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ABSTRACT

The aim of the project is to use deep learning to implement digital pre-distortion. Non-

linearities are introduced when a power amplifier is operated close to its peak power.

The term "digital pre-distortion" refers to a technique for distorting a signal before it

enters the PA so that the output will remain linear even when the amplifier is operated at

near peak power. The effect of predistortion can be viewed through AM-AM, AM-PM

plots and also in spectral plots as pre-distortion results in the suppression of the side

bands of the output spectrum that arises due to the nonlinearity of power amplifier. Due

to inability to access a physical power amplifier, a power amplifier was modelled using

RF Blockset library in Simulink where the amplifier can be modelled as nonlinear,

memory polynomial using a Memory Polynomial Model which is derived from the

Volterra series that is commonly used to represent any form of non-linearity with M-tap

memory. Prior to applying neural networks approach for DPD, a primitive algorithm

which is based on inverse characteristics approach was employed. The effectiveness

of neural networks over this primitive algorithm comes to forefront when the neural

networks approach could compensate even for the memory effect of the power amplifier.

Quantitative analysis in terms of band powers and suppression in the sidebands due to

compensation by DPD has been done as part of the project.
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CHAPTER 1

INTRODUCTION

The power amplifier is a critical part of a wireless communication transmitter (PA). The

PA should be operated at or close to its peak power for maximum efficiency. However,

this could cause the device to operate in a non-linear manner. Non-linearity introduces

spectral re-growth outside of the allocated bandwidth. In addition, in-band distortion

caused by the PA’s non-linear behaviour causes higher error vector magnitude (EVM)

at the transmitted output in the case of linear modulations. Linearisation techniques

are used to achieve both linearity and efficiency at the same time. The non-linearity

exhibits memory effects for wideband waveforms with symbol durations comparable to

the device memory, making compensation challenging.PA linearization can be carried

out in either the analogue or digital domains. Due to the freedom of design as well as

the diversity and repeatability of implementation, the latter is frequently chosen.

Digital Pre-Distortion (DPD) is a popular linearisation approach that pre-distorts the

envelope using baseband digital signal processing so that the distortion generated by the

PA may be recovered. The idea is driven by the fact that baseband equivalent discrete-

time models may be used to predict the behaviour of the PA and thus its inverse (the

pre-distorter).Deep Neural Networks (DNNs) have recently gotten a lot of attention in

the signal processing field, especially in the areas of image and speech processing. The

application of DNNs to solve communication challenges is a relatively new technique.

Two techniques or approaches to employ DPD for a power amplifier are discussed in

the thesis. The first is an Inverse Characteristics Approach, which is a primitive algo-

rithm to apply DPD.The second technique is using DNNs to employ DPD to achieve

linearization. The effectiveness of using DNNs for DPD comes to the forefront when

this approach could compensate even for the memory effects.



1.1 Memory effect on a Power Amplifier

The time difference between excitation (input) and response (output) is characterised as

memory. Only when the system to which stimulation is applied could slow down can

this happen. Those means are components capable of storing electromagnetic energy,

e.g., inductors and capacitors. Nonlinearity in an amplifier manifests itself as a change

in gain (compression or expansion) and the development of intermodulation products.

It is intuitively clear why additional products are generated because the total power of

the signal in the time domain is represented by spectral components in the frequency

domain, so the sum of all components must be constant and equal to the value of total

power. Thus, if one of those components’ power is reduced due to compression, there

will be increase in power in other components, which is confirmed by Parseval’s theo-

rem. Fig. 1.1 illustrates the effect of memory observed in an AM-AM plot, which is a

plot of variation of output power versus variation in input power.

Fig. 1.1: Generalized AM-AM plot
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1.2 Flow of Thesis

• In the first chapter, basic introduction to the project was discussed.

• In the second chapter, the Inverse Characteristics Approach of Digital Predistro-
tion for linearizing a PA will be discussed.

• In the third chapter, modelling a PA in simulink usinf RF Blockset will be dis-
cussed.

• In the fourth chapter, quantitative analysis of the Neural Networks Approach will
be discussed.
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CHAPTER 2

Inverse Characteristics Approach

The idea behind this technique is to subject the input signal to the inverse AM/AM and

inverse AM/PM characteristics, and then pass the predistorted signal through the PA,

which would result in an improvement in linearity. The figure below gives a pictorial

representation of this approach.In the figure, PD stands for predistorter, PA stands for

power amplifier. AM/AM curve is the plot of power at output of PA vs power at input

of PA. AM/PM curve is the plot of phase difference between synchronized input and

output symbols vs power at input of PA. Ideally, the AM/AM plot for a PA should be a

y=x line when input and output samples are normalized, and AM/PM curve should be

along the x axis i.e. zero over the entire range of input power levels.

Fig. 2.1: Inverse Characteristics Approach

In the Fig. 2.1, PD stands for predistorter, PA stands for power amplifier. AM/AM

curve is the plot of power at output of PA vs power at input of PA. AM/PM curve is

the plot of phase difference between synchronized input and output symbols vs power

at input of PA. Ideally, the AM/AM plot for a PA should be a y=x line when input and

output samples are normalized, and AM/PM curve should be along the x axis, i.e. zero

over the entire input power levels. The graphical representation of the algorithm for this

approach is shown in the figure below.



Fig. 2.2: Graphical Representation of Inverse Characteristics Algorithm

Timing offset correction, phase unwrapping and data gridding are applied to obtain

the plots before applying any predistortion. The purpose of data gridding is to obtain

averaged characteristic curves and it also eliminates any outliers in the data if present.

Once the curves are obtained, we can obtain the inverse AM-AM and AM-PM curves,

then using the polynomial coefficients that characterize the inverse AM-AM and AM-

PM curves, predistortion is applied onto the original transmitted symbols. On transmit-

ting these symbols through the PA and follow the steps as explained above to obtain

the new AM-AM and AM-PM characteristic curves. To establish the correctness of the

algorithm, before applying this algorithm onto a real-world dataset, it was applied on

simulated datasets.The first dataset is of the uniformly distributed constellation in the

square with vertices [+0.7, +0.7], i.e. the maximum magnitude over all these transmit-

ted symbols does not exceed one. The received symbols are a delayed and non-linearity

induced version of the transmitted symbols. An arbitrary delay(in samples) has been

forced upon the transmitted samples. The plots obtained are for the following scenarios:

1) Fifth order non-linearity with real coefficients, i.e. x – 0.1x(|x|)2 + 0.005x(|x|)4 is

introduced.

2) Fifth order non-linearity with complex coefficients :

x – 0.1x|x|2 + (0.005x|x|4) ejπ/4

To observe the spectral suppression in the sidebands, instead of using samples cor-

responding to the arbitrary constellation as in the previous case, QPSK symbols(with
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max amplitude of 1), at a sampling rate of 2M samples/sec and 16 samples per symbols,

accounting to 125K syms/sec with a rolloff rate of 0.2, are used. The power spectra are

plotted for the original transmitted symbols, received symbols before applying predis-

tortion and received symbols obtained after applying predistortion. Welch averaged

periodogram method with 50% overlap is used for plotting the power spectrums.

Fig. 2.3: AM-AM and AM-PM plot for real coefficients scenario

Fig. 2.4: Power Spectra for real coefficients scenario

From Fig. 2.4 and Fig. 2.6, we can infer that the algorithm is able to suppress

the side bands arising in the spectrum of received symbols due to the nonlinearity.
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Fig. 2.5: AM-AM and AM-PM plot for imaginary coefficients scenario

Fig. 2.6: Power Spectra for imaginary coefficients scenario
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Fig. 2.7: Power Spectra for real world dataset

It is also clear that this algorithm works well with memoryless PA models with real

or complex coefficients. When this algorithm is employed on a real world dataset, it

fails to linearize the PA. Infact it further increases the power in the side bands after

compensation as shown in Fig. 2.7.
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CHAPTER 3

Modelling a PA using RF Blockset

RF Blockset provides a Simulink model library that allows us to simulate RF transceivers

and front ends. We can model nonlinear RF amplifiers to estimate gain, noise, even-

order and odd-order intermodulation distortion, including memory effects. In case of

absence of access to a physical power amplifier, this RF Blockset library could be used

to model a PA. The way to model is, we have to provide input and output samples from

a real power amplifier setup and the polynomial coefficients that caharacterize the PA

are derived as a least square estimation of the ’Memory Polynomial’ model as in the

equation:

yMP (n) =
K−1∑
k=0

M−1∑
m=0

akmx(n−m)|x(n−m)|k (3.1)

This equation is derived from the Volterra series, which is generally used to repre-

sent any form of nonlinearity with M-tap memory. In 3.1, m represents memory length

and k represents order of nonlinearity. Suppose we want to fit a polymial to the input

and output data that we have and let us say we want a memory length of 3 and order of

nonlinearity of 3, then the coefficients akm are elements of a 3x3 matrix comprising of

complex numbers, which are obtained using least squares estimation.

Fig. 3.1: Memoryless vs Memory Model Fitting



Real world data obtained for an NXP Airfast PA by passing a 100MHz OFDM

waveform with 64-QAM modulation at a sampling rate of 860.12 MHz is used to model

the PA in Simulink for the thesis. Fig 3.1 depicts the comparison of actual gain vs

estimated gain of the PA when the amplifier is modelled as memoryless non-linear

model with 5th order nonlinearity. To validate the fitting, percentage RMS error of the

fitted signal with the actual output signal could be computed.

Memory length Degree of Non-linearity RMS error(%)
1 3 12.1884
2 3 8.7763
3 3 7.0758
4 3 6.68
5 3 6.2159
1 5 9.0412
2 5 8.5599
3 5 6.9641
4 5 6.4847
5 5 6.1056
6 5 6.073
7 5 6.018

The table above indicates the RMS error in percentage when varying the memory length

and degree of nonlinearity for fitting the input and output data to model the PA. The

RMS error is about 12% when the PA is modelled as memoryless and when modelled

with memory length of 5 or above, it comes down to 6%. Since the RMS error does

not dip by a considerable amount for memory lengths greater than 5, henceforth for the

thesis, the PA was modelled as 5th order nonlinear, memory length.
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CHAPTER 4

Neural Networks Approach

A quantitative analysis to the already established algorithm was done as part of the

project. In this approach, a neural network is trained as a predistorter and symbols are

first passed through this network and then through the memory polynomial function that

represents the power amplifier. The neural network that is trained as a predistorter has

2 hidden layers. The pictorial representation of the algorithm is as follows.

Fig. 4.1: Neural Networks Algorithm

In fig. 4.1, the f(x) function represents the PA characteristic polynomial defined

by the Memory Polynomial Model.The PA that is represented here is an NXP Airfast



PA which has an operating frequency range from 3.6GHz-3.8GHz. It gives a typical

gain of 28.2dB when operated at 3.7GHz. Calculating the band powers including the

main band and the side bands of the power spectrum for the received symbols before

predistortion and received symbols after applying predistortion gives us the amount of

suppression in the sidebands in dB. This process is done at different operating points of

the power amplifier and doing this gives us an idea of where this algorithm is going to

fail. Operating points considered are for example 0.5dB compression point, 1 dB com-

pression point, etc. The input and output power levels corresponding to these operating

points are given in the table below.

Operating point Input power(dBm) Output Power(dBm)
In Linear Region 13.0103 40.5261
0.5dB compression point 17.1052 43.75
1dB compression point 17.5846 43.9107
1.5dB compression point 18.1346 43.9107
Beyond 1.5dB compression
point

18.5846 43.9107

As stated earlier that band powers have been calculated for transmitted symbols,

received symbols before and after compensation for different scenarios. The tables

below are the observations recorded when QPSK modulated waveform with 8 samples

per symbol at a sampling rate of 8MHz and a roll-off factor of 0.2 is used as test signal.

So the bandwidth of the main band of the QPSK signal being transmitted accounts to

1.2 MHz.

Fig. 4.2: Band powers representation
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The tables below will give a picture of how much suppression of sidebands is the algo-

rithm able to produce under different scenarios.

Fig. 4.3: Spectral Analysis - Operating point in Linear Region

Table 4.1: Band powers - Operating point in Linear Region

Band Transmitted
Symbols
Power(dBm)

Received
Symbols
Power before
Compensa-
tion(dBm)

Received
Symbols
Power after
Compensa-
tion(dBm)

Suppression
due to com-
pensation(dB)

Main Band 5.6978 5.7019 5.7837
L1 band -35.5292 -26.7628 -34.7168 7.9558
U1 band -35.6057 -26.422 -34.758 8.3058
L2 band -46.7072 -33.653 -44.0532 10.879
U2 band -46.703 -34.3682 -44.0947 9.4002

So, for the case where PA is operated in the linear region, the suppression of side-

bands that is happening because of predistortion in L1 and U1 sidebands is about 8dB

and about 10dB in case of L2 and U2 sidebands.
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Fig. 4.4: Spectral Analysis - Operating point at 0.5dB compression point

Table 4.2: Band powers - Operating point at 0.5dB compression point

Band Transmitted
Symbols
Power(dBm)

Received
Symbols
Power before
Compensa-
tion(dBm)

Received
Symbols
Power after
Compensa-
tion(dBm)

Suppression
due to com-
pensation(dB)

Main Band 5.6546 5.6221 5.5653
L1 band -35.5646 -27.6831 -35.4831 7.994
U1 band -35.6373 -27.3635 -35.5262 8.1627
L2 band -46.7762 -41.9498 -45.5877 3.6379
U2 band -46.771 -40.6592 -45.5967 4.9375

For the case where the PA is operated at 0.5dB compression point, the suppression

is about 8dB in L1 and U1 sidebands and about 4-5dB in L2 and U2 sidebands.
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Fig. 4.5: Spectral Analysis - Operating point at 1dB compression point

Table 4.3: Band powers - Operating point at 1dB compression point

Band Transmitted
Symbols
Power(dBm)

Received
Symbols
Power before
Compensa-
tion(dBm)

Received
Symbols
Power after
Compensa-
tion(dBm)

Suppression
due to com-
pensation(dB)

Main Band 5.6354 5.6393 5.6602
L1 band -35.6575 -26.1178 -36.6453 8.5275
U1 band -35.566 -31.0773 -34.5551 3.4778
L2 band -46.7818 -32.6693 -43.3351 10.6658
U2 band -46.842 -33.5959 -43.3947 9.7988

In the case of PA bening operated at 1dB compression point there is about 8dB

compression in L1 sideband and 3.5dB compression inU1 sidebands. The difference

in suppressions in L1 and U1 sidebands is more in this case due to the unsymmetrical

power spectrum on both sides of dc.
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Fig. 4.6: Spectral Analysis - Operating point at 1.5dB compression point

Table 4.4: Band powers - Operating point at 1.5dB compression point

Band Transmitted
Symbols
Power(dBm)

Received
Symbols
Power before
Compensa-
tion(dBm)

Received
Symbols
Power after
Compensa-
tion(dBm)

Suppression
due to com-
pensation(dB)

Main Band 5.6546 5.6502 5.5803
L1 band -35.5645 -24.3858 -29.4359 5.0501
U1 band -35.6373 -28.349 -29.4087 1.0597
L2 band -46.7762 -31.2451 -36.1545 4.9094
U2 band -46.771 -32.3148 -36.1263 3.8115

When PA is operated at 1.5dB compression point, the amount of suppression starts

decreasing. There is 5dB and 1dB suppression in L1 and U1 bands respectively.
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Fig. 4.7: Spectral Analysis - Operating point beyond 1.5dB compression point

Table 4.5: Band powers - Operating point beyond 1.5dB compression point

Band Transmitted
Symbols
Power(dBm)

Received Sym-
bols Power
before Compen-
sation(dBm)

Received Sym-
bols Power
after Compensa-
tion(dBm)

Main Band 5.6416 5.6109 5.5252
L1 band -35.5899 -21.2074 -20.6825
U1 band -35.607 -23.7813 -20.6772
L2 band -46.7818 -28.1895 -27.3169
U2 band -46.7902 -30.293 -27.3353

This algorithm breaks down when PA is operated beyond 1.5dB compression point

for the power amplifier model in consideration. Here, the power in the sidebands for

received symbols after applying predistortion is higher then for received symbols before

applying predistortion as depicted in the fig. 4.7.
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CHAPTER 5

CONCLUSION

In the absence of access to a real power amplifier, RF Blockset comes in very handy

to model the power amplifier and thus helps in maintaining the continuity of a project.

With the Neural Networks approach, until the power amplifier was operated at 1.5 dB

compression point, the algorithm is successfully able to suppress the sideband power

by a minimum of 5dB in the immediate sidebands. The third and foremost important

point is the dataset that was used to model the PA had input power corresponding to

1.5dB compression point only. Thus beyond 1.5dB compression point, the PA model

in Simulink does not paint the true characteristics of the real world PA. While using

RF Blockset in Simulink, the data available to model the PA using Memory Polynomial

must include the entire range of input power that the PA can handle (Pin < Pmaxinput)

to get a more accurate model of the amplifier over the entire range.
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