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ABSTRACT

KEYWORDS: Fourier Disparity Layer; Tucker TS; Hybrid Tensor Decomposi-

tion;

Light field imaging has emerged as a very promising technology in the field of compu-

tational photography. Many acquisition device have been recently designed to capture

LF, from array of cameras to single camera mounted on moving gantries and plenoptic

cameras.

Compared to classical 2D imaging, light field capture the intensity values of light

rays in the form of large volumes of data retaining both spatial and angular informa-

tion of a scene, which enables a variety of post capturing processing like re-focusing,

extended focus, different view point rendering and depth estimation from a single ex-

posure

However given large volumes of data of high dimensionality, the design of efficient

compression scheme of light field is a key challenge for practical use of technology. The

thesis proposed novel scheme that helps to compress streaming light field data with low

rank approximation using Hybrid Tucker TS via sketching based on Fourier Disparity

layer. Streamed LF views are approximated via Hybrid Tucker TS and then approx-

imated views are encoded using HEVC with different layer configurations. Proposed

scheme shows significant gain in bitrates and PSNR compared to Dib et al. and HEVC

for some rank and K values.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

From past few years light field imaging is gaining popularity for variety of vision appli-

cation, due to the emergence of light field capturing devices and commercially available

cameras. In 2012 an American company “Lytro Inc.” launched its first generation Light

filed camera in 8GB and 16 GB version later on after two years second generation cam-

era was launched for commercial and experimental purpose.

Now the things which give light field camera an edge over other camera are its

features like variable depth of field or refocusing because we collect a lot of informa-

tion about object and using software manipulation we can alter focus, speed because

there is less need to focus the lens before taking a picture, a light field camera can cap-

ture images more quickly than conventional point-and-shoot digital camera, low light

sensitivity, the ability of light field to adjust focus post processing allows the use of

larger apertures compared to the one feasible for conventional camera thus it helps in

photographing even in low light environments, 3D images to record depth informa-

tion we use plenoptic camera so stereo images can be constructed in software from

a single plenoptic image capture. All these features of light field has attracted atten-

tion of scientist and researchers towards the use, application and analysis of light field

data. Light field technology being technology for future also has some shortcomings.

On the one hand, this higher-dimensional representation of visual data offers power-

ful capabilities for scene understanding, and substantially improves the performance of

traditional computer vision problems such as depth sensing, post-capture refocusing,

segmentation, video stabilization, material classification, etc. On the other hand, the

high-dimensionality of light fields also brings up new challenges in terms of data cap-

ture, data compression, content editing and display. With regard to compression, a light

field involves a large amount of data, but also records a scene with a set of images from

different viewpoints, thus exhibiting data redundancy in both the spatial and angular



dimensions examples of this redundancy are the smooth regions in each sub-aperture

image and light field subview. Therefore, the compression approaches for light fields

offer much opportunity and are essential for light field storage, transmission and dis-

play. For compression we have lossy and lossless compression techniques. Lossy com-

pression, transform coding approach typically rely on discrete cosine transform (DCT)

or the discrete wavelet transform (DWT), to compress a light field. We use classical

coding schemes like JPEG 2000(using DWT) or JPEG (using DCT) to compress light

field raw images. But these two schemes are not specifically designed to be used for

raw light field images, thus we do not get optimal compression results. In this thesis

our work is focused on efficient compression of light field data. In past several efforts

are done to improve the efficiency of light field data compression. Aggoun (6) pro-

posed a 3D - DCT to exploit the spatial redundancy within the light field views. They

first selected some subview and their neighbouring views and arranged them into a 3 D

bricks, then they applied 3D-DCT to get the decorrelated group of subviews. Magnor

et al. (7) presented 4D-DWT to directly compress the sub-aperture images without any

arrangement. Some predictive coding approaches are also developed in which first a set

of images from the light field array to be coded as intra also known as I-images. Then

these I-images are used as a reference to code the remaining light field images also

called P-images. Magnor and Girod (8) separated each sub-aperture image into blocks

and predicted blocks of P-images using blocked disparity and blocks in the I-images.

Same way Conti et al. (13) used blocked disparity to code 3D light field.

In this thesis we are presenting work for lossy light field compression based on

Fourier disparity layer transmission using hybrid tensor decomposition via sketching.

1.2 Background and Motivation

The most obvious challenge in light field photography is immense data, it becomes

hard to manage efficiently such large dimension data. The two additional dimension

compared to traditional image technology has raise visual data information from two to

four order of magnitude and as a result the scalability of light field system are challenge

by capturing, rendering and displaying this vast amount of rays. Besides the price,

weight and physical size of the many computing components required with their own
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resource footprint regarding power requirements, heat generation,bandwidth usage and

storage space.

Compression of light field data is a hot research topic and would help reducing the

bandwidth and storage requirements of light field systems. There are some existing

method like 2D video compression methods are efficient and can be used to compress

but they does not exploit the fact the neighbouring views of light field data are corre-

lated.

Many solution which are proposed so far adapt standardized image and video com-

pression technique for encoding light field data. Jiang et al. (11) and Dib et al. (12)

investigated the application of homography based low rank approximation for light field

compression and super ray light field compression for reducing the angular displace-

ment, while Verhack et al. (2) used local Gaussian mixture model in the 4D ray space

are considered, while depth based segmentation of light field into 4D spatio-angular

blocks is used in Tabus et al. (14) for prediction and the prediction residue is encoded

using JPEG 2000.

In this thesis a novel lossy compression algorithm is described which uses Fourier

disparity layer transmission using Hybrid Tensor Decomposition via Sketching.

1.3 Thesis Organization

The thesis is organised in the order in which research is carried out.

• In Chapter 1, we wrote about light field data problems, background and moti-
vation. In this chapter we also summarize the work done related to light field
compression.

• In Chapter 2, we have discussed in brief about some of the work done in the field
of light field compression in the past.

• In Chapter 3, we have described our proposed algorithm Light Field Streaming
Compression Algorithm Based On Fourier Disparity Layer using Hybrid Tensor
Decomposition via sketching in detail, and also done comparative analysis of
proposed scheme bitrate and PSNR using Bjontegaard metric.

• In Chapter 4, we have concluded our work by briefly discussing our scheme and
its contribution in research and we have also discussed about the future work that
could be possible using our research.
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CHAPTER 2

RELATED WORK

2.1 Pseudo Sequence Based Image Coding

In pseudo sequence based image coding all the views are organized as a pseudo se-

quence like video, one view is coded first (I-frame) and the other views are coded by

referring to the reconstruction of already coded views (P or B-frames).The raw light

data is encoded as pseudo sequence of images exploiting the fact of higher correlation

among views. Correlation between the adjacent views both horizontally and vertically

is more, hence inter-view prediction from adjacent view is used. Moreover higher sim-

ilarity is observed between views around centre compared with between the views near

the border, so the centre view rather than border view are used for prediction structure

of views. Centre view is used as an I-frame, the remaining views are compared as P and

B frames in a 2D hierarchical structure. Each view is assigned a layer, views at higher

level layer are encoded after views at lower level layer and thus can be predicted from

the latter. For each view four reference are chosen one at top, one at bottom , one at

right and one at left direction, in all four direction the view at nearest distance is chosen.

For rate allocation, a general guideline which is followed in video coding is that

the frames that are used as reference must have higher quality than the frames not used

for reference due to error propagation in prediction. Therefore a higher quantization

parameter QP value is given to views of layer of higher level and vice versa. Therefore

the I-frames which are used as reference for most number of other views has lowest

QP values. Pseudo sequence based scheme often outperforms image based scheme but

there are certain exception and there is necessity of rate allocation among views for

better compression.



Figure 2.1: Coding order and prediction structure with colour indicating its layer

Figure 2.2: Workflow of RH MV-HEVC

2.2 Randomize Hierarchical MV-HEVC

This is a Randomized Hierarchical Extension of multi view HEVC for improved com-

pression of light field data.Main features of this technique was it exploit the tem-

poral, inter view and non linear redundancy of adjacent sub aperture images. This

RH-MVHEVC takes advantage of random encoding in Hierarchical prediction. This

scheme integrates the advantage of both hierarchical prediction and random encoding

techniques. But this technique lags behind HEVC based encoder which is severely con-

strained by 1-D coding structure. But this scheme takes benefits of random encoding

and guarantee to maintain the quality for all reconstructed sub aperture images.

The workflow for RH MV-HEVC is shown in figure2.2 as given in (10). First light
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Figure 2.3: Random encoding scheme within MV-HEVC architecture syntax and adap-
tive hierarchical prediction structure

field data is decomposed into grid 15x15 SAIs later some SAIs from border are dis-

carded and only 13x13 are selected. The extracted SAIs are indexed in ascending order

starting from top left to bottom right. To best avail the temporal and inter-view re-

dundancy SAIs images are partitioned into two sequence odd and even indices. These

pseudo sequence is given as an input to MV-HEVC encode and enables a random coding

structure within features and characteristic of MV-HEVC. Random encoding scheme

used for encoding B-frame is shown in figure2.3. Furthermore a hierarchical prediction

structure is employed to carefully manage the relationship between adjacent SAIs in

horizontal as well as vertical direction by assigning P-frames and B-frames to layers of

two input pseudo sequence as shown in figure 2.3. Views in odd and even pseudo se-

quence are compressed as P and B frames while views at centre is compressed I-frames

. Each view is associated with a layer as shown in figure2.3. The view at higher level

layer are coded preceding to the views at lower level layer. Each view chooses at most

four reference frames. Specifically nearest neighbour frames that must be at lower level

layers are chosen to predict the middle current frames, as shown in figure 2.3

2.3 HEVC Based LF Coding with Bi-SS Compensation

The proposed Light Field coding make use of the self similarity compensated prediction

concept to efficiently explore the inherent correlation of this type of content. To further

improve the coding performance, a bi-predicted SS estimation and SS compensation

is proposed. Regarding light field coding approaches, High Efficiency Video Coding
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(HEVC) provides significant gain as compared to image coding technologies like JPEG

2000 and JPEG standards. Previous work which has been done shows that there is

possibility of further improvement to exploit the inherent correlation. SS estimation

uses block based matching between previously coded and current frames as similar to

motion compensation. And hence selected block becomes the predictor candidate and

the relative position between the candidate predictor and current block is define as SS

vector. To further improve the SS compensation technique, A Bi predicted SS estima-

tion and SS compensation technique is developed in which the prediction candidate is

defined as a linear combination of two blocks it the same vicinity of SS reference.

2.4 Compression using Homography Based low Rank

approximation

In this scheme Low rank approximation exploits scene and data geometry. In this

scheme first a reference view is selected, preferably centre view is selected as refer-

ence, then a homography projection is searched for all other views in order to obtain

best low rank approximation for a given target rank k, where k is less than number

of views, later those views are align as a column vector in a matrix. The k matrix is

represented as a product of two matrices B and C where B is matrix which contains

k basis vector an C contains weighting coefficient. Low rank optimization problem is

then formulated as.

argminh,B,C = ‖Ioh−BC‖2F

Where ‖.‖ is Frobenius norm , B ∈Rm×k and C ∈Rk×n k < n where n are total

views and m is total pixels per views and Ioh = [vec(I1oh1); vec(I2oh2); ......; vec(Inohn)].

B can be found by, first find SVD of Ioh = U
∑

V T , then B is first k column vectors

of U and C is k rows of V T . Where K is rank.

After low rank approximation views are coded with HEVC-intra along with coeffi-

cient and homography parameter. This propose scheme is also extended for images of

multi layer depth, for such case homography for each layer is calculated for a view.
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CHAPTER 3

PROPOSED SCHEME

3.1 TENSOR

3.1.1 What is Tensor

Tensor can be thought of as mathematical objects that is used to define physical proper-

ties same as scalar and vector. Even we can state that tensor are merely a generalisation

of scalars and vectors. A zero rank tensor is called scalar and first rank tensor is called

vector.

Rank of tensor : We can define rank of tensor by number of dimension needed

to define a tensor. For ex. a 3x1 vector containing three elements needs only one

direction to define tensor and is called one rank tensor, and a 3x3 matrix which contains

9 elements requires 2 direction to define and is called two rank tensor. Simply stating a

N-way array or multi dimension array is called Tensor. Tensor of order of three or more

are generally called high order Tensor. Figure 3.1 shows a visualization of different

types low order and high order tensors.

3.1.2 Why Tensor?

First Tensor gives a way to represents an image and video in a easy way. An RGB

image is represented by a combination of three matrix stacked together to produce a

RGB image or an RGB image is a tensor of three order in same way a video can be

represented by a tensor of four order. In medical imaging the multi modality images

of patients captured under different conditions produce high order tensor. Second large

number of vectors and matrices stacked together in tensor can be used for efficient data

analysis and compression through tensor decomposition.



Figure 3.1: Visualization of different types of tensor

3.1.3 Tensor Terminology

Let say we have a Tensor A which is of order K ie. A ∈ RI1×I2×....Ik , we can access

elements of Tensor using K indices as in ai1 i2 ....ik . Sub-array of tensor can be accessed

by keeping of subset of indices fixed. The term fiber is used to refer a sub array of tensor

with all but one fixed indices which is same as row or column in matrix. If we talk about

three mode tensor, we can have three different fibers. We name them as column (mode-

1), row (mode-2) and tube (mode-3) fibre as shown in Figure 3.2 . Another term that

is generally encountered with tensor is unfolding or flattening. It just means to arrange

a tensor as a matrix or we can say unfolding a tensor in form of matrix. If we unfold

a tensor along its one of the modes, say mode- m , then it is to be said we are doing

mode-m flattening. It is simply formed by arranging the mode-m fibres as its column.

3.1.4 TENSOR DECOMPOSITION

As for a matrix we can decompose it in several ways like Singular Value Decomposition

(SVD) and Principle Component Analysis (PCA) to reduce its dimensionality .Similarly

we have several ways to decompose a tensor

9



Figure 3.2: Different modes of Tensor

Figure 3.3: CP decomposition

CP decomposition : The CP decomposition factorizes a tensor into linear combina-

tion of rank one tensor. For ex. a tensor of order 3 can be decomposed as a sum of K

one rank tensor

X =
∑K

n=1 a
n o bn o cn where ’o’ represents outer product. It is illustrated in

Figure 3.3. This decomposition is performed by a minimization algorithm knows as

Alternating least square.

Tucker decomposition : In tucker decomposition we express a tensor in terms of

a core tensor and n-mode products through factor matrices. Thus for a given tensor

X ∈ RI×J×K its tucker decomposition is given as

X = G ×1 A×2 B ×3 C =
∑P

p=1

∑Q
q=1

∑R
r=1 gpqr a

p o bq o cr

where G is a core tensor of size P×Q×R and factor matrices A,BandC are of size

I × P, J × Q and K × R respectively. The column vectors of factor matrices span tht

corresponding mode space. The factor matrices are usually orthogonal and represents

the principal component in each mode, and the elements of core tensor represents the

interaction of different modes. The rank for mode generally is kept low as compared to

10



Figure 3.4: Tucker decomposition

mode rank of original tensor. Thus the core tensor is viewed as compressed representa-

tion of the original tensor. Pictorial representation of tucker decomposition is shown in

figure 3.4

3.2 Matrix Decomposition

3.2.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a one of the matrix decomposition technique

by which a matrix is decomposed into three sub-matrices namely U,S,V where U is the

left eigen vectors, S is the diagonal matrix containing singular values and V is called

the right eigen vector. SVD can be used for low rank approximation, for this we trun-

cate some of the largest values from the singular matrix and other singular values are

replaced by zeros and using those largest singular values we reconstruct the approxi-

mated matrix known as Eckart-Young theorem.

3.3 Karhunen-Loeve Tranform

The KL Transform is also known as the Hoteling transform or the Eigen Vector trans-

form. The KL Transform is based on the statistical properties of the image and has

several importance properties that makes it useful for image processing particularly for
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image compression. The main purpose of image compression is to store the image in

fewer bits as compared to original image, the neighbouring pixels data in an image is

highly correlated, an excellent image compression can be achieved by de-correlating

the data. Here comes the KL Transform which does the work of de-correlating the data

thus facilitates higher degree of compression.

For KLT first we divide our zero mean image into sub blocks, then we find co-

variance matrix for each sub blocks, after that eigen vectors and eigen values of co-

variance matrix is found. Then we create a transform matrix whose column are eigen

vectors of co-variance matrix, first column of transform matrix is eigen vector corre-

sponds to largest eigen value. Due to the idea of using eigen vector corresponds to

largest eigen value, this is also known as principle components transform.

3.4 Proposed Scheme

KLT is considered to be optimal transform if we use a single transform for all sub

blocks of an image. But if we talk about Singular Value Decomposition (SVD) its

use in image compression is motivated by its energy compaction property . SVD is

known to be the deterministically optimal separable transform for energy compaction.

Suppose an image is divided in blocks of NxN , and if we use k1 singular values and

2k1 vectors will produce the optimal least square approximation using separable basis

function in k1 components of this bock. For KLT the coefficient and and 2k1 vectors if

used to approximate the same block will produce an optimal approximation in terms of

mean square given that KLT basis function are obtained from vertical and horizontal co

variance matrices of image.

Here in this proposed scheme we have combine SVD-KLT as described in (18).

In this algorithm for computing Tucker Decomposition of a tensor which incorpo-

rates random sketching. A key challenge of incorporating sketching in Tucker decom-

position is Kronecker products of factor matrices. This makes them too large to store in

RAM and process. Earlier work has led to a new technique called Tensor Sketch which

is suited for sketching Kronecker product. This algorithm can handle streamed data ie.

a tensor can be decomposed even when one element of tensor is revealed at a time and

then discarded, no mater in what way it is done. In application of scientific compression

12



of high fidelity simulation the data tensor is of high rank. Thus an algorithm which is

one pass can handle such large data without the need of storing whole data at once in

RAM. This algorithm is intended for low rank decomposition.

There are multiple tensor decomposition technique as discussed in section 3.1.4.

Tucker decomposition is considered here.A Tucker decomposition of a tensor Y ∈

RI1×I2....×In The core tensor and factor matrices initially, are initialized randomly with

each element independent and identically distributed Uniformly between -1 and 1. The

factor matrices are subsequently orthogonalized. Tensor Sketch operator is defined of

appropriate size. Symbol "⊗" denotes Kronecker product and mode-n matricization of

a tensor Y ∈ RI1×I2....×IN is denoted by X(n) ∈ RIn×
∏

i 6=n In . Count sketch operator can

be defined as S : RI → RJ is as S = PD, where P ∈ RJ×I is a matrix with ph(i),i = 1

and all other entries equals 0. h: [I] → [J ] is a random map such that (∀i ∈ [I])

(∀j ∈ [J ])(P(h(i) = j) = 1/J) and D ∈ RI×I is a diagonal matrix, with each diagonal

entry equal to +1 and -1 with equal probability.

Then each operator T (n), for n ∈ [N ], is defined as in (15) but based on S1
(n)

n ∈ [N ] and with the nth term excluded in the Kronecker and Khatri-Rao products.

T (N+1) is defined similarly, but based on S2
(n) n ∈ [N ] without excluding any term in

the Kronecker and Khatri-Rao products. Two different sketch dimension J1 and J2 are

used for S1
(n) and S2

(n) respectively where J2 > J1.

In this proposed algorithm Hybrid Tucker Ts via sketching, we gave taken an RGB

image of light field data as a 3 way tensor as an input Y , for decomposition we have

chosen certain Rank values in multiples of five ie. 5,10 ,15,20 and 25 to check for both

relative low and high rank. We have named these rank value as target rank, which is also

dimension of core tensor, ie for target rank 5, target rank vector would be [5,5,3] and

our core tensor will also be of size [5,5,3] of rank 5, same way our rank value 10, 15, 20

and 25 will have target rank vector, third element of target rank we have taken as three

because our input image has three matrix R,G and B, and the target rank dimension has

to be less than or equal to input dimension.

So along with rank we have taken different values of K in multiple of five 5,10,15,20

and 25. Hence we have different combination of Rank and K value to decompose an

image. With different values of Rank and K values we have core tensor G and factor

matrices A(1), A(2), ..., A(N) after decomposition. In next step we have hybridized the
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factor matrices.

Figure 3.5: Overview block diagram of proposed scheme encoding

Figure 3.6: Overview block diagram of proposed scheme decoding
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3.5 Light Field Compression based on FDL using Hy-

brid Tensor decomposition

Data-set which is used as an input is grid of 9 × 9 light field data images. In first

step the input light field data is streamed into the block Hybrid Tucker-Ts low rank

approximation as shown in figure 3.5. Decomposition and low rank approximation is

done. This part is mainly for reducing redundancy in input light field data and finally

we have approximated light field data with different values of rank and K as mentioned

in section 3.4 .

3.5.1 Layer configuration

Figure 3.7: 4 different layer configuration

After approximating input light field input images, those approximated images is

divided into different sets, Circular-2, Circular-4,Hierarchical-2 and Hierarchical-4 as

shown in figure 3.7 where different colour represent group of images to be put in differ-

ent sets. Shown layer configuration is for 9 × 9 data set images. Note that in deciding

subset circle formation is preferred not a square in order to avoid use of corner view to

15



predict inner view, as in real light field data captured by plenoptic cameras corner views

are of low quality than inner views.

3.5.2 Encoding and Decoding using FDL

4-D representation of light field describing radiance along ray by a function f(u, v, x, y).

This representation is based on parameterization of light ray with two parallel plane

with (x, y) and (u, v) representing spatial and angular co-ordinates of light rays. As

shown in figure 3.5 first Fourier disparity layer calibration described in (1) determine

set of disparity value and angular co-ordinates, which are used for Fourier disparity

layer construction and view prediction step, also these values are transferred as a meta

data to decoder. After partitioning the data into different subset, first set is directly

encoded by HEVC as a group of picture with 8-Bit with inter coding. The first set is

used to construct Fourier disparity layer representation, which allows to predict view

of subsequent subset. After its prediction residue is encoded using HEVC with 10 bit

in order to avoid precision loss, decoded and added to predicted view to construct the

corresponding view. Then both set are used to construct FDL and the next set is pre-

dicted, this iteration goes on until all the sets are coded. In order to optimize the bit-rate

allocation, we use different Quality Parameter values in HEVC coding. If QPt is the

QP value for initial set the for t set index QPt = QPt−1 + 1 is used.

3.6 Experiments Results

3.6.1 Data set & Implementation Details

The proposed coding scheme is implemented on a single high-end HP OMEN 342

X 15-DG0018TX Gaming laptop with 9th Gen i7-9750H, 16 GB RAM, RTX 2080

8 GB Graphics, and Windows 10 operating system. Proposed scheme performance

was evaluated using real light field data captured by plenoptic cameras. We have used

Bikes light field images from the EPFL Lighfield JPEG Pleno database (17). The raw

plenoptic images were extracted into sub aperture images of 15 X 15 using Matlab

Light field toolbox (3), each image has resolution of 430 X 620 pixels. The border sub-

aperture images suffer from geometric distortion and blurring, have no use in recovering
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light field so for a fair compression we have considered only central 9 X 9 views for our

experiment. In Dib et al. (5) and HEVC , only central 9 X 9 views are considered.

Proposed scheme first decompose each image into core tensor and factor matrices

via random sketching, then factor matrices are hybridized, from these core tensor and

hybridized factor matrices an approximated image is reconstructed. We have used dif-

ferent combination of rank and sketch dimension for decomposition and reconstruction

of approximated image in multiples of five (5,10,15,20 and 25). We have tested com-

pression for our scheme with six quantization parameter values. (QPs = 2,6,10,14, 20

and 26). These QP values corresponds to first set.

In Dib et al. (5) part,light field data is compressed without low rank approximation,

we have chosen six quantization parameters, QP = 2,6,10,14,20 and 26 for compression,

corresponds to first set.

In Direct HEVC , encoding is done using 8 bits and YUV444 color space file is used

to compress for each subset using HEVC-inter, in particular the HM 16.10. We have

chosen six quantization parameters, QP = 2,6,10,14,20 and 26 for experiment.

3.6.2 Results & Comparative Analysis

The performance of our proposed scheme has been compared with Dib et al. (5) and

direct HEVC (9) encoding. I have subjected all the mentioned schemes to same test con-

ditions and quantization parameter, (QP = 2,6,10,14,20 and 26). I have experimented

with Bikes data using four different layer configuration, Circular 2, Circular 4, Hierar-

chical 2 and Hierarchical 4. Each layer configuration is run for different combination of

rank and sketch dimension values, for each combination of rank and sketch dimension

I have run our scheme for six QPs values. Total number of bytes written to file for

each layer configuration and different combination of rank , sketch dimension and QPs

along with Dib et al. (5) and HEVC is shown in Table 3.1-3.6. The bit rate and PSNR

graphs for each subset of layer configurations of our proposed scheme along with Dib

et al. and HEVC are shown in Figure 3.8-3.10. Furthermore an objective assessment is

performed Bjontegaard (4) metric. This metric can compare performance of two coding

techniques. The average percentage difference in bit-rate change and PSNR is estimated

over a range of six QP values. Comparison of percentage of bit rate savings for pro-
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posed scheme with respect to Dib et al. for different layer configuration is summarized

in Table 3.7.Comparison of PSNR gain for proposed scheme with respect to Dib et al.

for different layer configuration is summarized in Table 3.8. Bjontegaard percentage

bitrate savings for proposed scheme with respect to HEVC for different layer configu-

ration is summarized in Table 3.9.Comparison of PSNR gain for proposed scheme with

respect to HEVC for different layer configuration is summarized in Table 3.10.

Our proposed scheme out performed the HEVC and Dib et al.(5) for some rank and

K value in terms of bitrate as shown in figure 3.8-3.10. Total number of bytes written to

the file for each layer configuration is comparatively less than other schemes for some

ranks and K value, as it is clearly evident from Table 3.1-3.6. In terms of Bjontegaard

rate saving, our proposed scheme saves rate for some rank and K values . Same way

if we look at the PSNR gain in differential PSNR with respect to Dib et al. then there

is gain for some rank and K values. Similarly Bjontegaard rate saving of our proposed

scheme with respect to HEVC is mentioned in Table 3.9

If we talk about the analysis with respect to HEVC then proposed scheme performs

better more frequently, our proposed scheme on an average over different rank and k

values saves bitrate for set2 C2, set 2 H2, set2, 3 and 4 for C4 and H4. as shown in table

3.9. If we see in terms of PSNR proposed scheme on an average provide gain in PSNR

for set2 in C2 and H2, set3 and 4 in C4 and set2,3 and 4 in H4. as shown in table 3.10
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Table 3.1: The total number of bytes written for each subset of the Circular 2 scheme using our pro-
posed scheme, HEVC and scheme by Dib et al.

QP = 2 QP = 6 QP = 10 QP = 14 QP = 20 QP = 26
Scheme Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2
HEVC 7725765 17886297 5645842 12969691 3721540 8447324 2168041 4873883 807340 1793197 228218 502167

Dib et al 5349708 10033607 5349708 6181713 3498472 3418623 2043542 1722241 760957 549257 216655 132715
Our Rank5 K5 8484411 15058973 6504274 10987196 4814181 7574338 3415201 4975744 1859310 2484743 826059 1010410

Our Rank5 K10 6757464 11216122 4918893 7841828 3514576 5264475 2438271 3417050 1320726 1716736 596513 706321
Our Rank5 K15 6102512 9654260 4350673 6654995 3074168 4428743 2117251 2856848 1144292 1419905 519488 585541
Our Rank5 K20 5731440 9114765 4050946 6278643 2850209 4178408 1958266 2700681 1061394 1349060 488101 561374
Our Rank5 K25 5575430 8397086 3927518 5746237 2764237 3801678 1903135 2446805 1029530 1217536 471386 512493
Our Rank10 K5 8305885 14674962 6350606 10728531 4709480 7399264 3349913 4836346 1832808 2373444 815473 930268

Our Rank10 K10 7492198 12585482 5611143 8988728 4095059 6088229 2877706 3916961 1559942 1880395 690390 722918
Our Rank10 K15 7134264 11942961 5284105 8495249 3829913 5743321 2680657 3692576 1451427 1778525 641672 685958
Our Rank10 K20 6942916 11677086 5126238 8300603 3718787 5615295 2607708 3621551 1414226 1753597 628262 684032
Our Rank10 K25 6780912 11287581 5015802 7995456 3639528 5382108 2558221 3445512 1396843 1644560 626613 629244
Our Rank15 K5 9053038 16231250 7073087 12114020 5352601 8479228 3868789 5557322 2129648 2655500 917896 969762

Our Rank15 K10 8392000 14729506 6444900 10837573 4811194 7504896 3442025 4881494 1875129 2310744 805442 848125
Our Rank15 K15 8204899 14631016 6277874 10725588 4683662 7393491 3356624 4783316 1841443 2250326 795642 820561
Our Rank15 K20 8193805 14490324 6276905 10654266 4688145 7386921 3366996 4818585 1857368 2289495 810482 859590
Our Rank15 K25 8184506 14426766 6278231 10518114 4682294 7227582 3350456 4675195 1832222 2200326 796815 813921
Our Rank20 K5 9743736 17915696 7751630 13682761 5966525 9793510 4378146 6527916 2431771 3133281 1025198 1123045

Our Rank20 K10 9129783 16489253 7160080 12405159 5435813 8761918 3949395 5772540 2178488 2717394 920555 960577
Our Rank20 K15 9163290 16498300 7194832 12356660 5478479 8678001 3981620 5692760 2207022 2671163 944788 947108
Our Rank20 K20 9173682 16382568 7210924 12243747 5494143 8569145 4006198 5596676 2230359 2626701 954291 924121
Our Rank20 K25 8882908 16348139 6928151 12249455 5246966 8600612 3800058 5626868 2091550 2628269 884097 927485
Our Rank25 K5 10064692 18899001 8080313 14599205 6267602 10542365 4631446 7040741 2589628 3317913 1079620 1132578

Our Rank25 K10 9790731 18218234 7808405 13964793 6020542 10018784 4423916 6673878 2463092 3149304 1030220 1091037
Our Rank25 K15 9715093 18102733 7742409 13860099 5966117 9918383 4384823 6578737 2449166 3087885 1030508 1057695
Our Rank25 K20 9385412 17776762 7403741 13558117 5655656 9684974 4128159 6422476 2285002 3012314 955728 1039288
Our Rank25 K25 9627573 17867121 7651253 13635062 5875672 9740309 4303367 6476652 2381568 3066338 993222 1067951

Table 3.2: The total number of bytes written for each subset of the Hierarchical 2 scheme using our
proposed scheme, HEVC and scheme by Dib et al.

QP = 2 QP = 6 QP = 10 QP = 14 QP = 20 QP = 26
Scheme Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2
HEVC 8015620 17568888 5877326 12691883 3874255 8262698 2272244 4777113 852829 1760507 249596 490331

Dib et al 7931704 9565827 5773077 5799099 3780108 3148351 2190108 1572613 810166 494546 232805 115399
Our Rank5 K5 8920538 14604779 6850520 10622163 5084016 7312692 3625365 4805448 1989098 2405491 894189 975689

Our Rank5 K10 7184018 10907436 5241041 7615046 3751462 5094836 2607997 3304764 1412786 1656136 642485 680114
Our Rank5 K15 6359840 9406459 4529918 6503582 3199426 4337984 2210017 2806095 1199093 1399890 551455 577405
Our Rank5 K20 5983685 8868890 4220744 6100396 2969625 4058586 2049394 2622153 1116021 1310171 518528 537927
Our Rank5 K25 5895915 8107219 4133318 5550462 2904470 3678166 1996689 2372412 1083853 1183140 504401 489424
Our Rank10 K5 8744209 14391182 6681133 10496882 4952700 7213874 3530616 4698657 1942552 2311346 869405 900627

Our Rank10 K10 7815227 12252668 5841907 8751290 4265315 5921811 3005996 3804926 1636706 1830283 732721 700436
Our Rank10 K15 7545843 11606965 5603042 8238930 4077643 5557892 2872821 3567715 1570165 1714507 708215 659171
Our Rank10 K20 7352497 11328409 5423700 8040078 3928237 5436686 2758849 3502170 1502645 1690068 674895 653852
Our Rank10 K25 7306234 11034753 5382154 7795404 3901595 5237785 2740620 3348913 1494255 1594968 666877 609645
Our Rank15 K5 9527371 15745638 7458529 11721439 5642420 8177866 4086897 5345139 2261873 2541760 986507 918958

Our Rank15 K10 8776418 14212515 6731056 10417539 5015736 7193245 3589313 4667410 1966710 2199555 855846 804167
Our Rank15 K15 8643337 14155805 6619625 10351922 4932439 7113393 3530795 4597461 1938006 2155842 846505 779737
Our Rank15 K20 8677908 13974204 6649774 10230150 4957828 7064304 3554850 4592156 1947051 2179653 845827 804341
Our Rank15 K25 8519057 13912387 6497992 10168471 4829447 6998289 3453546 4521517 1890830 2114902 827295 774750
Our Rank20 K5 10263562 17373047 8188442 13213580 6313121 9396355 4652692 6207346 2612091 2939633 1126941 1029359

Our Rank20 K10 9854238 16565580 7784810 12446243 5955793 8750878 4356871 5735763 2430283 2698409 1048081 947006
Our Rank20 K15 9506994 16110222 7445987 12064228 5654952 8455503 4114261 5527726 2278744 2576432 979136 902293
Our Rank20 K20 9616894 15825867 7555657 11798827 5743225 8237127 4177570 5359379 2306417 2491654 986573 869433
Our Rank20 K25 9389949 15997152 7343021 11966859 5566816 8396919 4042525 5502226 2234548 2586534 955863 916072
Our Rank25 K5 10625514 18610930 8558994 14359172 6659697 10347295 4953883 6886130 2811068 3243059 1205710 1095289

Our Rank25 K10 10348481 17686389 8282101 13509799 6406047 9654965 4736247 6395264 2658637 2992652 1125215 1027395
Our Rank25 K15 9539346 15932768 7485341 11919492 5693771 8353537 4149910 5469407 2310041 2558353 997105 900158
Our Rank25 K20 10048983 17342828 7992423 13202776 6150762 9407436 4535614 6239666 2543619 2935586 1089553 1007543
Our Rank25 K25 9993470 17414704 7928249 13263656 6084294 9464885 4460823 6288785 2483015 2970588 1052081 1029442
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Table 3.3: The total number of bytes written for each subset of the Circular 4 scheme using our pro-
posed scheme, HEVC and scheme by Dib et al.

QP = 2 QP = 6 QP = 10 QP = 14 QP = 20 QP = 26
Scheme Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2
HEVC 1378368 4910101 1055620 3502869 728140 2260753 460776 1298608 197691 486425 71359 144593

Dib et al 1370767 3604956 1047434 2396820 720530 1443437 453541 797714 195256 296109 71889 80630
Our Rank5 K5 1449622 4933538 1132801 3708151 840245 2605754 600205 1724526 332078 874714 153362 365773

Our Rank5 K10 1159357 3817710 862727 2732632 612968 1856015 426274 1205077 229491 601999 106038 247914
Our Rank5 K15 1034156 3295300 765433 2329939 542184 1584104 378047 1042783 205998 533226 95209 224463
Our Rank5 K20 973828 3051468 706419 2134144 491198 1439350 338642 940971 185382 483070 88161 205610
Our Rank5 K25 971785 3033863 703008 2102328 487201 1404313 334510 905074 181470 447998 85154 185944
Our Rank10 K5 1386172 4563561 1078972 3411124 798712 2406307 576228 1604331 325259 803800 151687 323515

Our Rank10 K10 1262549 4056153 964921 2963507 704244 2046235 498856 1341875 275501 665143 127968 265955
Our Rank10 K15 1190971 3751718 901066 2714968 647109 1868676 457355 1218665 252324 595759 116810 233650
Our Rank10 K20 1188549 3753696 903210 2722071 655630 1877749 464871 1232336 257146 610026 118936 244446
Our Rank10 K25 1162140 3557287 879834 2561074 637443 1755285 453605 1140882 252444 550884 117931 212252
Our Rank15 K5 1526972 5049904 1218417 3860125 921115 2773053 673084 1864388 376956 932112 167786 360026

Our Rank15 K10 1416127 4497745 1113470 3362398 829385 2368757 597397 1569816 331309 771406 151495 296433
Our Rank15 K15 1389174 4341358 1084674 3231812 802859 2274083 576600 1502714 320043 724601 143563 269489
Our Rank15 K20 1410892 4409559 1107033 3298032 826411 2325820 600992 1544108 337053 755313 155365 288130
Our Rank15 K25 1348775 4349536 1047512 3239316 772362 2279232 552343 1509618 306052 737763 136536 284737
Our Rank20 K5 1642901 5384922 1329563 4177785 1020339 3037514 754682 2056107 426447 1011982 190555 372721

Our Rank20 K10 1561885 5111681 1252534 3924292 951703 2832509 698657 1907339 395638 937239 176553 346004
Our Rank20 K15 1500278 4972125 1190671 3801659 895404 2738763 650737 1844214 363830 903772 160654 336389
Our Rank20 K20 1606475 5186099 1297181 3992867 992159 2888181 738196 1949036 426325 958216 196872 354591
Our Rank20 K25 1478485 4789080 1179300 3630073 888900 2584882 652403 1721155 368287 826213 167094 299325
Our Rank25 K5 1675977 5509486 1369664 4301804 1058025 3154279 787623 2149804 449526 1058306 199151 378977

Our Rank25 K10 1638221 5380940 1330174 4175458 1022343 3043818 758517 2062230 432418 1010312 193419 364035
Our Rank25 K15 1601083 5366700 1293413 4170043 989432 3048925 729682 2079424 412561 1027224 183964 371103
Our Rank25 K20 1564934 5056586 1259003 3871162 957332 2787831 703866 1880065 396805 924961 177952 343966
Our Rank25 K25 1586269 5264134 1278152 4064432 972441 2943301 713252 1983304 400571 963495 178578 340812

Table 3.4: The total number of bytes written for each subset of the Circular 4 scheme using our pro-
posed scheme, HEVC and scheme by Dib et al.

QP = 2 QP = 6 QP = 10 QP = 14 QP = 20 QP = 26
Scheme Subset 3 Subset 4 Subset 3 Subset 4 Subset 3 Subset 4 Subset 3 Subset 4 Subset 3 Subset 4 Subset 3 Subset 4
HEVC 3808612 15397445 2776314 11158441 1826343 7273555 1083722 4202517 423932 1568183 131838 451220

Dib et al 5750563 14604140 3760641 9366615 2237900 5460885 1222652 2922288 444786 1028935 124533 279879
Our Rank5 K5 8105398 21029835 6037318 15541192 4230974 10835424 2813842 7177225 1433956 3615164 600490 1501596

Our Rank5 K10 6219770 15791054 4418079 11155711 2988249 7541943 1941552 4914366 972413 2467664 401291 1026241
Our Rank5 K15 5481825 13744474 3856047 9598805 2609029 6463807 1709364 4213172 866981 2117381 366432 891172
Our Rank5 K20 5051069 12886454 3515584 8942885 2358314 5987860 1537776 3891720 783112 1963819 334187 834293
Our Rank5 K25 4927043 12213350 3401513 8413953 2266839 5610028 1463325 3631085 725062 1813153 302388 761439
Our Rank10 K5 7759840 20248321 5774737 14951147 4050120 10426645 2687133 6888448 1339410 3415912 534609 1354215

Our Rank10 K10 6775374 17497333 4916454 12626343 3376646 8639864 2203106 5613367 1081870 2728847 430561 1072493
Our Rank10 K15 6284791 16461655 4521501 11800250 3091773 8045805 2008089 5215771 978478 2534337 384266 991063
Our Rank10 K20 6281031 16243033 4528501 11639639 3105125 7946160 2026630 5161911 996990 2525736 396773 996636
Our Rank10 K25 6037465 15792549 4329556 11253235 2956359 7636649 1916977 4930918 928239 2376644 358128 913343
Our Rank15 K5 8513265 22359910 6459015 16834675 4603534 11919637 3073697 7904472 1518054 3843273 579878 1447025

Our Rank15 K10 7627029 20132642 5672016 14899982 3974675 10397443 2619480 6815416 1270660 3273121 481122 1223213
Our Rank15 K15 7518683 19958540 5575778 14732593 3896585 10247814 2557152 6696619 1222119 3189477 451982 1176433
Our Rank15 K20 7430123 19751177 5516426 14617456 3864162 10214634 2546818 6719883 1232519 3233948 467713 1229357
Our Rank15 K25 7328701 19558053 5404953 14372333 3760135 9965696 2461929 6504203 1183817 3098559 450369 1164444
Our Rank20 K5 9128588 24360207 7036204 18689306 5080569 13465212 3413224 9044841 1663416 4406622 609708 1617888

Our Rank20 K10 8546983 22633989 6509899 17154453 4657422 12224264 3112047 8144087 1506800 3904525 550535 1412784
Our Rank20 K15 8503466 22489924 6469636 16971909 4626046 12044228 3096246 8004507 1503892 3839042 558163 1398083
Our Rank20 K20 8711564 22574981 6648250 17054898 4753511 12098226 3169986 8012910 1535184 3825382 564123 1386729
Our Rank20 K25 8356838 22345886 6335545 16842483 4507351 11913558 3000093 7875361 1437773 3734001 524984 1340284
Our Rank25 K5 9492695 25513948 7390206 19790061 5389715 14393634 3648952 9704145 1777380 4660380 631096 1631610

Our Rank25 K10 9268425 24762191 7171926 19059566 5201222 13755376 3504223 9219299 1695893 4403727 605380 1549482
Our Rank25 K15 9166157 24576673 7091226 18905096 5148418 13644104 3493997 9167418 1710243 4402221 619625 1558994
Our Rank25 K20 8751773 23892700 6686023 18272425 4794975 13108445 3212660 8755923 1556375 4178564 565292 1481585
Our Rank25 K25 9071818 24229652 6983993 18574306 5042729 13361808 3389909 8944760 1635265 4281955 582568 1509231
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Table 3.5: The total number of bytes written for each subset of the Hierarchical 4 scheme using our
proposed scheme, HEVC and scheme by Dib et al.

QP = 2 QP = 6 QP = 10 QP = 14 QP = 20 QP = 26
Scheme Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2
HEVC 1395673 1730543 1072261 1322951 746449 914577 478947 574545 212148 242859 79349 85341

Dib et al 1334132 1332418 1003076 940407 685523 605122 431203 358628 185854 148936 67543 51893
Our Rank5 K5 1474313 1663254 1158274 1284956 865099 938176 624609 641761 348678 326964 158837 138183

Our Rank5 K10 1154267 1280224 860974 935516 610213 651275 425757 435016 232896 224667 107857 98949
Our Rank5 K15 1023594 1015004 747695 718389 523066 488892 364187 320528 200265 161352 94114 68499
Our Rank5 K20 1037813 1022396 760109 721812 532410 491717 369450 321374 201992 164140 94942 72090
Our Rank5 K25 967976 1037270 699320 725648 486732 490287 336442 321573 185365 164393 88680 71800
Our Rank10 K5 1402018 1522606 1094896 1152114 808329 823274 579198 551696 320160 279012 146666 114176
Our Rank10 K10 1244963 1278801 945328 938010 682323 654901 482097 434074 265279 217055 123265 90644
Our Rank10 K15 1240208 1216176 941491 894364 678426 629074 478859 422490 264269 217326 122022 91450
Our Rank10 K20 1190404 1185916 905048 866843 653016 605214 462327 403120 255196 203219 118864 84171
Our Rank10 K25 1201218 1199244 915528 879863 662966 617629 469789 412611 258928 207301 117722 84935
Our Rank15 K5 1541665 1548463 1230132 1183206 930016 855910 678366 581038 381887 295588 172903 119125
Our Rank15 K10 1414774 1416423 1108691 1064884 823716 761884 592377 515193 328978 262803 146778 110365
Our Rank15 K15 1374535 1386956 1072453 1042446 790427 740449 565714 498192 309966 251771 137938 104009
Our Rank15 K20 1352552 1397385 1055913 1053587 780493 753802 559666 506865 310987 254331 140061 103037
Our Rank15 K25 1393010 1354247 1091982 1011443 810632 720863 586468 487569 329104 250161 151760 104769
Our Rank20 K5 1640582 1695966 1330762 1319614 1020212 972849 754213 670747 427822 341962 190332 137255
Our Rank20 K10 1605097 1629312 1291810 1255689 983604 915635 723443 622366 405715 308075 176727 114503
Our Rank20 K15 1547922 1592219 1240704 1224589 937202 890257 684027 606670 381466 304695 168240 121537
Our Rank20 K20 1506494 1595805 1199433 1228035 905302 891166 662088 604367 372970 301843 169781 120239
Our Rank20 K25 1494331 1545639 1191166 1178876 898661 852560 656705 577819 371068 292226 165990 117215
Our Rank25 K5 1697518 1778287 1389071 1398505 1073571 1037877 799238 718782 454597 363614 200910 139349
Our Rank25 K10 1652566 1708893 1343408 1333040 1036027 979613 768932 671403 440733 334764 196485 127885
Our Rank25 K15 1739194 1762697 1434121 1382986 1116196 1024056 836583 707666 478795 358876 212284 138406
Our Rank25 K20 1642541 1712131 1335671 1333211 1027690 982907 761925 676056 429945 340628 186072 129556
Our Rank25 K25 1614743 1620700 1303336 1249180 995580 909137 732011 621577 412480 314587 182947 125681

Table 3.6: The total number of bytes written for each subset of the Hierarchical 4 scheme using our
proposed scheme, HEVC and scheme by Dib et al.

QP = 2 QP = 6 QP = 10 QP = 14 QP = 20 QP = 26
Scheme Subset 3 Subset 4 Subset 3 Subset 4 Subset 3 Subset 4 Subset 3 Subset 4 Subset 3 Subset 4 Subset 3 Subset 4
HEVC 5074139 17568888 3688802 12691883 2401244 8262698 1375933 4777113 508537 1760507 147145 490331

Dib et al 5042974 14831641 3414815 9560398 2081030 5596573 1163015 3024635 432932 1069623 125007 301923
Our Rank5 K5 6328796 21158633 4762496 15676914 3367260 10951133 2247227 7267580 1133304 3652036 472849 1504499

Our Rank5 K10 4874536 16026505 3493286 11330477 2384029 7666285 1565201 5010472 795432 2531124 338334 1061446
Our Rank5 K15 4021062 13651740 2809638 9508722 1890286 6382618 1229894 4150849 615670 2078712 253866 863254
Our Rank5 K20 3956047 13198892 2755805 9161869 1851722 6140659 1202594 3986544 606176 2003123 257041 842099
Our Rank5 K25 3830132 12246324 2651641 8432364 1773109 5620739 1149338 3640718 579815 1827412 248270 772672
Our Rank10 K5 5983511 20558589 4476495 15223717 3156873 10635782 2091304 7008486 1047224 3475063 423252 1384644

Our Rank10 K10 5162542 17647471 3753660 12749289 2583047 8735951 1684255 5673977 821024 2755334 321215 1076681
Our Rank10 K15 4982455 16824995 3611294 12086230 2485910 8247878 1623002 5351596 798880 2607411 317115 1027632
Our Rank10 K20 4785760 16339768 3460783 11711653 2376383 7985062 1550786 5177876 760661 2522601 302054 994505
Our Rank10 K25 4807326 16126895 3472135 11535988 2383858 7853522 1551367 5077764 753215 2451019 295667 952722
Our Rank15 K5 6508503 22403958 4956828 16869693 3543099 11941793 2357269 7905629 1152390 3827771 431216 1417280

Our Rank15 K10 5856376 20252549 4366374 14999383 3070235 10479950 2024663 6873499 984698 3294804 376203 1233587
Our Rank15 K15 5709967 20036318 4260838 14835612 2996095 10355929 1984664 6804163 968697 3266965 373511 1234118
Our Rank15 K20 5760641 19894052 4302590 14707131 3024827 10259453 1993237 6723531 962470 3225840 365876 1206354
Our Rank15 K25 5658344 19762984 4198303 14549943 2942753 10090439 1938785 6581715 942792 3139617 361617 1177805
Our Rank20 K5 7005926 24511992 5425730 18829446 3942348 13567847 2663352 9098794 1303652 4397284 479878 1612508

Our Rank20 K10 6566251 22735548 5019951 17235390 3599572 12280614 2402023 8170520 1161692 3910318 414405 1400913
Our Rank20 K15 6583396 22667489 5035945 17155931 3616105 12207902 2418440 8115231 1170015 3877934 431125 1403647
Our Rank20 K20 6694305 22659421 5124645 17119989 3671157 12134600 2444666 8028034 1181326 3821643 428262 1381034
Our Rank20 K25 6388544 22518363 4855839 16974037 3465632 11999983 2303033 7904892 1110323 3754447 406720 1354477
Our Rank25 K5 7341553 26036196 5755922 20250757 4229912 14751997 2883450 9941561 1409262 4774389 504428 1672822

Our Rank25 K10 7156392 24951854 5581264 19253851 4082506 13920606 2767199 9331306 1344107 4455365 477825 1557609
Our Rank25 K15 7191993 24869442 5614190 19209492 4101074 13915245 2772409 9369908 1338415 4496282 471044 1579174
Our Rank25 K20 6979542 24424960 5406376 18766299 3924808 13513199 2646116 9047842 1278618 4318392 454311 1509920
Our Rank25 K25 6851023 24362330 5278738 18685717 3807430 13423897 2539784 8954069 1215033 4267035 433300 1502645
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Figure 3.8: Bitrate vs PSNR graphs for Circular 2 and Hierarchical 2 layers.

Figure 3.9: Bitrate vs PSNR graphs for Circular 4
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Figure 3.10: Bitrate vs PSNR graphs for Hierarchical 4

Table 3.7: Bjontegaard percentage bitrate savings for the proposed compression scheme with respect
to Dib et al. on Bikes data. (positive values represent gain)

C2 H2 C4 H4
Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 3 Subset 4 Subset 1 Subset 2 Subset 3 Subset 4

Our Rank5 K5 -42.328 -68.401 -41.188 -70.239 -26.494 -57.548 -59.46 -62.236 -32.304 -47.441 -51.968 -61.404
Our Rank5 K10 -13.332 -47.453 -13.461 -50.549 11.468 -31.449 -33.829 -37.831 6.617 -13.952 -23.308 -37.064
Our Rank5 K15 3.6757 -31.365 7.5535 -36.985 32.695 -15.078 -20.081 -21.751 33.426 32.452 9.717 -16.029
Our Rank5 K20 15.61 -25.118 18.902 -30.438 53.943 -1.5659 -7.0801 -12.188 29.536 31.575 13.259 -11.691
Our Rank5 K25 21.727 -13.593 13.302 -19.05 53.707 3.4877 -1.0608 -4.4626 48.377 30.88 20.365 -0.23366
Our Rank10 K5 -40.024 -66.934 -38.718 -69.423 -21.023 -51.702 -56.287 -59.518 -25.722 -36.784 -46.212 -58.619

Our Rank10 K10 -28.251 -56.609 -25.789 -59.583 -6.563 -40.204 -43.8 -47.436 -7.7481 -13.929 -28.44 -45.401
Our Rank10 K15 -21.698 -52.47 -21.289 -55.522 4.0008 -31.157 -35.761 -41.4 -7.4935 -8.4548 -24.397 -40.853
Our Rank10 K20 -18.375 -51.093 -17.463 -54.018 3.2534 -31.649 -36.342 -40.718 -1.0342 -4.033 -19.81 -38.202
Our Rank10 K25 -15.933 -48.151 -16.886 -51.621 6.6973 -24.257 -31.61 -37.12 -3.2095 -6.7609 -19.914 -37.102
Our Rank15 K5 -48.075 -72.078 -47.093 -73.708 -33.395 -59.818 -62.666 -65.62 -37.469 -40.498 -52.906 -63.986

Our Rank15 K10 -40.898 -67.042 -39.001 -68.749 -23.793 -50.508 -54.497 -58.537 -26.986 -30.491 -43.153 -57.079
Our Rank15 K15 -38.867 -66.654 -37.632 -68.471 -20.853 -47.351 -53.246 -58 -22.81 -28.049 -41.294 -56.317
Our Rank15 K20 -38.954 -66.349 -38.337 -67.976 -23.727 -49.333 -52.912 -57.777 -21.458 -29.101 -42.007 -55.815
Our Rank15 K25 -38.884 -65.524 -36.189 -67.515 -16.608 -47.717 -50.896 -56.102 -25.506 -25.316 -39.818 -54.954
Our Rank20 K5 -53.935 -76.565 -53.261 -77.797 -40.824 -64.196 -66.91 -70.38 -43.71 -49.46 -58.911 -69.229

Our Rank20 K10 -48.686 -72.992 -50.075 -75.796 -35.695 -60.783 -63.116 -66.577 -41.376 -44.736 -53.839 -65.196
Our Rank20 K15 -49.247 -72.804 -46.831 -74.637 -30.761 -58.872 -62.507 -65.818 -37.798 -42.742 -54.185 -65.006
Our Rank20 K20 -49.457 -72.436 -47.837 -73.869 -39.071 -62.015 -64.278 -66.425 -34.935 -43.916 -54.916 -64.596
Our Rank20 K25 -46.36 -72.523 -45.808 -74.445 -29.787 -55.789 -61.322 -65.393 -34.179 -39.853 -51.524 -64.045
Our Rank25 K5 -56.152 -78.471 -55.75 -80.165 -42.914 -65.582 -69.084 -72.594 -46.667 -53.119 -62.249 -72.08

Our Rank25 K10 -54.245 -77.158 -53.727 -78.455 -40.758 -64.257 -67.834 -71.069 -44.41 -49.303 -60.448 -70.099
Our Rank25 K15 -53.778 -76.91 -47.293 -74.301 -38.18 -64.219 -67.365 -70.777 -49.163 -52.368 -60.853 -70.427
Our Rank25 K20 -50.804 -76.237 -51.662 -77.752 -35.857 -59.905 -64.203 -69.188 -43.853 -49.629 -58.649 -69.14
Our Rank25 K25 -52.955 -76.393 -50.917 -77.956 -36.868 -62.477 -66.45 -69.949 -41.754 -44.884 -56.866 -68.739

Average -34.409 -62.052 -33.457 -64.360 -15.096 -46.157 -50.103 -53.954 -20.465 -26.396 -38.493 -52.532
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Table 3.8: Bjontegaard DSNR savings for the proposed compression scheme with respect to Dib et al.
on Bikes data. (negative values represent gain)

C2 H2 C4 H4
Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 3 Subset 4 Subset 1 Subset 2 Subset 3 Subset 4

Our Rank5 K5 3.6305 5.9173 3.4976 6.1254 2.3393 4.976 5.1662 5.4174 3.0056 4.2803 4.3503 5.4147
Our Rank5 K10 0.52032 2.7861 0.54409 3.0133 -0.85308 1.8105 1.9605 2.2111 -0.60182 0.79869 1.2634 2.2143
Our Rank5 K15 -0.63425 1.3397 -0.88349 1.6942 -2.0134 0.58137 0.87135 0.91578 -2.0364 -1.6229 -0.66602 0.59055
Our Rank5 K20 -1.3008 0.91551 -1.5021 1.2293 -2.9045 -0.21922 0.059176 0.30895 -1.8645 -1.6032 -0.8714 0.32237
Our Rank5 K25 -1.5676 0.23803 -2.5091 0.51614 -2.8784 -0.43158 -0.21875 -0.082684 -2.6909 -1.5887 -1.1881 -0.28591
Our Rank10 K5 3.3173 5.6245 3.179 5.9643 1.6871 4.1277 4.6636 4.9616 2.1917 2.9109 3.5746 4.8927

Our Rank10 K10 1.8923 3.9272 1.6506 4.2181 0.37197 2.7081 2.9959 3.2584 0.43606 0.86216 1.7335 3.0939
Our Rank10 K15 1.255 3.39 1.204 3.6528 -0.41182 1.8514 2.1852 2.6 0.42784 0.4753 1.3972 2.608
Our Rank10 K20 0.94997 3.2316 0.87786 3.4681 -0.37313 1.8755 2.2358 2.537 -0.1057 0.23116 1.0685 2.3513
Our Rank10 K25 0.71739 2.9163 0.84233 3.1789 -0.62128 1.3026 1.836 2.2039 0.094927 0.42046 1.0848 2.2574
Our Rank15 K5 4.672 6.745 4.5531 6.9707 3.2956 5.4913 5.8013 6.1033 3.7799 3.4664 4.5611 5.8624

Our Rank15 K10 3.5127 5.64 3.277 5.8259 2.047 3.987 4.3937 4.7843 2.3797 2.2981 3.2424 4.6578
Our Rank15 K15 3.2267 5.5792 3.0872 5.7687 1.7478 3.5918 4.2194 4.7051 1.9102 2.0791 3.0332 4.5335
Our Rank15 K20 3.2216 5.5185 3.2181 5.6745 2.0197 3.868 4.1938 4.6952 1.7445 2.2002 3.13 4.4702
Our Rank15 K25 3.221 5.3024 2.9078 5.5445 1.3148 3.6312 3.8797 4.3827 2.1538 1.799 2.8723 4.3326
Our Rank20 K5 5.9105 8.0545 5.8625 8.1955 4.4874 6.3885 6.6975 7.2208 4.8727 4.7494 5.612 7.0505

Our Rank20 K10 4.8388 7.0229 5.2145 7.4989 3.6352 5.6889 5.9023 6.3259 4.5154 4.0085 4.7165 6.1284
Our Rank20 K15 4.9483 6.919 4.5859 7.1933 2.9643 5.3557 5.7706 6.1218 3.9079 3.7281 4.7873 6.084
Our Rank20 K20 4.9772 6.8251 4.7654 6.9905 4.1569 5.9602 6.1413 6.2796 3.4023 3.9505 4.8771 5.9633
Our Rank20 K25 4.4364 6.8984 4.4108 7.1645 2.7841 4.8102 5.5484 6.0392 3.3083 3.381 4.3904 5.8804
Our Rank25 K5 6.5061 8.6563 6.5135 9.0222 4.8968 6.7128 7.2255 7.8017 5.486 5.3271 6.289 7.7445

Our Rank25 K10 6.0488 8.2379 6.0528 8.4084 4.4963 6.4545 6.9463 7.3741 5.0335 4.6857 5.9213 7.2469
Our Rank25 K15 5.9373 8.1536 4.665 7.1414 4.0669 6.4587 6.8556 7.3189 6.052 5.2055 5.9661 7.3834
Our Rank25 K20 5.2943 7.9726 5.5702 8.1851 3.698 5.5219 6.1015 6.9072 5.0054 4.7263 5.566 7.0297
Our Rank25 K25 5.7586 7.9967 5.4099 8.2794 3.8397 6.0235 6.5967 7.0843 4.5457 4.0528 5.231 6.9139

Average 3.251 5.432 3.079 5.636 1.751 3.941 4.321 4.699 2.278 2.432 3.277 4.589

Table 3.9: Bjontegaard percentage bitrate savings for the proposed compression scheme with respect
to HEVC on Bikes data. (positive values represent gain)

C2 H2 C4 H4
Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 3 Subset 4 Subset 1 Subset 2 Subset 3 Subset 4

Our Rank5 K5 -38.714 6.9763 -39.274 9.0254 -25.757 -21.919 -6.6881 -4.2367 -25.146 -7.3921 -16.292 -7.1594
Our Rank5 K10 -7.706 89.941 -10.566 94.073 12.631 31.258 59.498 65.422 17.916 57.45 38.399 58.274
Our Rank5 K15 10.472 152.53 11.185 150.35 34.224 65.054 94.325 111.49 47.082 143.07 104.21 117.07
Our Rank5 K20 24.367 175.31 23.364 176.66 55.737 92.493 126.83 138.45 42.832 141.16 112.11 129.31
Our Rank5 K25 30.881 217.42 17.508 222.1 55.489 104.31 142.94 161.16 63.482 140.77 125.54 159.73
Our Rank10 K5 -36.274 12.952 -36.732 12.875 -20.228 -10.787 1.3428 3.3502 -17.879 12.992 -5.8908 0.37402
Our Rank10 K10 -23.681 55.808 -23.344 57.228 -5.6059 12.15 33.404 37.92 2.0056 57.207 28.954 36.691
Our Rank10 K15 -16.68 72.209 -18.69 74.812 5.0729 31.399 54.586 55.771 2.2889 66.773 36.529 49.053
Our Rank10 K20 -13.134 77.048 -14.731 80.744 4.3176 30.277 52.761 57.264 9.4073 75.344 45.955 56.429
Our Rank10 K25 -10.525 88.981 -14.135 92.002 7.7947 46.225 65.019 68.181 7.0092 70.032 46.101 59.862
Our Rank15 K5 -44.907 -4.9897 -45.414 -3.2663 -32.744 -26.309 -13.937 -12.604 -30.89 4.6824 -17.973 -12.762
Our Rank15 K10 -37.232 14.423 -37.037 17.609 -23.034 -8.0515 6.3954 6.9048 -19.311 24.171 -0.037272 5.075
Our Rank15 K15 -35.071 15.61 -35.621 18.762 -20.062 -1.7129 9.6919 8.5031 -14.704 28.726 3.2691 7.0315
Our Rank15 K20 -35.163 17.04 -36.355 20.867 -22.968 -6.0137 10.02 8.6059 -13.197 26.59 2.0193 8.3061
Our Rank15 K25 -35.084 21.627 -34.13 23.949 -15.77 -2.7586 15.358 13.808 -17.659 34.255 5.9703 10.596
Our Rank20 K5 -51.186 -21.906 -51.807 -19.799 -40.259 -34.537 -23.998 -25.301 -37.816 -11.934 -28.943 -26.165
Our Rank20 K10 -45.577 -8.3173 -48.513 -11.14 -35.072 -27.918 -14.708 -14.936 -35.246 -2.4537 -19.405 -15.65
Our Rank20 K15 -46.179 -7.273 -45.155 -6.4185 -30.085 -24.318 -13.268 -12.753 -31.29 0.88858 -20.254 -15.221
Our Rank20 K20 -46.401 -5.8307 -46.194 -3.2289 -38.486 -30.412 -17.639 -14.493 -28.108 -1.5868 -21.415 -13.979
Our Rank20 K25 -43.096 -6.4927 -44.097 -5.8828 -29.099 -18.047 -10.223 -11.513 -27.273 6.1926 -15.324 -12.668
Our Rank25 K5 -53.572 -28.541 -54.391 -29.088 -42.373 -37.072 -29.13 -30.962 -41.106 -18.326 -34.895 -33.093
Our Rank25 K10 -51.533 -23.83 -52.299 -22.202 -40.194 -34.629 -26.172 -26.872 -38.605 -11.089 -31.573 -28.101
Our Rank25 K15 -51.033 -22.831 -45.632 -5.3809 -37.588 -34.62 -25.161 -26.161 -43.859 -17.046 -32.198 -29.11
Our Rank25 K20 -47.854 -20.48 -50.16 -19.447 -35.24 -26.219 -17.275 -21.842 -38 -11.749 -28.288 -25.737
Our Rank25 K25 -50.153 -21.037 -49.389 -20.45 -36.261 -30.967 -22.691 -23.843 -35.676 -3.2621 -24.925 -24.667

Average -30.201 33.853 -31.264 36.190 -14.222 1.475 18.051 20.452 -12.149 32.218 10.065 18.139
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Table 3.10: Bjontegaard DSNR savings for the proposed compression scheme with respect to HEVC
on Bikes data. (negative values represent gain)

C2 H2 C4 H4
Subset 1 Subset 2 Subset 1 Subset 2 Subset 1 Subset 2 Subset 3 Subset 4 Subset 1 Subset 2 Subset 3 Subset 4

Our Rank5 K5 3.1858 -0.64819 3.3135 -0.75924 2.2456 1.3276 0.27811 0.055206 2.2956 0.49604 0.86727 0.23801
Our Rank5 K10 0.10433 -3.5577 0.36794 -3.647 -0.93802 -1.7129 -2.7215 -2.8549 -1.2597 -2.9325 -2.0563 -2.6661
Our Rank5 K15 -1.0361 -4.8883 -1.056 -4.8387 -2.0943 -2.905 -3.7461 -4.0313 -2.6755 -5.5732 -3.9089 -4.1377
Our Rank5 K20 -1.6952 -5.3044 -1.6733 -5.2954 -2.9825 -3.6848 -4.5336 -4.6039 -2.5055 -5.504 -4.1142 -4.3889
Our Rank5 K25 -1.9583 -5.9713 -2.6928 -6.0021 -2.9553 -3.8807 -4.8233 -4.9635 -3.3235 -5.4973 -4.4206 -4.9528
Our Rank10 K5 2.8709 -0.91965 2.995 -0.90207 1.5934 0.48147 -0.19297 -0.35531 1.4902 -0.84537 0.12971 -0.22785

Our Rank10 K10 1.461 -2.4919 1.471 -2.5255 0.28202 -0.86149 -1.751 -1.8927 -0.2398 -2.8676 -1.5797 -1.8527
Our Rank10 K15 0.8317 -2.9931 1.0256 -3.0485 -0.49927 -1.6585 -2.5021 -2.4865 -0.24677 -3.2583 -1.9027 -2.294
Our Rank10 K20 0.52914 -3.1415 0.70063 -3.2215 -0.46096 -1.6467 -2.46 -2.5458 -0.77263 -3.5207 -2.2205 -2.5215
Our Rank10 K25 0.29754 -3.4197 0.66539 -3.4783 -0.70869 -2.1683 -2.8188 -2.8281 -0.57277 -3.3225 -2.1988 -2.5902
Our Rank15 K5 4.2149 0.19088 4.3654 0.098622 3.1998 1.812 0.90918 0.74316 3.0562 -0.32068 1.1035 0.72279

Our Rank15 K10 3.0638 -0.87861 3.0925 -1.0107 1.9528 0.35851 -0.42696 -0.48056 1.6743 -1.4612 -0.16428 -0.4106
Our Rank15 K15 2.7772 -0.92855 2.9027 -1.0545 1.6544 -0.0079474 -0.57916 -0.54031 1.2122 -1.6668 -0.36925 -0.53141
Our Rank15 K20 2.7704 -1.0103 3.0332 -1.163 1.925 0.23977 -0.62275 -0.58026 1.0459 -1.5479 -0.26879 -0.58442
Our Rank15 K25 2.7713 -1.1818 2.7236 -1.2684 1.223 0.013689 -0.90877 -0.84246 1.4451 -1.9385 -0.51487 -0.7029
Our Rank20 K5 5.446 1.46 5.6711 1.3046 4.3901 2.7147 1.8077 1.8143 4.1359 0.93694 2.1244 1.8523

Our Rank20 K10 4.3794 0.45242 5.0244 0.64116 3.5387 2.0174 1.0202 0.96433 3.7859 0.24222 1.2674 0.98026
Our Rank20 K15 4.4862 0.37677 4.3975 0.33445 2.8689 1.6768 0.88699 0.78211 3.1838 -0.055937 1.3202 0.93879
Our Rank20 K20 4.5144 0.29115 4.577 0.14145 4.0589 2.2793 1.2571 0.93523 2.6787 0.15393 1.4243 0.83941
Our Rank20 K25 3.9782 0.34397 4.2229 0.28962 2.6881 1.1676 0.68384 0.71858 2.5867 -0.40283 0.93862 0.75909
Our Rank25 K5 6.0378 2.1074 6.3201 2.1637 4.7988 3.0349 2.3366 2.4195 4.7416 1.5342 2.7954 2.5789

Our Rank25 K10 5.5821 1.6651 5.861 1.5263 4.3985 2.7714 2.052 2.0036 4.29 0.90153 2.4348 2.0777
Our Rank25 K15 5.4698 1.5886 4.4761 0.2688 3.9696 2.7644 1.9389 1.9326 5.2986 1.4118 2.4938 2.1875
Our Rank25 K20 4.8316 1.392 5.3789 1.2939 3.601 1.8476 1.2219 1.5386 4.2668 0.94557 2.0922 1.8571
Our Rank25 K25 5.2938 1.4177 5.2198 1.3736 3.7429 2.3635 1.7138 1.7138 3.8127 0.25342 1.7712 1.7498

Average 2.808 -1.041 2.895 -1.151 1.659 0.333 -0.479 -0.535 1.576 -1.353 -0.118 -0.443
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In our study of Light field compression problem using FDL, we have studied and pro-

posed an algorithm to deal with problem LF compression, lossy light field compression

based on FDL using Hybrid Tucker TS via sketching. In our proposed method com-

pression is based on FDL using Hybrid tucker decomposition we have tried to use the

good energy packing property of SVD and de-correlating property of KLT, which could

be a good tool to compress light field data. We discussed about the motivation behind

the idea and then we discussed proposed scheme. Finally we have shown the compara-

tive analysis of our proposed scheme with Dib et al. and HEVC, along with graphs and

tables, we have used objective analysis Bjontegaard metric to show the significant gain

in PSNR and bitrate.

4.2 Future Work

Based on the work presented in this thesis, the following research issues which can

be explored by researchers in the field of light field compression in near future. The

quantitative analysis done in our work shows the ability of our proposed scheme. More

test can be done with large number of data sets to explore the generalization of our

proposed method. Despite getting significant gain in bitrate and PSNR for some Rank

and K (sketch dimension) values. There is a lot of improvement that could be done in

order to get gain in bitrate. Our proposed scheme failed to achieve gain in bitrate for

higher Rank. We need to explore more idea to save bitrate and de-correlate data among

the images and within the image.
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