
Suite File Generation for Test

Automation Framework

A project thesis

submitted by

Mittapalli Harshavardhan
ee19m021

in partial fulfillment of the requirements

for the award of the degree of

Master of Technology

June 2021

Dept. of Electrical Engineering

IIT Madras

Chennai 600 036

Thesis Certificate

This is to certify that the thesis (or project report) titled Suite File Generation

for Test Automation Framework, submitted by Mittapalli Harshavardhan

bearing roll no.EE19m021, to the Indian Institute of Technology Madras, for the

award of the degree of Master of Technology, is a bonafide record of the research

work done by him (her) under my (our) supervision.The contents of this thesis (or

project report), in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Place: Chennai

Date: 28th June 2021

V Kamakoti

Guide

Professor

Dept. of Computer Science Engi-

neering

Avhishek Chatterjee

Co-Guide

Assistant Professor

Dept. of Electrical Engineering

2

Acknowledgements

I express my deep sense of gratitude to all those who have been instrumental

in preparation of this project. I’m very much thankful to Prof V Kamkoti ,for

accepting to guide me for this Project.

I also extend my gratitude to Prof Avhishek Chatterjee who supported me

as a co-guide from electrical department.

I acknowledge the kind of support,efforts and timely guidance provided by my men-

tor Anand Kumar S,Pricipal Project Staff, RISE lab,IIT Madras whose guidance,

encouragement,suggestions and very constructive ideas have contributed immensely

in progress of this project.

3

Abstract

KEYWORDS: SoC,Features;Test cases;Suite file

.

A System on Chip (SoC) is a single chip that contains the memory, processor,

and input/output controllers.In simple terms, a System on Chip, or SoC, is an inte-

grated circuit, or IC, that integrates a whole electronic or computer system onto a

single substrate.A central processor unit, input and output ports, internal memory,

and analogue input and output blocks are just a few of the components that a SoC

tries to contain within itself.Signal processing, wireless communication, artificial in-

telligence, and other operations can be performed depending on the type of system

that has been shrunk to the size of a chip.

Serial communication protocols like UART,I2C,SPI and others are referred as fea-

tures. Each feature has it’s own set of testcases.A suite file is a JSON format

file which contains the parameters of test cases of particular feature or single test

case.Generation of a suite file has to be done either by entering one or more features

manually or after noticing any modifications (or newly added) test cases to features.

With this suite file as input, testcases are executed and a html report is generated

at the end of the run

4

Abbreviations

SoC System on Chip

JSON Java Script Object Notation

RISC Reduced Instruction Set Computer

GDB Gnu Debugger

OCD On Chip Debugger

UART Universal Asynchronous Receiver Transmitter

I2C Inter Integrated Circuits

SPI Serial Peripheral Interface

GPIO General Purpose Input Output

PWM Pulse Width Modulation

5

Contents

Acknowledgements 3

Abstract 4

Abbreviations 5

1 Introduction 7

1.1 RISC-V ISA Overview . 7

1.2 Development environment . 7

1.3 Why Test Automation? . 8

1.3.1 Reduces the risks of Failure 8

1.3.2 Save Time . 8

1.3.3 Accuracy and Reliability . 8

1.4 Problem statement . 9

1.5 Approach . 9

1.6 Introducing JSON . 9

2 Implementation and Algorithm 11

2.1 Functionalities of the framework . 11

2.1.1 Selection of testcases . 11

2.1.2 Tests Parameters . 12

2.1.3 Generate suite file . 13

2.1.4 Execute tests . 15

3 Work accomplished and Results 17

3.1 Worked out python codes . 17

3.2 Results . 18

3.2.1 Output suite file . 19

3.2.2 Report . 21

3.2.3 Conclusion . 21

6

Chapter 1

Introduction

The Reconfigurable Intelligent Systems Engineering (RISE) group at IIT-Madras

created SHAKTI as an open-source project.The SHAKTI project is developing a

family of six processors based on the RISC-V instruction set architecture.Based on

the RISC-V ISA, the project has developed an embedded class (named E-Class)

and a controller class (called C-Class) of processors. Also pronounced as “risk-

five”,RISC-V is a free and open Instruction Set Architecture (ISA) enabling a new

era of processor innovation through open standard collaboration.

1.1 RISC-V ISA Overview

RISC-V was created with the intention of assisting computer architecture research

and education.However, it has now become the industry’s standard free and open

architecture.The RISC-V ISA is made up of a base integer ISA that must be present

in any implementation, as well as optional extensions to the base ISA.The width

of the integer registers and the matching size of the address space, as well as the

number of integer registers, define each base integer instruction set.Little-endian

RISC-V is available in 32 and 64 bit versions.Int is 32 bits for each.The native

register size is pointers and long.In a larger register, signed values are always sign

extended.Values in the unsigned 8/16-bit range are zero extended.Sign-extension is

applied to unsigned 32-bit data.RISC-V was created to allow for a great deal of

customization and specialization. User level Spec and Privilege level Spec are the

two volumes of the RISC-V specification.

1.2 Development environment

The tool chain installation required and further steps are followed as per reading

on ”Learn with Shakti” Development Environment[1]. Also the steps for cloning

”Shakti-SDK” repository are followed as per the instructions provided on the page

7

Setting up Shakti-SDK[2]. Very detailed explanation about the same is mentioned

in Shakti-soc-user-manual[3] under section 5.2. After installation a sample program

”hello.c” was run to see what are the steps followed for compiling and execution of

.c program.

1.3 Why Test Automation?

Manual testing is meticulously carrying out predetermined test cases, comparing the

outcomes to the intended behavior, and documenting the findings.Manual testing

is time-consuming and prone to errors because it is repeated every time the source

code changes.Execution on many platforms is equally tough.

Automation testing is the use of tools and technologies to test software in order to

reduce testing efforts and deliver functionality faster and more affordably.It aids in

the development of higher-quality software with less effort.Once automated tests are

built, they may be readily replicated and extended to perform things that would be

impossible to accomplish manually.

1.3.1 Reduces the risks of Failure

The risk of bugs leaking into the field is reduced by a robust set of test suites that are

run periodically each time the code is changed. Automated testing aid in the early

detection of flaws in software development, lowering the risk of providing incorrect

software.

1.3.2 Save Time

While the initial setup of automated testing cases takes a lot of time and work, you

may reuse these tests once they’ve been automated. Automated tests are substan-

tially faster than manual testing, have less errors, and require less effort.Automated

tests can be run frequently once the setup is complete, cutting the time it takes to

run repetitious manual tests from weeks to hours.

1.3.3 Accuracy and Reliability

After all, manual testers are humans, thus mistakes are to be expected. This could

lead to the development team receiving erroneous results. Automated tests repeat

the same steps with pinpoint accuracy every time. In most cases, the results are

made available to all parties involved in the shortest period possible.

8

1.4 Problem statement

Given a feature for a SOC, there will be a set of test cases for that particular

feature or we can say a feature determines test cases.A suite file is collection of test

cases.This project focus is to identify the set of test cases and generate the suite file

which contains those test cases,then execute those test cases and generate a html

report at the end. This problem statement of generating suite file and execution is

the initial step in the high level design of Test Automation Framework.

1.5 Approach

The approach is dividing into two parts:

• Identification: First we have to generate the suite file which consists the test

cases for that particular feature of SOC. A test case will have set of inputs,

pass or fail criteria and setup. Based on these suite file is generated.

• Execution: Once suite file is generated next task is to execute the test cases

in that suite file. Libraries will have test case execution steps. A html report

is generated at the end.

The generated report results are analysed in the final conclusion.

1.6 Introducing JSON

Since the entire focus of this project is to generate a suite file which is .json format

file. It becomes important to understand the structure of .json file.

JSON (JavaScript Object Notation) is an information trade design that is easy

to use.Reading and composing are straightforward undertakings for people. Ma-

chines can without much of a stretch parse and produce it.It depends on a subset of

the ECMA-262 third Edition - December 1999 JavaScript Programming Language

Standard.JSON is a language-free content configuration that fuses norms regular to

software engineers of the C-group of dialects, like C, C++, Java, JavaScript, Perl,

Python, and numerous others.JSON is an optimal information move language as a

result of these attributes.

JSON is made up of two distinct structures:

• Name/value sets are assembled together in this group. This is represented as

an object, table, dictionary,struct, keyed list,hash or associative array in many

languages.

9

• A set of values in a specific order.This is implemented as an array, vector, list,

or sequence in most programming languages.

These are information structures that are widespread.They are upheld in some struc-

ture or another by practically all advanced writing computer programs languages.It’s

just normal that an information design that can be utilized with various codings de-

pends on these constructions.

Figure 1.1: Example showing JSON file structure (with arrays) .

For better understanding of a JSON structure one can take the help of Introduc-

ing JSON[4]

10

Chapter 2

Implementation and Algorithm

Test automation frame work is a design to be used for automating testing of SoCs

based on the Shakti processor so that time to test is reduced and number of test

cases executed can be increased. This chapter deals with steps to generate a suite

file and execution of testcases in the suite file.

2.1 Functionalities of the framework

• Select the list of testcases

• Test parameters

• Generate suite file

• Execute tests

2.1.1 Selection of testcases

As stated before, Every feature has its set of testcases.So to identify testcases we

need features first. These features are fed to program either manually by user or

from the git log command as shown in Fig 2.1 in the next page. Once the features

are known,a list is prepared which comprises of all the test cases of the features.This

testcases list serves as one of the parameters in the suite file.Preparation of testcases

list has to be done in such a way that it is dynamic and must be able to keep track

all the test cases of a particular feature and append the testcases of another feature

in the same list. This is done with the help of feature test program mapping.There

are several features are to be considered as one can see on Applications[5],but the

code that was worked to implement the frame work has taken into consideration

only two features i.e., UART and I2C. As it is just replicating a part of code to

take into consideration all the other features.These features are also referred as

applications .The code worked out was able to successfully detect the testcases of

11

Figure 2.1: High level design for Test Automation frame work.

the entered (one or both) features and was able to extract the list consisting of

testcases

2.1.2 Tests Parameters

After the testcase list is prepared, test parameters are required to complete the

structure for generating suite file.Test parameters consists of RUNID, Input, Ex-

pected output.RUNID is either the time stamp at which the suite file is generated

or entered manually by user.

1. Input: This list needs two elements. The first element is the path to the

gdb debugger. The second element is command to start the gdb debugger in

terminal.

2. Expected output: This is a list of arrays. Each array will contain the fol-

lowing three fields. The user can run the follows list of commands in their

given sequence in the gdb debugger.

(a) Command: The gdb command that need to be run. eg.”break main”

(b) expOpWordList: This is the list of key words that will be expected in

the terminal if the command runs succesfully. Give a empty string in the

list if no output is expected. eg:[”Breakpoint”,”1”]

(c) FailWordList: This is the list of key words that will be expected in the

12

terminal if the command does not execute. Give a empty string in the

list if no output is expected. eg:[”Make”,”breakpoint”,”pending”]

Figure 2.2: Figure showing structure of Test parameters.

The input and Expected output are picked up from a separate text(.txt) file

for each test case.Before creating this text file which contains this test parameters,

executable (ELF) file (with .shakti as extension) for that particular testcase has to

be generated.The steps for creating a ELF is explained in detail under section 5.3.3

in Shakti-soc-user-manual[3]

2.1.3 Generate suite file

Once the test case is prepared and test parameters are acquired the next step is to

combine them into single in JSON format.The suite files should be in valid JSON

format.Note that all the above extractions (test case list and test parameters) are

in a dictionary object format. Using json.dump, dictionary format is converting

13

Figure 2.3: Structure of a suite file.

14

into a JSON format and written into a file. This is the suite file and the name of

the file is it’s RUNID. So in simple words based on the features selected for testing,

suite file generator creates a file that has a list of test cases to be executed. Suite

file is generated based on the applicable test cases for a given feature. Input and

output values of each test case are provided in test case parameters. The suite file is

named after it’s RUNID. As shown in fig 2.3, a suite file has RUNID, testcase list,

parameters and Input, output test parameters

• RUNID : Id of the process

• TestcaseList : The list of testcase classes given here will be executed

• Parameters :

continueonfail :This takes only two values (true, false). Give true when you

want the next subtestcase to be executed when a subtestcase fails. Give false

when you dont want the next subtestcase to be executed when a subtestcase

fails.

eg:”false”

NOTE :This is a string ”false”.This is only to display on the output. It should

not be confused with the logical false object type of JSON file i.e., False as this

string ”false” doesn’t have any logical significance.

2.1.4 Execute tests

At present, Shakti SoC verification is done by running programs using openocd, gdb

and console. Openocd is used to connect to debugger in the SoC, gdb connects to

SoC using openocd to load and execute the programs. Output of these programs

are directed to UART0 by default. Before executing the test cases, FPGA is pro-

grammed with the mcs mentioned in the suite file.

Using pyexpect libraries execution engine opens 3 terminals, one each for openocd,

gdb and console for the given setup. Executes the command as provided in the test

case and checks for the expected output. Based on the output string, execution

engine marks the test case as passed or failed.

Initially the execution engine will run test cases that need one Artix 7100T, capa-

bility to work with multiple boards will be added in subsequent updates.

The worked out code for this Execution engine[6] can be described as follows:

This is engine of the Automated Testing framework. This is the class that needs to

be run by the user in order to run the testcases stated in the user.suite file. The

15

Engine requires a suite file to create an instance of it. The Engine class has two

functions. They are Run Testcases and Generate Report.

1. Run Testcases : This method is used to run the testcases stated in the

testcase list of the user.suite file. It returns a result list which is list of lists

containing lists of results of each testcase and the last two elements of this

result list are time taken to run all the testcases and the run id.

2. Generate Report: This method takes the result list as input parameter.

Checks whether each sub test of a testcase is passed or not. If each sub test

of a testcase is passed, It implies that the testcase is passed. This method

generates a html report.

16

Chapter 3

Work accomplished and Results

Given the background study from the previous two chapters, python code for gen-

erating desired suite file was developed. The logic was designed considering only

two features i.e., UART and I2C applications.The code can be made applicable to

other features and test cases by repeating certain conditions with those features as

variables.

Python 3.6 was platform used for working out codes and Jupyter notebook was used

as editor

3.1 Worked out python codes

Three python codes were developed.They can be accessed from suite file[7]

1. functions.py

2. suitegenerator.py

3. git suitegenerator.py

functions.py : This consists all the relevant logic as definitions which can to

be imported.This was done in order to reduce the repeating sections with different

variables in other two python codes. And it also becomes easier to debug.This file

has to be imported in other two codes for proper execution and getting outputs.

suitegenerator.py : This code was developed keeping in mind the case where

user gives the input manually.The input here is the string of features whose test-

cases are to be executed.It also takes RUNID as another input which is to be entered

manually.If the entered RUNID is of zero length string then it considers time-stamp

as RUNID.Time-stamp is the exact point of time (including the calendar date) at

which the code was executed. RUNID is specific for each and every execution so that

whenever documentation is made, RUNID is taken as reference for that particular

17

execution.

Before execution of this code, it is important to create two text(.txt) files in a

dictionary format.

• File that has relevant directory paths.

• File that has features and it’s testcases.

Along with these two files, a folder consisting of text files is created.And this

folder is to be created for all the features that are mentioned as Applications[5].

The text files inside this folders will have test parameters like Input and Expected

output for that particular testcase of a particular feature.This testparameters are

extracted and combined with RUNID,testcases list and other parameters as a list

in a dictionary format.Then, finally this dictionary format is converted into a json

format and written into new file named after it’s RUNID. This is the desired suite

file.

git suitegenerator.py : This is for generating suite file from git log command.

In python, Unix commands are executed with the help of OS and subprocess mod-

ules. Using the same git log command is executed and the output is captured as

a string. Then these string is parsed into a list to narrow down to a feature.Once

the feature is identified, the procedure is same as Suite file generator.py. The

only difference is sometimes we may have generate suite only for a single testcase

depending on the output of git log command.Before narrowing down to feature or

a testcase,the repeated features and overlapped testcases have to be removed in

order to reduce the execution time.Otherwise same testcase may be have repeated

appearance in final suite file. Code logic was designed accordingly.

3.2 Results

The code Suite file generator.py written was able to generate suite file which had

testcases of both features UART and I2C.These features are entered manually.It a

valid JSON format verified online at JSON lint[8]

Execution report of hello.c of UART feature from the generated suite file is shown

here.

18

3.2.1 Output suite file

The output suite file has two sections.

Figure 3.1: Section 1

This is the top section in the generated suite file. It consists of RUNID,testcase list

and continueonfail parameters. The testcases list of i2c feature is [at24c256,bmp280,

ds3231,lm75, mpu6050,pcf8574,pcf8591] whereas the testcase list of uart feature is

[hello,switch mode,csr test,loopback]. So as expected for the output string of features

”i2c applns,uart applns” the testcase list is the combined lists of both which is clearly

the case here.

Also one can notice the RUNID is a time-stamp (which is a point of execution of

the program) which is also the one of the objective of the suite file.As mentioned in

chapter 2, RUNID can be entered manually and the same will be displayed.

19

Figure 3.2: Section 2

This is the next section in the generated suite file. It has test parameters of a

all the testcases listed in the testcase list in the previous section. For each testcase,

the test parameter are in the format which is similar to what is shown above.

Using this suite file, we generate report using execution engine.

20

3.2.2 Report

This is the report for the ”hello” testcase. As shown, the report puts out the

RUNID,start time,End time,Time taken for executed testcase. minterm1 is related

to display on FPGA. As shown in the report the testcase was passed.

The remaining 10 testcases report are similar.

3.2.3 Conclusion

Achieved desired result of generating a suite file for the given features (in the form

of a string) and it was observed that all the testcases in the testcase list of the

generated suite file were shown status passed in the execution report.

21

Bibliography

[1] “Development Environment and Tool chain installation,” https://shakti.org.in/

learn with shakti/devenv.html, accessed: 12-06-2021.

[2] “Setting up the SHAKTI-SDK,” https://shakti.org.in/learn with shakti/

c-using-shakti-sdk.html, accessed: 12-06-2021.

[3] “Shakti-soc user-manual,” https://shakti.org.in/docs/shakti-soc-user-manual.

pdf, accessed: 12-06-2021.

[4] “Introducing json,” https://www.json.org/json-en.html, accessed: 12-06-2021.

[5] “Applications,” https://gitlab.com/shaktiproject/software/shakti-sdk/-/tree/

master/software/examples, accessed: 12-06-2021.

[6] “Execution engine,” https://gitlab.com/shaktiproject/software/

softwaretestautomation/-/blob/master/engine.py, accessed: 12-06-2021.

[7] “suite file generator,” https://gitlab.com/shakti-software/testautomation/-/

tree/main/suitegenerator, accessed: 15-06-2021.

[8] “Json lint,” https://jsonlint.com/, accessed: 16-06-2021.

22

https://shakti.org.in/learn_with_shakti/devenv.html
https://shakti.org.in/learn_with_shakti/devenv.html
https://shakti.org.in/learn_with_shakti/c-using-shakti-sdk.html
https://shakti.org.in/learn_with_shakti/c-using-shakti-sdk.html
https://shakti.org.in/docs/shakti-soc-user-manual.pdf
https://shakti.org.in/docs/shakti-soc-user-manual.pdf
https://www.json.org/json-en.html
https://gitlab.com/shaktiproject/software/shakti-sdk/-/tree/master/software/examples
https://gitlab.com/shaktiproject/software/shakti-sdk/-/tree/master/software/examples
https://gitlab.com/shaktiproject/software/softwaretestautomation/-/blob/master/engine.py
https://gitlab.com/shaktiproject/software/softwaretestautomation/-/blob/master/engine.py
https://gitlab.com/shakti-software/testautomation/-/tree/main/suitegenerator
https://gitlab.com/shakti-software/testautomation/-/tree/main/suitegenerator
https://jsonlint.com/

	Acknowledgements
	Abstract
	Abbreviations
	Introduction
	RISC-V ISA Overview
	Development environment
	Why Test Automation?
	Reduces the risks of Failure
	Save Time
	Accuracy and Reliability

	Problem statement
	Approach
	Introducing JSON

	Implementation and Algorithm
	Functionalities of the framework
	Selection of testcases
	Tests Parameters
	Generate suite file
	Execute tests

	Work accomplished and Results
	Worked out python codes
	Results
	Output suite file
	Report
	Conclusion

