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ABSTRACT

KEYWORDS: Modulation Classification, Maximum Likelihood Estimation, Expecta-

tion Maximization, Fading Channel, k-means Clustering, Pattern Recognition,

Modulation Classification is the key step in adaptive communications, where the

transmitter changes the modulation according to the channel conditions. In such sce-

narios the receiver needs to identify the modulation present in the incoming signal. In

a simple AWGN channel the task of Modulation Classification may be easy but in fad-

ing channels with carrier phase and frequency offsets and other channel impairments,

this task becomes difficult. In this thesis we tried to do the Modulation Classification

task in fading channels using Expectation Maximization Algorithm. First we tried to

do the MC in flat fading channels where we use k-means clustering algorithm to ini-

tialize the unknown channel parameters for a better estimation using EM algorithm.

Then we extend similar procedure to the frequency selective fading channel conditions.

Simulations were done for both the cases. In flat fading channel model 4 modulations

(BPSK,QPSK,16QAM and 64 QAM) are considered. In frequency selective fading

channel model 3 modulations (BPSK, QPSK,8PSK) are considered and the classifica-

tion accuracy plots against SNR are obtained.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Modulation classification is the key step in many military and civilian applications. It is

used in Software Defined Radios, adaptive modems and cognitive radios. In such sys-

tems depending on the environmental (channel) conditions the transmitter will change

the modulation scheme used. Then, the receiver needs to identify the modulation type

by itself and need to apply the corresponding demodulation scheme. For example, when

the channel is good the transmitter can use a modulation with higher constellations. But

to achieve the same BER(Bit Error Rate) at worst channel conditions one can not use

higher constellations and hence it is required to use a modulation of lower constel-

lations. In such scenarios the receiver has to identify the modulation type present in

the coming signal and use the corresponding demodulation. Having said that we un-

derstand that Modulation Classification (MC) is an intermediate step between signal

detection and demodulation. There has been a lot of work being done in the area of

MC for several years. Several techniques are proposed for MC and some of them were

compared in Dobre et al. (2007) and Hazza et al. (2013). In Hazza et al. (2013) fea-

ture based MC techniques were compared. In Dobre et al. (2007) likelihood based MC

techniques such as ALRT, GLRT, HLRT and many other techniques were compared.

With the advancements in deep learning and machine learning, several techniques were

proposed for doing MC which use supervised learning. Many of these techniques use

Support Vector Machines (SVM), Neural Networks(NN) and some Pattern Recognition

(PR) techniques for doing MC. Some use a combination of these techniques also. In

Huynh-The et al. (2020) and Hermawan et al. (2020) neural networks are proposed

which use convolution layers, max pooling layers and ReLu activation functions. They

used regularization with dropout and Gaussian noise layers also. However all these



techniques require training data. In this work we perform MC in digitally modulated

signals without the knowledge of channel parameters.

1.2 Related work done

There are some papers which use Expectation Maximization for doing modulation clas-

sification. Soltanmohammadi and Naraghi-Pour (2013) use EM algorithm for doing

channel parameter estimation and then use a Pattern Matching technique to find the

modulation. Some part of this work is based on this paper with some modifications.

In Zhu and Nandi (2015) modulation classification in flat fading MIMO systems is

performed using EM algorithm(Moon (1996)) and Maximum Likelihood classification.

Chavali and da Silva (2011) also used EM algorithm for doing Modulation Classifica-

tion. Here the noise added is not Gaussian but is from a mixture of Gaussians.

1.3 Organization of this thesis

This thesis is organized as follows:

Chapter 2 explains the modulation classification in flat fading channels, where

maximum likelihood estimation of the channel parameters is done via Expectation Max-

imization algorithm. For a good initialization of the parameters k-means clustering al-

gorithm is used. Then Maximum Likelihood Classification is done using the maximum

likelihood estimates obtained using the EM algorithm. Lastly, simulation results are

included.

Chapter 3 extends the modulation classification method discussed in chapter 2

to frequency selective fading channels. First, signal model is discussed and then the

parameter estimation using EM algorithm is presented. Finally Maximum Likelihood

Classification and simulation results are presented.

Chapter 4 summarizes the work done and provides some concluding remarks

and observations.
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CHAPTER 2

MODULATION CLASSIFICATION IN FLAT FADING

CHANNELS USING EM

2.1 Introduction

In this chapter we will see how MC can be done in flat fading channels without any

channel information such as channel coefficient(h) and noise variance. The signal

model and parameter estimation using Expectation Maximization (EM) are explained in

the subsequent sections. The whole MC technique goes as follows: For a pool of modu-

lation types we will assume each modulation at a time and do the parameter estimation

and then find the likelihood of that modulation with the estimated channel parameters.

Finally a maximum likelihood classifier is used for doing MC. That is whichever mod-

ulation has the maximum likelihood it is assumed to be present in the incoming signal.

In this entire process the noise and channel parameters are unknown. Part of this pro-

cedure is the main theme of the work done by Soltanmohammadi and Naraghi-Pour

(2013), but there they don’t use Maximum Likelihood Classifier. Instead they use some

pattern recognition techniques for doing MC after finding the likelihoods.Also they are

initializing the noise variance to a random number. In this chapter we will see how this

procedure works in flat fading channels and in the next chapter we will extend it to the

case of frequency selective fading channels where channel is assumed as a multi-tap

FIR filter.

2.2 Signal Model

The received signal model assumed is given by rn = han + vn where, rn is the nth re-

ceived sample, an is the nth transmitted symbol and vn is the complex AWGN(Additive



White Gaussian Noise) present in the nth received sample. Here we don’t know the

fading coefficient h, transmitted symbol an and also the noise variance σ2
v . We need to

identify the modulation type present in {rn} just by using {rn}. The complex valued

fading coefficient h is assumed to be a constant and does not have any probability dis-

tribution (probability density function). The fading coefficient h is assumed to include

the effect of multi-path fading and path loss and also the unknown energy of the trans-

mitted symbols. Hence the transmitted symbol an has an average energy of 1. That is

E[|an|2] = 1. {vn} is a complex valued circularly symmetric White Gaussian Noise

sample. The transmitted symbol an ∈ S = {s1, s2, s3..., sM}, where S is a set of M

unit average energy constellation points belonging to a given modulation type. For ex-

ample in BPSK, S = {+1,−1} and in QPSK, S = {1+1i√
2
, 1−1i√

2
, −1+1i√

2
, −1−1i√

2
}. Our

aim is to estimate the channel coefficient h and the noise variance σ2
v from the received

samples {rn} assuming a particular modulation type present in it.

Let us denote the transmitted symbol vector by a = [a1a2a3...aN ]T ∈ SN and the

received symbol vector by r = [r1r2r3...rN ]T . The superscript T indicates transpose

of a vector. N is the total number of received samples. The scatter plots of received

samples in 4 modulations {BPSK,QPSK, 16-QAM and 64-QAM} at an SNR of 20 dB

are shown in figure 2.1. Since the fading channel coefficient has a phase value of 45◦

the constellations are rotated by 45◦.

The unknown parameter vector is denoted by Θ ≡ (h, σ2
v). Let us define

the binary class matrix Z = {znm}N×M which is an N ×M matrix and denotes the

membership of the received symbol rn to a point in the constellation. That is if znm = 1

then the received sample rn is obtained from the transmitted symbol sm. In short znm =

1 if an = sm and 0 otherwise. Only one element in any row of Z is unity and all the

other elements of the row are zero. This structure makes it a binary class matrix. The

Maximum Likelihood (ML) estimator for Θ is given by

Θ̂ = arg max
Z

Pr(r/Θ)

where

Pr(r/Θ) =
∑
Z

Pr(r,Z/Θ)

4
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Fig. 2.1: The scatter plots of received samples in (a)BPSK, (b)QPSK, (c)16QAM,
(d)64QAM modulations at an SNR of 20 dB with h = 0.5 + 0.5i.

This is a mixture model and hence it does not have an analytical solution. However it

can be solved iteratively using Expectation Maximization (EM) which is presented in

appendix A. But the convergence of the EM algorithm depends on the initial estimate

of the parameter. To have a good initial estimate for both h and σ2
v we use two different

techniques which are described in the next sections.
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2.3 Parameter Estimation

To have a good initial estimate of the channel coefficient h for the EM algorithm to

converge faster, we use k-means estimation which is described as follows.

2.3.1 k-means Estimation of Channel Coefficient

Let us define the objective function J as

J =
M∑
m=1

N∑
n=1

znm|rn − hsm|2

Now, the task is to minimize the function J . That is to find the values of h and Z that

minimize J . This can be done iteratively as follows: For a fixed value of h the value of

Z which minimizes the function J is given by

znm =

 1 if m = arg min
m

|rn − hsm|2

0 otherwise
(2.1)

Now for a given value of Z , to minimize J with respect to h we find the derivative

of J with respect to h and equate it to zero. That is we solve for ∂J
∂h

= 0

∂J
∂h

= 0

∂

∂h

{
M∑
m=1

N∑
n=1

znm|rn − hsm|2
}

= 0

M∑
m=1

N∑
n=1

znm
∂

∂h
{|rn − hsm|2} = 0

M∑
m=1

N∑
n=1

znm
∂

∂h
{(rn − hsm)∗(rn − hsm)} = 0

M∑
m=1

N∑
n=1

znm
∂

∂h
{|rn|2 − r∗nhsm − h∗s∗mrn + |h|2|sm|2} = 0

6



M∑
m=1

N∑
n=1

znm{−r∗nsm + h∗|sm|2} = 0

M∑
m=1

N∑
n=1

znmr
∗
nsm =

M∑
m=1

N∑
n=1

znm|sm|2h∗

h∗ =

∑M
m=1

∑N
n=1 znmr

∗
nsm∑M

m=1

∑N
n=1 znm|sm|2

where the superscript ∗ denotes complex conjugate. So the value of h that minimizes

J is given by

h =

∑M
m=1

∑N
n=1 znmrns

∗
m∑M

m=1

∑N
n=1 znm|sm|2

(2.2)

The repeated execution of equations 2.1 and 2.2 until a stopping criterion is satisfied will

give a best initial estimate of the channel coefficient h for the EM parameter estimation.

2.3.2 k-means Estimation of σ2v

The initial estimate of σ2
v is also obtained by general k-means algorithm. This algorithm

can be simply explained as follows: Let us say we have 4 constellation points in the

modulation, then there will be four clusters in the scatter plot of the received samples (as

shown in 2.1b) The centers or means of these clusters are denoted by cm (m = 1, 2, 3, 4)

Now the k-means algorithm is described as follows:

Algorithm 1: k-means Clustering Algorithm

Initialize the cluster centers cm to random values;

while cm’s do not change by a certain percentage do

for n = 1 to N do
assign rn to cluster m if rn is close to cm

end

compute the new cluster centers cm
end

The above algorithm returns final cluster centers and cluster memberships. Now

take any cluster and find the variance of that cluster. This variance is used as an initial

estimate for the EM parameter estimation described in the next section. The initial clus-

ter centers need not be initialized randomly and MATLAB uses k-means++ algorithm

7



for initialization of the cluster centers.

2.3.3 Parameter Estimation using EM

As described earlier in section 2.2 we need to find Θ that maximizes Pr(r/Θ). Which

means finding

Θ̂ = arg max
Z

Pr(r/Θ)

Now,

Pr(r,Z/Θ) = Pr(r/Z,Θ)Pr(Z/Θ)

=
1

MN

M∏
m=1

N∏
n=1

[
1

πσ2
v

exp

(
−|rn − hsm|

2

σ2
v

)]znm

Since maximizing the likelihood function and maximizing the log of the likelihood

function are same, we maximize the Log Likelihood function which is given by

L(Θ; r,Z) = log Pr(r,Z/Θ)

= −N logM −
M∑
m=1

N∑
n=1

znm

[
log
(
πσ2

v

)
+
|rn − hsm|2

σ2
v

]

Since we can not find the parameters that maximize the Log Likelihood function an-

alytically we use the Expectation Maximization Algorithm for finding the maximum

likelihood estimates of the parameters (because the binary class matrix used znm used

here is not constant and it is a random variable it made the problem a mixture model).

Here the latent (unknown) variables are znm. In EM algorithm we find the maximum

likelihood estimates in two iterative steps namely E-Step and the M-Step.

a) E-Step: In this step the Expectation of the Log Likelihood function with respect to

the latent variables znm is calculated conditioned on the previous estimates Θ(old) =

(h(old), σ
2(old)
v ) and the received samples r.

Ψ
(
Θ; Θ(old )

)
= EZ

[
L(Θ; r,Z)/r,Θ(old )

]
= −N logM −

M∑
m=1

N∑
n=1

γ(n,m)

[
log
(
πσ2

v

)
+
|rn − hsm|2

σ2
v

]
(2.3)

8



where,

γ(n,m) = E
[
znm/r,Θ

(old)
]

= 1× Pr
(
znm = 1/r,Θ(old) )+ 0× Pr

(
znm = 0/r,Θ(old) )

= Pr
(
znm = 1/r,Θ(old) )

=

exp

(
−|rn−h

(old)sm|2
σ
2(old)
u

)
∑M

j=1 exp

(
−|rn−h

(old)sj|2
σ
2(old)
u

)
(2.4)

b) M-Step: In the M-Step we find the values of h and σ2
v that maximize the expec-

tation of the Log Likelihood function Ψ
(
Θ; Θ(old )

)
. To do this we find the derivatives

of Ψ with respect to h and σ2
v and equate them to zero.

∂Ψ

∂h
= 0

∂

∂h

{
−N logM −

M∑
m=1

N∑
n=1

γ(n,m)

[
log
(
πσ2

v

)
+
|rn − hsm|2

σ2
v

]}
= 0

M∑
m=1

N∑
n=1

γ(n,m)
∂

∂h
{|rn − hsm|2} = 0

M∑
m=1

N∑
n=1

γ(n,m)
∂

∂h
{(rn − hsm)∗(rn − hsm)} = 0

M∑
m=1

N∑
n=1

γ(n,m)
∂

∂h
{|rn|2 − r∗nhsm − h∗s∗mrn + |h|2|sm|2} = 0

M∑
m=1

N∑
n=1

γ(n,m){−r∗nsm + h∗|sm|2} = 0

M∑
m=1

N∑
n=1

γ(n,m)r∗nsm =
M∑
m=1

N∑
n=1

γ(n,m)|sm|2h∗

which gives

h∗ =

∑M
m=1

∑N
n=1 γ(n,m)r∗nsm∑M

m=1

∑N
n=1 γ(n,m)|sm|2

So the value of h that maximizes Ψ
(
Θ; Θ(old )

)
is given by

h =

∑M
m=1

∑N
n=1 γ(n,m)rns

∗
m∑M

m=1

∑N
n=1 γ(n,m)|sm|2

(2.5)

9



We also need to find σ2
v that maximizes the expectation of the Log Likelihood function

Ψ
(
Θ; Θ(old )

)
which obtained by solving ∂Ψ

∂σ2
v

= 0.

∂Ψ

∂σ2
v

= 0

∂

∂σ2
v

{
−N logM −

M∑
m=1

N∑
n=1

γ(n,m)

[
log
(
πσ2

v

)
+
|rn − hsm|2

σ2
v

]}
= 0

M∑
m=1

N∑
n=1

γ(n,m)
∂

∂σ2
v

{
log
(
πσ2

v

)
+
|rn − hsm|2

σ2
v

}
= 0

M∑
m=1

N∑
n=1

γ(n,m)

{
π

πσ2
v

− |rn − hsm|
2

σ4
v

}
= 0

which results in

M∑
m=1

N∑
n=1

γ(n,m)

σ2
v

=
M∑
m=1

N∑
n=1

γ(n,m)|rn − hsm|2

σ4
v

σ2
v =

∑M
m=1

∑N
n=1 γ(n,m)|rn − hsm|2∑M
m=1

∑N
n=1 γ(n,m)

So the value of σ2
v that maximizes Ψ

(
Θ; Θ(old )

)
is given by

σ2
v =

M∑
m=1

N∑
n=1

γ(n,m)|rn − hsm|2

N
(2.6)

Equations 2.4,2.5 and 2.6 are executed repeatedly till convergence is obtained. The

values of h and σ2
v obtained using this EM algorithm are used in doing Maximum Like-

lihood Classification which is described in the next section.

2.4 Maximum Likelihood Classification

In this section we will use the estimated channel parameters using EM and do the Mod-

ulation Classification. Let M = {S1,S2,S3...,SK} denote the set of possible modu-

lations with Sk = {s(k)
1 , s

(k)
2 , s

(k)
3 , ...s

(k)

M(k)} being the kth modulation. kth modulation

contains M (k) symbols in its constellation. Let Θ̂(k) = (ĥ(k), σ̂
2(k)
v ) be the estimated

10
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Fig. 2.2: Block Diagram of the Modulation Classification Procedure

channel parameters assuming that Sk is the actual modulation. After calculating these

values for all modulations considered, we will calculate the Log Likelihood for each

modulation which is given by

L(k)(r) =
1

N
logPr(r/Sk, Θ̂(k))

=
1

N

N∑
n=1

log

 1

M (k)πσ̂
2(k)
v

M(k)∑
m=1

e

{
− |rn−ĥ

(k)s
(k)
m |

2

σ̂
2(k)
v

}
After calculating these likelihoods for all modulations considered, we will take the mod-

ulation with maximum likelihood as the modulation present in the received signal. That

is

k̂ = arg max
k
L(k)(r)

The overall procedure can be summarized into the block diagram shown in figure 2.2.
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2.5 Simulation Results

The performance of the modulation classification method discussed was examined by

considering a pool of modulations containing BPSK, QPSK, 16QAM and 64QAM.

Experiments were done with various lengths of the received signal. All the experiments

were done for 10,000 runs over a range of Signal to Noise Ratios(SNR). SNRs ranging

from 0 dB to 20 dB in steps of 2 dB are considered.
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Fig. 2.3: Classification Accuracy for N = 128

Figure 2.3 shows the classification accuracy for all the modulations considered when

the signal length is N=128. From the figure we can observe that the method is able to

classify BPSK with 100% accuracy over all SNRs. It is able to classify QPSK also with

almost 100% accuracy. However the method is not able to recognize higher constella-

tions such as 16QAM and 64QAM at low SNR region. At high SNR region the method

classifies all signals with 100% accuracy. When the Signal length is increased from

N=128 to N=256 there is a slight improvement in the accuracy but it is not significant.

for QPSK and 16QAM the accuracy improved at all SNRs but for 64QAM there is an

improvement at high SNR region and degradation at low SNR region. This is shown

in figure 2.4. In figure 2.5 the accuracy curves for various signal lengths are plotted.

12



We can observe that the accuracy is improved when signal length is increased but the

improvement is not significant. This improvement can be explained by the fact that we

have more information when we have more number of samples.
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Fig. 2.4: Classification Accuracy for N = 256
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CHAPTER 3

MODULATION CLASSIFICATION IN FREQUENCY

SELECTIVE FADING CHANNELS USING EM

3.1 Introduction

In chapter 2 we have seen the modulation classification in flat fading channels where

the channel coefficient h is a constant and does not follow any distribution. In this

chapter we will see how the modulation classification can be done in the case of fre-

quency selective fading channels where the channel is assumed as an FIR filter. Here

also the channel taps are assumed to be constants and do not follow any distribution.

The procedure we follow here is almost similar to the one we followed in flat fading

case.The signal model, parameter estimation and the maximum likelihood classification

are described in the following sections.

3.2 Signal Model

The frequency selective fading channel is modelled as:

rn = h0an + h1an−1 + h2an−2 + ...+ hL−1an−L+1 + vn (3.1)

where rn is the nth received sample which contains past L − 1 transmitted symbols

along with the current symbol in it. vn is a complex-valued White Gaussian noise

sequence with variance σ2
v . an through an−L+1 are the past L transmitted symbols from



the current time instant n. The above equation 3.1 can be re-written as:

rn =
[
h0 h1 h2 ... hL−1

]



an

an−1

an−2

.

.

.

an−L+1


+ vn (3.2)

or simply

rn = hTa+ vn for n = 1, 2, ...N

where h = [h0h1h2...hL−1]T is the channel vector and the a = [anan−1an−2...an−L+1]T

is the vector of past L transmitted symbols. Here T denotes the transpose of the col-

umn vector. The channel vector h is assumed as a constant and it does not follow any

probability distribution. We need to identify the modulation type present in {rn} just

by using {rn}.

The channel vector h is assumed to include the effect of multi-path fading and

path loss and also the unknown energy of the transmitted symbols. Hence the transmit-

ted symbols an has an average energy of 1. That is E[|an|2] = 1. The transmitted sym-

bol an ∈ S = {s1, s2, s3..., sM}, where S is a set ofM unit average energy constellation

points belonging to a given modulation type. For example in BPSK, S = {+1,−1} and

in QPSK, S = {1+1i√
2
, 1−1i√

2
, −1+1i√

2
, −1−1i√

2
}. Our aim is to estimate the channel vector h

and the noise variance σ2
v from the received samples {rn} assuming a particular modu-

lation type present in it.

Let us denote the total number of received samples by N . Since there are M

points in the constellation and L elements in the channel vector each rn has possibility

of coming from one of the ML total possible transmit vectors. For example for L = 2

in BPSK(M = 2) there will be ML = 22 = 4 possible transmit vectors and hence there

will be 4 clusters in the scatter plot of the received signal. Similarly in QPSK(M = 4)

there will be ML = 42 = 16 clusters in the scatter plot of the received signal. The scat-
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(a) BPSK(L=2)

-2 -1 0 1 2

In-Phase

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Q
u

a
d

ra
tu

re

Scatter plot of QPSK(L=2)

(b) QPSK(L=2)
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Fig. 3.1: The scatter plots of received samples in (a)BPSK, (b)QPSK and (c)8PSK mod-
ulations at an SNR of 20 dB with h = {0.7 + 0.8i, 0.6− 0.4i}.

ter plots of the received signals in BPSK, QPSK and 8PSK at an SNR of 20dB are shown

in figure 3.1. The L = 2 tap channel vector assumed here is {0.7 + 0.8i, 0.6 − 0.4i}.

From figure 3.1 we can observe that in 3.1a BPSK there are 4 clusters, in 3.1b QPSK

there are 16 clusters and in 3.1c 8PSK there are 64 clusters in the scatter plot of the

received signal.

The unknown parameter vector is denoted by Θ ≡ (h, σ2
v). The received sig-

nal vector is denoted by r = {r1r2r3...rN}T . Let us define the binary class matrix

Z = {znm}N×ML which is an N ×ML matrix and denotes the membership of the re-

ceived symbol rn to a possible vector of past L transmitted symbols. That is if znm = 1

then the received sample rn is obtained from the transmit vector sm. In short znm = 1

16



if a = sm and 0 otherwise. Only one element in any row of Z is unity and all the other

elements of the row are zero. The Maximum Likelihood (ML) estimator for Θ is given

by

Θ̂ = arg max
Z

Pr(r/Θ)

where

Pr(r/Θ) =
∑
Z

Pr(r,Z/Θ)

Similar to chapter 2 this problem can be solved iteratively using Expectation Maximiza-

tion (EM). But the convergence of the EM algorithm depends on the initial estimate of

the parameter. To have a good initial estimate for h we use k-means initialization which

is described in the next section.

3.3 Parameter Estimation

To have a good initial estimate of the channel vector h for the EM algorithm to

converge faster (and also to a global optimum) we use k-means estimation which is

described as follows.

3.3.1 K-Means Initialization of Channel Vector

We define an objective function J as

J =
ML∑
m=1

N∑
n=1

znm
∣∣rn − hT sm∣∣2

Here ML is the number of possible transmitted symbol vectors and N is the total

number of received samples. We need to find the h and znm that minimizes the above

cost function. The values that minimize the above cost function are obtained iteratively

as follows:

znm =

 1 if m = arg min
m

∣∣rn − hT sm∣∣2
0 otherwise

(3.3)

17



To minimize J with respect to h we find its gradient and equate it to the zero vector.

The cost function is rewritten as

J =
ML∑
m=1

N∑
n=1

znm[|rn|2 − hT smr∗n − rnhHs∗m + hH(s∗ms
T
m)h]

After equating the gradient of above quantity to zero we get

ML∑
m=1

N∑
n=1

znmh
H(s∗ms

T
m) =

ML∑
m=1

N∑
n=1

znms
T
mr
∗
n

which gives

h =

ML∑
m=1

N∑
n=1

znm(sms
H
m)

−T ML∑
m=1

N∑
n=1

znms
∗
mrn

 (3.4)

or

hH =

ML∑
m=1

N∑
n=1

znm(s∗ms
T
m)

−1 ML∑
m=1

N∑
n=1

znms
T
mr
∗
n

 (3.5)

Equations 3.3 and 3.4 are repeatedly evaluated until the channel vector h gets converged

within a specified error. Alternatively we can also find the optimal h that minimizes the

cost function J by finding its elements individually. That means solving for ∂J
∂hi

= 0

for i = 0, 1, ...L− 1.

∂J
∂hi

= 0

∂

∂hi


ML∑
m=1

N∑
n=1

znm
∣∣rn − hT sm∣∣2

 = 0

ML∑
m=1

N∑
n=1

znm
∂

∂hi

{
|rn −

L−1∑
l=0

hlsml|2
}

= 0

ML∑
m=1

N∑
n=1

znm
∂

∂hi

{
(rn −

L−1∑
l=0

hlsml)(r
∗
n −

L−1∑
l=0

h∗l s
∗
ml)

}
= 0

ML∑
m=1

N∑
n=1

znm
∂

∂hi

{
|rn|2 − rn

L−1∑
l=0

h∗l s
∗
ml − r∗n

L−1∑
l=0

hlsml +
L−1∑
i=0

L−1∑
l=0

hismih
∗
l s
∗
ml

}
= 0
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which results in

ML∑
m=1

N∑
n=1

znm

{
r∗nsmi −

L−1∑
l=0;l 6=i

h∗l smis
∗
ml

}
=

ML∑
m=1

N∑
n=1

znmh
∗
i |smi|2

h∗i =

∑ML

m=1

∑N
n=1 znmsmi

{
r∗n −

∑L−1
l=0;l 6=i h

∗
l s
∗
ml

}
∑ML

m=1

∑N
n=1 znm|smi|2

So the value of the ith channel coefficient that minimizes J is given by

hi =

∑ML

m=1

∑N
n=1 znms

∗
mi

{
rn −

∑L−1
l=0;l 6=i hlsml

}
∑ML

m=1

∑N
n=1 znm|smi|2

(3.6)

The h obtained using above procedure is used as a starting point for the EM channel

estimation discussed below.

3.3.2 EM Parameter Estimation

As described earlier in section 3.2 we need to find Θ that maximizes Pr(r/Θ).

Which means finding

Θ̂ = arg max
Z

Pr(r/Θ)

Now,

Pr(r,Z/Θ) = Pr(r/Z,Θ)Pr(Z/Θ)

=
1

MLN

ML∏
m=1

N∏
n=1

[
1

πσ2
v

exp

(
−
∣∣rn − hT sm∣∣2

σ2
v

)]znm

Since maximizing the likelihood function and maximizing the log of the likelihood

function are same, we maximize the Log Likelihood function which is given by

L(Θ; r,Z) = log Pr(r,Z/Θ)

= −LN logM −
ML∑
m=1

N∑
n=1

znm

[
log
(
πσ2

v

)
+

∣∣rn − hT sm∣∣2
σ2
v

]
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Since we can not find the parameters that maximize the Log Likelihood function an-

alytically we use the Expectation Maximization Algorithm for finding the maximum

likelihood estimates of the parameters (because the binary class matrix used znm used

here is not constant and it is a random variable which made the problem a mixture

model). Here the latent (unknown) variables are znm. In EM algorithm we find the

maximum likelihood estimates in two iterative steps namely E-Step and the M-Step.

a) E-Step: In this step the Expectation of the Log Likelihood function with respect to

the latent variables znm is calculated conditioned on the previous estimates Θ(old) =

(h(old), σ
2(old)
v ) and the received samples r.

Ψ
(
Θ; Θ(old )

)
= EZ

[
L(Θ; r,Z)/r,Θ(old )

]
= −LN logM −

ML∑
m=1

N∑
n=1

γ(n,m)

[
log
(
πσ2

v

)
+

∣∣rn − hT sm∣∣2
σ2
v

] (3.7)

where,

γ(n,m) = E
[
znm/r,Θ

(old)
]

= 1× Pr
(
znm = 1/r,Θ(old) )+ 0× Pr

(
znm = 0/r,Θ(old) )

= Pr
(
znm = 1/r,Θ(old) )

=

exp

(
−|rn−h

(old)T sm|2
σ
2(old)
v

)
∑ML

j=1 exp

(
−|rn−h

(old)T sj|2
σ
2(old)
v

)
(3.8)

b) M-Step: In the M-step we need to find the parameters Θ that maximize the expecta-

tion Ψ
(
Θ; Θ(old )

)
. Following the same procedure as in k-means estimation of h we get

the value of h that maximizes Ψ
(
Θ; Θ(old )

)
as

h =

ML∑
m=1

N∑
n=1

γ(n,m)(sms
H
m)

−T ML∑
m=1

N∑
n=1

γ(n,m)s∗mrn

 (3.9)
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Variable Dimension Description
rn Complex scalar nth received sample
h L× 1 Channel vector
a L× 1 Vector of past L transmit symbols
σ2
v Real scalar Noise variance

Z = {znm}N×ML N ×ML Binary class matrix
sm L× 1 mth possible transmit vector
Ψ scalar Expected log-likelihood given the parameters Θ

γ = γ(n,m)N×ML N ×ML Expectation of Z = {znm}N×ML

hi Complex scalar ith channel coefficient
L Integer Number of channel taps
N Integer Number of received samples
M Integer Number of symbols in any modulation

Table 3.1: Variables used in EM parameter estimation and their dimensions

or we can find the individual elements of the channel vector as given by the following

equation

hi =

∑ML

m=1

∑N
n=1 γ(n,m)s∗mi

{
rn −

∑L−1
l=0;l 6=i hlsml

}
∑ML

m=1

∑N
n=1 γ(n,m)|smi|2

(3.10)

To find the variance σ2
v that maximizes Ψ

(
Θ; Θ(old )

)
we need to solve

∂Ψ

∂σ2
v

=
ML∑
m=1

N∑
n=1

γ(n,m)

(
− 1

σ2
v

+

∣∣rn − hT sm∣∣2
σ4
v

)
= 0

which results in

ML∑
m=1

N∑
n=1

γ(n,m) =
M∑
m=1

N∑
n=1

γ(n,m)

σ2
v

∣∣rn − hT sm∣∣2

σ2
v =

∑ML

m=1

∑N
n=1 γ(n,m)

∣∣rn − hT sm∣∣2∑M
m=1

∑N
n=1 γ(n,m)

So the value of σ2
v that maximizes Ψ

(
Θ; Θ(old )

)
is given by

σ2
v =

ML∑
m=1

N∑
n=1

γ(n,m)

N

∣∣rn − hT sm∣∣2 (3.11)

Repeated execution of equations 3.8, 3.9 and 3.11 till convergence is reached will
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give the channel vector and noise variance estimates. The variables used in this chapter

and their dimensions are tabulated in table 3.1. The values of h and σ2
v obtained us-

ing this EM algorithm are used in doing Maximum Likelihood Classification which is

described in the next section.

3.4 Maximum Likelihood Classification

In this section we will use the estimated channel parameters using EM and do the Mod-

ulation Classification. Let M = {S1,S2,S3...,SK} denote the set of possible modu-

lations with Sk = {s(k)
1 , s

(k)
2 , s

(k)
3 , ...s

(k)

M(k)} being the kth modulation. kth modulation

contains M (k) symbols in its constellation. Let Θ̂(k) = (ĥ
(k)
, σ̂

2(k)
v ) be the estimated

channel parameters assuming that Sk is the actual modulation. After calculating these

values for all modulations considered, we will calculate the Log Likelihood for each

modulation which is given by

L(k)(r) =
1

N
logPr(r/Sk, Θ̂(k))

=
1

N

N∑
n=1

log

 1

M (k)Lπσ̂
2(k)
v

M(k)L∑
m=1

e

{
− |rn−ĥ

(k)
s
(k)
m |

2

σ̂
2(k)
v

}
After calculating these likelihoods for all modulations considered, we will take the mod-

ulation with maximum likelihood as the modulation present in the received signal. That

is

k̂ = arg max
k
L(k)(r)

3.5 Simulation Results

The performance of the modulation classification method discussed in this chapter was

examined by considering a pool of modulations containing BPSK, QPSK, and 8PSK.

Experiments were done with various lengths of the received signal. All the experiments

were done for 1000 runs over a range of Signal to Noise Ratios(SNR).
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Fig. 3.2: Classification Accuracy for N = 512
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Fig. 3.3: Classification Accuracy for N = 1024

SNRs ranging from 0 dB to 20 dB in steps of 2 dB are considered. Figure 3.2 shows

the classification accuracy for all the modulations considered when the signal length is
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N = 512. From the figure we can observe that the method is able to classify BPSK

with 100% accuracy over all SNRs. It is able to classify QPSK also with almost 100%

accuracy. Accuracy when 8PSK is considered is also good after an SNR of 8dB . At

high SNR region the method classifies all signals with 100% accuracy. When the Signal

length is increased from N=512 to N=1024 there is not much change in the performance

for BPSK and QPSK but for 8PSK there is an improvement in the classification accu-

racy. This can be observed from figure 3.3. In figure 3.4 the accuracy curves for various

signal lengths are plotted. We can observe that the accuracy is improved when signal

length is increased but the improvement is not significant. This improvement can be

explained by the fact that we have more information when we have more number of

samples.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

The use of Modulation Classification eliminates the feedback between the transmitter

and the receiver and hence the data rates can be increased. Using the method discussed

BPSK modulation can be detected with 100% accuracy in both the flat fading and fre-

quency selective fading channels. QPSK modulation also can be detected with 100%

accuracy over a wide range of SNR. However, when we go for higher constellations the

classification accuracy is reduced. In such cases, to improve the performance of the al-

gorithm we can use some Pattern Matching techniques instead of Maximum Likelihood

Classification as the last step.



APPENDIX A

MAXIMUM LIKELIHOOD ESTIMATION AND

EXPECTATION MAXIMIZATION

A.1 Maximum Likelihood Estimation

Consider a random variable X whose probability density function f(x; θ) depends on

an unknown value θ. Suppose that X1, ..., Xn are iid random variables with common

pdf f(x; θ). The parameter θ is unknown,which we would like to estimate from the

observations X1, ..., Xn. The likelihood function of θ is given by the equation

L(θ;x) =
n∏
i=1

f (xi; θ) (A.1)

where x = (x1, ..., xn)
′ . L is treated as a function of x and θ and it is often written as

L(θ) also. The log of this function L(θ) is usually more convenient to be used and it is

denoted by

l(θ) = logL(θ) =
n∑
i=1

log f (xi; θ) (A.2)

Since the log is a one-to-one function, there is no loss of information in using l(θ). The

point estimator of θ is θ̂ = θ̂(X1, X2, ...Xn) where θ̂ maximizes the function L(θ) or

l(θ).

Maximum Likelihood Estimator: We say that θ̂ = θ̂(x) is a maximum likelihood

estimator (mle) of θ if

θ̂ = arg maxL(θ;x) (A.3)

The notation argmax means that the maximum value of L(θ;x) is achieved at θ̂. To

determine the mle, take the log of the likelihood and determine its critical value; that

is, letting l(θ) = logL(θ), the mle is obtained by solving the equation ∂l(θ)
∂θ

= 0.



A.2 The Expectation Maximization Algorithm

In practice, we can be in a situation where we do not have the complete data. In such

situations the EM Algorithm can be used to get the maximum likelihood estimates.

Suppose a sample of n items is considered, where n1 of the items are observed and n2 =

n − n1 items are not observable. Denote the observed data by x = (X1, X2, ..., Xn1)

and unobserved data by z = (Z1, Z2, ..., Zn2). Assume that the Xis are iid with pdf

f(x|θ). Assume that Zjs and the Xis are mutually independent. Let g(x|θ) denote the

joint pdf of x. Let h(x, z|θ) denote the joint pdf of the observed and unobserved data.

Let k(z|θ,x) denote the conditional pdf of the missing data given the observed data.

By the definition of a conditional pdf , we have the identity

k(z|θ,x) =
h(x, z|θ)
g(x|θ)

(A.4)

The observed likelihood function is L(θ|x) = g(x|θ). The complete likelihood function

is defined by Lc(θ|x, z) = h(x, z|θ). Our goal is maximize the likelihood function

L(θ|x) by using the complete likelihood Lc(θ|x, z) in this process. Using A.4, we

derive the following basic identity for an arbitrary but fixed θ0 ∈ Ω:

logL(θ | x) =

∫
logL(θ | x)k (z | θ0,x) dz

=

∫
log g(x | θ)k (z | θ0,x) dz

=

∫
[log h(x, z | θ)− log k(z | θ,x)]k (z | θ0,x) dz

=

∫
log[h(x, z | θ)]k (z | θ0,x) dz−

∫
log[k(z | θ,x)]k (z | θ0,x) dz

= Eθ0 [logLc(θ | x, z) | θ0,x]− Eθ0 [log k(z | θ,x) | θ0,x] ,

(A.5)

where the expectations are taken under the conditional pdf k(z|θ0,x). Define the first

term on the RHS to be the function

Q (θ | θ0,x) = Eθ0 [logLc(θ | x, z) | θ0,x] (A.6)

27



The expectation which defines the function Q is called the E-step of the EM algorithm.

We want to maximize logL(θ|x). To do so, we need to maximize Q (θ | θ0,x) as dis-

cussed below. This maximization is called the M-step of the EM algorithm. Denote by

θ̂(0) an initial estimate of θ, perhaps based on the observed likelihood. Let θ̂(1) be the

argument which maximizes Q(θ|θ̂(0), x). This is the first-step estimate of θ. Proceeding

this way, we obtain a sequence of estimates θ̂(m). This algorithm is formally defined as

follows:

EM Algorithm: Let θ̂(m) denote the estimate on the mth step. To compute the estimate

on the (m+ 1)st step, do:

1 Expectation Step: Compute

Q
(
θ | θ̂(m),x

)
= Eθ̂(m)

[
logLc(θ | x, z) | θ̂m,x

]
(A.7)

where the expectation is taken under the conditional pdf k(z|θ̂(m), x).

2 Maximization Step: Let

θ̂(m+1) = arg maxQ(θ|θ̂(m), x). (A.8)

Repeated execution of the equations A.7 and A.8 will give the maximum likelihood

estimate of the parameter θ. For more details on maximum likelihood estimation and

the EM algorithm one can refer Hogg et al. (2012) and Moon (1996)
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APPENDIX B

COMPLEX DERIVATIVES

B.1 Complex Derivatives

In this section some basics on the derivatives of complex valued functions are presented.

z is a complex variable which is defined as z = x+ iy. g(z) = u(x, y) + iv(x, y) being

any function of z its derivative exists only if

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
(B.1)

and is defined as
∂g

∂z
=

1

2

{
∂g

∂x
− i∂g

∂y

}
The above pair of equations B.1 are called CR equations. Some useful derivatives are

presented in table B.1

g(z) g
′
(z) = ∂g

∂z

z 1

z2 2z

z∗ 0

|z|2 z∗

λ+ αz + βz∗ + γ|z|2 α + γz∗

Table B.1: Derivatives of some functions of scalar variable z

Now we will see the gradients of functions of complex vectors. g(z) being a func-

tion of many complex variables, where z = [z1z2z3...zn]T and zk = xk + iyk, the

gradient of g(z) is defined as

∇zg(z) =

[
∂g

∂z1

∂g

∂z2

∂g

∂z3

...
∂g

∂zn

]



g(z) ∇zg(z)

αHz αH

αT z αT

zHβ 0H

zTβ βT

zHz zH

λ+ αHz + zHβ + zHΓz αH + zHγ

Table B.2: Derivatives of some functions of vector variable z

Some useful derivatives of linear functions of complex vector z are presented in

table B.2
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