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Abstract

Autoencoder is a powerful framework used for channel coding, which is proven

to be efficient in many non-canonical channel settings. One such autoencoder is

TurboAE, which has learnable interleaved encoder and iterative decoder inspired by

the “Turbo Principle”. But the TurboAE architecture has nearly 26e5 parameters

and consumes a memory of nearly 20.8 MB for reliable reconstruction of the data

sent. Of these, the decoder alone has 25e5 parameters. Because of this reason, it

becomes challenging to deploy it in resource limited edge devices, which are expected

to be ubiquitous in future wireless communications such as 6G. To address this issue,

we explore the various network compactification techniques and make the neural

decoder to be memory and computation efficient, with the following contributions:

(a) usage of Binary and Ternary neural networks instead of their real counterpart

can save the memory and computations by 64 times, at the cost of some performance

degradation; (b) instead of relying on single weak learner such as Binary or Ternary

neural networka, if we ensemble more than one such weak learners with the help

of bagging, the ensembled network offers almost similar performance as the full

precision real network by giving 16 times saving in memory and computation power.
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Chapter 1

Future Wireless Communications

1.1 Introduction

The future generations of wireless communication systems, or 6G, will provide a

platform for a fully connected world. They are expected not only to be equipped

with multi-band high speed transmission but also energy-efficient communication,

low latency and high security. One of the technological breakthroughs to achieve

the connectivity within 6G include the pervasive Artificial intelligence (AI) [1].

The field of AI has seen an enormous growth, which helps it find a way in many

applications like object recognition, self driving cars and so on. In the context of

wireless communications, AI can be applied to channel estimation and symbol de-

tection which are extremely useful in the massive Multiple-In Multiple-Out (MIMO)

communications. We can deploy artificial intelligence at each layer of the wireless

network. For instance, we can use the machine learning algorithms to better adapt

the network resources for various scenarios. At the physical layer, deep learning

can be applied to modulation and coding schemes. They also assist with channel

estimation.

With the advancement of research in artificial intelligence for 6G, the high speed

data will allow an ubiquitous utilization of Internet-of-Things (IoT) containing bil-

lions of devices [2]. The interactions among themselves and with the access providers

may result in excessive signal processing at the user end that gives rise to huge power

consumption. Therefore economic energy usage to have elongated battery life in mo-

bile devices has been a research direction with utmost importance [3, 4].

The frequent data exchange between the users and the access providers will
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expose a risk to the communication. To prevent the data from being leaked or

getting corrupted by channel noise, different physical layer encryption algorithms

[5–7] are used as channel coding methods. In digital communication system, the

aim of channel coding technique is to combat the effect of noise in the channel

and to successfully reconstruct the message that was sent over the noisy channel.

Finding an optimal code is of great interest from the point of view of both wireless

communication [8] and information theory [9]. But finding the same for a non-

canonical channel is challenging because the codes for canonical setting are adapted

via heuristics to these channels. For the simple codes [10] designed by optimizing

the minimum code distance, an optimal MAP decoder is computationally simple

and it reduces the Bit Error Rate (BER). But the MAP decoders for the near-

optimal codes like Low Density Parity Check (LDPC) [5], Turbo [11] and Polar [6]

codes that achieve a capacity of Shannon’s limit on Additive White Gaussian Noise

(AWGN) channels, are computationally inefficient. The design of optimal decoders

for canonical AWGN channel is completely handcrafted. When the channel deviates

from the Gaussian setting in a practical scenario, time heuristic are used to design

the decoder and it does not always exploit the power of encoders.

To fill up this gap, Neural Networks have been used to design the decoder while

encoder is fixed as a near-optimal code [12]. Neural decoders have gained immense

interest; for instance one that mimics the belief propagation based decoders for

LDPC [13] and Polar codes [14] or Convolutional neural network (CNN) [11] and

Recurrent neural network (RNN) [15] based decoders for optimal decoding of Con-

volutional and turbo codes. Deploying decoders for these codes takes up huge com-

putation which is only possible because of recent advancement in signal processing.

Though, the neural decoder alone have shown good performance in noisy channel,

encoding has been challenging using this paradigm. Therefore designing neural code

has been proposed where the encoder and decoder are jointly trained [16,17]. Neu-

ral codes have shown results better than many state of the art codes but could not

reach to a level of capacity achieving codes. Besides, these kind of joint optimization

methods sometime leads to convergence at local minimum. To overcome this issue,

the authors proposed, Turbo Autoencoder (TurboAE) [18] that uses CNN based

over-complete auto-encoder model incorporating interleavers and de-interleavers to
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achieve the performance of state of the art channel codes under AWGN scenario.

However, all the existing neural autoencoders have real valued network param-

eters and perform floating point operations during deployment. For instance, the

TurboAE architecture has nearly 26e5 parameters that takes up a memory of 20.84

MB considering a 64 bit floating point representation. Out of total 26e5 parame-

ters, the encoder has nearly 1.5e5 parameters whereas the decoder has nearly 25e5

parameters. Because of the huge number of parameters in the autoencoders, deploy-

ing it in a resource limited IoT setup is a challenging task. Furthermore, with the

advent of edge computing in IoT scenario, the computation is decentralised to edge

devices where the data is processed locally. Even though the encoder at the base

station can take the load of heavy processing, the neural decoder is at the user end

with limited memory and computing power and cannot withstand bulky processing

of the edge devices.

Deep neural networks have been extensively used in real world machine learning

applications like image/object recognition, self driving cars, mobile gadgets or smart

home assistance and so on. If the networks are bulkier, they can not be easily

deployed at the edge devices. Different model compression methods like pruning,

quantization, knowledge distillation, efficient model design, tensor decomposition

[19–22] etc have been proposed to reduce the memory requirement and the number

of FLOP counts. These methods have encouraged the deployment of deep learning

techniques for the real world applications. Binary Neural Networks [23] take this

compression to the extreme level by taking the weights and activations to be 1-

bit. Binary networks replace 64 bit floating points with 1 bit that gives a memory

reduction of 64 times. Also the floating point multiply and addition operations

are replaced with xnor and popcount operations. This saves the computation cost

radically during the inference time.

1.2 Contribution

In the domain of wireless communication, the channel noise is real valued and till

now, only the real valued Neural Decoders have been used for end-to-end training

that had only floating point operations. In this work, we explore the possibilities of

3



using extreme compactification techniques in wireless applications where a simple

coarser quantization on the trained network tremendously degrades the performance

of the Neural Decoder. In this work, we also propose the techniques that allow the

decoder to be memory and computation efficient but still have a performance as

close as to the original neural decoder. The major contributions of our work are the

following:

• The effect of quantizing the trained neural decoder to different levels after

training are shown. The performances are compared to the original real valued

TurboAE.

• We have proposed to use binary filters/weights/biases and binary activations

in order to save in memory and computation at the edge.

• The performance is further improved by the use of ternary neural network

where the weights take three levels {−1, 0,+1} but the activation is still binary.

The proposed architectures with binary and ternary weights are shown to be

better than one where the trained network is quantized with 2 bit or 1 bit.

• An ensemble of multiple weak binary and ternary decoders is shown to perform

close to the real valued TurboAE but achieve nearly 16 times saving in memory

(if we consider four weak learners) and nearly 64 times speed up due to less

computations that helps to achieve energy efficiency and low latency in the

edge communication.

1.3 Organization of the thesis

This thesis is organized as follows:

Chapter2 reviews the topics involved in quantization techniques implemented on

the neural networks in order to achieve the desired savings at the edge device end

Chapter3 discusses about the role of TurboAE in tackling the problem of channel
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coding and then introduces the concept of binary and ternary iterative decoders

Chapter4 explains the proposed ensembled TurboAE using the bagging of weak

learners such as binary and ternary networks

Chapter5 illustrates the simulation setup used for the experiments. Performance

of different networks are analyzed in terms of BER graphs

Chapter6 summarizes the work done and provides some concluding remarks
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Chapter 2

Background

In this chapter, we review the quantization techniques that are implemented on the

neural networks so as to achieve compactification at the edge device. We denote a

real valued neural network (NN) by gφ(.) where φ represents the real valued network

parameters. The output from the NN is given by y = gφ(x) where x is the input

features to the NN and can be real valued. The neural network gφ(.) can be of any

type: a fully connected, a CNN or an RNN. In our work, as we mostly deal with

CNN in the neural decoder, we discuss the following part with respect to the CNNs.

For a general CNN gφ(.) of L layers, the parameters are nothing but the filters

of the CNN and are given by φ = {W1, . . . ,WL} where Wl ∈ Rco×ci×k for lth layer

of one dimensional CNN. Here ci and co represents number of input and output

channels and k is the dimension of the filter. For a one dimensional CNN as used

in TurboAE, if the input to lth layer of CNN has spatial features of dimension hin,

then input to lth layer is al ∈ Rci×hin . The output of lth layer is al+1 ∈ Rco×hout

where hout is the dimension of the output.

2.1 Post training quantization

Post training quantization is an optimizing strategy which is used to make the model

smaller and improve the CPU latency, which is important for low-power devices. But

with this strategy, the models experience some degradation in the accuracy. There

are several ways to choose from, to implement post training quantization. The

simplest way is to quantize the full precision floating point number, such as weights

and activations, to that of a number with 8-bit, 4-bit, 2-bit and 1-bit precision. That
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means we are trying to represent the full precision number using 256, 16, 4 and 2

quantization levels respectively.

If a real valued network gφ(.) is deployed in a 64 bit system, then its 8-bit, 4-bit,

2-bit and 1-bit quantized versions will occupy 8, 16, 32, 64 times lesser memory.

However as we have discussed, the performance generally degrades to some extent.

2.2 Binary neural network

In a Binary Neural Network (BNN), the weights W’s and activations a’s are bina-

rized using the sign function before taking convolution.

sign(r) =

+1, if r ≥ 0

−1, otherwise.

(2.1)

The binarized parameter Wb
l and abl is given by:

Wb
l = sign(Wl) (2.2)

abl = sign(al) (2.3)

So the real valued convolution is approximated with binary weights and activations

as

Wl ∗ al ≈Wb
l ~ abl (2.4)

where ~ is convolution performed with bitwise operations. Even though the bina-

rized weights are used for the forward pass, only the real valued latent weights are

updated with the real valued gradients during backpropagation. However during

inference, these latent weights can be dropped and binary network with the binary

weights and activations can be deployed. The sign function is non-differentiable and

has gradients as zero almost everywhere; thus not appropriate for the back propaga-

tion during the training. Therefore a straight through estimator [24] was proposed

that binarizes in the forward pass but during backprop it just passes the gradients

as it is to the previous layers. For instance, if q = sign(r), then gr = gq1|r|≤1 where

gr = ∂C
∂r

, gq = ∂C
∂q

and C is the cost function of the NN. To have a stable update

during the training, the updated real valued weights are clipped between [−1, 1].
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If a real valued network gφ(.) is deployed in a 64 bit system, then its binary

version will occupy 64 times lesser memory and all the floating point operations

can be converted to just xnor and popcount operations. However, because of this

extreme compactification, the performance generally degrades very much.

2.3 Ternary neural network

Ternary Neural Network (TNN) [25] on the other hand, is proposed as an alternative

to BNN, where 3 bits {−1, 0, 1} are used unlike two bits {−1, 1} in BNN. Therefore

the ternarized parameter q is given by:

q = tern(r) =


+1, if r > ∆

0, if r < |∆|

−1, if r < −∆

(2.5)

where ∆ ≈ 0.7 · E(|W|), W indicate full precision weights.

The introduction of zero as another bit along with {+1,−1} gives a better repre-

sentation power and therefore better performance than BNN. But the zero weights

need not to be saved during deployment. So the memory requirement of TNN is

same as that of the BNN. Note that the activation is still binary and thus the

computational complexity is also same as the BNN. Therefore with TNN, an im-

prove in performance is possible without any additional requirement in memory or

computation.

2.4 Computational savings

The convolution between real valued Wl ∈ Rco×ci×k and al ∈ Rci×hin at lth layer

results in an output al+1 ∈ Rco×hout . The total number of multiplication for lth

layer is ci × k × hout × co and the total number of addition for lth layer is (ci −

1) × (k − 1) × hout × co. The total Floating-point operations (FLOP) count for lth

layer of a real valued 1D-CNN is the summation of the number of multiplication

and addition that is roughly twice of the number of multiplication, it is given by

2× ci × k × hout × co. For a binary counterpart, as the weights and activations are

constrained to −1 or +1, the 64 bit floating point multiply-accumulation operations
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are replaced by 1 bit XNOR-count opertions [23]. Note that the modern CPUs can

perform a single multiplication and an addition in a single clock cycle, and thus the

total number of operations in a binary network is ci× k×hout× co. In recent 64-bit

CPUs, 64 such binary operations can be performed in a single clock cycle that gives

a speed up of nearly 64 times in a binary or ternary network [26]. Because the filters

take only +1 or −1, only a limited number of filters are possible. So with BNN,

the filter repetition can be exploited by using dedicated hardware/software. The

implementation on GPU can be made faster by using Single instruction, multiple

data (SIMD) within a register SIMD within a register (SWAR) where 64 binary

variables are concatenated in a 64 bit register and a 64 times speedup on the bitwise

operation like XNOR can be achieved.
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Chapter 3

Turbo Autoencoder

3.1 Channel coding

The method of channel coding can be divided into three sub-problems: an en-

coder fθ(.) at the transmitter, a channel c(.) and a decoder gφ(.) at the receiver.

In a communication system, the encoder x = fθ(u) encodes the binary bits u =

(u1, . . . , uK) ∈ {+1,−1}K of block length K to get the codeword x = (x1, . . . , xN)

of length N such that the codeword satisfies the power constraints. The code rate

is R = K
N

, where N > K. The i.i.d. AWGN channel corrupts the encoded bits

and generates zi = xi + wi such that wi ∼ N (0, σ2) for i = 1, . . . , K. The noise in

the AWGN channel is represented by the signal to noise ratio SNR = −10 log10 σ
2.

After transmission through the channel, the decoder gφ(z) receives the real valued

noisy encoded bits z and map them to an estimate of the actual message sequence

û = (û1, . . . , ûK) ∈ {+1,−1}K using either MAP principle or handcrafted decoding

algorithm to have the least bit error rate (BER).

Channel coding aims to minimize the Bit Error Rate (BER) or the Block Error

Rate (BLER) of the recovered message signal û given by BER = 1
K

∑K
1 Pr(ûi 6= ui)

and BLER = Pr(û 6= u).

Naively applying deep learning models by replacing encoder and decoder with

general purpose neural networks does not perform well. So in [18], authors have

proposed a TurboAE with interleaved encoding and iterative decoding using 1D

convolutional neural networks. We propose to binarize the iterative decoder of Tur-

boAE and inspect its performance in the following chapters. The basic architecture

of TurboAE and the same of its binary and ternary versions are discussed here.
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Figure 3.1: TurboAE interleaved encoder (left), Channel (middle) and TurboAE

iterative decoder (right) with block rate 1
3
. gvφ = gbφ for BinTurboAE and gvφ = gtφ

for TernTurboAE. S in the decoder side is a sigmoid block

3.2 TurboAE with binary and ternary iterative

decoder

Turbo code is one of the first capacity approaching codes based on recursive system-

atic convolutional (RSC) code that has an optimal decoding algorithm namely the

Bahl-Cocke-Jelinek-Raviv (BCJR). To add long range memory to the code, inter-

leaving is used: out of two copies of input bits, the first one passes through the RSC

code and the second goes through the interleaver before passing through the same

RSC code as shown in Fig. 3.1(left). After the transmission through the channel,

this code is then decoded by repeating alternatively between (i) and (ii): where (i)

refers to the soft decoding based on the signal received from the first copy and (ii)

indicates the de-interleaved version as a prior to decode the second copy as shown

in Fig. 3.1(right). This iterative decoding method keeps re-estimating the posterior

distribution on the transmitted bits.

Both the interleaved encoder and the iterative decoder are learnable as proposed

in TurboAE [18]. The interleaver xπ = π(x) and the de-interleaver x = π−1(xπ)

shuffles and shuffles back the input sequence with a random interleaving array known

to both encoder and decoder respectively. A code rate of 1/3 is considered for the

interleaved encoder fθ that has three learnable blocks f1,θ, f2,θ and f3,θ. The first
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two takes the original message bit u to produce x1 and x2 whereas the third block

takes the interleaved message π(u) to return x3 as shown in Fig. 3.1. The encoded

messages then pass through the channel and the received noisy messages are z1,z2

and z3. Our focus is mostly on the compression of the iterative decoder part so

that it can be deployed at the edge devices. Thus we do not discuss much on the

encoder part in this work. Interested readers may refer to [18] for more details on

the encoder.

Considering M iterations of the iterative decoder, each iteration consisting of two

decoders. First decoder in ith iteration gφi,1(.) takes the original noisy message z1, z2

and the prior distribution p on the transmitted bits and returns a posterior q that

goes to the second decoder gφi,2(.) via interleaving along with the interleaved noisy

messages π(z1) and z3. In the proposed binarized and ternarized TurboAE, named

as BinTurboAE and TernTurboAE, the real valued decoders {gφ1 , . . . , gφM} are re-

placed with binary decoders {gbφ1 , . . . , g
b
φM
} and ternary decoders {gtφ1 , . . . , g

t
φM
} re-

spectively. For ease of notation, we represent the complete binary decoder by gbφ

and the ternary decoder by gtφ. But the main limitation of BinTurboAE and Tern-

TurboAE is that they do not perform as good as the real valued TurboAE. In ap-

plications where a degradation in performance is acceptable at the cost of reduced

computation and energy efficiency, BinTurboAE or TernTurboAE can be deployed

at the Edge devices. As the performance of BinTurboAE is not as good as the real

counterpart, each of these can be thought of as a single weak learner. Instead of

relying on a single weak learner, we propose to ensemble a set of weak learners’

outcomes to have a much reliable output which we will discuss in the next chapter.
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Chapter 4

Proposed Approach

4.1 Motivation for the proposed approach

As discussed in the introduction chapter, the decoder section of TurboAE has huge

number of network parameters and involves floating point operations. This makes

it challenging to deploy this decoder in resource limited edge devices. To make this

happen, we can replace the CNNs in the decoder with the BNNs, neural networks

with binary weights and activations as discussed in chapter two. On the other hand,

we can also replace CNNs in the decoder with TNNs. Usage of binary and ternary

networks indeed reduces the memory requirement and the computations with the

ternary network performing better than that of a binary network. But both of these

networks suffer a great deal of performance degradation when compared with that

of original network.

To reduce this gap, we propose to use the Ensemble Neural Network [27] instead

of single BNN or single TNN. Basic idea behind Ensemble technique is to improve

the accuracy of any network by combining many weak learners and to make it

perform close to the full precision network, so that we can use it in the edge device.

The two common ensemble strategies used are bagging and boosting. Here we use

bagging to ensemble multiple binary or ternary networks.

4.2 Proposed Ensembled TurboAE-Bagging

Considering each decoder gvφ a weak learner, B such weak learners are trained sepa-

rately with the complete dataset. The idea of “ensemble” is to get opinion from all

13
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u
fθ

x1

x2

x3
Channel
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z3

z1
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û1
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û2

z1

z2

z3
g3φ

û3
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z3
g4φ

û4

∑4
b=1 û

b

4

û

Figure 4.1: Architecture of the decoder of En-TurboAE-Bag: the final estimate û is

the aggregate of B = 4 weak learners

these weak learners to arrive at better prediction. One of the many ways the weak

learners can be ensembled is Bagging. The key idea of bagging is to average the weak

classifiers. In this work, we have proposed to ensemble four BinTurboAEs with the

bagging method and it is called BinTurboAE-Bag. The same is done with TernTur-

boAE and it is named as TernTurboAE-Bag. Bagging is used in machine learning

to improve stability and accuracy and to reduce the variance. Here in our work,

the decisions from each one of these four BinTurboAEs or four TernTurboAEs

({û1, . . . , û4}) are averaged to get the final prediction û = 1
4

∑4
b=1 ûb as shown in

Fig. 4.1.
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Chapter 5

Experiments and Results

5.1 Experiments

To validate the usefulness of the proposed compression techniques, we consider the

setting used in [18] to train the encoder and decoder networks. A large batch

size preferably greater than or equal to 500 is used to average the channel noise

effects. We train encoder and decoder separately so as to avoid any possible local

optima. BinTurboAE and TernTurboAE need lower learning rate than the real

valued TurboAE. Hence we reduced the learning rate by 10 times whenever the

validation loss gets saturated for higher training epochs. The hyper-parameters

used in our experiment are shown in Table 5.1.

We provide results showing the performance in terms of BER vs SNR of the

proposed BinTurboAE and TernTurboAE and compare them with QuantTurboAE,

the quantized TurboAE to q levels after the training. For QuantTurboAE, the

parameters of the trained TurboAE is quantized to different levels i.e. 8-bit, 4-

bit, 2-bit and 1-bit. The saving in memory is 8, 16, 32 and 64 times respectively

compared to the real valued TurboAE network as shown in Table. 5.2. However,

this method does not save at all from the computation point of view. The 8-bit

quantization after the training performs as good as the original TurboAE. But the

2-bit and 1-bit quantizations performs really bad as shown in Fig. 5.1. But instead

of quantization after the training, if the network is trained with 1-bit quantization

like the BinTurboAE, the network outperform 2-bit and 1-bit QuantTurboAEs. The

Ternary network improves the BER performance even more by 0.5dB and performs

similar to QuantTurboAE (q = 4). QuantTurboAE (q = 4) uses 4 bits to store
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Table 5.1: Hyper-parameters of TurboAE

Loss Binary Cross-Entropy (BCE)

Encoder 2 layers 1D-CNN, kernel size 5, 100 filters for

each learnable encoding block

Decoder 5 layers 1D-CNN, kernel size 5, 100 filters for

each learnable decoding block

Decoder Iterations 6

Info Feature Size F 5

Batch Size 500

Optimizer Adam

Learning Rate initially 0.0001 and reduced by 10 when test

loss saturates for more number of epochs

Block Length K 100

Number of Epochs 800

each parameter whereas the TernTurboAE uses only 1 bit to store each parameter.

And when compared to the real valued TurboAE, both the binary and the ternary

networks save the memory requirement by about 64 times and the computations by

converting all the floating point computations to xnor and pop-count operations at

the decoder side. The performance gap between these proposed methods and the

TurboAE still exists and needs ones attention. To close this gap, four such weak

learners are ensembled and its performance is shown in Fig. 5.2.

The ensemble of just four BinTurboAEs is implemented with the bagging method

and it performs much better than that of a single BinTurboAE. The BinTurboAE-

Bag even outperforms the real network in low SNR region by almost 1 dB as shown

in Fig. 5.2. In the high SNR region, the BinTurboAE-Bag performs close to the

real TurboAE. Now, the ensemble of four four TernTurboAE is implemented with

the same bagging method to see how this ensemble performs. The performance of

TernTurboAE-Bag is slightly better than BinTurboAE-Bag as shown.
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Figure 5.1: Performance of Binary and Ternary networks compared to the quantized

and real valued TurboAE

Figure 5.2: Performance of Ensembled versions compared to the binary and ternary

TurboAE
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This result is significant as the (Bin/Tern)TurboAE-Bag saves a lot in terms of

the memory requirement (about 64/4 = 16 times) and the number of computations

(FLOPs are replaced with XNOR-count) at the edge device end but still not com-

promising much on the BER performance when compared to the TurboAE with real

parameters.

5.2 Computation and memory savings at the edge

devices

Decoding usually happens at the edge device. In real TurboAE, the iterative decoder

has huge number of parameters that takes up a lot of memory. It also involves

floating point operations thus making the computations slow at the edge devices.

Our main goal is then to reduce the memory requirement and computations at

the decoder side of the TurboAE so that the proposed decoders are suitable for

deployment at the edge.

Table 5.2: Savings vs performances at the edge device

Model Memory

savings

Computation Speed up BER at 0

dB SNR

Full precision

DNN

1x ' 4e8 FLOPs 1x 1e− 02

QuantTurboAE

(q = 4)

' 16x ' 4e8 FLOPs 1x 6e− 02

BinTurboAE ' 64x ' 4e8 xnor-

count

64x 1e− 01

TernTurboAE ' 64x ' 4e8 xnor-

count

64x 6e− 02

Bin/Tern-

TurboAE-bag

(B = 4)

' 16x ' 16e8 xnor-

count

16x (64x

if parallel

processing

is possible)

1e− 02
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The savings for each of the proposed techniques are shown in Table. 5.2. Bin-

TurboAE and TernTurboAE takes up memory 64 times lesser than the real valued

TurboAE. BinTurboAE-Bag and TernTurboAE-Bag takes a memory B times the

memory taken by the BinTuboAE and TernTurboAE.

The number of FLOPs in the decoder of the real TurboAE at the edge devices

is about 4e8. Even though the memory savings in q bit Quantized network would

be around (64/q) times the real networks requirement, QuantTurboAE and Tur-

boAE does not speed up the computations as the computations are still in 64 bit.

As the Binary, Ternary and the Ensembled TurboAEs convert all the 4e8 floating

point operations to only bitwise operations, the computations are extremely fast

with much lower power consumption. When 64 bitwise operations are performed in

a single clock cycle, then the binary and ternary networks are 64 times faster thus

gives very low latency than the real TurboAE network. Even though the compu-

tation in (Bin/Tern)TurboAE-Bag is B times more than the (Bin/Tern)TurboAE,

the (Bin/Tern)TurboAE-Bag can be made equally fast like (Bin/Tern)TurboAE, if

parallel processing is available at the edge as shown in Table. 5.2.
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Chapter 6

Conclusion

In summary, we propose to use BinTurboAE and TernTurboAE with the aim of

implementing the end-to-end learnt channel coding in the targeted low-power edge

devices by reducing the memory requirement and the computations by nearly 64

times at the cost of performance degradation. We then propose BinTurboAE-Bag

and TernTurboAE-Bag to improve the performance offered by a single BinTurboAE

or single TernTurboAE respectively and achieve the performance close to the real

network. The ensembled technique implemented with four such weak learners is

shown to consume 16 times less memory and the computation power, without suf-

fering much loss in accuracy and perform close to the original real valued TurboAE.
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