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ABSTRACT

In this work, we study the outage probability (OP) at the destination of an intel-

ligent reflecting surface (IRS) assisted communication system in the presence of

phase error due to quantization at the IRS when a) source-destination (SD) link

is present and b) SD link is absent. First, an exact expression is derived and then

we derive two simple approximations for the OP using the following approaches:

(i) moment matching and, (ii) Kullback–Leibler divergence minimization. The

resulting expressions for OP are simple to evaluate and quite tight even in the

tail region. The validity of these approximations is demonstrated using extensive

Monte Carlo simulations. In this work, we also studied the impact of the pa-

rameters like the number of bits available for quantization, the position of IRS

w.r.t. source and destination and, the number of elements present at IRS on OP.

We derived the Upper bounds to OP using Cauchy-Scwartz inequality and upper

bound to bessel function of the second kind. We also studied how large an IRS

in order to provide reliable communication in the presence of phase error due to

quantization at the IRS. We derived the no of reflector elements needed so that

OP lie within an threshold and also optimized the OP for an IRS given an upper

bound on the IRS elements.

KEYWORDS: Intelligent reflecting surface, phase error, outage probability,

Kullback–Leibler divergence.
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CHAPTER 1

INTRODUCTION

Will 5G technology be just an evolution of 4G technology, or will these emerging

technologies needs rethinking of cell centric structure? What are the technologies

that will define 5G?

1.1 Need for New Technologies

It’s time to look for new multi-antenna technologies to meet the requirements of

higher data rate, reliability, and traffic demands in the era of beyond 5G. Two such

methods are adaptive beamforming gains and spatial multiplexing which leads to

high data. Sine, access to wireless connectivity becomes essential, our requirements

of coverage and service quality is growing continously. Present Architecture needs

major redesign. At a system level, the frame-based approaches which is heart of

4G need rethinking to meet the requirements for latency and flexible allocation of

resources to a massive number of devices as mentioned below:

• Existing coding methods rely on long code words which are applicable to
only very short data blocks.

• Short data blocks also worse the efficiencies connected with control and
channel estimation overheads. At present, the control plane is robust but sub
optimal since it represents fraction of payload data which needs an optimized
design.

There is an improvement in terms of latency, data traffic, but only achieved

by Users near to cell centers, while the inter-cell interference and handover issues

limist the performance of users at cell-edge. To address these, beyond-5G networks

needs cell-free structure, where the absence of cell boundaries alleviates the inter-

cell interference and handover issues but can also lands up with new challenges.
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Figure 1.1: Network architecture of Cell Free massive MIMO [1]

1.2 Emerging Technologies

1.2.1 Cell free Massive-MIMO

Communicating with user far away needs very high power. So, we now send

data to nearby AP which sends data to the user can be done with relativley low

power. But, densification of AP’s can increase inter-cell interference and handovers

must be frequent. These days the traffic is mostly at cell edges and hence its

better to connect with aset of AP’s, However, this needs fronthaul signaling for

CSI, data sharing and huge complexity. To reduce the fronthaul signaling and

computational complexity, a common approach was to divide the network into

disjoint clusters with few neighboring AP’s. This network-centric approach can

provide performance gains, but cannot addresses the interference and handover

issues. The resolve these issues, each user is served by those AP’s that can reach

with non-negligible interference which makes an user-centric network, where each

AP collaborates with different sets of AP’s when serving different Users.[? ]

A cell-free massive MIMO network consists of a large number of AP’s serving

a very smaller number of UE’s on the same time-frequency resource. The network

operates in TDD mode and exploits UL-DL channel reciprocity, so that each
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Figure 1.2: Overlapping sets of AP’s serving each User [1]

AP can acquire CSI between itself and all UEs from uplink pilots. This CSI is

sufficient to implement coherent transmission and reception, so only data signals

must be shared between AP’s. To enable such information flows, the AP’s are

assumed to be connected via fronthaul to cloud-edge processors that take care of

data encoding and decoding. Fig. 1.1 shows the basic network architecture of a

cell-free massive MIMO system and Fig. 1.2 shows how the AP’s can be divided

into partially overlapping subsets when serving the Users[1].

1.2.2 Beam space massive MIMO

Implementation of MIMO becomes difficult when carrier frequency and band-

width are increased. We can reduce difficulty level by using spatial structure of

the channels and transceiver hardware. The simplest kind of SISO adaptation is

linear precoding, where a multiple antenna signal multiplied with precoding ma-

trix is adapted to spatial CSI. With small array sizes, direct digital processing of

precoding was practical because it is cost-effective for small arrays to use a rela-

tively high-resolution analog-to-digital converter (ADC) at each transmit element.

As we are incrementing the number of antenna’s, we need to change the signal

processing and implementation of linear precoding.
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1.2.3 Millimetre-wave communication

While spectrum is scarce at microwave frequencies, it is plentiful in the mmWave

range of frequencies. MmWave cellular research must consider effects of blockages

and need for higher density infrastructure and relays. Adaptive arrays decreases

interference,so that we can operate in noise-limited conditions. mmWave systems

requires large power mainly to ADC’s and DAC’s. Thus, all antennas cannot

be connected to ADC/DAC due to power limitations unless there is an advance-

ment in semiconductor technology. One alternative is a hybrid architecture where

beamforming is performed in analog at RF, and multiple sets of beamformers are

connected to a small number of ADCs or DACS; where we require signal pro-

cessing algorithms for assigning weights. Another alternative is to connect each

RF chain to a 1-bit ADC/DAC, with very low power requirements; in this case,

the beamforming would be performed digitally but on very noisy data. There are

abundant research challenges in optimizing different transceiver strategies, ana-

lyzing their capacity, incorporating multiuser capabilities, and leveraging channel

features such as sparsity. mmWave requires radical changes in the system, as it

has a strong impact in both the component and architecture designs.

1.2.4 Device to device (D2D) communication

In voice-centric systems, distance between the callers will be large. But now, its

quite different, we use to stay in close proximity when sharing the data (e.g.,

pictures sharing, video gaming or social networking) wirelessly. Handling these

communication scenarios via simply connecting through the network involves gross

inefficiencies at various levels:

• Multiple wireless hops are required. This entails a multifold waste of signal-
ing resources as well as higher latency.

• Transmit powers of a fraction of a Watt (in the uplink) and several Watts
(in the downlink) are required. This, in turn, entails unnecessary levels
of battery drain and interference to all other devices occupying the same
signaling resources elsewhere.

• Given that the path losses to possibly distant base stations are much stronger
than direct link ones, the corresponding spectral efficiencies are also lower.
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Figure 1.3: Network architecture of D2D communication [2]

While it is clear that D2D will be very much better with Bluetooth or WiFi

direct. Mixture of low-latency and high-data-rate constraints (e.g., interaction

between users via augmented reality) were main reasons for the use of D2D. Fig.

1.3 shows an example network architecture of D2D communication system [2].

1.3 Existed Comparision of IRS with conven-

tional methods

Unlike cell-free massive MIMO systems and cooperative relays, which also attempt

to improve the propagation conditions by deploying active hardware components,

an IRS is believed to only require a small operational power making it suitable for

implementation in energy-limited systems. Besides, an IRS can operate naturally

in a full-duplex manner without the need of costly self-interference cancelation.

Furthermore, IRS is made of thin material, allowing for nearly invisible deployment

on building facades and interior walls. Hence, once a conventional network has

been deployed, one or multiple IRSs can be flexibly deployed to mitigate coverage

holes that have been detected or to provide additional capacity in areas where

that is needed. In fact, the IRS is not supposed to replace or compete with

conventional massive MIMO, MM-wave, NOMA, backscatter communication but

rather complement it.
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(a) Simulation set up [3]

(b) comparision of transmit power
with DF relay at rate 6

bits/Hz [3]

1.3.1 Decode and forward Relay

IRS needs hundreds of reconfigurable elements to compete with DF Relay in terms

of Rate[3]. The reason is that the source’s transmit power must travel over two

channels to reach the destination, leading to a very small channel gain hSRhRD

per element in the IRS. Hence, the IRS needs many elements to compensate for

the low channel gain. In contrast, with DF relaying, we first transmit over a

channel with gain hSR and then transmit again over a channel with gain hRD.

IRS requires no power amplifiers in its ideal form. An IRS achieves higher Energy

efficiency than DF relaying [3]. The fact that the source and destination are

physically separated from the IRS is the key feature—it allows for controlling the

propagation environment—but also the reason for the large path losses. Classical

reflect arrays are using nearby sources equipped with high-gain horn antennas to

manage the path loss. In general, it is the total size of the IRS that determines the

pathloss. IRS with hundreds of elements needed to beat DF relaying, can be still

physically rather small since each element is assumed to have a sub-wavelength

size. Simulation set-up for comparision is shown in Figure 1.4a. From figure 1.4b,

we can observe that large N can beat DF relay and thus can be claimed as energy

efficient system.

1.3.2 Amplify and forward Relay

Fig. 1.5 shows that the IRS provides higher security outcomes than DF Relay

and AF Relay varying the distance between the Eavesdropper and the IRS/relay

with different powers 10db and 20db, and the scales parameters of the Gamma-
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distributed channel of each hop.

Figure 1.5: comparision of Ergodic capacity with AF Relay [4]

1.4 Literature Survey

Intelligent reflecting surface (IRS) assisted communication has gained much re-

search momentum recently [7]. Reconfigurable IRS’s realized using arrays of pas-

sive antenna elements or scattering elements made from metamaterials can in-

troduce specific phase shifts on the incident electromagnetic signal without any

decoding, encoding, or radiofrequency processing operations [8]. Traditionally, re-

liable communication links were achieved by implementing intelligent transmitter

and receiver designs that combat signal deteriorations introduced by the propa-

gation environment. However, in the past few years, there has been a shift in this

paradigm towards the idea of smart radio environments (SRE) where the perfor-

mance gains achievable via ‘smartly’ modifying the wireless propagation channel
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are explored [7]. Several multiple antenna technologies ( Cell-free massive MIMO,

beamspace MIMO, and IRS ) improving capacity and reliability attracted research

momentum towards beyond-5G[1].

Several works in literature study the performance of SRE realized using IRS

and compare them with the performance achievable using techniques like coop-

erative relaying, massive multiple-input multiple-output (M-MIMO), distributed

antennas, backscatter communication, millimeter (mm)-wave communication, and

network densification [9, 10, 11, 12, 13]. The authors of [10] show that an IRS-

assisted M-MIMO system can use the same channel estimation overhead as an

M-MIMO system with no IRS to achieve a higher user signal to interference and

noise ratio (SINR). The authors of [14] study the performance gains achieved by

an IRS-assisted M-MIMO system integrated with a non-orthogonal multiple access

(NOMA) network. They also discuss the critical challenges in realizing an IRS-

aided NOMA network. The key differences and similarities between an IRS-aided

network and a relay network are studied by the authors of [9]. Using mathematical

analysis and numerical simulations, they demonstrate that a sufficiently large IRS

can outperform relay-aided systems in terms of data rate while reducing the imple-

mentation complexity. The number of reflector elements required to outperform

the performance of the decode and forward (DF) relay system is studied by the

authors of [3]. IRS-aided bistatic backscatter communication (BackCom) system

is studied in [11]. Notably, the joint optimization of the phase shifts at the IRS

and the transmit beamforming vector of the carrier emitter that minimizes the

transmit power consumption is studied. Another exciting venue where IRS has

useful applications are the mm-wave communication systems [12, 15, 13]. Authors

of [12] proposed three different low-cost architectures based on IRS for beam in-

dex modulation scheme in mm-wave communication systems. These schemes are

capable of eliminating the line-of-sight blockage of millimeter wave frequencies.

The authors of [15] modelled the small scale fading in mm-wave communication

by fluctuating two-ray (FTR) distribution and studied the OP and average bit

error rate from statistical characterization of SNR of both IRS aided and Amplify

and forward(AF) systems. They also showed the superiority of IRS aided system

over AF system in mm-wave communication even with small number reflecting
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elements. The authors of [13] also study the prospects of combating issues in mm-

wave systems like severe path loss and blockage using an IRS to provide effective

reflected paths and hence enhance the coverage.

The works discussed above consider performance metrics such as the outage

probability (OP), rate and spectral efficiency to evaluate the performance of the

IRS-aided communication network. Several works in literature propose different

approximations for the OP of an IRS aided system involving one source and one

destination node. The authors of [16] assume the availability of a large number of

reflector elements and hence use the central limiting theorem (CLT) to derive an

approximate expression for the OP. Similarly, the authors of [17] also derive an

approximation for the OP using CLT. Unlike the system model in [16], they assume

that the direct link between the source and the destination is in a permanent

outage. Such Gaussian approximations are also used to characterize metrics like

ergodic capacity, secrecy outage probability in many other works including [18, 19,

20, 21]. Similarly, Gamma approximations (using moment matching) are used for

deriving approximate OP by the authors of [22, 23, 24, 25]. As mentioned by the

authors of [25], the Gamma distribution is a Type-III Pearson distribution and is

widely used in fitting distributions for positive random variables (RVs) [26, 27].

The authors of [18, 21, 28, 23] consider more practical IRS models, where due to

hardware constraints the possible phase shifts at the IRS elements are restricted

to a finite set of discrete values. Table 1.1 provides a brief summary of the critical

literature on this topic1. Here, the antenna model refers to the antenna model of

the source and destination pair devices. From the table, it is apparent that the

study of OP considering both b bit phase quantization at the IRS and an active

source-destination (SD) link is not available in the open literature.

In this work, we present an exact expression and two different simple approx-

imations for characterizing the OP at the destination of an IRS-assisted commu-

nication network. Here, we consider a practical scenario where the phase shift at

the IRS elements only takes a finite number of possible values owing to the quan-
1Note that the authors of [25] also use Gamma approximation. However, they consider a

different path loss model for a system without an SD link and hence, neither we include [25] in
Table 1.1 nor we compare our performance with their results.
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Reference Kind of
approximation Impairment Antenna

model SD link

[16],[29]
CLT and hence
gaussian
approximation

No SISO [16]:Yes
[29]: No

[22],[24]

Gamma moment
mathching
for sum of
double Rayleigh

No SISO [24]:Yes
[22]: No

[30],[23]
Gamma approximation
[30]:for double-rayleigh,
[23]: for SNR

Yes, quantisa-
tion error for
[30]: 1 bit phase
[23]: b bit phase

SISO [30]:Yes
[23]: No

This work

(a) Approximation for
exact integral
for outage
(b) Gamma Moment
matching
(c) Gamma KL
divergence min

Yes,
quantisation
error for
b bit phase
representation

SISO Yes

Table 1.1: Key literature studying the OP of IRS-assisted communication
systems.

tization of the phase values at the IRS. Furthermore, we evaluate the system’s

performance both in the presence and absence of a direct link between the source

and the destination node. Our major contributions are summarised as follows:

• We derive an exact expression for the OP in terms of a multi-fold integral.

• Using the method of moment matching2, we approximate the received SNR
in an IRS-assisted communication system as a Gamma RV and hence derive
a simple expression for the corresponding OP.

• We also derive the parameters of the Gamma distribution that has the least
Kullback–Leibler (KL) divergence with the exact distribution of SNR3. We
thus characterize the OP in terms of the CDF of the resulting Gamma RV.

• We also observed the impact of parameters like the number of bits available
for quantization, the position of IRS w.r.t.source and destination and, the
number of elements present at IRS on OP for an IRS systems with and
without an SD link.

2The authors of [23] and [22] also uses moment matching to obtain a Gamma approximation,
however in scenarios without an SD link and without quantization error respectively. Our
approximation for the received SNR is for a more general scenario and it recovers the result in
[23] as a special case.

3The Gamma distribution, which has minimum KL divergence with respect to the distribution
of the received SNR cannot be obtained by moment matching.
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• We derived the bounds to OP using cauchy-Scwartz inequality and upper
bound to bessel function of second kind.

• We derive the optimal number of reflector elements for the OP to lie within
a threshold.

• We also derive the minimum OP obtained for a given number of IRS ele-
ments.

1.5 Organization

The rest of the paper is organized as follows. The system model we consider is pre-

sented in Chapter 2. Next, in Chapter 3, we propose two methods to evaluate the

OP and later we proposed a closed form expression for OP for generalized fading

model and hence can obtain OP for all fading environments. In Chapter4, we have

presented the bounds on OP using Cauchy-Scwartz inequality and Bessel upper

bound. In Next Chapter 5, we have formulated a problem statement to find how

large an IRS should be for an OP to fall below a threshold. We also studied what

could be the minimum possible OP for a given number of IRS reflector elements.

In chapter 6, we verify the utility of our expressions through simulation experi-

ments and present insights regarding the impact of various system parameters on

the OP and finally, Chapter 7 concludes the work.



CHAPTER 2

SYSTEM MODEL

2.1 Intelligent Reflecting Surface

Electromagnetic waves undergo multiple uncontrollable alterations as they prop-

agate with in a wireless environment. Free space path loss, signal absorption, as

well as reflections, refractions, and diffractions caused by physical objects within

the environment highly affect the performance of wireless communications. IRS

concept builds on manipulating the propagation of EM waves in channel so as

to improve the performance of communication systems. Specifically, IRS is a pla-

nar surface comprising a large number of low-cost passive reflecting elements, each

being able to induce an amplitude and/or phase change to the incident signal inde-

pendently, thereby collaboratively achieving fine-grained three-dimensional (3D)

reflect beamforming [3].

Figure 2.1: Concept of Meta Surface [5]
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Figure 2.1 explains basic idea of IRS surface i.e forming a meta surface with

discretized impedences to favour beam forming towards user. Normally, a flat

finite-sized surface reflects the incoming wave in the main direction determined

by Snell’s law but with a beamwidth that is inversely proportional to the size of

the surface relative to the wavelength. The use of metasurfaces cannot change the

reflection losses, but it can create anomalous reflections, meaning that the main

direction of the reflected signal can be controlled. This can be achieved by letting

every point on the surface induce a certain phase shift to the incoming signal.

Ideally, this should be done in a continuous way over the surface, but metasurfaces

approximate this using many discrete “meta-atoms” of a sub-wavelength size that

each induces a distinct phase-shift. Hence, an IRS is an array of meta-atoms that

each scatter the incoming signals with a controllable phase-shift, so that the joint

effect of all phase-shifts is a reflected beam in a selected direction.

Figure 2.2: beam forming [6]

Figure 2.3: Model for Fig. 2.4 [6]

Figure 2.4: Pathloss for different sizes of
IRS elements [6]
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Fig. 2.3 shows the relation between incident signal and scattered signal for

different values of IRS size. There is a trade off between beam width and size of

reflector plate, if desired beam width is small then IRS has to be large. Fig. 2.2

illustrates how different phase-shift patterns among the meta-atoms lead to the

incoming signal being reflected as a beam in different directions. IRS proactively

modifies the wireless channel between them via highly controllable and intelligent

signal reflection. This thus provides a new degree of freedom (DoF) to further

enhance the wireless communication performance and paves the way to realize

a smart and programmable wireless environment. Since IRS eliminates the use

of transmit RF chains and operates only in short range, it can be densely de-

ployed with scalable cost and low energy consumption, yet without the need of

sophisticated interference management among passive IRSs.

2.1.1 Architecture

Figure 2.5: Hardware Architecture [5]

Fig 2.5 shows the basic architecture of IRS equipped with meta atoms whose shape

, size, orientation, arrangement etc controls individual signal response (reflection

amplitude and phase shift). We can also observe that there were three layers and

a smart controller. In the outer layer, a large number of metallic elements are

printed on a dielectric substrate to directly interact with incident signals. Behind
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this layer, a copper plate aids from signal energy leakage. Last, the inner layer is

a control circuit board adjusts amplitude/phase shift of each element, triggered

by a smart controller attached to the IRS.

PIN diode is embedded in each element which is switched between “ON” and

“OFF” bycontrolling its biasing voltage via a direct-current feeding line which gen-

erates a phase-shift difference of π in radians. Thus phase shifts of all the elements

are controlled by adjusting biasing voltage with the help of smart controller. On

the other hand, to effectively control the reflection amplitude i.e by changing the

values of resistors in each element, different portions of the incident signal’s energy

are dissipated, thus achieving controllable reflection amplitude in the range [0, 1].

In practice, it is desirable to have independent control of the amplitude and phase

shift at each element for which those two needs to be integrated.

2.1.2 Applications

In this sub-section, we illustrates several typical applications of IRS. IRS coher-

ently combines the individually scattered signals, thereby creating a signal beam

focused at the user i.e energy focusing. Fig. 2.6, illustrates several applications of

IRS-aided wireless networks[5]. First application shows that User at dead zone can

receive significant power when bypassed the signal through IRS. Second apllica-

tion shows that IRS can be employed to nullify the signal at eavesdropper (energy

nulling). Third application exemplifies how an user at cell edge can nullify the

signal from nearby Base station and receives desired signal. Fourth application n

illustrates the use of IRS for enabling massive device-to-device connectivity. The

last application exemplifies the use of IRS for realizing simultaneous wireless in-

formation and power transfer to various devices in an Internet-of-Things network.
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Figure 2.6: Applications of IRS [5]

2.2 System model

hSR hRD

hSDS D

IRS

Figure 2.7: System Model

We consider a system consisting of one source node (S) communicating with

one destination node (D) using an IRS with N reflector elements as shown in Fig.

2.7. Here S and D are both equipped with a single antenna each. Furthermore,

we assume that the distance between IRS and S/D is large enough such that all

elements of the IRS are at the same distance from S/D. Let, hSR ∈ CN×1, hRD ∈

CN×1 and hSD ∈ C1 denote the small-scale fading channel coefficients of the S to

IRS, IRS to D and S to D link respectively. It is assumed that all the channels

experience independent Rayleigh fading and hence we have, hSD ∼ CN
(
0, d−βsd

)
,
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[
hSR

]
i
∼ CN

(
0, d−βsr

)
and

[
hRD

]
i
∼ CN

(
0, d−βrd

)
, ∀i ∈ {1, · · · , N}. Here, β is the

path loss coefficient. Let α and θi represent amplitude coefficient and phase shift

introduced by the i-th IRS element, respectively. The signal received at node D

is then given by,

y = √p
(
hSD + α

(
hSR

)T
ΘhRD

)
s+ n, (2.1)

where Θ = diag
(
ejθ1 , ..., ejθN

)
, p is the transmit power, s is the transmitted signal

with E[|s|2]=1 and n is the AWGN with noise power σ2. The SNR at the node D

of the IRS-supported network is then given by

γIRS = γs

∣∣∣∣hSD + α
(
hSR

)T
ΘhRD

∣∣∣∣2, (2.2)

where γs = p
σ2 . To achieve maximum SNR at D, the phase-shift of the i-th IRS

element needs to be selected as follows [21],

θopti = arg
(
hSD

)
− arg

([
hSR

]
i

[
hRD

]
i

)
. (2.3)

Let b be the number of bits used to represent the phase. Then the set of all

possible phase shifts at each of the IRS element is given by {0, 2π
2b , · · · ,

(2b−1)2π
2b }

[21]. Hence, θopti may not be always available and the exact phases shift at the

i-th IRS element can be represented as θi = θopti + Φi, where Φi denotes the

phase error at the ith reflector. Note that, −2−bπ ≤ Φi ≤ 2−bπ and we model

Φi ∼ U [−2−bπ, 2−bπ] [31], [21]. Here, U [a, b] represents the uniform distribution

over the support [a, b]. Thus, the expression for SNR incorporating the phase error

term is given as follows:

γIRS = γs

(∣∣∣∣∣∣∣hSD∣∣∣+ α
N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ejΦi ∣∣∣∣2
)
. (2.4)

Note that, our system model and channel model are identical to [21]. In the next

section, we use (2.4) to derive an exact expression and then simple approximations

for the OP at D.
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OUTAGE PROBABILITY

3.1 Outage probability

Outage at a node is the phenomenon of the instantaneous SNR falling below a

particular threshold, say γ. The OP at node D can be evaluated as,

Poutage = P [γIRS < γ] . (3.1)

Note that γIRS is the square of the absolute value of the sum of a Rayleigh RV

and a sum of i.i.d. double Rayleigh RVs [32] each scaled by the exponential of

a uniform RV. The PDF of a double Rayleigh RV can be expressed in terms of

the modified Bessel function [32, (1)]. Hence the distribution of the sum of N

such scaled double Rayleigh RVs has a very complicated expression[30, 22]. This

makes the characterization of the exact distribution of the OP a mathematically

intractable task. So far, there were various kinds of approximations for OP (as

shown in Table 1.1) proposed in the open literature. However, to the best of our

knowledge, none of them considered the most general case, i.e., the presence of

an SD link and b-bit quantization error. Hence, in the subsequent subsections, we

consider the most general case and present an exact expression and three different

simple approximations for (3.1).

3.1.1 Exact Outage Expresion

In this subsection, we first derive an exact expression for the CDF of SNR, in the

form of a multi-fold integration where the order of integration grows linearly with

the number of elements in the IRS. Solving this multi-fold integration analytically

is mathematically intractable and we demonstrate how the method of moment

matching can circumvent this issue. [33] can be used to circumvent this issue.
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Lemma 1. For a threshold γ, an exact expression for OP at node D is given by

Poutage =
(

2b+1dβsrd
β
rd

πγs

)N ∫
· · ·

∫ 
1− e

−
(√

γ−(sT x)2−cT x
)2

d
β
sd

γs

U
(√

γ − (sTx)2 − cTx
)

N∏
i=1

xiK0

 2xi
√
γsd
−β/2
sr d

−β/2
rd

dx1dφ1 . . . dxNdφN ,

(3.2)

where c = [α cos(φ1) . . . α cos(φN)]T , s = [α sin(φ1) . . . α sin(φN)]T , x = [x1, . . . , xN ],

K0 is modified Bessel function of the second kind of order zero [34] and U(·) is the

unit step function.

Proof. Please refer Appendix A.1 for the proof.

Note that (3.2) provides an exact expression for the OP at D, but it is a

multi-fold integration of order 2N . It is very difficult to evaluate this expression

even numerically for values of N such as 50 using common mathematical softwares

such as Matlab/Mathematica. So, it is important to have an approximation that

is close to (3.2) and also easily computable. One such approximation is obtained

by Gamma moment matching.

3.1.2 Gamma approximation using Moment matching

In this sub-section, we approximate the SNR as a Gamma RV with shape param-

eter kmom and scale parameter θmom by matching their first and second moments.

Using this result, the OP at node D is given by the following theorem.

Theorem 1. The OP for a threshold γ at node D can be evaluated as

Poutage = γkmom

θkmommom Γ (kmom + 1)1F1

(
kmom, kmom + 1, −γ

θmom

)
, (3.3)

where the shape parameter (kmom) and the scale parameter (θmom) of the Gamma

distribution can be evaluated using:

θmom = E[γ2
IRS]− E2[γIRS]
E[γIRS] , (3.4)
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kmom = E[γIRS]
θmom

. (3.5)

Here, 1F1(·, ·, ·) is the confluent hypergeometric function of the first kind [35] and

E[γIRS],E[γ2
IRS] can be evaluated using (A.28) and (A.29) respectively.

Proof. Please refer Appendix A.2 for the proof.

Note that the expression in (3.3) is very easy to evaluate when compared to the

OP approximations proposed in a few of the recent literature including [30, 28, 36].

Also, the proposed approximations hold well both for the cases of small and large

values of N , unlike the Gaussian approximations using CLT [20, 25, 19, 18, 29]

which holds only for large N . Furthermore, the proposed CDF of γIRS can be

easily used for deriving the expressions of other metrics of interest like the rate

[37]. Since we have considered a very general scenario in Theorem 1, we present

certain special cases of interest in the following corollaries.

Corollary 1.1. In the absence of phase errors, the OP can be approximated using

(3.3), where (3.4) and (3.5) can be evaluated using the following expressions for

the moments of SNR.

E[γnpIRS] = γs

Nα2d−βsr d
−β
rd + d−βsd +Nα

π
3
2

4 d
−β
2
sr d

−β
2
rd d

−β
2
sd + α2π

2N(N − 1)
16 d−βsr d

−β
rd

 .
(3.6)

E[(γnpIRS)2] =γ2
s

[
Nα4d−2β

sr d−2β
rd

[
1 + 3N + 3π2(N − 1)(2N − 1)

16 + (N − 1)(N − 2)(N − 3)π4

256

]

+2d−2β
sd + 3Nα2d−βsr d

−β
rd d

−β
sd

[
2 + (N − 1)π2

8

]
+ 3Nαπ3/2

4 d
− 3β

2
sd d

−β2
sr d

−β2
rd

+Nα3π
3
2d
−β2
sd d

− 3β
2

sr d
− 3β

2
rd

[
π2(N − 1)(N − 2)

32 + 3(4N − 1)
8

]]
. (3.7)

Proof. Equations (5.17) and (5.18) are obtained from (A.28) and (A.29) by sub-

stituting b→∞.

Corollary 1.2. When the SD link is in a permanent outage, the OP can be

approximated using (3.3) where equations (3.4) and (3.5) can be evaluated using
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the following equations:

E[γndlIRS] = γsNα
2d−βsr d

−β
rd

[
1 + π2

8
(N − 1)

2 s2
]
. (3.8)

E[
(
γndlIRS

)2
] =γ2

sNα
4d−2β
sr d−2β

rd

[
2 + 2N + (N − 1)p2 + (N − 1)(4N + 1)

16 π2s2

+(N − 1)(N − 2)(N − 3)
256 π4s4 + (N − 1)(N − 2)π2s2p

8

]
,

(3.9)

where s = 2b
π

sin
(
π
2b
)
, p = 2b

2π sin
(

2π
2b
)
.

Proof. When the SD link is in a permanent outage, the phase error at the i-th

reflector element is given by Φi := θi − θopt where θopt = −arg ([hsr]i [hrd]i). Here

also, we model the phase error as a uniform RV, i.e., Φi ∼ U
[
−2−bπ, 2−bπ

]
. In

this case, the SNR expression given in equation (2.4) can be modified as follows:

γndlIRS = γs

∣∣∣∣α N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ejΦi ∣∣∣∣2. (3.10)

Next, we follow the steps similar to Appendix A.2 and arrive at (5.24) and (5.25).

Note that Corollary 1.2 recover existing results presented in [23, (9)] and [23,

(10)] respectively.

Corollary 1.3. In the absence of phase errors and when the SD link is in a

permanent outage, the OP can be approximated using (3.3) where equations (3.4)

and (3.5) can be evaluated using following equations:

E[γnpdlIRS ] = γs

[
Nα2d−βsr d

−β
rd + α2π

2N(N − 1)
16 d−βsr d

−β
rd

]
. (3.11)

E[(γnpdlIRS )2] =Nα
4γ2
s

d2β
sr d

2β
rd

[
1 + 3N + 3π2(N − 1)(2N − 1)

16 + (N − 1)(N − 2)(N − 3)π4

256

]
.

(3.12)

Proof. Equations (5.30) and (5.31) are obtained from (5.24) and (5.25) by substi-
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tuting s, p→ 1.

Note that Corollary 1.3 recover existing results presented in [23, (14)] and [23,

(15)], respectively.

The gamma approximation based on moment matching is simple and could be

applied to all considered scenarios but was not tight. Hence, we tried to improve

upon it by looking for that gamma approximation which has the minimum KL

divergence with respect to the actual SNR.

3.1.3 KL divergence minimization

In this section, we identify the parameters of a Gamma distribution such that the

KL divergence between the resulting RV and the exact SNR is the least among

all possible Gamma distributions. Using this result, the OP at D is given by the

following theorem:

Theorem 2. The OP for a threshold γ at the node D is given by

Poutage = γkkl

θkklkl Γ (kkl + 1)1F1

(
kkl, kkl + 1, −γ

θkl

)
, (3.13)

where kkl and θkl are obtained by solving the following two equations:

E[log(γIRS)] = log(θkl) + ψ(kkl), (3.14)

E[γIRS] = kkl × θkl. (3.15)

Here, 1F1(., ., ) is the confluent hypergeometric function of the first kind [35] and

ψ(.) is the digamma function [38].

Proof. Please refer Appendix A.3 for the proof.

The derivation of the exact expression for evaluating E[log(γIRS)] is compli-

cated and hence we proceed with the following approximation for the same [37,

(11)]:

E[log γIRS] ≈ log (E[γIRS])− 1
2
E[γ2

IRS]− E2[γIRS]
E2[γIRS] . (3.16)
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Given that we can compute the first and second moments of γIRS using (A.28)

and (A.29), we can easily evaluate (3.16). Then we can solve for the parameters

kkl and θkl using the solvers available in any mathematical software such as Mat-

lab, Mathematica, or Octave. Thus, the method of KL divergence minimization

also provides us with a simple expression for the OP that is very amenable for

computation and further analysis.

Corollary 2.1. For the special cases without SD link or phase error or both, the

OP for a threshold γ is given by (3.13). Corresponding values of scale and shape

parameters can be solved using equations (3.14) and (3.15) where the correspond-

ing moments can be evaluated using Corollaries 1.1-1.3.

Note that the approximation for the expectation of the logarithm of SNR

provided in (3.16) makes use of only the first and second moment of γIRS and this

approximation does not hold equally well throughout the support of γIRS. This

was particularly observed in the simulations of certain special cases like scenarios

without the SD link. Hence, we propose the following method to circumvent this

issue for scenarios without an SD link and no phase error. In such a case we have,

γnpdlIRS = γs

(
α

N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣)2

. (3.17)

Now, we can approximate the double Rayleigh RV [γdr]i :=
∣∣∣ [hSR]

i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ as a
Gamma RV with shape parameter and scale parameter kkl,dr and θkl,dr respectively

using the method of KL divergence minimisation1. In this case, the expectation

of the logarithm of the RV [γdr]i has a closed-form expression (as given in 3.18)

and hence we can avoid the approximation used in (3.16).

E [log ([γdr]i)] = −ψ + log(d
−β
2
sr d

−β
2
sr ) ∀i, (3.18)

where ψ is the Euler gamma constant. For the cases with SD link, or b > 1,

we could not arrive at simple expressions for the distribution of γIRS even after

approximating the double Rayleigh RV as a gamma RV [30].
1The authors of [30] also approximates double Rayleigh RVs as a Gamma RV, but using the

method of moment matching.
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3.1.4 Extension of Gamma approximation for generalized

fading

In this sub-section, we find the closed form for OP applicable to all fading environ-

ments. Let, hSR ∈ CN×1, hRD ∈ CN×1 and hSD ∈ C1 denote the small-scale fading

channel coefficients of the S to IRS, IRS to D and S to D link respectively. It

is assumed that all the channels experience any independent fading. We approxi-

mate the SNR as a Gamma RV with shape parameter kmom and scale parameter

θmom by matching their first and second moments for generalized fading model.

From 1 Using this result, the OP at node D is given by the following theorem.

Theorem 3. The OP for a threshold γ at node D can be evaluated as

Poutage = γkmom

θkmommom Γ (kmom + 1)1F1

(
kmom, kmom + 1, −γ

θmom

)
, (3.19)

where the shape parameter (kmom) and the scale parameter (θmom) of the Gamma

distribution can be evaluated using:

θmom = E[γ2
IRS]− E2[γIRS]
E[γIRS] , (3.20)

kmom = E[γIRS]
θmom

. (3.21)

Here, 1F1(·, ·, ·) is the confluent hypergeometric function of the first kind [35] and

E[γIRS],E[γ2
IRS] can be evaluated using following equations

E [γIRS] = γs

(
msd

2 +Nα2msr
2 m

rd
2 + 2Ns αmsd

1 m
sr
1 m

rd
1 + 2α2(msr

1 )2(mrd
1 )2N(N − 1)

2 s2
)
.

(3.22)
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E
[
γIRS

2
]

= γ2
s

(
msd

4 + 2α2Nmsr
2 m

rd
2 m

sd
2 +Nα4msr

4 m
rd
4 + 2α4N(N − 1)

2 (msr
2 )2(mrd

2 )2

(3.23)

+4α2msd
2

[
Nmsr

2 m
rd
2 [1 + p

2 ] + 2s2N(N − 1)
2 (msr

2 )2(mrd
2 )2

]

+N(N − 1)α4
[
(N − 2)msr

2 m
rd
2 s

2 (1 + p) (msr
1 )2(mrd

1 )2

+(msr
2 )2(mrd

2 )2(1 + p2) + s4(N − 2)(N − 3)(msr
1 )4(mrd

1 )4
]

+2
[
2Nαmsd

3 m
sr
1 m

rd
1 s+ 2α3Nmsd

1 m
sr
3 m

rd
3 s+ 4α3msd

1 m
sr
1 m

rd
1 m

sr
2 m

rd
2
N(N − 1)

2 s

]

+2N(N − 1)
2

[
4α3msd

1 [msr
1 ]3

[
mrd

1

]3
(N − 2)s3 + 2 ∗ 4α3msd

1 m
sr
2 m

rd
2 m

sr
1 m

rd
1 s

1 + p

2

]
+4α2N(N − 1)

2 s2msr
1 m

rd
1

[
msd

2 m
sr
1 m

rd
1 + α2

[
msr

3 m
rd
3 + 2msr

1 m
rd
1 m

sr
2 m

rd
2 (N − 2)

]])
.

Proof. Please refer Appendix A.4 for the proof. Here, mab
r denotes the rth moment

of fading distribution, a, b ∈ {S, R, D}.

For suppose, let us consider the rician fading model where OP can be found

using eqn. 3.19 where the first four moments of rician are given by

mab
1 =

√
π

2σabL
1
2
(− v2

ab

2σ2
ab

) (3.24)

mab
2 = v2

ab + 2σ2
ab (3.25)

mab
3 = 3

√
π

2σ
3
abL 3

2
(− v2

ab

2σ2
ab

) (3.26)

mab
4 = v4

ab + 8v2
abσ

2
ab + 8σ4

ab (3.27)

Similarly, closed form of an OP can be easily found by substituting their moments

in Theorem 3.
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BOUND TO OUTAGE PROBABILITY

4.1 Using Upper bound to Bessel function

In this section, we find the upper bound to OP for an IRS assisted system with

and without SD-link assuming perfect channel estimation and also assumed that

optimized phase shifts are available. We here use the upper bound to bessel bound

given by

K0(ax) ≤
√
πe−ax√
2ax

(4.1)

Theorem 4. The upper bound to OP for a threshold γ at node D can be evaluated

as

Poutage ≤
∫ γ

0

πNa
3N
2

2 3N
2

e−atz 3N
2 −1

Γ(3N
2 )

 dz
− πNa

3N
2

2 3N
2

√
πb
∫ γ

0

2 3N
2 −1( 1

b2 )− 3N
4 e−

z2
4b2

Γ[3N
2 ]b
√

Π

[
(−z2b2 )

[
Γ[3N4 ]F1[3N4 ,

1
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2 (−2ab2 + z)Γ[12 + 3N

4 ]F1[2 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]


+
2−1+ 3N

2 ( 1
b2 )− 3N

4 e−
z2
4b2

Γ[3N
2 ]b
√

Π

[
Γ[3N4 ]3N(−2ab2 + z)

4b2 F1[1 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2 Γ[12 + 3N

4 ]F1[2 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2

(−2ab2 + z)2

12b2 Γ[12 + 3N
4 ]F1[6 + 3N

4 ,
5
2 ,

(−2ab2 + z)2

4b2 ]
 dz, (4.2)

where a2 = 4dβsrdβrd
γs

, b2 = γsσ2
sd

2α2 , 1F1(·, ·, ·) is the confluent hypergeometric function

of the first kind [35].

Proof. Please refer Appendix A.2 for the proof.
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Theorem 5. When SD-link is in outage, the upper bound to OP for a threshold

γ at node D can be evaluated as

POutage ≤
πN

2 3N
2

γ(3N
2 , aγ)

Γ(3N
2 )

(4.3)

Proof. Please refer Appendix A.6 for the proof.

4.2 Using Cauchy-Scwartz inequality

In this section, we find the lower bound to OP or an IRS assistedsystem with and

without SD-link assuming perfect channel estimation and optimized phase shifts

are available. We here use Cauchy-Scwartz given by

〈mSR,mRD〉2 ≤ 〈mSR,mSR〉 . 〈mRD,mRD〉 . (4.4)

Theorem 6. The Lower bound to OP for a threshold γ at node D can be evaluated

as

Poutage ≥
γ∫

0

∞∫
0

y1
y3∫

0

fY1,Y2,Y3 (y1, y2, y3) dy2 dy3 dy1, (4.5)

where

fY1,Y2,Y3 (y1, y2, y3) =
1
2

(
−y2 − y3 +

√
4y1 + y2

2 − 2y2y3 + y2
3

)
σ2
sd

e
−

( 1
2

(
−y2−y3+

√
4y1+y2

2−2y2y3+y2
3

)
)2

(2σ2
sd)

1
Γ(N)(2σ2

sr)N
yN−1

2 e
− y2

(2σ2
sr)

1
Γ(N)(2σ2

rd)N
yN−1

3 e
− y3

(2σ2
rd

) ×
(
4y1 + (y2 − y3)2

)−1
2 .

(4.6)

Proof. Please refer Appendix A.7 for the proof.

Theorem 7. When SD-link is in outge, the lower bound to OP for a threshold γ
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at node D can be evaluated as

Poutage ≥
1

N2Γ2[N ]

(
γ

γsσsrσrd

)N
F

[
{N,N}, {1, 1 +N, 1 +N}, γ

γsσsrσrd

]
(4.7)

−NF [{N}, {1, 1 +N}, γ

γsσsrσrd
]
(

2ψ + Log[ γ

γsσsrσrd
]
)

(4.8)

+ 2N2Γ[N ]F ({1,0},{0,0,0},{0})
r

[
{1, N}, {1, 1, 1 +N}, { γ

γsσsrσrd
}
]

(4.9)

. (4.10)

Here, F(·, ·, ·) Fr(·, ·, ·) denotes the generalized and regularized confluent hyperge-

ometric functions [35] and ψ is Euler gamma constant.

Proof. Please refer Appendix A.8 for the proof.



CHAPTER 5

OPTIMIZATION OF OUTAGE PROBABILITY

In this Chapter, we use the approximated expression of OP at the destination

of an IRS-assisted communication network given in 3.1.2. Here, we consider a

practical scenario where the phase shift at the IRS elements only takes a finite

number of possible values owing to the quantization of the phase values at the

IRS. Furthermore, we evaluate the system’s performance both in the presence and

absence of a direct link between the source and the destination node. Our major

contributions are summarised as follows:

• We derive the optimal number of reflector elements for the OP to lie within
a threshold.

• We also derive the minimum OP obtained for a given number of IRS ele-
ments.

The expression for SNR incorporating the phase error term is given as follows:

γIRS = γs

(∣∣∣∣∣∣∣hSD∣∣∣+ α
N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ejΦi ∣∣∣∣2
)
. (5.1)

Let ν0 =

∣∣∣hSD∣∣∣
α

, νi =
∣∣∣ [hSR]

i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ ∀i ∈ {1, · · · , N}. Since received power

cannot be greater than the transmit power, we have,

p

σ2

(∣∣∣∣∣∣∣hSD∣∣∣+ α
N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ejΦi ∣∣∣∣2
)
≤ p

σ2

(∣∣∣∣∣∣∣hSD∣∣∣+ α
N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣∣∣∣∣2
)
≤ p

(5.2)
α2

σ2

(∣∣∣∣ν0 +
N∑
i=1

νi

∣∣∣∣2
)
≤ 1 (5.3)

α2

σ2

(
N∑
i=0

νi

)2

≤ 1 (5.4)

Upper bound on the maximum number of IRS elements can be found from
(

(N +

1)νmax
)2
≤ σ2

α2 and received SNR over the reflection path with the largest gain has
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to be greater than 1(i.e γsν2
max ≥ 1), receive SNR over the reflection path with the

largest gain. On combining both we get (N + 1)2 ≤ γs
σ2

α2 . Thus, the maximum

number of reflector elements is given by Nmax ≤ min { 1
νmax

√
σ2

α2 − 1,
√
γs

σ2

α2 − 1}.

5.1 Problem Statement

5.1.1 Outage probability Optimization

Outage at a node is the phenomenon of the instantaneous SNR falling below a

particular threshold, say γ. The OP at node D can be evaluated as,

Poutage(N) = P [γIRS < γ] . (5.5)

Note that γIRS is the square of the absolute value of the sum of a Rayleigh RV

and a sum of i.i.d. double Rayleigh RVs [32] each scaled by the exponential of a

uniform RV. The Outage minimization problem is

min
{1≤N≤Nmax}

Poutage(N) (5.6)

Where the OP for a threshold γ at node D is given by

Poutage(N) = γkmom

θkmommom Γ (kmom + 1)1F1

(
kmom, kmom + 1, −γ

θmom

)
, (5.7)

with the shape parameter (kmom) and the scale parameter (θmom) of the Gamma

distribution evaluated from:

θmom = E[γ2
IRS]− E2[γIRS]
E[γIRS] , (5.8)

kmom = E[γIRS]
θmom

. (5.9)
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Here, 1F1(·, ·, ·) is the confluent hypergeometric function of the first kind [35] and

E[γIRS] = γs[Nα2d−βsr d
−β
rd + d−βsd +α

π
3
2

4 d
−β
2
sr d

−β
2
rd d

−β
2
sd Ns+α2π

2

8 d
−β
sr d

−β
rd

N(N − 1)
2 s2].

(5.10)

E
[
γ2
IRS

]
= γ2

s

[
2d−2β

sd + 3Nsαπ3/2

4 d
−3β/2
sd d−β/2sr d

−β/2
rd +Nα2d−βsr d

−β
rd d

−β
sd

[
3(N − 1)π2s2

8 + 4 + 2p
]

+ Nα4d−2β
sr d−2β

rd 2 [N + 1]

+ Nα4d−2β
sr d−2β

rd (N − 1)
[
p2 + (N − 2)(N − 3)π4s4

256 + π2s2

16 [2p(N − 2) + 4N + 1]
]

+ Nα3π3/2d
−β/2
sd d−3β/2

sr d
−3β/2
rd

[
(4N + 5)s8 + (N − 1)(N − 2)π2s3

32 + (N − 1)s
(1

2 + p

2

)]]
.

(5.11)

where s = sin( π

2b )
π

2b
, p = sin( 2π

2b )
2π
2b

. Note that the value of N from (5.6) is very easy

to evaluate when compared to the OP approximations proposed in a few of the

recent literature including [30, 28, 36]. Since we have considered a very general

scenario, we present certain special cases of interest in the following corollaries.

5.1.1.1 Without phase error

To achieve maximum SNR at D, the phase-shift of the i-th IRS element needs to

be selected as follows [21],

θopti = arg
(
hSD

)
− arg

([
hSR

]
i

[
hRD

]
i

)
. (5.12)

With this choice, the received power at destination is given by

γIRS = p

σ2

(∣∣∣∣∣∣∣hSD∣∣∣+ α
N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣∣∣∣∣2
)
. (5.13)

Let ν0 =

∣∣∣hSD∣∣∣
α

, νi =
∣∣∣ [hSR]

i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ ∀i ∈ {1, · · · , N}. Since received power

cannot be greater than the transmit power, we have,

p

σ2

(∣∣∣∣∣∣∣hSD∣∣∣+ α
N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣∣∣∣∣2
)
≤ p (5.14)
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α2

σ2

(∣∣∣∣ν0 +
N∑
i=1

νi

∣∣∣∣2
)
≤ 1 (5.15)

α2

σ2

(
N∑
i=0

νi

)2

≤ 1 (5.16)

Upper bound on the maximum number of IRS elements can be found from
(

(N +

1)νmax
)2
≤ σ2

α2 and received SNR over the reflection path with the largest gain has

to be greater than 1(i.e γsν2
max ≥ 1). On combining both we get (N + 1)2 ≤

γs
σ2

α2 . Thus, the maximum number of reflector elements is given by Nmax ≤

min { 1
νmax

√
σ2

α2 − 1,
√
γs

σ2

α2 − 1}. In the absence of phase errors, we now solve the

equation 5.6 using OP approximated from (5.7), where (5.8) and (5.9) can be

evaluated using the following expressions for the moments of SNR.

E[γnpIRS] = γs

Nα2d−βsr d
−β
rd + d−βsd +Nα

π
3
2

4 d
−β
2
sr d

−β
2
rd d

−β
2
sd + α2π

2N(N − 1)
16 d−βsr d

−β
rd

 .
(5.17)

E[(γnpIRS)2] =γ2
s

[
Nα4d−2β

sr d−2β
rd

[
1 + 3N + 3π2(N − 1)(2N − 1)

16 + (N − 1)(N − 2)(N − 3)π4

256

]

+2d−2β
sd + 3Nα2d−βsr d

−β
rd d

−β
sd

[
2 + (N − 1)π2

8

]
+ 3Nαπ3/2

4 d
− 3β

2
sd d

−β2
sr d

−β2
rd

+Nα3π
3
2d
−β2
sd d

− 3β
2

sr d
− 3β

2
rd

[
π2(N − 1)(N − 2)

32 + 3(4N − 1)
8

]]
. (5.18)

5.1.1.2 Without SD Link

When the SD link is in a permanent outage, the SNR at the node D of the IRS-

supported network is then given by

γIRS = γs

∣∣∣∣α (hSR)T ΘhRD
∣∣∣∣2, (5.19)

where γs = p
σ2 . To achieve maximum SNR at D, the phase-shift of the i-th IRS

element needs to be selected as follows [21],

θopti = −arg
([

hSR
]
i

[
hRD

]
i

)
. (5.20)
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Let b be the number of bits used to represent the phase. Then the set of all

possible phase shifts at each of the IRS element is given by {0, 2π
2b , · · · ,

(2b−1)2π
2b }

[21]. Hence, θopti may not be always available and the exact phases shift at the

i-th IRS element can be represented as θi = θopti + Φi, where Φi denotes the

phase error at the ith reflector. Note that, −2−bπ ≤ Φi ≤ 2−bπ and we model

Φi ∼ U [−2−bπ, 2−bπ] [31], [21]. Here, U [a, b] represents the uniform distribution

over the support [a, b]. Thus, the expression for SNR incorporating the phase error

term is given as follows:

γIRS = p

σ2

(∣∣∣∣α N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ejΦi ∣∣∣∣2
)
. (5.21)

Let νi =
∣∣∣ [hSR]

i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ ∀i ∈ {1, · · · , N}. Since received power cannot be

greater than the transmit power, we have,

p

σ2

(∣∣∣∣α N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ejΦi ∣∣∣∣2
)
≤ p

σ2

(∣∣∣∣α N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣∣∣∣∣2
)
≤ p

(5.22)
α2

σ2

(
N∑
i=1

νi

)2

≤ 1 (5.23)

Upper bound on the maximum number of IRS elements can be found from
(
Nνmax

)2
≤

σ2

α2 and received SNR over the reflection path with the largest gain has to be greater

than 1(i.e γsν2
max ≥ 1). On combining both we get N2 ≤ γs

σ2

α2 . Thus, the maxi-

mum number of reflector elements is given by Nmax ≤ min { 1
νmax

√
σ2

α2 ,
√
γs

σ2

α2}. we

now solve the equation 5.6 using OP approximated from (5.7), where (5.8) and

(5.9) can be evaluated using the following equations:

E[γndlIRS] = γsNα
2d−βsr d

−β
rd

[
1 + π2

8
(N − 1)

2 s2
]
. (5.24)

E[
(
γndlIRS

)2
] =γ2

sNα
4d−2β
sr d−2β

rd

[
2 + 2N + (N − 1)p2 + (N − 1)(4N + 1)

16 π2s2

+(N − 1)(N − 2)(N − 3)
256 π4s4 + (N − 1)(N − 2)π2s2p

8

]
,

(5.25)

where s = 2b
π

sin
(
π
2b
)
, p = 2b

2π sin
(

2π
2b
)
.
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5.1.1.3 Without SD Link and without phase error

When the SD link is in a permanent outage, the SNR at the node D of the IRS-

supported network is then given by

γIRS = γs

∣∣∣∣α (hSR)T ΘhRD
∣∣∣∣2, (5.26)

where γs = p
σ2 . To achieve maximum SNR at D, the phase-shift of the i-th IRS

element needs to be selected as follows [21],

θopti = −arg
([

hSR
]
i

[
hRD

]
i

)
. (5.27)

With this choice, the received power at destination is given by

γIRS = p

σ2

(∣∣∣∣α N∑
i=1

∣∣∣ [hSR]
i

∣∣∣∣∣∣ [hRD]
i

∣∣∣∣∣∣∣2
)
. (5.28)

Let νi =
∣∣∣ [hSR]

i

∣∣∣∣∣∣ [hRD]
i

∣∣∣ ∀i ∈ {1, · · · , N}. Since received power cannot be

greater than the transmit power, we have,

α2

σ2

(
N∑
i=1

νi

)2

≤ 1 (5.29)

Upper bound on the maximum number of IRS elements can be found from
(
Nνmax

)2
≤

σ2

α2 and received SNR over the reflection path with the largest gain has to be greater

than 1(i.e γsν2
max ≥ 1). On combining both we get N2 ≤ γs

σ2

α2 . Thus, the maxi-

mum number of reflector elements is given by Nmax ≤ min { 1
νmax

√
σ2

α2 ,
√
γs

σ2

α2}. In

the absence of phase errors and when the SD link is in a permanent outage, we

now solve the equation 5.6 using OP approximated from (5.7), where (5.8) and

(5.9) can be evaluated using the following equations:

E[γnpdlIRS ] = γs

[
Nα2d−βsr d

−β
rd + α2π

2N(N − 1)
16 d−βsr d

−β
rd

]
. (5.30)
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E[(γnpdlIRS )2] =Nα
4γ2
s

d2β
sr d

2β
rd

[
1 + 3N + 3π2(N − 1)(2N − 1)

16 + (N − 1)(N − 2)(N − 3)π4

256

]
.

(5.31)



CHAPTER 6

SIMULATION RESULTS

In this section, we present the observations of simulation experiments to verify

the results presented in Section 5.1. The simulation settings used in this paper

are similar to [21] (shown in Fig 6.1). However, the focus in [21] was the ergodic

capacity and hence they do not derive the CDF of γIRS. Here, for scenarios S1

and S2, the nodes S and D are located at the points (0, 0) and (90, 0) respectively

and the IRS is located at the point (d, h). Throughout the simulations, we have

taken amplitude coefficient α to be 1 (similar to [21]), b is chosen as 5, and γs to

be 73 dB, unless mentioned otherwise. We consider three scenarios here, in the

first scenario (S1), dsr
(√

d2 + h2
)
and drd

(√
(90− d)2 + h2

)
are chosen to be 95

metres and 10 metres, respectively. In the second scenario (S2), h is chosen to

be 10 metres whereas d is varied across simulations. In the third scenario,(S3),

dsd, dsr and drd are chosen to be 200 metres, 250 metres and 100 metres, respec-

tively. In the subsequent subsections, we compare the performance of the different

approximations proposed for the cases with and without SD link.

h

d 90 - d

dsr drd

(0,0)

S

(90,0)

D

(d,h)
IRS

Figure 6.1: Simulation set up
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Figure 6.2: Comparison of the
simulated CDF of γIRS
with the CDF in (3.3)

for S1.

10-3 10-2 10-1
0

0.2

0.4

0.6

0.8

1

F
IR

S

(
)

N=500

N=5

Figure 6.3: Comparison of the
theoretical CDF of γIRS

for S3.
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Figure 6.4: Comparison of the
simulated CDF of γIRS
with the CDF in (3.13)

for S1.
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Figure 6.5: Comparison of the
theoretical CDF of γIRS

for S3.
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N = 5 Method / Threshold -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
Simulated 0.2516 0.6206 0.8611 0.9575 0.9936 1.0000

Gamma(kmom, θmom) 0.2525 0.6196 0.8608 0.9577 0.9937 1.0000
Gamma(kkl, θkl) 0.2263 0.6115 0.8674 0.9639 0.9956 1.0000

N = 50 Method/Threshold -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
Simulated 0.0492 0.3599 0.6935 0.8813 0.9757 0.9997

Gamma(kmom, θmom) 0.0717 0.3551 0.6856 0.8800 0.9769 0.9998
Gamma(kkl, θkl) 0.0609 0.3413 0.6855 0.8858 0.9802 0.9998

N = 500 Method / Threshold 6 dB 7 dB 8 dB 9 dB 10 dB 11 dB
Simulated 0.0226 0.2581 0.6523 0.9157 0.9916 0.9997

Gamma(kmom, θmom) 0.0515 0.2452 0.6270 0.9221 0.9954 1.0000
Gamma(kkl, θkl) 0.0507 0.2441 0.6273 0.9229 0.9956 1.0000

Table 6.1: Comparison of OP with SD link for S1 with varying N

6.0.1 Results with SD link

-10 -5 -2 0 2 5

(dB)

0

0.2

0.4

0.6
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mom

,
mom

)

Gamma(k
kl

,
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)

d = 45

d = 30,60

d = 0,90d=15,75

Figure 6.6: Impact of d on the OP with SD link for S2, N = 150



CHAPTER 6. SIMULATION RESULTS 39

-10 -5 -2 0 2 5

(dB)

0

0.2

0.4

0.6

0.8

1

Simulated

Gamma(k
mom

,
mom

)

Gamma(k
kl

,
kl

)

N = 150, d = 45

N = 300, d = 45

N = 800, d = 45

N = 700, d = 45

N = 150, d = 0,90

N = 500, d = 45

Figure 6.7: Impact of N on the OP with SD link for S2

In this sub-section, we examine the closeness between the simulated values of OP

and the approximations proposed in Section 3.1.2, and 3.1.3. Here, figures 6.2 and

6.4 compares the CDF for N = 5 and N = 500 when the rest of the parameters

are chosen according to S1. One can note that the simulated and the approximate

curves are matching perfectly for all values of γ. Next, in figures 6.3 and 6.5 we

compare the CDF when the parameters are chosen according to S2. In this case,

the CDF curves for the case of N = 5 and N = 500 are very close, and for clarity

we have included only the approximated curves in figures 6.3 and 6.5. Table 6.1

compares the OP obtained using (3.3), and (3.13) with the simulated values of

OP for various values of N . Table 6.1 corroborates the fact that an increase in

N improves the performance of an IRS system. One can also observe that the

OP evaluated using all the three approximations are close to the simulated values.

Table 6.2 demonstrates the effect of the number of quantization bits b on the OP.

Here, one can observe that with a small number of bits itself one can achieve

the performance of b = ∞ (i.e. the no phase error scenario). Furthermore, the
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N = 100 Method / Threshold -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
b = 1 Simulated 0.0166 0.2771 0.6240 0.8434 0.9648 0.9995

Gamma(kmom, θmom) 0.0428 0.2772 0.6129 0.8398 0.9663 0.9997
Gamma(kkl, θkl) 0.0358 0.2640 0.6103 0.8447 0.9700 0.9998

b = 2 Simulated 0 0.1390 0.4768 0.7493 0.9331 0.9987
Gamma(kmom, θmom) 0.0132 0.1539 0.4619 0.7399 0.9345 0.9991

Gamma(kkl, θkl) 0.0107 0.1438 0.4558 0.7422 0.9386 0.9993
b = 10 Simulated 0 0.0969 0.4183 0.7070 0.9164 0.9982

Gamma(kmom, θmom) 0.0079 0.1180 0.4037 0.6936 0.9169 0.9987
Gamma(kkl, θkl) 0.0064 0.1095 0.3967 0.6947 0.9211 0.9990

b =∞ Simulated 0 0.0966 0.4178 0.7059 0.9160 0.9982
Gamma(kmom, θmom) 0.0079 0.1180 0.4037 0.6936 0.9169 0.9987

Gamma(kkl, θkl) 0.0064 0.1095 0.3967 0.6947 0.9211 0.9990

Table 6.2: Comparison of OP with SD link for S1 with varying b

improvement in performance with increasing b is not very large for b > 2. From

Fig, 6.8 we can observe that the performance of an IRS system with 4 bits to

represent the phase is very close to the performance of an IRS system with no

phase error and N = 150. Hence for a practical system with large N, one will

not need a very large number of bits to represent the phase. Depending upon the

quality of service requirements, the system designer can choose the minimum value

of b necessary to achieve the desired performance. Next, Fig. 6.6 demonstrates

the impact of the position of the IRS with respect to the positions of S and D.

Here one can observe the symmetry of the OP values for different IRS locations

about the midpoint of the nodes S and D. We can also observe that farther

the IRS from either of the nodes S/D, larger is the OP. Fig. 6.7 demonstrates

the number of IRS elements required to match the performance of a system with

N = 150 and d = 0/90 when the IRS is located at d = 45. From Fig. 6.7 it

is clear that additional 650 reflector elements are needed when the IRS is placed

mid-way between the nodes S and D, compared to a system with an IRS located

above either of the nodes S or D. The authors of [16, 24, 30] also consider the

presence of SD link in their analysis but do not take into account the phase error

due to b bit phase representation.
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Figure 6.8: Impact of b on the OP for N = 150

6.0.2 Results without SD link

In this sub-section, we study the performance of an IRS-assisted system without

an SD link. Table 6.3 demonstrates the variation in the OP for different values

of b. Note that for the particular simulation setting considered we need 56 extra

elements to achieve the performance comparable to a system without phase error

when only one bit is used to represent the phase. Hence, one can either increase

the number of elements or increase b to achieve better performance. Similarly,

Fig. 6.9 elucidates the variation in the OP with respect to d. Here also we can

observe that the farther the IRS from either of the nodes S/D, the larger is the

OP. Furthermore, when the IRS was shifted by 8 meters i.e., from d = 15 to

d = 23, three extra bits were required to get similar performance in terms of OP.

Note that the authors of [22, 23, 29] also considers scenarios without SD link.

In this context, we would like to point out that the work in [22] which approximates

the square root of SNR as a Gamma RV gives OP expressions which are as tight as

ours, however, extending their result to scenarios with SD link is not trivial. We

had recovered the expressions given by [23] as special cases (presented in corollaries

1.2 and 1.3).
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N, b Method/ Threshold -10 dB -9 dB -8 dB -7 dB -6 dB
N = 156, b = 1 Simulated 0.0067 0.1367 0.6287 0.9652 0.9995

Gamma(kmom, θmom) 0.0084 0.1390 0.6257 0.9670 0.9998
Gamma(kkl, θkl) 0.0083 0.1384 0.6259 0.9673 0.9998

N = 100, b = 5 Simulated 0.0064 0.1370 0.6370 0.9679 0.9997
Gamma(kmom, θmom) 0.0080 0.1386 0.6321 0.9697 0.9998

Gamma(kkl, θkl) 0.0079 0.1380 0.6323 0.9699 0.9998
N = 100, b =∞ Simulated 0.0061 0.1326 0.6295 0.9663 0.9997

Gamma(kmom, θmom) 0.0076 0.1344 0.6245 0.9682 0.9998
Gamma(kkl, θkl) 0.0047 0.1235 0.6332 0.9711 0.9998

Table 6.3: Comparison of OP without SD link for S1 with varying b

N d b Method/ Threshold -10 dB -5 dB -2 dB 0 dB 2 dB 5 dB
5 0 1 Simulated 0.2600 0.6278 0.8651 0.9592 0.9940 1

Gamma Approx. 0.2599 0.6284 0.8652 0.9592 0.9939 1
5 0 5 Simulated 0.2491 0.6186 0.8599 0.9571 0.9935 1

Gamma Approx. 0.2487 0.6179 0.8597 0.9571 0.9935 1
5 45 1 Simulated 0.2768 0.6441 0.8730 0.9620 0.9945 1

Gamma Approx. 0.2765 0.6432 0.8728 0.9621 0.9944 1
5 45 5 Simulated 0.2749 0.6412 0.8715 0.9619 0.9946 1

Gamma Approx. 0.2744 0.6414 0.8718 0.9617 0.9944 1
150 0 1 Simulated 0 0.0759 0.3849 0.6812 0.9055 0.9978

Gamma Approx. 0 0.0758 0.3849 0.6806 0.9055 0.9978
150 0 5 Simulated 0 2× 10−5 0.0790 0.3470 0.7137 0.9851

Gamma Approx. 0 0 0.0791 0.3465 0.7130 0.9852
150 45 1 Simulated 0.1749 0.5431 0.8186 0.9407 0.9901 0.9999

Gamma Approx. 0.1751 0.5431 0.8182 0.9403 0.9901 0.9999
150 45 5 Simulated 0.1232 0.4798 0.7795 0.9236 0.9864 0.9999

Gamma Approx. 0.1232 0.4800 0.7793 0.9232 0.9863 0.9999

Table 6.4: OP with SD link for S2
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N d b Method/ Threshold -45 dB -40 dB -35 dB -30 dB -25 dB -20 dB
5 0 1 Simulated 0.0212 0.1809 0.6594 0.9779 0.9999 1

Gamma Approx 0.0533 0.2183 0.641 0.9793 1 1
5 0 5 Simulated 0.0013 0.0364 0.3504 0.9041 0.9996 1

Gamma Approx 0.0086 0.0652 0.3573 0.8968 0.9999 1
5 45 1 Simulated 0.9741 0.9999 1 1 1 1

Gamma Approx 0.9753 1 1 1 1 1
5 45 5 Simulated 0.8916 0.9995 1 1 1 1

Gamma Approx 0.8834 0.9999 1 1 1 1
N d b Method/ Threshold -10 dB -9 dB -8 dB -7 dB -6 dB -5 dB
150 0 1 Simulated 0.0010 0.0405 0.3554 0.8545 0.9945 1

Gamma Approx 0.0016 0.0439 0.3522 0.8539 0.9954 1
150 0 5 Simulated 0 0 0 0 0.0001 0.0247

Gamma Approx 0 0 0 0 0.0002 0.0270
150 45 1 Simulated 1 1 1 1 1 1

Gamma Approx 1 1 1 1 1 1
150 45 5 Simulated 1 1 1 1 1 1

Gamma Approx 1 1 1 1 1 1

Table 6.5: OP without SD link for S2
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Figure 6.9: Impact of d on the OP without SD link for S2, N = 150.
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Parameter Impact of N Impact of b Impact of d
N is small NA less less
N is large NA more more
b is small less NA less
b is large more NA more
d close to S/D more more NA
d away from S/D less less NA

Table 6.6: Summary of impact of N , b and d on OP of

6.0.3 Key Inferences

In this sub-section, we discuss the key inferences drawn from the results presented

in Section 6.0.1 and 6.0.2. Table 6.4 and 6.5 compares the values of OP for different

values of N , d, and b for the scenarios with and without SD link, respectively. We

have only included only the moment matching results for the Tables 6.4 and 6.5.

From Table 6.4 we can observe that the reduction in OP as b increases from 1 to

5 is larger at N = 150 than at N = 5. Similar observations can also be made for

the cases without SD link from Table 6.5. Thus, we conclude that an IRS with

a small number of reflector elements is less sensitive to the number of bits used

for representing the phase. Similarly, the values of OP in Tables 6.4 and 6.5 show

that the impact of d on the OP is also larger for large values of N . Here, we can

also observe that the impact of b and N on the OP increases as the IRS moves

closer to either of the nodes S or D. Furthermore, we can observe from Tables

6.4 and 6.5 that the impact of phase errors is larger in the system without an SD

link. We have summarised the above observations in Table 6.6.



CHAPTER 7

CONCLUSION AND FUTURE SCOPE

7.1 Conclusion

This paper studied the OP of an IRS-assisted communication system in the pres-

ence of phase errors due to quantization. We proposed two different approxima-

tions using 1) moment matching and, 2) KL divergence minimization. Our sim-

ulation results showed that the derived expressions are tight and can be reliably

used for further analysis. The moment matching and KL divergence minimization

results in simple closed-form expressions for the OP. Furthermore, the proposed

approximations are highly useful in evaluating the effects of various system param-

eters on the OP. We have derived bounds to OP using Cauchy-Schwartz inequality

and Upper bound to Bessel function of second kind. We also study the how large

an IRS in order to provide reliable communication in the presence of phase error

due to quantization at the IRS. We derived the no of reflector elements needed

so that Outage Probability (OP) lie within an threshold and also optimized the

Outage probability for an IRS given an upper bound on the IRS elements. In

this work, we also studied the impact of the parameters like the number of bits

available for quantization, the position of IRS w.r.t. source and destination and,

the number of elements present at IRS.

7.2 Future scope

Since we have provided a tight approximation to the CDF, we believe that this can

be used to study all other performance metrics which are functions of the CDF of

SNR. It would be interesting future work to study a more general scenario where

the source and/or thedestination is equipped with multiple antennas.
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A.1 Proof for lemma 1

Using (2.4) and (3.1), the OP for threshold γ can be evaluated as

Poutage = P
(
γs|(|hSD|+ α

N∑
i=1
|[hSR]i||[hRD]i|ejΦi)|2 ≤ γ

)
. (A.1)

Let |hSD|, |[hSR]i| and |[hRD]i| be denoted by gSD, [gSR]i and [gRD]i respectively.

After some algebraic manipulations, we can re-write (A.1) as

Poutage = P

γs
(
gSD + α

N∑
i=1

[gSR]i[gRD]i cos(Φi)
)2

+ γs

(
α

N∑
i=1

[gSR]i[gRD]i sin(Φi)
)2

≤ γ


= P

((√
γsgSD + CTX

)2
+
(
STX

)2
≤ γ

)
(A.2)

where X =
[√
γs[gSR]1[gRD]1 . . .

√
γs[gSR]N [gRD]N

]
, C = [α cos(Φ1), . . . , α cos(ΦN)]T

and S = [α sin(Φ1) . . . α sin(ΦN)]T . Now, the RV of interest is Y =
(√

γsgSD + CTX
)2

+(
STX

)2
. Note that Y is the sum of the square of two RVs, one of which is again a

sum of N random variables (STX, where each Xi is a double Rayleigh RV and Φi

is a uniformly distributed RV over the interval [−2−bπ, 2−bπ]). To the best of our

knowledge, characterising the p.d.f. of this sum is not straight forward and is not

available in the open literature. Similarly, characterising the distribution of the

other term i.e.√γsgSD + CTX is also difficult. To proceed further, we first derive

the conditional CDF of γIRS for a particular value of Φ = φ and X = x and is

given below:

Poutage| (Φ = φ,X = x) = P
(√

γsgSD ≤
√
γ − (sTx)2 − cTx

)

=

1− e
−
(√

γ−(sT x)2−cT x
)2

d
β
sd

γs

U
(√

γ − (sTx)2 − cTx
)

(A.3)
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Now to evaluate the CDF of γIRS, we just need to evaluate the expectation

of the R.H.S. of (A.3) with respect to the RVs Φ = [Φ1, . . . ,ΦN ]T and X =

[X1, . . . , XN ]T , both of which are multivariate vectors with i.i.d. entries. Their

p.d.f.’s are as follows:

fXi(xi) =


4dβsrdβrd
γs

xiK0

[
2xi√

γsd
−β/2
sr d

−β/2
rd

]
∀xi ≥ 0

0 else
and fΦi(φi) =


2b
2π

−π
2b ≤ φi ≤ π

2b

0 else.
(A.4)

Thus, the CDF of γIRS is given by

Poutage =
∫
· · ·

∫ 1− e
−
(√

γ−(sT x)2−cT x
)2

d
β
sd

γs

U
(√

γ − (sTx)2 − cTx
)

N∏
i=1

fXi (xi) fΦi (φi) dx1dφ1 . . . dxNdφN

(A.5)

The result in (3.2) follows by substituting the p.d.f. expressions from (A.4) in

(A.5), and this completes the proof.

A.2 proof for Theorem 1

Here we derive the first and second moments of the RV γIRS given in (2.4). Let,

K := ||hSD|+ α
N∑
i=1
|[hSR]i||[hRD]i|ejΦi |2. (A.6)

Now, the moments that we need to evaluate can be expressed as:

E [γIRS] = γsE [K] , (A.7)

E
[
γ2
IRS

]
= γ2

sE
[
K2
]
. (A.8)
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Note that K can be expanded as follows:

K = |hSD|2 + α2
N∑
i=1
|[hSR]i|2|hRD]i|2︸ ︷︷ ︸
A

+ 2α|hSD|
N∑
i=1
|[hSR]i||[hRD]i| cos(Φi)︸ ︷︷ ︸

B

+

2α2
N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k| cos(Φi − Φk)︸ ︷︷ ︸
C

. (A.9)

Hence the first and second moment of K = A+B+C can be evaluated as follows:

E [K] = E[A] + E[B] + E[C] . (A.10)

E
[
K2
]

= E
[
A2
]

+ E
[
B2
]

+ E
[
C2
]

+ 2E [AB] + 2E [BC] + 2E [AC] . (A.11)

Next, in order to find the above moments, we plug in A, B, C and derive individual

expectations assuming s := sin( π

2b )
π

2b
, p := sin(2 π

2b )
2 π

2b
. Let us find the first moments of

RV A, B and C,

E [A] = E
[
|hSD|2 + α2

N∑
i=1
|[hSR]i|2|[hRD]i|2

]
= d−βsd +Nα2d−βsr d

−β
rd , (A.12)

where E
[
|hab|2

]
= d−βab , a, b ∈ {S, R, D}.

E [B] = E
[
2α|hSD|

N∑
i=1
|[hSR]i||[hRD]i| cos (Φi)

]
= Nαπ

3
2

4 d
−β
2
sr d

−β
2
rd d

−β
2
sd s, (A.13)

where E [cos(Φi)] = sin( π

2b )
π

2b
= s, E

[
|hab|

]
=
√
π

2 d
−β/2
ab , a, b ∈ {S, R, D}.

E[C] = E

2α2
N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k| cos (Φi − Φk)


= π2α2

8 d−βsr d
−β
rd

N(N − 1)
2 s2,

(A.14)
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where E [cos (Φi − Φk)] = ( sin( π

2b )
π

2b
)2 = s2. Similarly, the second moments of the

RV A, B, C are derived as follows,

E
[
A2
]

= E

(|hSD|2 + α2
N∑
i=1
|[hSR]i|2|[hRD]i|2

)2
= 2d−2β

sd + 2α2Nd−βsd d
−β
sr d

−β
rd + α4

(
3N +N2

)
d−2β
sr d−2β

rd ,

(A.15)

where E
[
|hab|4

]
= 2d−2β

ab , a, b ∈ {S, R, D}.

E[B2] =E

(2α|hSD|
N∑
i=1
|[hSR]i||[hRD]i| cos(Φi)

)2
= 4α2E[|hSD|2]

[
N∑
i=1

E
[
|[hSR]i|2

]
E[|[hRD]i|2]E[cos2(Φi)]

+2
N−1∑
i=1

N∑
j=i+1

E[|[hSR]i|]E[|[hRD]i|]E[|[hSR]j|]E[|[hRD]i|]E[cos(Φi)]E[cos(Φj)]


= 4α2d−βsr d
−β
rd d

−β
sd

[
N
(1 + p

2

)
+ N (N − 1) s2π2

16

]
,

(A.16)

where E [cos2(Φi)] = [1
2 + 2b

2π sin( π2b ) cos( π2b )] = 1+p
2 .

E[C2] =E


2α2

N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k| cos(Φi − Φk)
2


= 4α4
N−1∑
i=1

N∑
k=i+1

E2
[
|[hSR]i|2

]
E2
[
|[hRD]i|2

]
E
[
cos2(Φi − Φk))

]

+ 4α4
N∑
j=1

N−1∑
i=1

i 6=j 6=k 6=l

N∑
k=i+1

N∑
l=j+1

[E4
[
|[hSR]i|

]
E4
[
|[hRD]i|

]
E2 [cos (Φi − Φk)]

+ 4α4
N∑
j=1

N−1∑
i=1

j=i 6=k 6=l

N∑
k=i+1

N∑
l=j+1

[
E
[
|[hSR]k|

]
E
[
|[hRD]k|

]
E
[
|[hSR]l|

]
E
[
|[hRD]l|

]

E
[
|[hSR]i|2

]
E
[
|[hRD]i|2

]
E [cos(Φi − Φk) cos(Φi − Φl)]

]
,

Using E [cos2(Φi − Φk)] = 1
2+1

2

(
sin(2 π

2b )
2 π

2b

)2
= 1+p2

2 and E [cos (Φi − Φk) cos(Φi − Φl)] =
1
2s

2 + 1
2ps

2, above equation can be written as

E
[
C2
]

= N(N − 1)α4d−2β
sr d−2β

rd

[
1 + p2 + (N − 2)(N − 3)π4s4

256 + (N − 2)π2s2

4

(1 + p

2

)]
.

(A.17)
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Next, we derive the expectation of RV’s AB, BC and AC,

E[AB] = E
[(
|hSD|2 + α2

N∑
i=1
|[hSR]i|2|[hRD]i|2

)
×
(

2α|hSD|
N∑
i=1
|[hSR]i||[hRD]i| cos(Φi)

)]
,

(A.18)

Since each of the link are independent, we now evaluate the expectation as,

E [AB] =2αE
[
|hSD|3

] N∑
i=1

E
[
|[hSR]i|

]
E
[
|[hRD]i|

]
E [cos(Φi)]

+ 4α3E
[
|hSD|

]N−1∑
j=1

N∑
i=j+1

E
[
|[hSR]i|2

]
E
[
|[hRD]i|2

]
E
[
|[hSR]i|

]
E
[
|[hRD]i|

]
E [cos(Φi)]

+ 2α3E
[
|hSD|

] N∑
i=1

E
[
|[hSR]i|3

]
E
[
|[hRD]i|3

]
E [cos(Φi)]), (A.19)

Substituting the values of expectations where E[|hab|3] = 3
4
√
πd
−3β/2
ab , a, b ∈ {S,

R, D}, we have

E[AB] =α3π 3
2

8 d
−3β/2
sd d−β/2sr d

−β/2
rd (Ns) + α3 (4N + 5) π 3

2

16 d
−β/2
sd d−3β/2

sr d
−3β/2
rd (Ns) .

(A.20)

Next we consider the expectation of the term BC,

E[BC] =E
[
2α|hSD|

N∑
i=1
|[hSR]i||[hRD]i| cos(Φi)×

2α2
N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k|(cos(Φi − Φk))
 , (A.21)

As all the channel coefficients are assumed to be independent of each other, we

can write the above equation as

E[BC] =4α3
√
π

2 d
−β/2
sd (

√
π

2 d−β/2sr )3(
√
π

2 d
−β/2
rd )3

N∑
j=1

N−1∑
i=1
i 6=j 6=k

N∑
k=i+1

E [cos(Φj)(cos(Φi) cos(Φk))]

+ 4α3
√
π

2 d
−β/2
sd d−βsr d

−β
rd

√
π

2 d−β/2sr

√
π

2 d
−β/2
rd

N−1∑
i=1

N∑
k=i+1

E [cos(Φi)(cos(Φi) cos(Φk))]

+ 4α3
√
π

2 d
−β/2
sd d−βsr d

−β
rd

√
π

2 d−β/2sr

√
π

2 d
−β/2
rd

N−1∑
i=1

N∑
k=i+1

E [cos(Φk)(cos(Φi) cos(Φk))] ,

(A.22)
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By substituting expressions for expectations we get,

E[BC] =α
3π7/2d

−β2
sd d

−3β2
sr d

−3β2
rd

32
N(N − 1)(N − 2)

2 s3 + α3π3/2N(N − 1)
2 d

−β2
sd d

−3β2
sr d

−3β2
rd s

(1 + p)
2 .

(A.23)

Finally, we evaluate the expectation of the last term AC,

E[AC] =E
[(
|hSD|2 + α2

N∑
i=1
|[hSR]i|2|[hRD]i|2

)
×2α2

N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k| cos(Φi − Φk)
 , (A.24)

we can write the above equation as

E[AC] =E[|hSD|2]E[C] (A.25)

+2α4
N−1∑
i=1

N∑
k=i+1

E[|[hSR]j|3]E[|[hRD]j|3]E[|[hSR]j|]E[|[hRD]j|]E[cos(Φi − Φk)]

+ 4α4
N∑
j=1

N−1∑
i=1
i 6=j 6=k

N∑
k=i+1

E[|[hSR]j|2]E[|[hRD]j|2]E[|[hSR]j|]2E[|[hRD]j|]2E[cos(Φi − Φk)],

(A.26)

Substituting for the expectation, we get

E[AC] =d−βsd E[C] + α4 (2N + 5)π2

16 d−2β
sr d−2β

sr

(N)(N − 1)
2 s2. (A.27)

Thus, the first and second moments are given by

E[γIRS] = γs[Nα2d−βsr d
−β
rd + d−βsd +α

π
3
2

4 d
−β
2
sr d

−β
2
rd d

−β
2
sd Ns+α2π

2

8 d
−β
sr d

−β
rd

N(N − 1)
2 s2].

(A.28)
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E
[
γ2
IRS

]
= γ2

s

[
2d−2β

sd + 3Nsαπ3/2

4 d
−3β/2
sd d−β/2sr d

−β/2
rd +Nα2d−βsr d

−β
rd d

−β
sd

[
3(N − 1)π2s2

8 + 4 + 2p
]

+ Nα4d−2β
sr d−2β

rd 2 [N + 1]

+ Nα4d−2β
sr d−2β

rd (N − 1)
[
p2 + (N − 2)(N − 3)π4s4

256 + π2s2

16 [2p(N − 2) + 4N + 1]
]

+ Nα3π3/2d
−β/2
sd d−3β/2

sr d
−3β/2
rd

[
(4N + 5)s8 + (N − 1)(N − 2)π2s3

32 + (N − 1)s
(1

2 + p

2

)]]
.

(A.29)

where s = sin( π

2b )
π

2b
, p = sin( 2π

2b )
2π
2b

This completes the proof.

A.3 Proof for Theorem 2

Here, we proceed with steps similar to the KL divergence minimization used by

the authors of [37]. Let p(γ) and q(γ) respectively represent the pdf of the SNR

and the Gamma distribution that minimizes the KL divergence between p(γ) and

all the Gamma distributions i.e.,

q(γ) = argmin
q(γ)

KL(p(γ)‖q(γ)) = argmax
q(γ)

∫
p(γ)[ln(q(γ))− ln(p(γ))]dγ,

= argmax
q(γ)

∫
p(γ) ln(q(γ))dγ. (A.30)

Here we have, q(γ) = θ
−kkl
kl

Γ[kkl]
γkkl−1 exp

(
−γ
θkl

)
, where kkl, θkl are respectively the shape

and scale parameter of the Gamma distribution. Thus,

q(γ) = argmax
q(γ)

∫
p(γ)

(
−kkl log(θkl)− log(Γ[kkl]) + (kkl − 1) log(γ)− γ

θkl

)
dγ

(A.31)

= argmax
q(γ)

− kkl log(θkl)− log(Γ[kkl]) + (kkl − 1)E[log(γ)]− E[γ]
θkl

. (A.32)

Now, the parameters kkl and θkl can be identified by differentiating (A.32) with

respect to kkl and θkl and then equating each of the expression to zero. Thus, we
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have

E[log(γIRS)] = log(θkl) + ψ(kkl), (A.33)

E[γIRS] = kkl × θkl. (A.34)

One can observe that (A.33) and (A.34) are equivalent to matching the first mo-

ment of γIRS and the first moment of log(γIRS) to the corresponding moments of

a gamma RV. Thus, the probability of outage for a threshold γ is obtained by

evaluating the CDF of the Gamma RV with parameters kkl and θkl at γ. The

corresponding expression is given in (3.13).

A.4 proof for Theorem 3

Here, we derive the first and second moments of the RV γIRS given in (2.4). Let,

K := ||hSD|+ α
N∑
i=1
|[hSR]i||[hRD]i|ejΦi |2. (A.35)

Now, the moments that we need to evaluate can be expressed as E [γIRS] =

γsE [K] , E [γ2
IRS] = γ2

sE [K2] . Note that K can be expanded as follows:

K = |hSD|2 + α2
N∑
i=1
|[hSR]i|2|[hRD]i|2︸ ︷︷ ︸
A

+ 2α|hSD|
N∑
i=1
|[hSR]i||[hRD]i| cos(Φi)︸ ︷︷ ︸

B

+

2α2
N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k| cos(Φi − Φk)︸ ︷︷ ︸
C

. (A.36)

Hence, the first and second moment ofK can be evaluated as E [K] = E[A] + E[B] + E[C]

and E [K2] = E [A2] + E [B2] + E [C2] + 2E [AB] + 2E [BC] + 2E [AC]. Next, in

order to find the above moments, we plug in A, B, C and derive individual ex-

pectations assuming s := sin( π

2b )
π

2b
, p := sin(2 π

2b )
2 π

2b
, mab

1 := E
[
|hab|

]
, mab

2 := E
[
|hab|2

]
,

mab
3 := E

[
|hab|3

]
, mab

4 := E
[
|hab|4

]
. Let us find the first moments of RV’s A, B,
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and C,

E [A] = E
[
|hSD|2 + α2

N∑
i=1
|[hSR]i|2|[hRD]i|2

]
= msd

2 +Nα2msr
2 m

rd
2 , (A.37)

where E
[
|hab|2

]
= mab

2 , a, b ∈ {S, R, D}.

E [B] = E
[
2α|hSD|

N∑
i=1
|[hSR]i||[hRD]i| cos (Φi)

]

= 2Ns αmsd
1 m

sr
1 m

rd
1 ,

(A.38)

where E [cos(Φi)] = sin( π

2b )
π

2b
= s, E

[
|hab|

]
= mab

1 , a, b ∈ {S, R, D}.

E[C] = E

2α2
N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k| cos (Φi − Φk)


= 2α2(msr
1 )2(mrd

1 )2N(N − 1)
2 s2,

(A.39)

where E [cos (Φi − Φk)] =
(

sin( π

2b )
π

2b

)2
= s2. Similarly, the second moments of the

RV A, B, and C are derived as follows,

E
[
A2
]

= E

(|hSD|2 + α2
N∑
i=1
|[hSR]i|2|[hRD]i|2

)2
= msd

4 + 2α2Nmsr
2 m

rd
2 m

sd
2 +Nα4msr

4 m
rd
4 + 2α4N(N − 1)

2 (msr
2 )2(mrd

2 )2,

(A.40)

where E
[
|hab|4

]
= mab

4 , a, b ∈ {S, R, D}.

E[B2] =E

(2α|hSD|
N∑
i=1
|[hSR]i||[hRD]i| cos(Φi)

)2
= 4α2msd

2

[
Nmsr

2 m
rd
2 [1 + p

2 ] + 2s2N(N − 1)
2 (msr

2 )2(mrd
2 )2

]
,

(A.41)

where E [cos2(Φi)] = [1
2 + 2b

2π sin( π2b ) cos( π2b )] = 1+p
2 . Next, we have
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E[C2] = E


2α2

N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k| cos(Φi − Φk)
2


= 4α4
N−1∑
i=1

N∑
k=i+1

(
E
[
|[hSR]i|2

])2 (
E
[
|[hRD]i|2

])2
E
[
cos2(Φi − Φk))

]

+ 4α4
N∑
j=1

N−1∑
i=1

i 6=j 6=k 6=l

N∑
k=i+1

N∑
l=j+1

(
E
[
|
[
hSR

]
i
|
])4 (

E
[
|
[
hRD

]
i
|
])4

E2 [cos (Φi − Φk)]

+ 4α4
N∑
j=1

N−1∑
i=1

j=i 6=k 6=l

N∑
k=i+1

N∑
l=j+1

[
E
[
|[hSR]k|

]
E
[
|[hRD]k|

]
E
[
|[hSR]l|

]
E
[
|[hRD]l|

]

E
[
|[hSR]i|2

]
E
[
|[hRD]i|2

]
E [cos(Φi − Φk) cos(Φi − Φl)]

]
.

(A.42)

Using E [cos2(Φi − Φk)] = 1
2+1

2

(
sin(2 π

2b )
2 π

2b

)2
= 1+p2

2 and E [cos (Φi − Φk) cos(Φi − Φl)] =
1
2s

2 + 1
2ps

2, (A.42) can now be written as

E
[
C2
]

= N(N − 1)α4
[
(N − 2)msr

2 m
rd
2 s

2 (1 + p) (msr
1 )2(mrd

1 )2 + (msr
2 )2(mrd

2 )2(1 + p2)

+s4(N − 2)(N − 3)(msr
1 )4(mrd

1 )4
]
.

(A.43)

Next, we derive the expectation of RV’s AB, BC, and AC,

E[AB] = E
[(
|hSD|2 + α2

N∑
i=1
|[hSR]i|2|[hRD]i|2

)
×
(

2α|hSD|
N∑
i=1
|[hSR]i||[hRD]i| cos(Φi)

)]
.

(A.44)

As all the channel coefficients are assumed to be independent of each other, we

can rewrite the above equation as (A.45).

E [AB] =2αE
[
|hSD|3

] N∑
i=1

E
[
|[hSR]i|

]
E
[
|[hRD]i|

]
E [cos(Φi)]

+ 4α3E
[
|hSD|

]N−1∑
j=1

N∑
i=j+1

E
[
|[hSR]i|2

]
E
[
|[hRD]i|2

]
E
[
|[hSR]i|

]
E
[
|[hRD]i|

]
E [cos(Φi)]

+ 2α3E
[
|hSD|

] N∑
i=1

E
[
|[hSR]i|3

]
E
[
|[hRD]i|3

]
E [cos(Φi)]). (A.45)
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Using E[|hab|3] = mab
3 where a, b ∈ {S, R, D}, we have

E[AB] =2Nαmsd
3 m

sr
1 m

rd
1 s+ 2α3Nmsd

1 m
sr
3 m

rd
3 s+ 4α3msd

1 m
sr
1 m

rd
1 m

sr
2 m

rd
2
N(N − 1)

2 s.

(A.46)

Next we consider the expectation of the term BC,

E[BC] =E
[
2α|hSD|

N∑
i=1
|[hSR]i||[hRD]i| cos(Φi)×

2α2
N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k|(cos(Φi − Φk))
 . (A.47)

As all the channel coefficients are assumed to be independent of each other, we

can write the above equation as

E[BC] =4α3msd
1 [msr

1 ]3
[
mrd

1

]3 N(N − 1)(N − 2)s3

2 (A.48)

+ 2 ∗ 4α3msd
1 m

sr
2 m

rd
2 m

sr
1 m

rd
1
N(N − 1)

2 s
1 + p

2 . (A.49)

Finally, we evaluate the expectation of the last term AC,

E[AC] =E
[(
|hSD|2 + α2

N∑
i=1
|[hSR]i|2|[hRD]i|2

)
×2α2

N−1∑
i=1

N∑
k=i+1

|[hSR]i||[hRD]i||[hSR]k||[hRD]k| cos(Φi − Φk)
 . (A.50)

As all the channel coefficients are assumed to be independent of each other, we

can rewrite the above equation as

E[AC] =E[|hSD|2]E[C]

+ 2α4
N−1∑
i=1

N∑
k=i+1

E[|[hSR]j|3]E[|[hRD]j|3]E[|[hSR]j|]E[|[hRD]j|]E[cos(Φi − Φk)]

+ 4α4
N∑
j=1

N−1∑
i=1
i 6=j 6=k

N∑
k=i+1

E[|[hSR]j|2]E[|[hRD]j|2]E[|[hSR]j|]2E[|[hRD]j|]2E[cos(Φi − Φk)].

(A.51)
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Substituting for the expectations, we get

E[AC] =msd
2 E[C] + 2α4msr

3 m
rd
3 m

sr
1 m

rd
1
N(N − 1)

2 s2

+ 4α4(msr
1 )2(mrd

1 )2msr
2 m

rd
2
N(N − 1)(N − 2)

2 s2. (A.52)

Thus, the first and second moments are obtained by substituting moments in

E [γIRS] = γs

(
msd

2 +Nα2msr
2 m

rd
2 + 2Ns αmsd

1 m
sr
1 m

rd
1 + 2α2(msr

1 )2(mrd
1 )2N(N − 1)

2 s2
)
.

(A.53)

E
[
γIRS

2
]

= γ2
s

(
msd

4 + 2α2Nmsr
2 m

rd
2 m

sd
2 +Nα4msr

4 m
rd
4 + 2α4N(N − 1)

2 (msr
2 )2(mrd

2 )2

(A.54)

+4α2msd
2

[
Nmsr

2 m
rd
2 [1 + p

2 ] + 2s2N(N − 1)
2 (msr

2 )2(mrd
2 )2

]

+N(N − 1)α4
[
(N − 2)msr

2 m
rd
2 s

2 (1 + p) (msr
1 )2(mrd

1 )2

+(msr
2 )2(mrd

2 )2(1 + p2) + s4(N − 2)(N − 3)(msr
1 )4(mrd

1 )4
]

+2
[
2Nαmsd

3 m
sr
1 m

rd
1 s+ 2α3Nmsd

1 m
sr
3 m

rd
3 s+ 4α3msd

1 m
sr
1 m

rd
1 m

sr
2 m

rd
2
N(N − 1)

2 s

]

+2N(N − 1)
2

[
4α3msd

1 [msr
1 ]3

[
mrd

1

]3
(N − 2)s3 + 2 ∗ 4α3msd

1 m
sr
2 m

rd
2 m

sr
1 m

rd
1 s

1 + p

2

]
+4α2N(N − 1)

2 s2msr
1 m

rd
1

[
msd

2 m
sr
1 m

rd
1 + α2

[
msr

3 m
rd
3 + 2msr

1 m
rd
1 m

sr
2 m

rd
2 (N − 2)

]])
.

A.5 Proof for Theorem 4

When Source to Destination link is in outage, the resultant SNR at node D is

given by

γIRS = γs|(|hSD|+ α
N∑
i=1
|[hSR]i||[hRD]i|)|2. (A.55)

The CDF of γIRS can be evaluated as

FγIRS(γ) = P
(
γs|(|hSD|+ α

N∑
i=1
|[hSR]i||[hRD]i|)|2 ≤ γ

)
. (A.56)
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FγIRS(γ) = P
(
α2|(
√
γs
α
|hSD|+

N∑
i=1

√
γs|[hSR]i||[hRD]i)|2 ≤ γ

)
. (A.57)

FγIRS(γ) = P
(
|(
√
γs
α
|hSD|+

N∑
i=1

√
γs|[hSR]i||[hRD]i)| ≤

√
γ

α

)
. (A.58)

Let Z = Y+
N∑
i=1

Xi, where Y =
√
γs
α
|hSD|,X =

[√
γs|[hSR]1||[hRD]1, . . . ,

√
γs|[hSR]N ||[hRD]N

]T
= [X1, . . . , XN ]T , is a multivariate vector with i.i.d. entries.

The p.d.f. of Y is as follows

fY (y) = α2

γsσ2
sd

ye
− α2

2γsσ2
sd

y2

(A.59)

The p.d.f. of Xi’s

fXi(xi) = 4dβsrd
β
rd

γs
xiK0

 2xi
√
γsd
−β/2
sr d

−β/2
rd

 (A.60)

Assuming a2 := 4dβsrdβrd
γs

, b2 = γsσ2
sd

2α2 , and using inequality K0(ax) ≤
√
πe−ax
√

2ax , above

equation can be written as

fXi(xi) =a2xiK0 (axi)

≤a2xi

√
π exp (−axi)√

2axi
≤
√
πxi
2 a

3
2 exp (−axi) . (A.61)

fY (y) = y

σ2 e
− y2

2σ2 (A.62)

Laplace Transforms of RV’s Xi,Y are given by

L(fY (y)) = L( y
σ2 e

− y2

2σ2 ) =1
2

[
2− e s

2σ2
2
√

2πsσerfc[ sσ√
2

]
]

=1− es2b2√
πsb erfc[sb] (A.63)

L[fXi(xi)] ≤
√
π

2a
3
2 L[x

1
2
i exp (−axi)]. (A.64)

We know that L[t 1
2 ] =

√
π

2s
3
2
, and L[e−atf(t)] = F (s + a), we can write above
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equation as

L[fXi(xi)] ≤
√
π

2a
3
2

√
π

2(s+ a) 3
2

≤πa
3
2

2 3
2

1
(s+ a) 3

2
. (A.65)

Since all Xi follow the same PDF given by A.61, the PDF of Z can be found from

fZ(z) = L−1(LfY (y)[LfXi(xi)]N) (A.66)

On substituting Laplace Transform’s, we now find PDF of upper bound given by

fZ(z) ≤ L−1

[1− es2b2√
πsb erfc[sb]

]  πa
3
2

2 3
2 (s+ a) 3

2

N
 (A.67)

Since inverse laplace is linear function rearrangement of above equation gives

fZ(z) ≤ πNa
3N
2

2 3N
2

[
L−1

[
1

(s+ a) 3N
2

]
−
√
πbL−1

[
s
es

2b2erfc[sb]
(s+ a) 3N

2

]]
(A.68)

Substituting for Inverse laplace transform results in

fZ(z) ≤π
Na

3N
2

2 3N
2

e−atz 3N
2 −1

Γ(3N
2 )


− πNa

3N
2

2 3N
2

√
πb

2 3N
2 −1( 1

b2 )− 3N
4 e−

z2
4b2

Γ[3N
2 ]b
√

Π

[
(−z2b2 )

[
Γ[3N4 ]F1[3N4 ,

1
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2 (−2ab2 + z)Γ[12 + 3N

4 ]F1[2 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]


+
2−1+ 3N

2 ( 1
b2 )− 3N

4 e−
z2
4b2

Γ[3N
2 ]b
√

Π

[
Γ[3N4 ]3N(−2ab2 + z)

4b2 F1[1 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2 Γ[12 + 3N

4 ]F1[2 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2

(−2ab2 + z)2

12b2 Γ[12 + 3N
4 ]F1[6 + 3N

4 ,
5
2 ,

(−2ab2 + z)2

4b2 ]
 (A.69)
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We can now find the bound to outage probability by

POutage(t) =
∫ t

0
fZ(z)dz (A.70)

Finally, the upper bound to OP for an IRS system with SD link is given by

Poutage ≤
∫ t

0

πNa
3N
2

2 3N
2

e−atz 3N
2 −1

Γ(3N
2 )

 dz
− πNa

3N
2

2 3N
2

√
πb
∫ t

0

2 3N
2 −1( 1

b2 )− 3N
4 e−

z2
4b2

Γ[3N
2 ]b
√

Π

[
(−z2b2 )

[
Γ[3N4 ]F1[3N4 ,

1
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2 (−2ab2 + z)Γ[12 + 3N

4 ]F1[2 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]


+
2−1+ 3N

2 ( 1
b2 )− 3N

4 e−
z2
4b2

Γ[3N
2 ]b
√

Π

[
Γ[3N4 ]3N(−2ab2 + z)

4b2 F1[1 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2 Γ[12 + 3N

4 ]F1[2 + 3N
4 ,

3
2 ,

(−2ab2 + z)2

4b2 ]

+
√

1
b2

(−2ab2 + z)2

12b2 Γ[12 + 3N
4 ]F1[6 + 3N

4 ,
5
2 ,

(−2ab2 + z)2

4b2 ]
 dz, (A.71)

Here, 1F1(·, ·, ·) is the confluent hypergeometric function of the first kind [35].

A.6 Proof for Theorem 5

When Source to Destination link is in outage, the resultant SNR at node D is

given by

γIRS = γs|α
N∑
i=1
|[hSR]i||[hRD]i||2. (A.72)

The CDF of γIRS can now be evaluated as

FγIRS(γ) = P
(
γs|α

N∑
i=1
|[hSR]i||[hRD]i||2 ≤ γ

)
. (A.73)

FγIRS(γ) = P
(
|
N∑
i=1

√
γs|[hSR]i||[hRD]i| ≤

√
γ

α

)
. (A.74)
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Let Z =
N∑
i=1

Xi, where X =
[√
γs|[hSR]1||[hRD]1, . . . ,

√
γs|[hSR]N ||[hRD]N

]T
=

[X1, . . . , XN ]T , is a multivariate vector with i.i.d. entries whose PDF is given

as follows:

fXi(xi) = 4dβsrd
β
rd

γs
xiK0

 2xi
√
γsd
−β/2
sr d

−β/2
rd

 (A.75)

Assuming a2 := 4dβsrdβrd
γs

, and using inequality K0(ax) ≤
√
πe−ax
√

2ax , above equation can

be written as

fXi(xi) =a2xiK0 (axi)

≤a2xi

√
π exp (−axi)√

2axi
=
√
πxi
2 a

3
2 exp (−axi) . (A.76)

Applying Laplace Transform

L[fXi(xi)] ≤
√
π

2a
3
2 L[x

1
2
i exp (−axi)]. (A.77)

If L[f(t)] = F (s), then L[e−atf(t)] = F (s + a), L[t 1
2 ] =

√
π

2s
3
2
, we can write above

equation as

L[fXi(xi)] ≤
√
π

2a
3
2

√
π

2(s+ a) 3
2

=πa
3
2

2 3
2

1
(s+ a) 3

2
. (A.78)

Since all Xi follow the same PDF, the PDF of Z can be found from

fZ(z) = L−1[LNfXi(xi)] (A.79)

fZ(z) ≤L−1

πNa 3N
2

2 3N
2

1
(s+ a) 3N

2


≤π

Na
3N
2

2 3N
2

L−1[ 1
(s+ a) 3N

2
] (A.80)
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Using L−1[Γ[n+1]
sn+1 ] = tn, and L−1[F (s+ a)] = e−atf(t), we get

fZ(z) ≤ πNa
3N
2

2 3N
2

e−atz
3N
2 −1

Γ(3N
2 )

(A.81)

We know that outage expression is given by

POutage(t) =
∫ t

0
fZ(z)dz (A.82)

POutage(t) ≤
πN

2 3N
2

γ(3N
2 , at)

Γ(3N
2 )

(A.83)

A.7 Proof for Theorem 6

The expression for Poutage (for the case without phase error) is given by

Poutage = P

(|hsd|+ N∑
i=1
|[hSR]i||[hRD]i|

)2

≤ γ

 . (A.84)

Let mSR := [
√
|hSD| |[hSR]1| · · · , |[hSR]N |] and mRD := [

√
|hSD| |[hRD]1| · · · , |[hRD]N |].

Thus, we have

Poutage = P
(
〈mSR,mRD〉2 ≤ γ

)
≤ P (〈mSR,mSR〉 . 〈mRD,mRD〉 ≤ γ) . (A.85)

Note that m̃SR := 〈mSR,mSR〉 = |hSD| +
N∑
i=1
|[hSR]i|2. We have |[hRD]i|2 ∼

Exp( 1
2σ2
sr

). Then, h̃SR :=
N∑
i=1
|[hSR]i|2 ∼ Gamma (N, 2σ2

sr). Similarly, let m̃RD :=

〈mRD,mRD〉. To characterise the probability of outage, we need to characterise

the CDF of the RV Z = m̃SR × m̃RD = (|hSD|+ h̃SR)× (|hSD|+ h̃RD). Note that

the RV Z is the product of two correlated RVs. In the following discussion we use

the Jacobian method to characterise the distribution of Z. We briefly discuss the

Jacobian method of transforming RVs in the next paragraph:

Consider an n-tuple random variable (X1, X2, . . . , Xn) whose joint density is given

by

f(X1,X2,...,Xn) (x1, x2, . . . , xn) and the corresponding transformations are given by

Y1 = g1 (X1, X2, . . . , Xn) , Y2 = g2 (X1, X2, . . . , Xn) , . . . , Yn = gn (X1, X2, . . . , Xn) .
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Succinctly, we denote this as a vector transformation Y = g(X), where g : Rn →

Rn. We assume that the transformation g is invertible, and continuously differ-

entiable. Under this assumption, the joint density of fY1,Y2,...,Yn (Y1, Y2, . . . , Yn) is

given by

fY1,Y2,...,Yn (y1, y2, . . . , yn) = f(X1,X2,...,Xn)
(
g−1

1 (y)
)
|J(y)|

where |J(y)| is the Jacobian matrix, given by

J(y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x2
∂y1

. . . ∂xn
∂y1

∂x1
∂y2

∂x2
∂y2

. . . ∂xn
∂y2

· · ·

· · . . . ·

· · ·
∂x1
∂yn

∂x2
∂yn

· · · ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Here, we have X1 = |hSD|, X2 = h̃SR and X3 = h̃RD. Similarly, let Y1 = (X1 +

X2)×(X1+X3) , Y2 = X2 and Y3 = X3. Note thatX1 = 1
2

(
−y2 − y3 ±

√
4y1 + y2

2 − 2y2y3 + y2
3

)
,

X2 = Y2 and X3 = Y3. Since, we know that Xi > 0 ∀ i, we choose X1 =
1
2

(
−y2 − y3 +

√
4y1 + y2

2 − 2y2y3 + y2
3

)
. Since the RVs X1, X2, X3 are indepen-

dent, their joint distribution f(X1,X2,X3) is given by

f(X1,X2,X3) = x1

σ2
sd

e−x
2
1/(2σ2

sd)× 1
Γ(N)(2σ2

sr)N
xN−1

2 e
− x2

(2σ2
sr)× 1

Γ(N)(2σ2
rd)N

xN−1
3 e

− x3
(2σ2

rd
) .

(A.86)

The corresponding Jacobian is given by

J(y) =

∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

0 0
∂x1
∂y2

1 0
∂x1
∂y3

0 1

∣∣∣∣∣∣∣∣∣∣∣
= ∂x1

∂y1
=
(
4y1 + (y2 − y3)2

)−1
2 .

Thus, we have

fY1,Y2,Y3 (y1, y2, y3) = x1

σ2
sd

e−x
2
1/(2σ2

sd) × 1
Γ(N)(2σ2

sr)N
yN−1

2 e
− y2

(2σ2
sr) × 1

Γ(N)(2σ2
rd)N

yN−1
3 e

− y3
(2σ2

rd
)

×
(
4y1 + (y2 − y3)2

)−1
2 , (A.87)



APPENDIX A. APPENDICES 64

where x1 = 1
2

(
−y2 − y3 +

√
4y1 + y2

2 − 2y2y3 + y2
3

)
. Now, to derive the marginal

CDF of the RV Y1 we can integrate (A.87) over the support of Y2 and Y3. Note

that X1 > 0 will require the following condition:

1
2

(
−y2 − y3 ±

√
4y1 + y2

2 − 2y2y3 + y2
3

)
> 0, (A.88)

i.e
√

4y1 + y2
2 − 2y2y3 + y2

3 > y2 + y3, (A.89)

i.e y1 > y2y3 (A.90)

i.e y2 <
y1

y3
. (A.91)

Thus, we have

fY1(y1) =
∞∫
0

y1
y3∫

0

fY1,Y2,Y3 (y1, y2, y3) dy2 dy3. (A.92)

Hence, CDF of Y1 is given by

FY1(t) =
t∫

0

∞∫
0

y1
y3∫

0

fY1,Y2,Y3 (y1, y2, y3) dy2 dy3 dy1. (A.93)

where

fY1,Y2,Y3 (y1, y2, y3) =
1
2

(
−y2 − y3 +

√
4y1 + y2

2 − 2y2y3 + y2
3

)
σ2
sd

e
−

( 1
2

(
−y2−y3+

√
4y1+y2

2−2y2y3+y2
3

)
)2

(2σ2
sd)

1
Γ(N)(2σ2

sr)N
yN−1

2 e
− y2

(2σ2
sr)

1
Γ(N)(2σ2

rd)N
yN−1

3 e
− y3

(2σ2
rd

) ×
(
4y1 + (y2 − y3)2

)−1
2 .

(A.94)

A.8 Proof for Theorem 7

The expression for Poutage (for the case without phase error) is given by

Poutage = P
(∣∣∣∣ N∑

i=1
|[hSR]i||[hRD]i|

∣∣∣∣2 ≤ γ

)
. (A.95)

Using Cauchy-Scwartz inequality, we have

Poutage = P
(
γs 〈hSR,hRD〉2 ≤ γ

)
≤ P (〈hSR,hSR〉 . 〈hRD,hRD〉 ≤ γ) . (A.96)



APPENDIX A. APPENDICES 65

Poutage ≤ P
(
〈hSR,hSR〉 . 〈hRD,hRD〉 ≤

γ

γs

)
. (A.97)

We have |[hSR]i|2 ∼ Exp( 1
2σ2
sr

). Then, h̃SR :=
N∑
i=1
|[hSR]i|2 ∼ Gamma (N, 2σ2

sr).

Similarly, |[hRD]i|2 ∼ Exp( 1
2σ2
rd

). Then, h̃RD :=
N∑
i=1
|[hRD]i|2 ∼ Gamma (N, 2σ2

rd).

To characterise the probability of outage, we need to characterise the CDF of the

RV Z = (h̃SR) × (h̃RD). Note that the RV Z is the product of two independent

Gamma RVs whose PDF is given by

fz(z) =
2
(

z
σsrσrd

)N
K0

(
2
√

z
σsrσrd

)
zΓ2[N ] . (A.98)

We now found the CDF of Z using the integral

Poutage ≤
∫ γ

γs

0
fz(z)dz. (A.99)

Solving the above integral results in

Poutage ≤
1

N2Γ2[N ]

(
γ

γsσsrσrd

)N
F

[
{N,N}, {1, 1 +N, 1 +N}, γ

γsσsrσrd

]
(A.100)

−NF [{N}, {1, 1 +N}, γ

γsσsrσrd
]
(

2ψ + Log[ γ

γsσsrσrd
]
)

(A.101)

+ 2N2Γ[N ]F ({1,0},{0,0,0},{0})
r

[
{1, N}, {1, 1, 1 +N}, { γ

γsσsrσrd
}
]

(A.102)

. (A.103)

Here, pF(·, ·, ·) pFr(·, ·, ·) denotes the generalized and regularized confluent hyper-

geometric functions [35] and ψ is Euler gamma constant.
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