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ABSTRACT

KEYWORDS: Imaging Sonar; SfM; 3D reconstruction; Object Tracking; MDNet;

VWIE; MSER

Underwater image processing has received considerable attention in the recent times.

Detection, Tracking, 3D Reconstruction and Classification of underwater objects are

particularly important for maritime security. Convolutional Neural Networks (CNN or

ConvNets) have made breakthrough advances in various computer vision tasks and are

emerging as a promising technique for underwater images as well. In this work, CNN

models are extended to two problems: (1) Enhancement of underwater optical images

for 3D reconstruction using Structure from Motion (SfM) algorithm (2) Tracking of

underwater objects in Sonar images.

Underwater optical cameras capture high resolution images of underwater scene.

The images captured from multiple viewpoints can be used to generate 3D point clouds.

It is used in applications such as mine detection, inspection of underwater structures,

ocean archaeology & exploration etc. However underwater images are faced with dif-

ferent set of challenges such as poor visibility due to haze, non-uniform illumination,

color cast etc. The quality of the images in underwater cameras also deteriorates be-

cause of effects of scattering and light absorption. In this work, a CNN based method

which is adapted from Water-Net, is studied for enhancing the underwater images. Also

an open source 3D reconstruction pipeline COLMAP, is studied for 3D point cloud gen-

eration using enhanced images.

Imaging Sonars or acoustic cameras are essential for providing underwater surveil-

lance capabilities in turbid water conditions where the optical cameras mostly fail.

When it comes to strategic military applications like harbor security, AUV/ROV navi-

gation, obstacle avoidance etc, the capability to accurately track the objects of threat is

of significant interest. Extracting useful information from the sonar images is a chal-
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lenging task because of its inherent imperfections like low resolution, lack of color

information and foreground objects becoming indistinguishable from background clut-

ter. In this work, a method is proposed to track objects in a sequence of Sonar images

produced by BlueView Oculus Sonar which is a multibeam forward looking Sonar. A

CNN based tracker adapted from MDNet is implemented. A method based on Maxi-

mally Stable Extremal Regions (MSER) and Variance Weighted Information Entropy

(VWIE) is proposed to be added in the MDNet pipeline for better handling of track fail-

ures due to object going out of view, occlusions and noisy background. Results obtained

on real sonar data show that the proposed framework can track the object accurately.
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GLOSSARY

The following are some of the commonly used terms in this thesis:

ROV Remotely Operated Vehicles. These are equipped with optical cam-

eras and Sonars for Underwater surveillance/ exploration.

OCULUS OCULUS is a new generation multibeam sonar, designed for a

wide variety of underwater applications. It is manufactured by

blueprint Subsea. It has got dual frequency of operation at 750kHz

and 1.2MHz. More Details can be found at https://www.

blueprintsubsea.com/oculus/

COLMAP COLMAP is a general-purpose Structure-from-Motion (SfM) and

Multi-View Stereo (MVS) pipeline with a graphical and command-

line interface. It offers a wide range of features for reconstruction of

ordered and unordered image collections.

Meshlab Meshlab is an open source software which is used for editing, ren-

dering, texturing of meshes. It has been used for viewing the final

reconstructed objects.
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CHAPTER 1

INTRODUCTION

Over the past few decades, underwater image processing has attracted significant amount

of research. One of the reasons could be the fast growth of underwater robotics which

finds application in maritime security, autonomous underwater vehicles (AUVs), ocean

archaeology, inspection of structures etc. The imaging systems have a crucial role to

play in enhancing the underwater surveillance capabilities. The underwater environ-

ment attenuates the electromagnetic radiation and limits its usable range. Hence there

are not many types of sensors available for underwater imaging. One of the sensors that

provides high resolution images in underwater environment is the underwater optical

cameras. Optical images richly captures great details of the underwater scene and also

provides a good visualisation. Sound is known to travel longer ranges than the electro-

magnetic radiations. Sonar, also known as acoustic camera, is an equipment that uses

sound energy for gathering information and is probably the most used sensor for wide

range of underwater applications. In order to have a better understanding of the objects

and structures underwater, we need to develop algorithms that can process and extract

useful information from both optical and acoustic images.

1.1 Motivation

Underwater imaging systems can provide a lot of information about various objects and

structures present underwater which is crucial for various civilian as well as military

purposes. Imaging systems can be used for a wide range of applications like study and

inspection of underwater structures, exploration of the ocean as well as for enhancing

surveillance capabilities by detection of unauthorized intrusions either from a diver or

an underwater robot, identification of mine like objects, providing assistance in naviga-

tion of Autonomous Underwater Vehicle (AUV), obstacle avoidance etc.



The Two modalities of Underwater Imaging Systems include optical as well as

acoustic imaging systems. Optical cameras are used in clear waters at shorter ranges.

Whereas it mostly fails as the turbidity of water increases. On the other hand, acous-

tic cameras or Sonars can be used even in turbid water and provide imaging at longer

ranges. Both optical as well as acoustic images suffer from certain drawbacks which

needs to be mitigated by the application of various image processing techniques. The

optical underwater images are inherently degraded due to haze, poor illumination, scat-

tering etc which limits its applicability in underwater vision based tasks.Hence it needs

to be enhanced prior to processing. Whereas Sonar images have low resolution and poor

visualization. Hence it needs to be processed differently from their optical counterparts

in order to extract useful information from it.

1.2 Background

1.2.1 Underwater Imaging systems: Optical Camera Vs Imaging

Sonar

Even though underwater optical cameras provide higher resolution and better visual-

ization, it mostly fails to provide good vision in turbid waters due to scattering of the

light. Hence it cannot be relied on for long range applications. The Imaging Sonar is

a category of Sonars that uses sound energy for generating useful two-dimensional im-

ages of underwater objects and have been used as a replacement for underwater optical

cameras. Imaging Sonars are active ranging devices that produces images by using the

echoes of sound energy reflected from objects. Imaging sonars can operate at higher

ranges than their optical counterparts and are particularly useful in enhancing the un-

derwater surveillance capabilities by early detection of objects of threat like divers,

underwater robots, mines etc.

When it comes to image formation, optical cameras generate the elevation view of

the underwater environment whereas Sonars generate the cross-section. Unlike optical

cameras that uses x-y coordinate system for representation of 2D images, Sonars typ-
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Fig. 1.1: : (a) Sonar image of a steering wheel (b) Zoomed in view of steering wheel
(c) Corresponding optical image of steering wheel

ically use PPI (Plan Position Indicator) type of displays which is like a portion of the

polar plots. This makes the visualization difficult in Sonar imagery.

1.2.2 Imaging Sonar: Working Principles

Imaging Sonars are active Sonars that transmits pulses of sound into water and receives

the echoes returning from the object or scene to produce a two dimensional image of

that object. The presence of objects in the scan area is marked by strong reflections

(highlights) and the absence is marked by weak reflections or no reflections (shadows).

Fig. 1.2: (a) Imaging Sonar Concept (b) Typical Sonar Image

Imaging sonars are mainly of two types: (1) Side Scan Sonars (SSS) which produce

high resolution images at long ranges (2) Forward Looking Sonars (FLS) which can

3



produce more details at shorter ranges.

Imaging Sonars forms fan like acoustic beams which are narrow in the horizontal

plane and broader in the vertical plane. Multiple such beams are formed simultaneously

in horizontal plane to get the cross-sectional view of the environment which is displayed

as an image in the PPI format.

Fig. 1.3: Sonar Scanning Beams and Corresponding Sonar Images (https://
bluerobotics.com/)

1.2.3 Underwater Imaging Experiments

Experiments were conducted in a water testbed which has a depth of about 18m for

capturing both sonar and optical datasets. Different solid bodies such as cylinder, cube,

steering wheel etc were used as targets for imaging. The objects were suspended in

water testbed at a depth of 5-10m. A ROV equipped with an optical camera as well an

imaging sonar was made to move around and capture videos of the submerged target

objects.

The imaging sonar used in the experiments is Blueprint Subsea Oculus M750d1

which is a general purpose dual-frequency sonar offering 120m imaging range capa-

bility at 750 kHz and 40m imaging range at 1.2MHz. It has field of view of 130 deg

1https://www.blueprintsubsea.com/pages/product.php?PN=BP01032
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Fig. 1.4: Conceptual diagram : Data collection using ROV

and vertical beamwidth of 12 deg for the operating frequency of 750 kHz. It is deal for

AUV navigation and imagery for near field target identification.

1.2.4 Structure from Motion (SfM) : Open Source packages

Structure from Motion (SfM) is a method for 3D reconstruction of objects from 2D

images. In Multi-View SfM, a large number of images with overlapping contents, are

used to estimate the 3D point cloud of the scene.The open source photogrammetric

pipelines available for SfM are reliable and have the capability to process large number

of unordered images. The input to these packages is an image sequence and camera

intrinsic parameters whereas the output is sparse/dense point cloud or a dense textured

mesh depending on the requirement. Some of the SfM packages include :

• OpenMVG (Moulon et al. (2016)) combined with OpenMVS ;

• COLMAP pipeline (Schönberger and Frahm (2016)).

(a) Open-MVG + Open –MVS

OpenMVG provides a SfM pipeline based on multiple view geometry principles. Fea-

ture descriptors are extracted using SIFT (Lowe (2004)) and AKAZE (Alcantarilla et al.

(2013)). Feature matching is done by using methods like ANN-kD trees (Muja and

Lowe (2009)), or cascade hashing (Cheng et al. (2014)). Sparse reconstruction is imple-
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mented based on incremental (Moisan et al. (2012)) or global (Moulon et al. (2013)).

Bundle adjustment is done using Ceres solver for refining the estimates. The dense

reconstruction is implemented by the OpenMVS library based on patch-based stereo

method . (Shen (2013)).

(b) COLMAP

COLMAP (Schönberger and Frahm (2016)) is a pipeline that implements both Struc-

ture from Motion (SfM) and Multi-View Stereo (MVS).A graphical user interface is

included along with the package. Regarding finding feature correspondences, it imple-

ments the SIFT algorithm (Lowe (2004)) , followed feature matching options such as

exhaustive matching, sequential matching, vocabulary tree, spatial matching, transitive

matching and custom matching. Image pairs are considered registered if a valid map-

ping of their geometric relation (homography, essential or fundamental matrix) exists

between the two and thus the scene graph is created gradually. 3D reconstruction is per-

formed by using incremental SfM starting from a carefully selected initial image pair

and applying a robust next best view selection algorithm and subsequently multi-view

triangulation. The bundle adjustment uses Ceres solver and global BA every certain

steps to improve camera and point estimations and avoid drifting. Multi-view stereo

reconstruction is implemented based on the framework of (Zheng et al. (2014)) using a

probabilistic patch-based stereo approach

1.2.5 Convolutional Neural Networks (CNNs/ConvNets)

Convolutional Neural Networks (CNNs/ ConvNets) have made breakthrough perfor-

mances in the field of computer vision and it has been successfully deployed for recog-

nition, classification and tracking of everyday objects, faces, vehicles etc in images.

CNN takes images as inputs, and passes it through various convolutional layers, pooling

layers and fully connected layers thus learning the weights and biases required for ac-

complishing the assigned task. Convolution layers act as a feature extractor whereas the

fully connected layers classify the image based on the extracted features. The various

6



layers of CNNs act as relevant filters and learn the spatial and temporal dependencies

of the images for extracting its salient features. In this work the application of CNNs

are extended to two category of problems:

(a) Enhancement of underwater optical images for 3D reconstruction using SfM

(b) Tracking underwater objects in sonar images.

(a) Image Enhancement and 3D reconstruction

Most of the approaches for 3D reconstruction aim to recover the structure, shape and ap-

pearance of real 3D objects from stereo vision, motion and monocular cues like texture,

defocus, shadow etc. Among them Structure from motion techniques are particularly

suited for underwater tasks where the optical cameras can be fitted on AUVs/ROVs and

deployed for capturing the details of the scene. SfM algorithm takes in images of multi-

ple views and performs a feature matching across images to register them to a common

view and then triangulate to find the depth of the points.

For Sfm algorithms to work, the images should be of good resolution. But in under-

water scenario, the image quality is not good hence it is required to enhance the images

before performing SfM. A CNN model based on Water-Net (Li et al. (2020a)) is imple-

mented which first generates outputs by passing the input image through 3 algorithms

i.e White Balance (WB), Histogram Equalization (HE) and Gamma Correction (GC)

algorithms and then fuses it to generate the final enhanced output.

Structure from motion (SfM) algorithms and dense image matching Multi-View

Stereo (MVS) algorithms have achieved remarkable success in 3D reconstruction of

land-based objects, buildings and scenes from a sequence of images taken at different

viewpoints .The Photo Tourism project (Agarwal et al. (2009)) investigated the problem

of taking extremely large number of unstructured collections of photographs from in-

ternet and computing 3D model of the scene to enable browsing of the photo collection

in 3D. Figure 1.5 shows the example of 3D reconstruction of the famous Colosseum in

Rome which has been reconstructed from a huge collection of photographs downloaded

from Flickr.
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Fig. 1.5: 3D reconstruction of Colosseum, Rome (Agarwal et al. (2009))

(b) Tracking Underwater Objects in Sonar Image

In tracking, the goal is to find position of the object of interest in all subsequent frames

given that Ground Truth is available on the first frame. The tracked target is marked

by a bounding box in every frame. Sonar images are quite different from their optical

counterparts in terms of data perception.

Fig. 1.6: Sonar Image for tracking

Sonar displays the reflected acoustic energy from the objects in the form of high-

lights and shadows which makes the object visualization very difficult even for humans.

Extracting useful information from the sonar images is a challenging task because of

its inherent imperfections like low resolution, lack of color information and foreground

objects becoming indistinguishable from background clutter. The various object track-

ing algorithms that work well for visual objects, may not give expected results with

sonar images especially in the scenarios where the underwater objects frequently move

out of the view.

The objective here is to find a CNN model which will be well suited to the task of
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tracking objects in Sonar images. The proposed method MDNet-UW (Multi-Domain

Net Under Water) consists of a small CNN model for object tracking which is based

on MDNet architecture Nam and Han (2016). The MDNet-UW training is done in two

phases: (1) offline pre-training using images from a self-curated Sonar dataset (2) online

training based on the initial ground truth. The model is trained to discriminate between

the target and the background samples and to predict the most probable target candidate

in each frame. A method based on Maximally Stable Extremal Regions (MSER) by

Matas et al. (2004)and Variance Weighted Information Entropy by (VWIE) Wang and

Chen (2017) is proposed for generating candidate regions while the track failure occurs.

This helps to reduce the actual area and helps to improve speed and accuracy.

1.2.6 Image Entropy

Image entropy is a statistical measure which represents the average image gray level

distribution and can be used as a metric for finding the similarity between acoustic

images. For an image with m gray levels, the entropy at a coordinate (x,y) is given by :

E(x, y) = −
∑m

i=1 pi ∗ log pi

pi is the probability of ith gray level such that
∑m

i=1 pi = 1 . When pi = 0, then

it is stipulated that pi ∗ log pi = 0. Smaller the entropy, the more uniform will be

the gray level distribution and difference in gray level distribution within that image

is less. Whereas larger the entropy, the difference in the gray level distribution is more

prominent and it can be indication of presence of target objects. However image entropy

only reflects the gray level distribution of image and does not reflect the complexity of

the image background as it ignores the importance of gray levels.
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CHAPTER 2

UNDERWATER IMAGE ENHANCEMENT

Clear underwater images can provide crucial information about the underwater world.

It indicates the presence of different natural and man-made objects thus strengthening

the underwater surveillance and underwater archaeology capabilities. The images of

objects captured by underwater cameras is faced with different set of challenges such

as poor visibility due to haze, non-uniform illumination, color cast etc. The underwater

medium constraints the visibility of the scene due to scattering and absorption effects.

This causes attenuation of the irradiance reaching the imaging device thus creating a

hazy effect in the image. The quality of the images further deteriorates because of non-

uniform illumination. The attenuation in underwater environment is also wavelength

dependent thus introducing undesirable color cast along with haze. The red color light,

having the longest wavelength gets attenuated first followed by green light and the blue

light. Due to this frequency selective nature of the attenuation, the underwater images

mostly have greenish or bluish tint which seriously affects the visual quality of the

images.

2.1 Related Works

Some of the earlier works were based on modifying the pixel intensities to improve the

quality. Fusion of different processed images have shown good results. Ancuti et al.

(2012) proposed a method for blending color correct and contrast enhanced image using

a multiscale fusion technique. Ghani and Isa (2014) used contrast stretching based on

rayleigh distribution and color correction methods for enhancement. A novel Retinex

based method was proposed by Fu et al. (2014) which consists of a three stage process

which includes color correction, variation framework for decomposing reflectance and

illumination and enhancement.



A model based approach for learning the latent parameters of the image formation

was adopted by Dark channel Prior (Zhang et al. (2017)). It introduces human visual

attention mechanism for removing haze from images. Generalization of the Dark Chan-

nel Prior (GDCP) was proposed by Peng et al. (2018) which estimates the ambient light

by depth dependent colour differential and performs adaptive color correction.The lo-

cal proximity based method by Mandal and Rajagopalan (2020) uses patch similarity

assessment in the outdoor images to arrive at a transmission depthmap and a non local

means filtering for removing haziness.

Many CNNs and Generative Adversarial Networks(GAN) based approaches are

also being deployed.A pixel-to-pixel (P2P) network was proposed by Xin Sun (2019)

to design an encoding–decoding framework for enhance underwater images.This model

is similar to REDNet proposed by Peng et al. (2018).A UWCNN network was intro-

duced by Saeed Anwar (2019) which is an end-to-end model containing three densely

connected building blocks and is trained by the synthetic underwater image datasets.To

enhance the underwater images,Guo et al. (2020) introduced a multiscale dense block

(MSDB) algorithm, namely, DenseGAN1 which employs the use of dense connections,

residual learning, and multi-scale network for underwater image enhancement.

2.2 Underwater Image Formation Models

The underwater image formation model is very complex due to the frequency selective

attenuation of light underwater. A simplified underwater image formation model (Chi-

ang and Chen (2012)) is used in most of the cases, which is similar to atmospheric scat-

tering except that it captures the wavelength dependent attenuation of light underwater.

It is suitable for scenarios such as shallow waters where there is lesser backscattering

of light . The simplified model is expressed below:

Uλ(x) = Iλ(x).Tλ(x) + Bλ(x).(1− Tλ(x))

where Uλ(x) is the captured underwater image ; Iλ(x) is clear latent image or scene

radiance; Bλ(x) is homogeneous global background light; λ is the wavelength of RGB

11



light; x is the location of a scene point; Tλ(x) is the medium energy ratio which is the

percentage of scene radiance reflected from a point x given by

Tλ(x) = 10−βλd(x) = Eλ(x,d(x))
Eλ(0,d(x))

= Nλ(d(x))

where βλ is wavelength dependent medium attenuation coefficient; Eλ(0, d(x)) is

energy of light from submerged scene before it passes through the transmission medium

from a distance d(x); Eλ(x, d(x)) is strength of the light after absorption bt medium;

Nλ(d(x)) is the normalised energy residual which is the ratio of residual energy to initial

energy per unit of distance and is dependent on wavelength of light.

A revised model was proposed by Akkaynak and Treibitz (2018) which takes into

consideration the key factors such as dependency of attenuation coefficient on veiling

light, different attenuation coefficients for direct and backscattered light, light absorp-

tion etc. The image formation model can be expressed as :

Uλ(x) = Iλ(x). exp−βDλ .(vD).z + B∞λ (1− exp−βBλ .(vB).z).

where Uλ(x) is the captured underwater image ; Iλ(x) is clear latent image ; B∞λ is

the veiling light; βλ is the beam attenuation coefficient, D is the direct transmitted light

and B is the backscattered light. the vectors vD and vB represent coefficient dependen-

cies. vd(x) = {z, ρ,E, Sλ, β} and vd(x) = {E, Sλ, b, β} where z is range along LOC; ρ

is reflectance; E is the irradiance ;Sλ is the sensor spectral response and b is the beam

scattering coeff. More details can be found in Akkaynak and Treibitz (2018).

2.3 Underwater Image Datasets

One of the issues with applying deep learning techniques to the underwater image en-

hancement is the non-availability of a large-scale underwater images with references

from the real world.
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Real world Underwater Datasets

TURBID1 consists of degraded images with their corresponding groundtruth im-

ages. TURBID has different categories of images which includes haze introduced by

milk, chlorophyll, deepblue etc each with 20-50 images.

SQUID (Stereo Quantitative Underwater Image Dataset) : 2 This dataset con-

sists of 57 stereo pairs of underwater images from four different ocean locations con-

taining varying water properties and color charts shown in the scenes.

ULFID3 : Underwater Light Field Image Dataset by Skinner and Johnson-Roberson

(2017) contains several underwater light field images in pure water and hazy conditions,

as well as images taken in the air for reference.

UIEB 4(Li et al. (2020a)) consists of 890 underwater images along with reference

images and a challenging set of 60 images without reference. It is practically difficult

to obtain simultaneously the underwater image of a deep ocean scene and the ground

truth image of the same scene. In UIEB , the reference images are generated by fusing

together the output of 12 different image enhancement techniques thus extracting the

best output than what any single method would provide.

Synthetic Underwater Datasets

WaterGAN is a deep learning approach to compensate the non-availability of im-

ages by generating synthetic underwater images using the in-air images and correspond-

ing depthmaps. These images can be used to train deep learning networks for underwa-

ter image restoration tasks. But most of the times the synthetic images fail to capture

the real world scenario.

In this work,a CNN model is trained on benchmark dataset UIEB for image en-

hancement.
1http://amandaduarte.com.br/turbid/
2http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_

forwardlooking/index.html
3https://github.com/kskin/data
4https://li-chongyi.github.io/proj_benchmark.html
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2.4 CNN Model for Underwater Image Enhancement:

WaterNet

A CNN model based on the Water-Net (Li et al. (2020a)) is implemented for image

enhancement. Water-Net is trained on Underwater Image Enhancement Benchmark

(UIEB) dataset (Li et al. (2020a) ). The underwater environment is very complex with

different water types, poor lighting and dynamic behavior. There doesnot exist a sin-

gle image enhancement method that works against all adverse effects. Fusion based

methods (Ancuti et al. (2012)) generally give decent results where inputs derived from

various enhancement methods are fused together in a ratio to get desired results. The

Water-net is also based on the fusion of various inputs and multiplying those input

images with the learnt weights to obtain an enhanced output. The Water-Net takes

underwater images as inputs and generates 3 images based on White Balance (WB),

Histogram Equalization (HE) and Gamma Correction (GC) algorithms. WB is used to

restore the color deviation whereas HE is used to improve the contrast of the image and

GC is used to improve the brightness of the image. During training Water-Net learns

confidence maps for each of the 3 inputs. During runtime, generated input images are

fused together after multiplying it with the confidence maps in order to obtain an en-

hanced result.

Fig. 2.1: Water-Net Architecture

IEN = RWB � CWB +RHE � CHE +RGC � CGC
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where IEN is the enhanced result � indicates the elementwise production of ma-

trices; RWB, RHE , and RGC are the refined results of input after processing by WB,

HE, and GC algorithms, respectively; CWB, CHE , and CGC are the learned confidence

maps.

The 890 image pairs in UIEB were split into training and testing set. 800 image

pairs were used for training and remaining 90 were used for testing. The input data

was resized to 112 x 112 and data augmentation was done. This was implemented in

tensorflow. Batch size of 16, learning rate of 0.001 and a momentum of 0.5 was used.

Perceptual loss is used which is based on the ReLU activation layers i.e layer

relu5_4 of the pretrained VGG-19 network (Simonyan and Zisserman (2015)). Let

φj denote the jith convolutional layer of the VGG network, then the perceptual loss is

defined as the distance between the feature representations of reference image Igt and

enhanced image IE . The expression is given by:

Lφj = 1
CiHiWi

∑N
i=1

∥∥φj(I iE)− φj(I igt)
∥∥

where N is the number of each batch in the training.Ci,Hi,Wi are the number,

height, and width of the feature map of the j th convolution layer within the VGG19 net-

work. Water-Net was trained for 120 epochs with a dropout probability of 0.5. ADAM

optimiser with default parameters was used for optimization

2.5 Underwater 3D reconstruction: SfM algorithm

3D reconstruction deals with estimation of the structure, shape and appearance of real

objects from a sequence of 2D images or video streams. The process of imaging is to

project 3D scene points from the world coordinates into 2D images on the camera plane

where the process of 3D reconstruction is just the reverse of the imaging process. A

typical SfM pipeline starts with image feature extraction, feature matching, incremen-

tal or global bundle adjustment and sparse 3D point cloud reconstruction. Whereas the

Multi-View Stereo (MVS) pipeline consists of dense point cloud reconstruction, textur-

ing, rendering etc. However computer vision related applications such as SfM require
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high quality images so as to extract appropriate object features for performing feature

matching between different views. Hence it is imperative to enhance the underwater

images before performing the feature extraction.

2.6 Evaluation and Results

2.6.1 Image Enhancement Evaluation Metrics

There are two metrics:

(1) Full-reference image quality evaluation metrics: This is used for images

with ground truth image available includes MSE, PSNR, and SSIM (Wang and Bovik

(2002)).

(a) Mean Squared Error (MSE) : MSE provides a quantitative measure of simi-

larity between two images. It is expressed as

MSE = 1
N

∑N
i=1(xi − yi)2

where N is the no of pixels; xi and yi are respectively the pixels at ith location of the

two images to be compared.

(b) Peak Signal to Noise Ratio (PSNR) : PSNR is a metric which is computed

from MSE and is expressed as :

PSNR = 10 log10
L2

MSE

where L is the range of image pixel intensities ( L= 255 for image)

(c) Structural SIMilarity (SSIM) : Let x and y be patches taken from two dif-

ferent images but same locations to be compared against each other then SSIM takes

3 parameters into account i.e luminance l(x, y), contrast c(x, y) and local structures

s(x, y). SSIM is expressed as :

SSIM = l(x, y).c(x, y).s(x, y)
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= ( 2µxµy+C1

µx2+µy2+C1
).( 2σxσy+C2

σ2
x+σ2

y+C2
).(

σxy+C3

σx+σy+C3
)

where µx µy are means and σx and σy are standard deviations of patches x and y respec-

tively, σxy is cross correlation and constants C1, C2, C3 are to avoid non-zero division.

(2) Non-reference underwater image quality metrics include UCIQE Yang and

Sowmya (2015) and UIQM (Panetta et al. (2016)) .

(a) Underwater Color Image Quality Evaluation (UCIQE) : UCIQE score quan-

tifies the level of degradation in underwater images due color cast, blurring and low

contrast. It is a linear combination of chroma, saturation and contrast. UCIQE score is

expressed as :

UCIQE = C1× σc + C2× conl + C3× µs

where σc is standard deviation of chroma; conl is contrast of luminance; µs is mean of

saturation; C1, C2, C3 are constants (Yang and Sowmya (2015))

(b) Underwater Image Quality Measurement (UIQM) : UIQM is computed

based 3 measures : Image Colorfulness Measure (UICM), Sharpness Measure (UISM)

and Contrast Measure (UIConM). It is expressed as :

UIQM = c1× UICM + c2× UISM + c3× UIConM

where c1, c2, c3 are application dependent parameters.

2.6.2 Image Enhancement: Benchmark Results

A set of 12 images were selected from UIEB dataset for enhancement. The benchmark

results of different image enhancement techniques are reported in table 2.1. It is to

be noted that MSE the lower the better whereas PSNR,SSIM,UCIQE and UIQM, the

higher the better. Platform for Underwater Image Quality Evaluation (PUIQE) by Li

et al. (2020b) was used for online computation of UCIQE and UIQM scores.
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Fig. 2.2: Water-Net results from UBIE dataset

Fig. 2.3: (Left) Hazy Underwater image of Steering Wheel; (Right) Enhanced Under-
water Image

... Full Reference Metric Non- Reference Metric
Method MSE ↓ PSNR ↑ SSIM ↑ UCIQE ↑ UIQM ↑

(×103)
Fusion Ancuti
et al. (2012)

1.13 16.6 0.77 0.64 1.53

Retinex Fu et al.
(2014)

1.35 16.87 0.62 0.60 1.43

UDCP Zhang
et al. (2017)

5.13 11.02 0.50 0.59 1.63

GDCP Peng et al.
(2018)

3.63 12.53 0.55 0.61 1.43

Local Proximity
Mandal and Ra-
jagopalan (2020)

2.52 14.26 0.48 0.58 0.71

Water-Net Li
et al. (2020a)

0.79 20.53 0.79 0.57 0.57

Table 2.1: Image Quality Assessment Scores on UIEB test dataset. Blue color indicates
the top scores in each metric

2.6.3 3D Reconstruction

The 3D reconstruction results using COLMAP are presented below. The Input to

COLMAP has been a sequence of Images and the output is 3D point cloud as well
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as the camera poses. Different cases include in-air images, underwater images without

enhancement and with enhancement.

3D Reconstruction with Sceaux castle Dataset

• The reconstruction was done using 11 images.

• A point cloud of 9500 match points were generated

Fig. 2.4: Sceaux castle Dataset (Moulon et al. (2016))

3D Reconstruction with Hazy Underwater Images

• The reconstruction was done using 36 images.

• Underwater Steering Wheel data was used without enhancement.

Fig. 2.5: Hazy Underwater image
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3D Reconstruction with Enhanced Underwater Images

• The reconstruction was done using 36 images.

• Underwater Steering Wheel data was used after enhancing it with Water-Net

Fig. 2.6: Enhanced Underwater Image

Performance Assessment
Image Type UCIQE UIQM No Of 3D Points generated

Raw 0.34 0.18 313
Enhanced 0.45 0.36 1689

Table 2.2: Performance Assessment of 3D reconstruction using Enhanced Images

2.7 Observations and Conclusion

Point clouds and camera poses of Underwater scene were obtained using 36 images.

COLMAP was used for point cloud generation.Two cases were investigated which in-

cluded images without enhancement and images enhanced with Water-Net. The obser-

vations are as follows:

(a) The image quality metrics computed on both raw and enhanced images as in table
2.2 clearly indicate that enhanced underwater images are better in quality than the
raw ones.

(b) From the visual inspection, the point cloud generated is good and have close
correspondence with the underwater scene.

(c) Further it is observed that the point cloud after enhancement with Water-Net is
better and richer in information than the one obtained with raw image. More
Points are registered with the 3D model after enhancement with Water-Net.

(d) A second object closer to the steering wheel is better reconstructed after enhance-
ment than in the raw image.
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CHAPTER 3

UNDERWATER OBJECT TRACKING IN SONAR

IMAGES

Visual object tracking based on images is an active area of research. The basic idea of

tracking is to find the position of the object in all frames of an image sequence given

that its position in the initial ground truth is known. Generally the challenges faced by

tracking algorithm includes partial or full occlusion, scale variations, rotations, out of

view, low resolution, background clutters, illumination variation etc. A single tracker

may not be able to overcome all tracking challenges simultaneously.

3.1 Related Works

There are not much works that attempt tracking objects in Sonar imagery. So much

of the ideas are inspired from the visual object tracking algorithms.There are differ-

ent approaches for solving the tracking problem. Most of the approaches rely on two

things: (1) Motion Model (2) Appearance Model. A good tracker should have the abil-

ity to understand the motion of an object thus learning its dynamic behavior. With

motion model, the tracking algorithm can predict the future positions of the target in

the upcoming frames and thus reduce the area of search. Optical flow, Kalman filtering,

Kanade-Lucas-Tomashi (KLT) feature tracker, mean shift tracking etc are some exam-

ples. The appearance models try to learn the features of objects based on its appearance.

These algorithms can be classified into two types namely generative and discriminative.

In generative, an object model is determined using the target regions and this model is

used to find the target locations in upcoming frames based on any one of the minimum

error criteria. In discriminative methods, the model is build using both the target and

background samples.



MIL tracker (Babenko et al. (2009)) trains a discriminative model online to diffen-

tiate between target and background samples.The Kernelized CFs (KCF) achieves high

computational speed via kernel trick and circulant matrices (Henriques et al. (2015)).

DCF-CSR ( Lukezic et al. (2017)) imposes a spatial reliability constraint on corre-

lation filters learning the target features and a channel reliability score for weighting

per-channel filters. ECO (Danelljan et al. (2017)) introduces a factorized convolution

operator to reduce the no of parameters characterising the target model. STRCF (Li

et al. (2018)) uses a spatial regularisation and a temporal regularisation term on filter

coefficients.

CNN trackers have shown good performance in object tracking than the conven-

tional trackers. GOTURN (Held et al. (2016)) is an offline CNN based tracker which

is trained before they are deployed. On the other hand, Multi-Domain Network (MD-

Net) (Nam and Han (2016)) is an online CNN tracker that uses a smaller CNN model

to learn a generic representation of the target during runtime. TADT (Li et al. (2019))

learns target aware features for efficient tracking of targets with arbitrary forms.

3.2 Dataset preparation

One of the problems faced with training CNN on Sonar images for track application,

is the lack of publicly available Sonar datasets with Ground Truth annotations. For

tracking task, each frame has to be marked with a bounding box indicating the region

of interest in that frame.

A new dataset was established by collecting Sonar images from experiments in the

water testbed as mentioned in subsection 1.2.3 with different types of objects using

blueprint subsea oculus 750d which is a multibeam forward looking sonar operating at

dual frequency of 750 MHz and 1200 MHz. Also some images were collected from

online sources 1. Matlab Ground Truth Labeler app was used to annotate the objects of

interest in each of the frame.
1https://www.blueprintsubsea.com/oculus/
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Fig. 3.1: (a)Matlab Ground Truth Labeler App (b) Different datasets

3.3 CNN model for Tracking in Sonar Images

Image Classification deep networks like VGG-Nets, GoogleNet etc have done remark-

ably well on the object classification task and can be tuned to Sonar images by trans-

fer learning. Transfer learning approach offers two advantages (1) Can train networks

whenever the training data available is less (2) It is faster than training a network from

the scratch. There are different approaches for finding a CNN model suitable for track-

ing underwater objects

a) Transfer learning via feature extraction - For performing transfer learning by

feature extraction, only a specified number of top layers of a pre-trained network are

used and the bottom layers are removed. The top layers that have been retained in

network act as an arbitrary feature extractor. The input image is propagated forward

and output of the final layer of the truncated network is taken as features. Features of

both target and background are extracted from the initial ground truth and a new sample

can be identified as target or background based on the distance from the target space and

background space. b) Transfer learning via fine tuning In fine-tuning, the network

architecture is modified. The final fully connected layers of the network are removed

and replaced with a newly initialized fully connected layer. Then the network is trained

again to predict new input classes.

The disadvantage of using the above mentioned approaches is that it uses a deep net-

work. The Networks like VGG, GoogleNet etc are trained to learn rich discriminatory

features to perform tasks like 1000 class classification. A smaller CNN can perform
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target/background discrimination. Secondly online training would require a lot of time

as it uses deep networks. Thirdly these networks are pre-trained on ImageNet and may

not give expected results with Sonar images.

MDNet(Nam and Han (2016)) is an architecture that uses a smaller CNN model to

track objects. This architecture could be adapted to underwater object tracking task in

sonar images. MDNet-UW (Multi-Domain Net Under Water) is the modified version of

MDNet especially designed for the sonar imagery based tracking. The main objectives

of this work has been :

(a) Training MDNet-UW on Sonar images for underwater object tracking.

(b) Handling Track failures by re-initialization of track using Maximally Stable Ex-
tremal Regions (MSER) features.

3.3.1 MDNet-UW Architecture

MDNet-UW (Multi-Domain Net Under Water) is adapted from MDNet architecture (

Nam and Han (2016)). The architecture is shown in Figure 3.2. This CNN model

consists of 6 layers: convolutional layers conv1-3 and fully connected layers fc4-6.

MDNet is trained in a specific way such that it can learn a generic representation of the

target and background.The MDNet separates the network into two parts: first part is

the shared part consisting of convolutional layers which act as a feature extractor and is

common to all domains. Then the second part consisting of the fully connected layers

which is independent for each domain.

3.3.2 Training MDNet-UW on Sonar Images

The key task in developing tracking framework is to train MDNet-UW to discrimi-

nate between the target samples (positive samples) and background samples (negative

samples). Here, the MDNet-UW tracker is first trained offline with self curated Sonar

Image Dataset. More details about the dataset is mentioned in section 3.2. The training

is done in two phases: (1) offline pre-training (2) online training based on the initial

ground truth.
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Fig. 3.2: Block diagram of MDNet architecture by Nam and Han (2016)

During offline training, each image sequence is considered separate domain and has

a dedicated fully connected layer. K-domains have K-independent fully connected lay-

ers which classifies between target and background in that particular domain and the

network is trained offline over K-domains iteratively. Each domain has image indepen-

dent features and image dependent features. The idea behind offline training is to learn

the image independent features before deployment and reuse it during runtime.

During the online training the network is made to learn the image dependent fea-

tures. The bounding box is initialized in the first frame which provides the ground

truth for training. Region around the bounding box is sampled to obtain the target and

background samples. During online training the weights of the top layers are being

learnt.

Fig. 3.3: MDNet-UW Tracking Flowchart
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The weights of the convolutional layers remains fixed throughout the tracking pro-

cess whereas the weights of the fully connected layers are update in regular time inter-

vals.

3.3.3 MDNet-UW Tracking framework

The main components of the tracking framework consists of

(1) Offline Training: The CNN model is pre-trained on the Sonar dataset. The

MDNet model weights are used for initialisation.

(2) Target initialization: A bounding box is drawn to mark the region of interest

containing the object to be tracked. This acts as the ground truth for tracking algorithm.

(3) Online training: The purpose of online training is to learn appropriate weights

for the single fully connected layer using the ground truth. The bottom layers are loaded

with weights learnt during the offline training process. Both positive samples and neg-

ative samples are generated for training the network online . The samples whose in-

tersection over union (IoU) overlap with the ground truth bounding box is greater than

0.7 are considered to be positive samples. Positive samples contain more information

on the target. Whereas the samples whose intersection over union (IoU) overlap with

the ground truth bounding box is lesser than 0.3 are considered to be negative samples

and it represents the background. The network is trained for either a predefined number

of iterations or till convergence. This is done only once in the beginning of tracking

process.

(4) Target position prediction: During the tracking process, for each new image

frame, regions are sampled around the previous known position of the target. These

samples are passed to the MDNet which predicts the score for each of the two classes.

The sample with highest score for target class is selected

(5) Failure Handling (By detecting Candidate Regions): The purpose is to pro-

vide guidance during track failure. Whenever a track failure occurs, the track algorithm

gradually expands the area of search. But sometimes target may have moved out of this
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search area and this slows down the target position prediction. So this proposed method

scans the entire image for probable target regions. It uses Maximally Stable Extremal

Regions (MSER) algorithm by Matas et al. (2004) and Variance Weighted Information

Entropy (VWIE) as a metric for finding dissimilarity between target and background

regions inspired by Yang et al. (2020). Once these regions are identified, it’s sampled

finely and forwarded to the MDNet which predicts the most probable target region as

before. The advantage of this method is that it can converge to the true position faster.

3.3.4 Candidate Region sampling

The candidate regions are the most probable regions where a target can be present. In

tracking process, handling of the track failures is also very important. Targets moving

out of view, occlusions and highly cluttered background which are the main challenges

faced by Sonar image based tracking.

To overcome these challenges, a method based on Maximally Stable Extremal Re-

gions (MSER) and Variance Weighted Information Entropy (VWIE) is proposed to be

included in the tracking framework inspired by Yang et al. (2020). The Candidate Re-

gions from this algorithm are forwarded to the CNN model which predicts the scores

for each of the regions. This helps to reduce the actual search area and to improve the

accuracy and speed.

The MSER algorithm by Matas et al. (2004) is an area detection algorithm, which

can detect connected pixels in an image. MSER are the regions that are having al-

most similar intensities and are either lighter or darker than their neighborhood. MSER

regions are stable across a range of thresholds of intensity function and are mathemati-

cally expressed by Matas et al. (2004) as follows :

Image I is a mapping I : D ⊂ Z2 → S . Extremal regions are well defined on

images if:

(a) S is totally ordered, i.e. reflexive, antisymmetric and transitive binary relation ≤
exists. Here only S = {0, 1, . . . , 255} is considered, but extremal regions can be
defined on e.g. real-valued images (S = R).
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Fig. 3.4: Candidate region sampling flowchart

(b) An adjacency (neighbourhood) relationA ⊂ D×D is defined. Here 4-neighbourhoods
are used, i.e. p, q ∈ D are adjacent (pAq) iff

∑d
i=1 |pi − qi| ≤ 1

Region Q is a contiguous subset of D, i.e. for each p, q ∈ Q there is a sequence

p, a1, a2, . . . , an, q and pAa1, aiAai+1, anAq.

(Outer) Region Boundary ∂Q = {q ∈ D \ Q : ∃p ∈ Q : qAp}, i.e. the boundary

∂Q of Q is the set of pixels being adjacent to at least one pixel of Q but not belonging

to Q.

Extremal Region Q ⊂ D is a region such that for all p ∈ Q, q ∈ ∂Q : I(p) > I(q)

(maximum intensity region) or I(p) < I(q) (minimum intensity region).

Maximally Stable Extremal Region (MSER). Let Q1, . . . ,Qi−1,Qi, . . . be a se-

quence of nested extremal regions, i.e. Qi ⊂ Qi+1. Extremal region Qi∗ is maximally

stable iff q(i) = |Qi+∆ \ Qi−∆| / |Qi| has a local minimum at i∗ ( | . | denotes cardinal-

ity). ∆ ∈ S is a parameter of the method.

Variance Weighted Information Entropy (VWIE) :

To measure the complex degree of image, weighted information entropy is used.

Consider a digital image I , with a local region containing m gray values I1, I2, ...Im
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and mean gray level value Ī , then the VWIE at an image coordinate x,y is given by

E(x, y) = −
∑m

i=1(Ii − Ī)2 ∗ pi ∗ log pi

pi is the probability of ith gray level such that
∑m

i=1 pi = 1 . When pi = 0, then it is

stipulated that pi ∗ log pi = 0

The VWIE is more like a pixel by pixel comparison which is used to measure the

dissimilarity between the target and the background sample regions. From the equation

it can be seen that the pixels whose intensities are significantly different from their

mean intensities get emphasized. VWIE is a simple and robust against speckles and

heterogeneous regions and has been widely used in the SAR images for ship detection

against complex backgrounds such as works done by Wang and Chen (2017) Lou et al.

(2017). This method is independent of any prior knowledge of the target objects and

backgrounds.

Fig. 3.5: Sonar Image with Ground Truth and MSER regions detected

Combining these two algorithms can well combine the advantages of pixel detection

and area detection, and more completely and accurately detect the candidate target sam-

ples. The Candidate Regions should be repeatable and stable. The proposed techniques

are integrated into the pipeline of Track.
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3.3.5 Implementation

MDNet-UW is implemented in matlab and runs at a speed of 2.5 fps on a laptop withh

intel i5 CPU(@1.6 GHz) with Nvidia gpu GEFORCE 250mx. For offline Training, 50

positive and 200 negative candidate regions are extracted from each frame. For target

location update during runtime, 256 bounding boxes are drawn around the previous

tracked location. The translation motion and scale affecting each box is sampled from

a gaussian distribution. The CNN model acts like a binary classifier. Learning rate of

0.0001 is used.The momentum and weight decay of this network is always set to 0.9

and 0.0005, respectively

3.4 Evaluation And Results

3.4.1 Performance Metrics

(a) Intersection over Union (IoU) : IoU is a metric used to assess the accuracy of the

predicted bounding box wrt Ground Truth box. The value ranges from 0 to 1 where

0 indicates no overlap with Ground Truth box and 1 indicates complete overlap. Gen-

erally a IoU score greater than 0.5 is considered a good overlap. It is defined as :

IoU = AreaofOverlap
AreaofUnion

. The bounding boxes are expressed as a 4-tuple (x,y,w,h) where

(x,y) is the top leftmost coordinate of the box and (w,h) are width and height of the

boxes respectively.

Fig. 3.6: Intersection over Union (IoU)

(b) Success Plots : A predicted bounding box is considered to be successful if the

IoU is greater than the threshold. To generate a success plot, the threshold is varied from
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0 to 1 and no of successfully tracked frames are counted.This is expressed as a ratio by

dividing it with the total no of frames.Success Rate @ threshold =0.5 is expressed as

SuccessRate = FrameswithIoU 0.5
TotalFrames

(c) Area Under Curve (AUC) : The area under the success plots is a metric used

for ranking trackers

(d) Precision plots : A predicted bounding box is considered to be successful

if the distance between the centres of predicted box and ground truth box is less than

the threshold. The precision plots are obtained by plotting the percentage successful

predictions against varying thresholds for centre location error.

(e) Centre Location error (CLE) : CLE refers to the avearge error in the location

of centres between the predicted and ground truth boxes. The percentage successful

predictions when the centre location error threshold is 20 pixels is considered as a good

metric for ranking the trackers.

Further details can be found in Wu et al. (2013).

3.4.2 Results

(a) The success plots and precision plots of the trackers under evaluation for steering

wheel dataset are shown in Figure 3.7. The performance metrics are tabulated in Ta-

ble 3.1

(b) The success plots and precision plots of the trackers under evaluation for steering

wheel dataset out-of-view case are are shown in Figure 3.8. The performance metrics

are tabulated in Table 3.2. Here target moving out-of-view is simulated using the steer-

ing wheel dataset.
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Fig. 3.7: Performance assessment of trackers on steering wheel dataset : success plot
& precision Plot. The legend in the success plot shows AUC and for precision
plot, it is the centre location error when threshold is 20 pixels

Fig. 3.8: Performance assessment of trackers on steering wheel dataset for Out-of-View
case : success plot & precision Plot. The legend in the success plot shows
AUC and for precision plot, it is the centre location error when threshold is 20
pixels
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Tracker Performance Assessment
Tracker Type AUC Success Rate CLE Precision FPS

. . @Thresh=0.5 . @20pixels .
MIL Babenko
et al. (2009)

0.30 0.53 24 0.57 4.2

DCF-CSR
Lukezic et al.
(2017)

0.73 0.976 12.16 0.976 4.7

STRCF Li et al.
(2018)

0.63 0.90 22 0.6 9.79

ECO Danelljan
et al. (2017)

0.75 0.99 9.34 0.976 0.85

TADT Li et al.
(2019)

0.27 0.31 125.52 0.32 4.65

MDNet Nam and
Han (2016)

0.72 0.95 16.6 0.92 1.5

MDNet-UW
(Proposed)

0.74 0.98 13.10 0.96 1.26

Table 3.1: Performance Assessment of Trackers for Steering Wheel dataset.Blue indi-
cates best AUC score and magenta indicates second best AUC score

Tracker Performance Assessment
Tracker Type AUC Success Rate CLE Precision FPS

. . @Thresh=0.5 . @20pixels .
MIL Babenko
et al. (2009)

0.35 0.23 20 0.6 4.2

DCF-CSR
Lukezic et al.
(2017)

0.50 0.42 24.74 0.86 4.8

STRCF Li et al.
(2018)

0.59 0.83 53 0.58 9.2

ECO Danelljan
et al. (2017)

0.69 0.94 25.74 0.93 0.79

TADT Li et al.
(2019)

0.25 0.33 172 0.33 4.8

MDNet Nam and
Han (2016)

0.40 0.5 73 0.5 1.5

MDNet-UW
(Proposed
Method)

0.63 0.84 38 0.77 2.74

Table 3.2: Performance Assessment of Trackers for Steering Wheel dataset with sim-
ulation of Out-Of-View case. Blue indicates best AUC score and magenta
indicates second best AUC score
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3.5 Observations and Conclusions

The MDNet-UW trackers’s performance was compared with conventional trackers like

ECO Tracker (Danelljan et al. (2017)), DCF-CSR(Lukezic et al. (2017)), STRCF (Li

et al. (2018)), MIL (Babenko et al. (2009)), MDNet (Nam and Han (2016)) and Deep

Tracker TADT( Li et al. (2019)) for steering wheel dataset as well as for out-of-view

simulation. The following are the observations:

(a) The MDNet-UW tracker improves the performance of MDNet tracker on the un-
derwater Sonar dataset in all cases.

(b) The area under the curve (auc) is a criteria used for ranking the trackers. MDNet-
UW is ranked second only to ECO trackers ( Table 3.2).

(c) However in terms of frames processed per second (fps), it is better than ECO
Tracker.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

Two research areas in the domain of underwater image processing were pursued in this

work. The first area of the work was on enhancing underwater optical images for appli-

cations like 3D reconstruction of underwater structures. This work is mentioned in de-

tail in chapter 2. The Underwater Image Enhancement Benchmark (UIEB) dataset was

used for training Water-Net which is a CNN model for underwater image enhancement.

It has been observed that with Water-Net, the image quality was improved and it mani-

fested as higher value of the UCIQE and UIQM scores for output images that were used

for reconstruction. Underwater optical images of a steering wheel submerged in water

testbed was collected during experiments and the same was used for 3D reconstruction.

Structures which were not not clearly seen due to haziness, were enhanced with Water-

Net and this resulted in the denser reconstruction of 3D points of the scene.The No of

reconstructed points were more when the images were used after enhancement. Thus

there was a qualitative improvement in the 3D reconstruction after enhancement.

The Water-Net model is only a baseline model. Further GANs and Auto encoder

based models can be developed for achieving better accuracy on the UIEB dataset. In

the future, the image enhancement CNN models can be integrated along with the SfM

pipelines. End-to-end Deep learning networks can be developed for image enhancement

and 3D reconstruction on underwater images.

The second area of the work was on tracking of underwater objects in Sonar imagery

This work is mentioned in detail in chapter 3. Due to non-availability of Sonar datasets

with Ground Truths, Sonar images were collected during experiments using Blueprint

Subsea Oculus Sonar 750d dual frequency multibeam forward looking Sonar. This

data was annotated using Matlab ground Truth labeler. A CNN model MDNet-UW

which is based on MDNet, was trained on Sonar data. It was observed that MDNet-UW

performs well on Sonar images whereas other conventional trackers like MIL, KCF



etc do not perform as expected on the Sonar images. As an extension of this work a

method based on MSER features was integrated along with track to handle tracking

failures efficiently. This proposed scheme was able to predict target regions on Steering

wheel dataset.

In this work single object tracking was attempted. As an advancement to this, multi-

ple object tracking can be worked on. Instead of a binary classifier, the CNN should be

trained for classifying multiple objects against the background. Motion models can also

be included for multi-target tracking scenario. Track re-identification in a multi-target

environment is also an interesting area to work on.
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