as real time

accuracy.

Training Accuracy:

Here for training we have considered 1000 epochs and 350 batch size. Thousand

epochs means the model goes through the data 1000 times or we can call epochs as

iterations as well. Batch size is a hyper parameter of the learning algorithm that

controls the number of training samples to work through before the model’s internal

parameters are updated.

The below table shows fewer epochs(final epochs) that is at last at what accuracy

or how good our model is trained:

Figure 3.4: Train accuracy for final epochs

22

We have also plotted the graph of the model accuracy or we can training accuracy,

where you have to multiply by 100 to know the accuracy in percentage. The model

accuracy plot is shown below:

Figure 3.5: Model accuracy while training the model

We have also plotted the graph for the model loss as well, here also you have to

multiply by 100 to the loss which is given in decimals in the plot to know the model

loss in percentage, the plot is shown below:

Figure 3.6: Model loss while training the model

Testing Accuracy or Real time Accuracy:

The accuracy which we have got by giving the new set of values that is the values

from the testing data set to the model in order to check how good the model works in

the real time. Here the test accuracy which we have got from the model is given below:

Figure 3.7: Real time accuracy

23

You can also see how good this model predict by the given result which we have

got for a single test data value. The picture of the prediction you can see below:

Figure 3.8: Sample of prediction.

As you can see in the Figure 3.8 it is shown that our actual value is which is 3 is

equal to the predicted value. Here, we have used One-Hot Encoder to standardize the

class value which initial was in words i.e one, two ,three etc. As you can see from the

above diagram as well that the encoded value of three is [0. 0. 1. 0. 0.] by using this

hot encoder.

So, as we have seen from this Feed-Forward Neural Network Model we have got a

better accuracy i.e 87.613%, the accuracy I mean testing accuracy, which is for single

testing data set but the overall accuracy varies from 85-90% which is better compared

to that of KNN. You can observe our training accuracy as well that is 91.36% which

is good.

So, overall we can say that as expected our Neural network model is far better as

compared to that of KNN and one should choose or use Neural Network model to get

good real time accuracy.

24

CHAPTER 4

FutureWork and Conclusion

This chapter discusses what one can do in future having that much of results i.e the

result which we have got and finally concludes the work which we have done here.

Future Work:

Much of this work has focused, on the simulation part that is here we have trained the

model based on the data we have got from sensor for different gestures. Now, one can

proceed further from this work by implementing the algorithms which we have

discussed in our work on the hardware device in order to take advantage in real time

problems. The real time problem for instance it can helpful for the people who can not

able to communicate via voice to other person. For those persons one can make the

device by using of Arduino, BLE, MPU 6050, some wearable type hardware in which

one would be able to fit all these hardware and then simply burn the algorithm on the

Arduino that we have discussed in our work, we found out that Neural Network model

gives far better accuracy compared to that of KNN. So, one can rule out KNN if

someone want to makes device which aims for predictions in real time.

Conclusion:

The Data was generated by the robotic arm by placing a sensor MPU6050 over the

device. Initially, Data cleaning process was carried out in order to find out NULL

values and removed if any, in the collected sensor data. In order to visualize the data

t-SNE was implemented. So, the main objective was to find out the best algorithm

which would give us the better accuracy. The entire above mentioned algorithm is

coded in python. The some of the gestures are somewhat similar to other, by taking all

the gestures as different from one another we can even improve our accuracy. In this

work we have seen the Neural Network model with Adam optimizer gives us the

better accuracy to predict the above classification problem and it’s accuracy which we

have got is 85-90%.

25

REFERENCES

1. Diedrick P. Kingma, Jimmy Ba. Adam: A Method For Stochastic Optimization.

2. Rafiqul Zaman Khan, Noor Adnan Ibraheem. COMPARATIVE STUDY OF
HAND GESTURE RECOGNITION SYSTEM.

3. Paulo Trigueiros, Fernando Ribeiro, Luis Paulo Reis. A comparision of machine
learning algorithms applied to hand gesture recognition.

4. Sungtae Shin, Han UI Yoon, Byungseok Yoo. Hand Gesture Recognition Using
EGaIn- Silicone Soft Sensors.

5. Monu Verma, Ayushi Gupta, Santosh K Vipparthi. One For All: An End to End
Compact Solution For Hand Gesture Recognition.

6. Hao Tang, Hong Liu, Wei Xiao, Nicu Sebe. Fast and Robust Dynamic Hand
Gesture Recognition via Key Frames Extraction and Feature Fusion.

7. Minwoo Kim, Jaechan Cho, Seongjoo Lee, Yunho Jung. IMU Sensor-Based Hand
Gesture Recognition for Human-Machine Interface.

8. Yen-Cheng Chu, Yun-Jie Jhang, Tsung-Ming Tai, Wen-Jyi Hwang. Recognition
of Hand Gesture Sequences by Accelerometers and Gyroscopes.

9. Gupta, H.P., Chudgar, H.S.,Mukherjee, S., Dutta, T., Sharma, K. A continuous
hand gestures recognition technique for human-machine interaction using
accelerometer and gyroscope sensors.

	MACHINE LEARNING(ML) FOR GESTURE RECOGNITION.
	RAHUL MEENA
	MASTER OF TECHNOLOGY

	CERTIFICATE
	Prof. Anil Prabhakar

	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	FigureTitlePage

	ABBREVIATIONS
	CHAPTER 1
	CHAPTER 2
	2.1Gesture Recognition
	2.1.1Background
	2.1.2Definition and Types of Gesture Recognition
	2.1.3Components and Gesture images

	2.2Algorithms
	2.2.1K-Nearest Neighbor
	2.2.2Feed-Forward Neural Network (Multi Layer Perceptro

	CHAPTER 3
	3.1Results by using KNN
	3.2Results by using Feed-Forward Neural Network
	CHAPTER 4
	Future Work:
	Conclusion:
	REFERENCES

