
DRONE DESIGN AND FABRICATION BASED

UPON OPEN SOURCE SOFTWARE AND

HARDWARE ARCHITECTURE AIMING

TOWARDS INDIGENISATION

A THESIS

submitted by

EE19M012 YASH VARDHAN SINGH

for the award of the degree

of

MASTERS OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

JUNE 2021

THESIS CERTIFICATE

This is to certify that the thesis titled DRONE DESIGN AND FABRICATION

BASED UPON OPEN SOURCE SOFTWARE AND HARDWARE

ARCHITECTURE AIMING TOWARDS INDIGENISATION, submitted by

YASH VARDHAN SINGH, to the Indian Institute of Technology, Madras, for the

award of the degree of Master of Technology, is a bona fide record of the research

work done by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any

degree or diploma.

Professor Ashok Jhunjhunwala

Research Guide

Dept. of Electrical Engineering

IIT Madras, 600 036

Place: Chennai

Date: 22 June 2021

i

ACKNOWLEDGEMENTS

First of all, I would like to extend my heartfelt gratitude to Prof Ashok Jhunjhunwala, my

guide and mentor, for providing me, along with two other project members, the opportunity

to work on an implementational project with industry professionals at Centre for Battery

Engineering and Electric Vehicles (CBEEV), IITM Research Park for the smart battery

pack and Motorz, a startup at Telecom Centre of Excellence (TCOE), IITM Research Park

for design and fabrication of motors for the drone. I would also like to take this opportunity

to thank Prof Kaushal Jha at CBEEV and Prof Kannan Lakshminarayan at Motorz for

extending all the necessary support and encouragement.

We are also indebted to Dr Satyanarayanan R. Chakravarthy, Professor at Aerospace

department of IITM and e-Plane company, a drone and electric vehicle mobility based

startup at IITM (co-founded by Prof), for providing me and my project members with much

needed laboratory access for fabrication, ,material support, technical guidance and

professional drone pilot support for testing our work in furtherance of the thesis.

I would also like to mention about the contribution of Mr Ibai Gorordo, PhD student at

Kyushu Institute of Technology, Fukuoka, Japan for assisting me in slicing mm wave radar

data and Mr Rishabh Singh, pursuing MSc (Mathematics) & B.E (Electronics and

Instrumentation) at BITS Pilani for assisting me with sending proximity data from

mmWave radar to Autopilot application running on FCU.

Last I would like to extend my gratitude to Tony Joseph and Akhil Sharma for being

excellent team members and committed partners in implementing a project of this

magnitude under pandemic conditions.

ii

ABSTRACT

 KEYWORDS: Flight Controller Unit (FCU), 4G LTE, Ground Control Station (GCS),

 Mission Planner, MAVlink, Virtual Private Network (VPN), YOLOv4 Artificial

 Intelligence (AI) Algorithm

 Today most of the drone startups are actually system integrators utilizing the existing set

of components to develop products which are quite similar due to common hardware and

software architecture many of which are proprietary in nature. We at IITM under the guidance

of our mentor and guide wanted to understand the implementational aspects of drone design

with the aim of incorporating open source hardware and software as much as possible so as to

eventually design and fabricate key components inhouse leading to indigenization. We began

our project by studying the implementational aspects of existing drones available. After getting

keen insight into the various aspects we began the process of customization. The first

customization was to prepare Flight Controller Unit (FCU) on completely open source hardware

and software. The flight controller being utilized for the drone is Beagle Bone Blue, a Linux

based general purpose robotics platform with open source hardware design and open source

operating system. All the major softwares including Ardupilot autopilot stack, Artificial

Intelligence Algorithm YOLO , Linux Operating Systems (Beagle Bone Blue and companion

computer) are open source softwares. We were able to integrate a 3D mm Wave radar as

proximity sensor.

Thereafter, as part of inhouse design and fabrication, the propulsion system i,e motors with ESC

combine have been designed. An inhouse designed and fabricated smart battery pack from

CBEEV at IITMRP with Battery Management System (BMS) was tested on drone with live

monitoring through a web-based dashboard. We as a project team have tried to discuss all these

aspects in our thesis so that this project can be carried forward from hereon to build further and

achieve complete open source hardware and software architecture with the aim towards

indigenization of components i.e inhouse design and fabrication.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF FIGURES vi

ABBREVIATIONS xvi

NOTATION xvii

1. INTRODUCTION 1

1.1. Understanding the physics of drones 7

2. CONFIGURING BEAGLE BONE BLUE AS FLIGHT

CONTROLLER
 13

2.1. Preparing Beagle Bone Board with OS (Debian Linux)……………. 16

2.2. Building autopilot stack on Beagle Bone Blue……………………… 20

3. SENSORS AND COMPONENTS 38

3.1. Connecting GPS using UART and Compass (inbuilt with GPS)

using I2C…………………………………………………………….
 43

3.2. Connecting Radio Controller (RC) receiver on SBUS……………… 45

3.3. Connecting LIDAR as proximity sensor on UART…………….…… 47

3.4. Connecting power module to ADC of Beagle Bone Blue…………... 51

3.5. Connecting Electronic Speed Control (ESC) and motor to PWM input

of Beagle Bone Blue…………………………………………………
 52

4. UNDERSTANDING MAVLINK BETWEEN DRONE AND

GROUND STATION (GCS)
 53

4.1. Introduction to Ground Control Station (GCS)……………………… 56

4.2. Concept of MAVlink over internet using 4G LTE modem…………. 58

4.3. Installation 4G LTE communication modem and running VPN as a

service on Beagle Bone Blue (BBB) FCU for small drones…………
 61

iv

5. RASPBERRY PI 4 AS COMPANION COMPUTER 67

5.1. Preparing Raspberry Pi 4……………………………………………. 68

5.2. Installation of VPN as a service…………………………………….. 74

5.3. Installation of MAVPROXY (Command Line Ground Control

Station) as a service………………………………………………….
 76

5.4. Interfacing with Beagle Bone Blue Flight Controller Unit (FCU)….. 80

6. JETSON NANO AS COMPANION COMPUTER 83

6.1. Preparing Jetson Nano………………………………………………. 84

6.2. Installation of VPN as a service……………………...……………… 85

6.3. Installation of MAVPROXY (Command Line Ground Control

Station) as a service………………………………………………….
 87

6.4. Interfacing with Beagle Bone Blue Flight Controller Unit (FCU)….. 88

6.5. Running WIFI on headless startup (peculiar to Jetson Nano)………. 89

7. INTEGRATING BATTERY MANAGEMENT (BMS) OF SMART

BATTERY WITH COMPANION COMPUTER LIKE

RASPBERRY PI 4 OR JETSON NANO TO PROVIDE LIVE

DASHBOARD

 92

7.1. Integrating smart battery with Battery Management System (BMS) with

drone
 93

7.2. Testing smart battery in field 96

8. INTEGRATING ANTENNA ON PACKAGE (AOP) RADAR

THROUGH COMPANION COMPUTER LIKE RASPBERRY PI 4

OR JETSON NANO TO FCU

 100

8.1. Understanding the hardware design…………………………………. 101

8.2. mmWave radar integration with companion computer……………… 108

8.3. Creating mmWave radar configuration file…………………………. 112

9. RUNNING ALL THE ABOVE PYTHON SCRIPTS AS SINGLE

MASTER PYTHON SCRIPT ON STARTUP ON COMPANION

COMPUTER

 118

9.1. Master_script.py for Raspberry Pi 4………………………………… 119

v

9.2. Master_script.py for Jetson Nano…………………………………… 120

9.3. Overall companion computer connectivity diagram………………… 121

10. UNDERSTANDING MISSION PLANNER FOR CONFIGURING

DRONE FOR FLIGHT
 125

10.1 Configuring the Drone (FCU) as per frame design, calibration of

sensors and validating outputs……………………………………………
 127

10.2 Pre-Arm safety checks and failsafe configuration………………… 140

10.3 Understanding Flight modes…….………………………………… 144

10.4 Understanding error messages during flight and Post mission flight

log analysis……………………………………...
 147

10.5 Advanced tuning option for optimized flight operations………….. 169

11. LIVE VIDEO STREAMING FROM DRONE OVER INTERNET

(VPN) AND IMAGE DETECTION USING ARTIFICIAL

INTELLIGENCE TOOL (YOLO v4 & YOLO v4 (tiny))

 172

11.1 Making video streaming server on companion computer like

Raspberry Pi 4/Jetson Nano………………………………………….
 173

11.2 Receiving video feed on ground control station application i.e

Mission Planner…………………………………………………………..
 176

11.3 Preparing Jetson TX2 with latest Ubuntu 16.04 LTS and Jetpack

4.5.1………………...……………………………………………………..
 179

11.4 Installing VPN as a service to make Jetson TX2 as part of our private

VPN………………...……………………………………………………..
 184

11.5 Using Darknet framework and YOLO v4 artificial intelligence

algorithm for detecting objects on live camera feed using Jetson TX2

located at ground station……………………………………..…………...

 185

12. CODES REPOSITORIES ON GITHIB 193

13. MISCELLANEOUS CONFIGURATIONS 195

13.1 To identify device as serial on USB………………………………… 195

13.2 Backup of Raspberry Pi 4 or Beagle Bone Blue…………………… 197

13.3 Remote Desktop in Raspberry Pi 4…………………………………. 199

13.4 Bibliography………………………………………………………... 202

vi

LIST OF FIGURES

1.1 : The overall objective of project……………………...……………. 2

1.2 : The scope of project for my thesis…...………………...……………...
 3

1.3 : The difference in our implementation strategy...……………...…...…
 4

1.3 : Light weight Quadcopter X-Type……………………………...…...…
 5

1.4 : Light weight Quadcopter V-Type………………………………...…...
 6

1.5 : Medium weight Hexacopter…………………………….…………….
 6

1.6 : Heavy weight Agri Copter for smart battery pack testing……..……...
 7

1.7: Flow of thesis until now………………………………………………..
 7

1.8 : Dimensions of X-Type and V-Type Quadcopters….…………………
 10

1.9 : Dimensions of Hexacopter…………………...……..………………...
 11

1.10 : Calculations of various parameters for each frame………………….. 11

1.11 : Calculations of various parameters for each frame………………….
 12

2.1 : Flow of thesis until now...……………………...…..………………...
 13

2.2 : Technical specifications of Beagle Bone Blue (BBB)………………..
 14

2.3 : Technical specifications of Beagle Bone Blue (BBB) pictorial……....
 14

2.4 : Port wise pinout details of Beagle Bone Blue (BBB)…………..……..
 15

2.5 : Pinout details of Beagle Bone Blue (BBB)………..……...………….. 15

2.6 : Flashing SD card for Beagle Bone Blue through Raspberry Pi Imager
 16

2.7 : Remote access of Beagle Bone Blue though Putty from windows

Laptop……..…………………………………………………….…….
 17

2.8 : Successful login into Debian Linux running on Beagle Bone Blue

from the Windows Laptop………………………………………
 17

2.9 : Wifi network named YASH1 detected by Beagle Bone Blue…….…..
 18

2.10: Adding Wifi details to wifi.config file using cat command…..………
 19

2.11: Connected to internet through YASH1 Wifi and successful DNS

resolution by Beagle Bone Blue………………………………………
 19

2.12: Beagle Bone Blue successfully detected over local LAN with allotted

IP Address…………….………………………………………………
 19

2.13: Remote access to Beagle Bone Blue over Wifi using Putty

application…………………………………………………………….
 20

2.14: Successful access to Beagle Bone Blue over ssh over

Wifi……………………………………………………………………
 20

2.15: Successful login to Beagle Bone Blue over ssh over

Wifi……………………………………………………………………
 20

vii

2.16: Debian Linux successfully updated…………………………………...
 21

2.17: Debian Linux successfully upgraded…………………...……………..
 21

2.18: Installing CPU Frequency scaling utility…………………………...…
 22

2.19: Installing real-time kernels……………………………..……………..
 22

2.20: Updating real-time kernels 4_19……………………………………...
 23

2.21: Updating real-time kernels 4_19…………………………………..….
 23

2.22: Setting clock frequency……………………………………..………...
 25

2.23: Maximize system partition…………………………………..………..
 25

2.24: Wiping of eMMC boot sector…………………………………………
 26

2.25: Updating the bootloader………………………………………………
 26

2.26: UART map to pins……………………………………………………
 27

2.27: Suggested UART mapping between Beagle Bone Blue and Ardupilot

application ……………………………………………….…………...
 27

2.28: Creating ardupilot environment file as per table above….……………
 28

2.29: Creating arducopter.service for execution at startup as service….…...
 29

2.30: Creating Arducopter hardware configuration file…………………….
 31

2.31: Installing pre-requisites for compiling Ardupilot application on

Beagle Bone Blue itself…………………………………………….…
 31

2.32: Installing pre-requisites for compiling Ardupilot application on

Beagle Bone Blue itself…………………………………….…………
 32

2.33: Pre-requisites installed successfully………………………..…………
 32

2.34: Installing Future………………..……………………………………..
 33

2.35: Downloading Ardupilot repository from github successful…………..
 33

2.36: Selecting Ardupilot branch to compile. For me I have compiled latest

4.0.7 stable and also 4.1 (Beta)…………………………………..……
 33

2.37: Updating submodule of Ardupilot……………………….……..…….. 34

2.38: The compilation will happen in folder named blue………………..…. 35

2.39: The compilation process is on…………………………..……………. 35

2.40: The compilation process is on………………………..………………. 36

2.41: The compilation process is successfully completed………..………… 36

2.42: The arducopter.service enabled successfully…………………...…….. 37

3.1 : Flow of thesis until now……………………………..………………... 38

3.2 : I2C Protocol………………………...………………………………… 39

3.3 : SPI protocol…………………………..………………………………. 40

viii

3.4 : UART protocol………………………..……………………………… 41

3.5 : CAN Protocol………………………………………..……………….. 41

3.6 : Overview of code interaction……....……………………………...….. 42

3.7 : Driver code interaction flowchart…………………………………..… 43

3.8 : Block diagram of UBlox module as per datasheet…………………… 44

3.9 : Pix Hawk4 GPS with compass pinout………………………………... 44

3.10: Connectivity diagram for physical integration of GPS with compass

with Beagle Bone Blue which is the FCU ……………...……………
 45

3.11: Connectivity diagram for physical integration of Radio controller

(RC) Receiver with Beagle Bone Blue which is the FCU. The Radio

controller (RC) transmitter is connected to RC receiver over radio

link……………………………………………………………………

 47

3.12: Pictorial representation of LIDAR working as per datasheet…..…….. 48

3.13: Distance and angle information sent as part of data sample as per

datasheet………………………………………………………………
 48

3.14: Rotation and angle calculation philosophy in LIDAR………..……… 49

3.15: Operating values of LIDAR as per datasheet……………..………….. 49

3.16: Pinout details of LIDAR connector as per datasheet……………...….. 50

3.17: Connectivity diagram for physical integration of LIDAR with Beagle

Bone Blue which is the FCU………………………….………………
 50

3.18: Power module pinout…………..……………………………………... 51

3.19: Connectivity diagram for physical integration of power module with

Beagle Bone Blue……………………………..………………………
 51

3.20: Connectivity diagram for physical integration of Electronic Speed

Control (ESCs) and motors with Beagle Bone Blue which is the

FCU…………………………………………………………………..

 52

4.1: Flow of thesis until

now………………………………………………………..
 53

4.2 : MAVlink between drone and Ground Control Station (GCS)

application i.e Mission Planner……………………..………………...
 54

4.3 : MAVlink frame for v1 and v2…………………………………..……. 55

4.4 : Types of Ground Control Station (GCS) applications………...……… 56

4.5 : Flow of MAVlink……………..……………………………………… 58

4.6 : Mission Planner as GCS…………………………..………………….. 58

4.7 : Private VPN network created through OPENVPN Cloud based

services………………………………………………………………..
 59

4.8 : Creating my profile on OPENVPN portal for creating private VPN

network………………………………………………………………..
 60

4.9 : Creating VPN profiles for various networking components on drone

i.e FCU, companion computer, GCS and my profile on OPENVPN

portal for creating private VPN network and Jetson TX2…………....

 60

4.10: List of VPN Clients created…………..………………………………. 61

ix

4.11: V-Type drone with 4G LTE Modem…………………..……………... 61

4.12: Checking IP Address allotted on Eth (USB) to Beagle Bone Blue…... 62

4.13: Enabling DHCP in /etc/network/interfaces…………………………... 63

4.14: Using WinSCP to port VPN_Folder from Windows Laptop to default

directory location of Debian Linux (Beagle Bone Blue)……………..
 64

4.15: Using nano through remote ssh console to create vpn.service……….. 64

4.16: Creating vpn.service file at /lib/systemd/system directory location for

VPN services to startup…..……………...……………………………
 65

4.17: Enabling, starting and checking status of vpn.service. The service

started Successfully………………..………………………………….
 65

5.1 : Flow of thesis until now…….……………………………………..…. 67

5.2 : Flashing SD card for Raspberry Pi 4 using Raspberry Pi Imager……. 68

5.3 : Adding ssh file with no extension to SD card for headless access to

Raspberry Pi 4………………………….……………………………..
 69

5.4 : Using Advanced IP Scanner to detect IP Address allotted to

Raspberry Pi 4 over LAN……………………………………..………
 69

5.5 : Remote ssh access to Raspberry Pi 4 over local LAN………………... 70

5.6 : Select System Options………………………..………………………. 70

5.7 : Select Wireless LAN………………………………………………..... 71

5.8 : Select country option…………………………………………………. 71

5.9 : Enter SSID option…………………………………………………….. 72

5.10: Enabling, starting and checking status of vpn.service. The service

started successfully……………………………………………………
 72

5.11: Select Finish Option………………………………………………..… 73

5.12: Option to reboot now…………………………………………………. 73

5.13: Using WinSCP to port VPN_Folder from windows Laptop to Default

location in Raspberry………………………………………………….
 75

5.14: Creating vpn.service at /etc/systemd/system location……..…………. 75

5.15: Creating content of vpn.service……………………..………………... 76

5.16: Accessing Interfacing options through raspi-config………………….. 77

5.17: Disabling shell messages on serial port……………..………………... 77

5.18: Disabling shell messages on serial port……………..………………... 78

5.19: Enabling serial port hardware option ………………………………… 78

5.20: Final dialog box displaying login shell disabled and serial interface

enabled………………………………………………………………...
 79

5.21: Closing raspi.config option…………………………………………… 79

5.22: Reboot system after making changes to configuration file…………... 80

5.23: Connectivity diagram for physical interfacing between Raspberry Pi

4 as companion………………………………………………………..
 81

x

5.24: MAXPROXY command output in console window……………..…... 82

6.1: Flow of thesis until now……………………………………………… 83

6.2 : Downloading OS for Jetson Nano from official website…………..… 84

6.3 : Flashing SD card for Jetson Nano using Raspberry Pi Imager………. 84

6.4 : Configuring Ubuntu Operating System profile………………………. 85

6.5 : Creating vpn.service at location /etc/systemd/system in Ubuntu

Operating System (OS)……….………………………………………
 86

6.6 : Creating content of vpn.service for enabling VPN services on

startup…………………………………………………………….…...
 87

6.7 : Connectivity diagram for physical interfacing of Jetson Nano as

companion computer with Beagle Bone Blue as FCU………………..
 88

7.1: Flow of thesis until now……………………..………………………... 92

7.2 : Installing minicom application for reading serial data from Battery

Management System (BMS)……………………………………….....
 93

7.3 : Downloading Battery Dashboard repository from my github account

yashlancers…………………………………………………..………..
 93

7.4 : Screenshot of the intelligent dashboard for monitoring vital statistics

of the battery…………………………………………………………..
 94

7.5 : Creating bms_host.service at /etc/systemd/system directory location

Linux Operating System (OS) of companion computer………………
 95

7.6 : Creating content of bms_host.service so that it can run the web-based

dashboard on startup.………………………………..………………..
 96

7.7 : Testing smart battery with Battery Management System (BMS) on

Agricopter……………………………………………………………..
 97

7.8 : Energy and current utilization on intelligent dashboard of smart

battery with Battery Management System (BMS) during testing on

Agricopter……………………………………………………………..

 97

7.9 : Energy and current utilization on intelligent dashboard of smart

battery with Battery Management System (BMS) during testing on

Agricopter……………………………………………………………..

 98

7.10: Energy and current utilization on intelligent dashboard of smart

battery with Battery Management System (BMS) during testing on

Agricopter……………………………………………………………..

 98

7.11: Voltage, SOC, SOH and temperature values on intelligent dashboard

of smart battery with Battery Management System (BMS) during

testing on Agricopter…………………………………………………

 99

7.12: Voltage, SOC, SOH and temperature values on intelligent dashboard

of smart battery with Battery Management System (BMS) during

testing on Agricopter………………………………………………….

 99

8.1 : Flow of thesis until now……………………………………………... 100

8.2 : Texas Instruments mm Wave radar IWR843AOPEVM picture

including antenna closeup…………………….……………………...
 101

8.3 : Block diagram of Clock Sub System as per datasheet……………..… 102

8.4 : Block diagram of Transmission Sub System as per datasheet……..… 102

8.5 : Block diagram of Receive Sub System as per datasheet…………..…. 103

8.6 : Block diagram of Processor Sub System as per datasheet……..……. 103

xi

8.7 : IWR6843AOPEVM mm Wave radar antenna positions……………... 105

8.8 : IWR6843AOPEVM mm Wave radar antenna positions……………... 106

8.9 : IWR6843AOPEVM mm Wave radar Transmission antenna radiation

patterns………………………………………………………………..
 106

8.10: IWR6843AOPEVM mm Wave radar receive antenna radiation

patterns……..
 107

8.11: IWR6843AOPEVM mm Wave radar Normalized Antenna Gain vs

Angle (Elevation)……………………………...……………………...
 107

8.12: IWR6843AOPEVM mm Wave radar Normalized Antenna Gain vs

Angle (Azimuthal)…………………………………………………….
 108

8.13: IWR6843AOPEVM mm Wave radar data flow from companion

computer to Beagle Bone Blue FCU…………………….……………
 111

8.14: Downloading IWR6843AOPEVM mm Wave radar working

repository from my github account containing all codes including

mmWave radar configuration file…………………………………….

 112

8.15: Using Texas Instruments visualizer to connect to

IWR6843AOPEVM mm Wave radar for generating radar

configuration file……………………………………………………...

 113

8.16: COM Port selection for connecting to mm Wave radar

IWR6843AOPEVM though Texas Instruments online visualizer

tool…………………………………………………………………….

 113

8.17: Understanding Texas Instruments visualizer for generating radar

configuration file for IWR6843AOPEVM mm Wave

radar…………………...

 114

8.18: Output of IWR6843AOPEVM mm Wave radar on dashboard of

Texas Instruments Visualizer application/tool………………………..
 115

8.19: Running python script from the downloaded repository from github

on companion computer………………….…………………………...
 115

8.20: Configuration for opening IWR6843AOPEVM mm Wave radar sent

by mmWave_to_mavlink.py python script…………………………...
 116

8.21: Proximity data being generated by IWR6843AOPEVM mm Wave

radar in the console……………………...…………………………….
 116

8.22: Proximity data being generated by IWR6843AOPEVM mm Wave

radar is seen in Mission……………………..………….……………..
 100

9.1: Flow of thesis until now…………………..…………………………... 118

9.2 : The connectivity diagram for physical integration of Companion

computer with proximity sensor IWR6843AOPEVM mm Wave

radar, onboard camera and smart battery with

BMS……………………………...

 121

9.3 : The connectivity diagram for physical integration of Companion

computer with proximity sensor IWR6843AOPEVM mm Wave

radar, onboard camera and smart battery with BMS………….……...

 122

9.4 : Overall power distribution block diagram of X-Type Quadcopter..…. 123

9.5 : Overall power distribution block diagram of V-Type Quadcopter..…. 123

9.6 : Overall power distribution block diagram of Hexacopter……..……... 124

10.1: Flow of thesis until now…………………………..…………………. 125

10.2: Windows Client of OpenVPN installed and connected on laptop/PC

running Mission Ground Control Station (GCS) application………...
 126

10.3: VPN connection details of laptop/PC running Mission Planner

Ground Control Station………………………….……………………
 126

xii

10.4: Connecting Mission Planner (GCS) application to MAVlink..……… 128

10.5: Understanding Mission Planner Ground Control Station (GCS)

dashboard…………………………………………………………….
 128

10.6: Selecting frame type in Mission Planner (GCS application) to send

configuration instructions to FCU (Beagle Bone Blue) through

MAVlink………………………………………………………………

 129

10.7: The ordering of motors with direction of rotation……..……………... 130

10.8: Checking motor/ESC detection and servo output and rotation

direction including sequence………………...………………………..
 130

10.9: Calibrating Radio Controller (RC) Transmitter through Mission

Planner (GCS application) through MAVlink………………………...
 131

10.10:Understanding yaw, pitch and roll with respect to a drone frame...…. 132

10.11:Calibrating Accelerometer through Mission Planner (GCS

application) to send configuration instructions to FCU (Beagle Bone

Blue) through MAVlink……………………………………………...

 133

10.12:Calibrating Compass and Magnetometer through Mission Planner

(GCS application) to send configuration instructions to FCU (Beagle

Bone Blue) through MAVlink……………………….……………….

 134

10.13:Selecting Flight Modes through Mission Planner (GCS application)

to send configuration instructions to FCU (Beagle Bone Blue)

through MAVlink…………………………………………………….

 134

10.14:Calibrating Electronic Speed Controller (ESC) through Mission

Planner (GCS application) to send configuration instructions to FCU

(Beagle Bone Blue) through MAVlink………………………………

 135

10.15:Checking motor/ESC detection and servo output and rotation

direction including sequence…………………………………………
 136

10.16:Configuring battery monitoring through power module being done

from Mission Planner (GCS application) and instructions sent to

FCU (Beagle Bone Blue) through MAVlink…….…………………..

 137

10.17:UART configuration through Mission Planner (GCS application)

and instructions sent to FCU (Beagle Bone Blue) through

MAVlink……………………………………………………………..

 138

10.18:UART configuration for LIDAR through Mission Planner (GCS

application) and instructions sent to FCU (Beagle Bone Blue)

through MAVlink…………………………………………………….

 139

10.19:Proximity sensor output in Mission Planner (GCS application). The

choice of proximity sensor between LIDAR and mmWave radar is

as per instructions above. The instructions sent to FCU (Beagle

Bone Blue) through MAVlink…………..…………………………..

 140

10.20:Arming check selection option…..………………………………….. 141

10.21:Satellite counts and HDoP value in yellow box……………..……… 142

10.22:Auto flight plan including guided flight mode option………..……... 146

10.23:Flow of thesis until now……………………..……………………… 147

10.24:Options to retrieve logs in Mission Planner……………..………….. 148

10.25:Option for changing data rate option for logs as per bandwidth

requirement...
 148

10.26:Procedure to retrieve Telemetry Logs……...………………………... 149

xiii

10.27:Procedure to customize Telemetry Logs……………..……………... 149

10.28:Converting tlogs to KML file or viewing static graph……………… 150

10.29:Window for viewing static graphs in telemetry logs window………. 150

10.30:Accessing data flash logs through Mission Planner………………… 151

10.31:Auto analysis of data flash log i.e .bin file………………………….. 151

10.32:Review a log option of data flash log i.e .bin file…………………… 152

10.33:Log browser to access data flash log in review a log option i.e .bin... 152

10.34:Altitude information ATT log abbreviation table…………………… 153

10.35:Altitude information ATT log view in log browser………………… 154

10.36:Altitude information ATT log view in log browser………………… 154

10.37: Live view of vibration measurements in Mission Planner………….. 155

10.38:Vibration information VIBE log view in log browser………………. 156

10.39:Vibration information VIBE log view in log browser………………. 156

10.40:Magnetic fluctuation information as MAG and MAG2 logs view in

log browser………………………………………………………..
 157

10.41:Magnetic fluctuation information as MAG and MAG2 logs view in

log browser……….…………………………………………………..
 158

10.42:GPS information as GPS log view in log browser…..……………… 159

10.43:GPS information as GPS log view in log browser………………….. 159

10.44:Live view of EKF measurements in Mission Planner………………. 160

10.45:Understanding altitude information in Ardupilot autopilot stack…… 160

10.46:Altitude information flow in Ardupilot autopilot application stack… 161

10.47:Altitude information in log browser………………………………… 162

10.48:Altitude information in log browser………………………………… 162

10.49:Battery BAT log abbreviation table…………………………………. 163

10.50:Battery information through BAT logs in log browser……………... 163

10.51:Battery information through BAT logs in log browser……………... 164

10.52:List of error codes ERR with their numbers………………………… 165

10.53:List of event EV with their numbers………………………………… 165

10.54:RCIN and RCOUT PWM signal log information in log browser…... 166

10.55:RCIN and RCOUT PWM signal log information in log browser…... 167

10.56:Other log parameters for information exploring in log browser……. 168

10.57:Understanding PID tuning. The Roll or Pitch is in yellow box, Yaw

 is in orange box while, Altitude hold is in green box and Loiter is in
 169

xiv

pink box. The Waypoint navigation is in blue box…………………...

10.58:Understanding PID tuning. The Roll or Pitch is in yellow box, Yaw

is in orange box while, Altitude hold is in green box and Loiter is in

pink box. The Waypoint navigation is in blue box…………...……...

 170

10.59:Suggested PID tuning values that need to be configured through

Mission Planner (GCS application) and instructions sent to

Ardupilot autopilot through MAVlink………...……………………..

 170

11.1: Flow of thesis until now…………………………………………..…. 172

11.2: Downloading streameye github repository for MJPEG streaming

server for onboard companion computer….…………………………..
 173

11.3: Detecting all video devices connected to companion computer…...…. 174

11.4: Getting camera/capture card device information..…………………… 174

11.5: Creating content of run.sh, a script for triggering streameye MJPEG

server with particular video streaming options……………………….
 175

11.6: Creating startup service file for running run.sh script automatically

on startup using systemd……………………………………………...
 175

11.7: camera_streaming.service successfully created, enabled and started

with running status……………………………………………………
 176

11.8: Importing video feed directly into Mission Planner GCS

application…………
 177

11.9: Importing video feed directly into Mission Planner GCS application.. 177

11.10:Successfully imported video feed directly into Mission Planner GCS

application……………………………………………………………
 178

11.11:Video feed available in browser on any PC/Laptop connected to

private VPN…………...……………………………………………...
 178

11.12:Detecting Jetson TX2 connected to Laptop/PC running Linux

(Ubuntu) ready for configuration……………………………...……..
 180

11.13:Using Nvidia SDK Manager application running on host Linux

PC/Laptop to configure Jetson TX2 via micro USB cable…………..
 180

11.14: Installing Ubuntu 16.04 as Operating system with Jetpack 4.5.1…… 181

11.15:Authorization of superuser/administrator……..…………………….. 181

11.16:Downloading OS and Jetpack on Jetson TX2………………..……... 181

11.17:Login credentials of Jetson TX2 to proceed……..………………….. 182

11.18:Configuring user profile on Ubuntu 16.04 installed on Jetson TX2… 182

11.19:Downloading remaining packages………………………………..… 183

11.20:Ubuntu 16.04 with Jetpack 4.5.1 successfully installed…………….. 183

11.21:Creating vpn.service at /etc/systemd/system for running VPN as a

service on startup………………………………………
 184

11.22:Creating content of vpn.service startup file……...…………………... 185

11.23:Darknet folder containing YOLO weights and other configuration

file for Artificial Intelligence implementation on Jetson TX2……….
 186

11.24: Changes to Makefile for make install on Jetson TX2..……………... 186

11.25:Executing YOLO version 4 for object detection through terminal on

Live feed from onboard camera over private VPN…………...……...
 188

xv

11.26:Executing YOLO version 4 for object detection through terminal on

live feed from onboard camera over private VPN………….………...
 188

11.27:Objects detected with Frame per second (FPS) statistics…..….…….. 189

11.28:Executing YOLO-tiny version 4 for object detection through

terminal on live feed from onboard camera over private VPN………
 189

11.29:Executing YOLO-tiny version 4 for object detection through

terminal on live feed from onboard camera over private VPN………
 190

11.30:Objects detected with Frame per second (FPS) statistics……..…….. 190

11.31:Objects detection on live video feed……………...…………………. 191

11.32:Objects detection on live video feed………………..………………. 191

11.33:Speed vs accuracy comparison of YOLO versions………..………... 192

11.34:Speed vs accuracy comparison of YOLO versions…………..……... 192

12.1 : Flow of thesis until now………………………..………..…………... 193

12.2 : My Github repository https://github.com/yashlancers….....………… 194

13.1 : Console output of walkthrough for USB device connected……...….. 195

13.2 : Creating /etc/udev/rules.d/99-usb-serial.rules……….…..………….. 196

13.3 : Using Win32 Disk Imager to take SD card backup for Beagle Bone

Blue or Raspberry Pi……………………………….…………………
 197

13.4 :SD card details on Linux PC/Laptop………………………….……... 198

13.5 :For establishing Remote Desktop Session of Raspberry Pi 4 over

VPN for remote configuration is quite helpful……………….………
 200

13.6 :User credentials for establishing Remote Desktop Session of

Raspberry Pi 4 over VPN for remote configuration is quite helpful...
 200

13.7 :Remote Desktop Session of Raspberry Pi 4 over VPN established

successfully…………………………………………………………..
 201

xvi

ABBREVIATIONS

AI Artificial Intelligence

AHRS Attitude and Heading Reference Systems

BBB Beagle Bone Blue

BITS Birla Institute of Technology

BMS Battery Management System

CBEEV Centre for Battery Engineering and Electric Vehicles

CUDA Compute Unified Device Architecture

EKF Extended Kalman Filtering

FCU Flight Controller Units

GCS Ground Control Station

IITM Indian Institute of Technology, Madras

IITMRP Indian Institute of Technology Madras Research Park

IMU Inertial Navigation Unit

ISP Internet Service Provider

LTE Long Term Evolution

MAVlink Micro Air Vehicle Link

MP Mission Planner

PID Proportional–Integral–Derivative

Raspi Raspberry Pi 4

SD Secure Digital

TCP Transmission Control Protocol

UDP User Datagram Protocol

VPN Virtual Private Network

YOLO You only look once

4G Fourth Generation

xvii

NOTATION

r Radius, m

α Angle of thesis in degrees

β Flight path in degrees

ESC Electronic Speed Control

Dp Diameter of propellers

𝜌𝑆𝑆𝐿 Density of air at sea level

𝑉𝑅𝑂𝐶 Desired Rate Of Climb during Take Off

𝑉𝑅𝑂D Desired Rate of Descend during landing

ETR Energy required (Total)

EVTO Energy required during vertical take-off

EH Energy required to hover

EC Energy required to cruise

EVLD Energy required for vertical landing

𝑆𝑊 Surface area of wing

𝐶𝐷−𝑇𝑂 Coefficient of drag during take-off

𝐶𝐷−LD Coefficient of drag during landing

𝜂𝑝 Assumed Propeller efficiency during take off

𝜂𝑚 Assumed Motor Efficiency during take off

𝜂𝐸𝑆𝐶 Assumed Electronic Speed Controller (efficiency)

𝜂𝑂 Overall Power plant efficiency

𝑉𝑖ℎ The induced velocity during hover

𝑉𝑖VTO The induced velocity during vertical take-off

𝑉𝑖VTO The induced velocity during vertical landing

𝑇𝑉𝑇𝑂 Thrust required for vertical take off

TLD Thrust required for landing

TH Thrust to hover

𝑃𝑉𝑇𝑂 Power for vertical take-off

PVLD Power for vertical landing

𝐴𝑃ROP Area of propeller

𝐴𝑃ROPS Area of all propellers

η0 Overall Power plant efficiency

ηP Propeller efficiency

ηM Motor efficiency

ηESC ESC efficiency

1

CHAPTER 1

INTRODUCTION

 The research and development of unmanned aerial vehicles (UAV)s commonly known

as drones all across the world has assumed gigantic proportions due to its ability to influence

industries across varied spectrum from defense & homeland security to transportation of goods,

search and rescue. The governments all across the world have identified its potential and are

in the process of regulating and legalizing drone utilization across various sectors of the

economy. As a result, there is a mad rush for development for drones with India seeing

exponential rise of drone-based startups. As per Business Insider report, the industry is

expected to grow to $63.6 billion by 2025. However, if we get a closer look at the development

of drone industry, we realize that it is heavily skewed in favour of Chinese industries especially

in terms of development of hardware components and associated software. Also, most drone

startups are simply happy to integrate the existing hardware and software to produce drone

solutions with little or no ingenuity towards developing inhouse solutions. This poses serious

implications as it monopolizes industry in the favour of Chinese manufacturing and creates

national security challenges. Against this backdrop, under the guidance of our guide and mentor

we decided to undertake this project. Our aim was to first understand the nuances of designing

a drone with the aim of incorporating as much as possible non-proprietary software and

hardware components with the ultimate aim to carry out inhouse fabrication and design

popularly known as indigenization of the process.

 With that as the overall background, we began our study of drones. Considering the

vast scope of the subject vis-à-vis the challenges of Covid pandemic, we limited ourselves to

the study of multi-rotor copters namely Quadcopter (V and X-type) and Hexacopter covering

key aspects such as Frame design, integrations of various components and peripherals

including sensors and communication system, Power System i.e battery, Propulsion System i.e

Motors and Electronic Speed Controls (ESC) and Drone enhancement using Artificial

Intelligence. The overall objective of the project is listed in figure 1.1

2

Figure 1.1: The overall objective of project

 Our project team comprised of Tony Joseph, Akhil Sharma and me, all being final year

MTech students at IIT Madras. The aspect of frame design and post mission analysis was

implemented by Tony Joseph while design and fabrication of Propulsion System including

Motors and ESCs has been undertaken by Akhil Sharma. I have contributed to the project on

the aspects of preparing the flight controller unit (FCU), logical integration of all peripherals

and sensors including GPS, Radio controller, LIDAR, mm Wave radar, configuring the

onboard companion computer (Raspberry Pi 4 AND Jetson Nano), communication over virtual

private network (VPN) on 4G LTE module over cellular network, video streaming from

onboard computer and processing live video feed using Artificial Intelligence Algorithm for

object detection at ground station (using Jetson TX2). We have worked together as a team to

integrate the various components and test the setup with multiple flight testing and post flight

log analysis for optimizing design.

 Centre for Battery Engineering and Electric Vehicles (CBEEV), IITM Research Park,

was the nodal agency which assisted us with procurement of various components, technical

support and provided us with inhouse designed and fabricated smart battery pack with

intelligent Battery Management System (BMS) under guidance of Prof Kaushal Jha. For motor

design and manufacturing, we were assisted by a startup named Motorz at Telecom Centre for

Excellence (TCOE) under guidance of Prof Kannan Lakshminarayan. For frame design,

fabrication, assembly and professional drone pilot support, was provided to us by a startup

3

named e-plane company at IITM under guidance of Prof Satya Chakravarthy of Aerospace

department. The scope of my thesis is listed in figure 1.2

Figure 1.2: The scope of project for my thesis

 Linux based Beagle Bone Blue general purpose robotics platform was configured as

flight controller unit (FCU) running open source Ardupilot autopilot stack. Ardupilot autopilot

application being open source, most widely used and best supported by a large community

became the application of choice for FCU. This FCU has been tested for GPS, Compass, Radio

Controller (RC) receiver and transmitter and LIDAR as sensor integration. The sensor

hardware and firmware were procured commercially off the shelf. 4G LTE communication

module was integrated as communication module utilizing VPN based internet connection as

against the conventional point-to-point radios being used by most. Two different companion

computers were configured and tested on drone. The companion computers were utilized for

hosting onboard video streaming server, live battery dashboard and first-time integration of

mm Wave radar as proximity sensor in India.

 Under the head of Power System, a high capacity NMC battery with Battery

Management System (BMS) designed at Centre for Battery Engineering and Electric Vehicles

(CBEEV), IITM Research Park was integrated with the drone against the normal Lithium

Polymer (LiPo) being widely used. We used LiPo batteries for X,V type quadcopter and

4

Hexacopter. The smart battery was tested on Agricopter (heavy weight Hexacopter provided

by e-plane company). An intelligent dashboard has been created to monitor the battery statistics

on a web-based dashboard available at ground station over VPN throughout the flight to

provide greater situational awareness and intelligence to drone operator.

 Under the Drone employability enhancement using Artificial Intelligence, an open

source MJPEG server for live streaming video from onboard camera connected to companion

computer was implemented. The live video was processed using open source You Only Look

Once (YOLO) AI application utilized for image detection.

Figure 1.3: The difference in our implementation strategy

 A total of three different types of drones were developed by our team during the course

of the entire project to study the various aspects of the project. Two drones were of small

drones’ category with quadcopter configuration. One was X-Type and the other was V-Type

which is a slight variation of the X-type quadcopter. The third drone is of the medium weight

category i.e the Hexacopter with six motors. The smart battery pack which is much heavier in

configuration was tested on Heavy Weight Hexacopter also popularly known as Agri copter

taken from e-plane company, a startup at IIT Madras for testing purpose.

5

 The X-Type Quadcopter was made to validate the configuration of a small drone with

Beagle Bone Blue acting as both the Flight Controller Unit (FCU) and companion computer as

it has Linux operating system on which Ardupilot autopilot application runs. It was tested with

GPS, compass and Radio Controller (RC) receiver on board. The link between the drone and

ground station called MAVlink was established over 4G LTE Communication module. Refer

figure 1.4

 The V Type Quadcopter was made to validate the configuration of a medium to heavy

drone with onboard computer, camera and mmWave radar. It was taken as the miniature

replica of the complete setup intended. Also the drone was integrated with the smart battery

pack with Battery Management System (BMS) and intelligent Battery dashboard only on table

top to validate configurations. However, due to the weight of the battery pack its field testing

was possible only with an Agricopter. Refer figure 1.5

 The Hexacopter was made to validate scaled up version of the drone with inhouse

designed frame, Jetson Nano as companion computer and utilization of 360 degrees LIDAR as

proximity sensor. This drone too was integrated with the smart battery pack with Battery

Management System (BMS) and intelligent Battery dashboard on table top to validate

configurations. However, again due to the weight of the battery pack its field testing was

possible only with an Agricopter. Refer figure 1.6 and figure 1.7

Figure 1.4: Light weight Quadcopter X-Type

6

Figure 1.5: Light weight Quadcopter V-Type

Figure 1.6: Medium weight Hexacopter

7

Figure 1.7: Heavy weight Agri Copter for smart battery pack testing

1.1 Understanding the physics of drones

Figure 1.8: Flow of thesis until now

8

 In order to be able to plan for drone integration and subsequent design and fabrication,

the physics behind drone working needs to be well understood. The theory behind lift required

to be generated by a Unmanned Aerial Vehicle (UAV) or commonly called drone is determined

primarily by the weight of the drone. The weight of the drone is balanced by the lift produced

by its motors. The normal force produced during the forward motion of the aircraft, at a given

velocity, is called lift force. The required lift can be produced either by an increase of the

forward velocity or by increase in the Angle Of Attack .

 Angle of attack is the angle between the reference line of the aircraft (which runs along

the longitudinal axis of the aircraft) and the relative wind. In the case of multi-copter drones,

this angle is zero. The rotors must be able to create enough lift for the drone to take of at the

required velocity of climb termed as Voc.

 The Drag is the opposing force to the motion of drone produced by virtue of the

viscosity of air. This drag force is overcome by the thrust force produced by the propeller. The

total drag force has two components in it viz., - the zero lift drag and the induced drag. The

zero lift drag is the force that is produced because of the friction caused by the air molecules

while it flows over the aircraft surface and hence it is directly related to the smoothness of the

surface and the area exposed to the airflow itself. The induced drag is caused by the downwash,

which is influenced by aspect ratio of the rotors. Down wash is simply the downward velocity

component induced beneath the rotor surface and hence altering the relative velocity itself. The

zero lift drag coefficient (𝐶𝐷).

 The required thrust for drone to take off must overcome the force due to gravity and the

drag force. This thrust required for drone to vertically take off = Weight of drone + Drag Force

experienced during take-off

 TVTO = (M*g) + (0.5*ρSSL*VROC
2*SW*CD-TO)

The required thrust for drone to land must overcome the opposing force due to gravity and now

this phase of the mission is aided by drag which in mathematical terms is defines as below:

Thrust required for drone to vertically land = Weight of drone - Drag Force experienced during

take-off

 TVLD = (M*g) - (0.5*ρSSL*VROD
2*SW*CD-LD)

We know that thrust required during take-off is much more than thrust required for landing,

9

hence we will calculate thrust per motor from thrust required for vertical take off which is given

as,

Thrust per motor = (Thrust during take-off (TVTO) / No of motors on the drone)

This value must always be <= 0.5 times the maximum thrust of the motor to be utilized

as per its data sheet. Also, 𝐶𝐷−𝑇𝑂 and CD-LD are the coefficient of drag. I have taken value of

2 based on the results for drag of a flat plate, facing the flow at 90°. The thrust for hover is

thrust required to maintain weight

 TH = (M*g)

 In terms of velocity we have two concepts, the induced velocity of hover denoted as Vih

and induced velocity for vertical take off ViVTO. This induced velocity is generally in a

downward direction also called downwash. Its important consequences is that it modifies the

flow of air around the frame and impacts its aerodynamic characteristics. Induced velocity of

hover is given by:

 Vih = √ TH/(2 * ρSSL * APROPS)

Where area of Propellers (APROP) = 2*π*(DP/2)2 and total area under all propellars (APROPS) =

APROP * No of propellers

Similariliy, the induced velocity for vertical take off (ViVTO)= -(VROC/2) + √((VROC/2)2 + Vih)

and induced velocity of landing (ViLD) = -(VROD/2) - √((VROD/2)2 - Vih)

 Now power required during vertical take-off denoted by PVTO = (TVTO * Vi) / η0 where

η0 is the overall efficicncy of the power plant. It is the product of efficiency of propellars,

motors and ESCs (η0 = ηP * ηM * ηESC) . The typical values are 0.66*0.85*0.98 = 0.55 for η0

Similarly the power during vertical landing denoted by PVLD = (TVLD * Vi) / η0. The power for

hover denoted PH and power to cruise denoted by PC is related to take-off and landing by a

simple intuitive relation.

 PVTO > PC > PH > PVLD

Thus, if we know what altitude we wish to achieve during vertical take-off based on rate of

10

climb VROC, we can calculate energy EVTO given by power * time. Similarly time for hover can

give energy required for hover denoted by EH while time for cruise can give energy denoted by

EC which is required to cruise from one point to another . The rate of descent VROD and the

altitide from where descent begins can give total time for descent which can help us calculate

the energy required for descent denoted by EVLD. Thus, we see

Total energy required denoted by ETR= EVTO + EH + EC + EVLD where ETR <= 0.85 * Battery

Energy Capacity

I have done sample calculations for the X-Type Quadcopter, V-Type Quadcopter and

Hexacopter and given in figure 1.11 and figure 1.12. We can see that the thrust requirement

per motor in each of the frame is <50% maximum trust capacity of motots selected.

Figure 1.9: Dimensions of X-Type and V-Type Quadcopters

11

Figure 1.10: Dimensions of Hexacopter

Figure 1.11: Calculations of various parameters for each frame

12

Figure 1.12: Calculations of various parameters for each frame

13

CHAPTER 2

CONFIGURING BEAGLE BONE BLUE AS FLIGHT

CONTROLLER UNIT

Figure 2.1: Flow of thesis until now

 The most important component of any drone is the Flight Controller Unit (FCU). I have

dedicated an entire chapter to explaining the configuration of Beagle Bone Blue as Flight

Controller. All sensors and drone electrical components revolve mainly around FCU. Beagle

Bone Blue (BBB) is an all-in-one Linux-based general purpose robotics computer with small

form factor (3.5" x 2.15" board) running Octavo OSD3358 microprocessor. It also supports

wifi/Bluetooth for networking, inbuilt IMU/barometer, power management and regulation. It

has the option of being powered from 9-18 volts DC power source via barrel jack. It requires

JST type connectors for interfacing with sensors It has all the commonly-needed buses for

additional peripherals in embedded applications. The key aspect for the choice of this board is

its fully open source and actively supported by a strong community, the real-time performance,

flexible networking, and rich set of robotics-oriented capabilities making it versatile, fast,

14

streamlined, affordable, and fun.

Figure 2.2: Technical specifications of Beagle Bone Blue (BBB) list

Figure 2.3: Technical specifications of Beagle Bone Blue (BBB) pictorial

15

Figure 2.4: Port wise pinout details of Beagle Bone Blue (BBB)

Figure 2.5: Pinout details of Beagle Bone Blue (BBB)

16

 This Beagle Bone Blue will be configured as Flight Controller Unit (FCU). It will run

Debian Linux Operating System (OS) and Ardupilot autopilot stack as application. This

process has been explained in subsequent sub chapters and paras.

2.1 Preparing Beagle Bone Board with OS (Debian Linux)

 Preparing SD Card We need to format an SD Card preferably 16/32 GB and

flash Linux Debian Operating System. Download bone-debian-9.12-console-armhf-2020-04-

01-1gb.img and flash it on SD card of 16/32 Gb using Balena Etcher or any other such

application. I have used Raspberry Pi imager to do the same.

Figure 2.6: Flashing SD card for Beagle Bone Blue through Raspberry Pi Imager

 Insert SD card and boot Beagle Bone Blue Connect Beagle Bone Blue with

micro-USB cable to USB port of laptop. Use putty application for ssh access of Beagle Bone

Blue. Default ip access to access Beagle Bone Blue is 192.168.7.2

17

Figure 2.7: Remote access of Beagle Bone Blue though Putty from windows laptop

 Accessing Beagle Bone Blue on ssh Use below mentioned default credentials

to access Beagle Bone Blue-

Default username – Debian

Default password – temppwd

Figure 2.8: Successful login into Debian Linux running on Beagle Bone Blue from the

Windows Laptop

18

 Connecting through wifi for wireless access in future After logging in to Beagle

Bone Blue through ssh for the first time, use the below mentioned command to connect it on

wifi for internet access. Also the board can also be accessed on wifi.

Step1 We need to allow the debian user to sudo without having to enter the password every

(subsequent) time, enter the following command

echo "debian ALL=(ALL) NOPASSWD: ALL" | sudo tee -a /etc/sudoers.d/debian

>/dev/null

Step 2 The Wifi SSID and password be automated and put in a script so that subsequent access

can be on Wifi without the need of connecting with micro USB cable

sudo -s

Check Beagle Bone Blue detects the wifi, in my case wifi name is YASH1

connmanctl services | grep 'YASH1' | grep -Po 'wifi_[^]+'

Figure 2.9: Wifi network named YASH1 detected by Beagle Bone Blue

Step3 Add Wifi SSID and passphrase details

cat >/var/lib/connman/wifi.config

[service_<your hash>]

Type = wifi

Security = wpa2

Name = YASH1

Passphrase = 7350604575

19

Figure 2.10: Adding Wifi details to wifi.config file using cat command

Step 4 Ctrl-D and ping www.google.com to check internet and DNS resolution is working

successfully.

Figure 2.11: Connected to internet through YASH1 Wifi and successful DNS resolution by

Beagle Bone Blue

Step 5 Restart Beagle Bone Blue. Use any IP Scanner application on wifi to detect IP of

Beagle Bone Blue over wifi network.

Figure 2.12: Beagle Bone Blue successfully detected over local LAN with allotted IP Address

Step 6. Use Putty to access it over that that IP which was scanned and found during step 5

above. Using Putty Application to access ssh over wifi. (No need of any micro-USB cable

now). Use same login credentials as above.

20

Figure 2.13: Remote access to Beagle Bone Blue over Wifi using Putty application

Default username – Debian

Default password – temppwd

Figure 2.14: Successful access to Beagle Bone Blue over ssh over Wifi

Figure 2.15: Successful login to Beagle Bone Blue over ssh over Wifi

2.2 Building autopilot stack on Beagle Bone Blue

Configuring OS on Beagle Bone Blue Update and upgrade Debian Linux OS and

install requisite tools/applications

21

sudo apt-get -y update

Figure 2.16: Debian Linux successfully updated

sudo apt-get -y dist-upgrade

Figure 2.17: Debian Linux successfully upgraded

Installing CPU Frequency Scaling Utility Now we need to install CPU Frequency

scaling utility which enables Operating systems to scale up or down CPU frequency to save

power. It can be scaled up incase of load on CPU

sudo apt-get install -y cpufrequtils git

22

Figure 2.18: Installing CPU Frequency scaling utility

To get pre-built kernels. Real-time kernel is software which manages the time of

microprocessor thereby ensuring that time-critical events required as Flight Controller Unit

(FCU) can be processed efficiently. It simplifies the design of embedded systems and makes

Linux act like Real Time Operating System as it allows the system to be divided into multiple

independent elements called tasks. These scheduling of tasks can be done in real-time.

cd /opt/scripts && git pull

Figure 2.19: Installing real-time kernels

sudo /opt/scripts/tools/update_kernel.sh --lts-4_19 --bone-rt-channel

23

Figure 2.20: Updating real-time kernels 4_19

Figure 2.21: Updating real-time kernels 4_19

24

Now we need to specify the device tree binary which is to be used at Linux startup

sudo sed -i 's/#dtb=/dtb=am335x-boneblue.dtb/g' /boot/uEnv.txt

Now we need to specify the device tree overlays

sudo sed -i 's|#dtb_overlay=/lib/firmware/<file8>.dtbo|dtb_overlay=/lib/firmware/BB-

I2C1-00A0.dtbo\n#dtb_overlay=/lib/firmware/BB-UART4-

00A0.dtbo\n#dtb_overlay=/lib/firmware/BB-ADC-00A0.dtbo|g' /boot/uEnv.txt

Now we need to specify the U-Boot overlay

sudo sed -i 's|uboot_overlay_pru=/lib/firmware/AM335X-PRU-RPROC-4-14-TI-

00A0.dtbo|#uboot_overlay_pru=/lib/firmware/AM335X-PRU-RPROC-4-14-TI-

00A0.dtbo|g' /boot/uEnv.txt

sudo sed -i 's|#uboot_overlay_pru=/lib/firmware/AM335X-PRU-UIO-

00A0.dtbo|uboot_overlay_pru=/lib/firmware/AM335X-PRU-UIO-00A0.dtbo|g'

/boot/uEnv.txt

To set clock frequency

sudo sed -i 's/GOVERNOR="ondemand"/GOVERNOR="performance"/g'

/etc/init.d/cpufrequtils

25

Figure 2.22: Setting clock frequency

We can disable Bluetooth as we don’t need it for FCU.

sudo systemctl disable bb-wl18xx-bluetooth.service

We can maximize the SD cards existing partition

sudo /opt/scripts/tools/grow_partition.sh

Figure 2.23: Maximize system partition

26

sudo reboot

I have always carried out wiping the eMMC boot sector to ensure resolution of

RCOutputAioPRU.cpp:SIGBUS error

sudo dd if=/dev/zero of=/dev/mmcblk1 bs=1M count=10

Figure 2.24: Wiping of eMMC boot sector

Now we update the bootloader through the script

sudo /opt/scripts/tools/developers/update_bootloader.sh

Figure 2.25: Updating the bootloader

 Putting Ardupilot Autoilot Stack application on Beagle Bone Blue

Step1 Before we begin the Ardupilot autopilot application stack build up, we need to

27

understand the Ardupilot environment and its configuration file to be created at location

/etc/default/ardupilot. The UARTS map to pin configuration on Beagle Bone Blue side is as

below:-

Figure 2.26: UART map to pins

The Ardupilot autopilot application supports upto 8 x UARTs. The mapping done by me for

the utilization is as per table below: -

Figure 2.27: Suggested UART mapping between Beagle Bone Blue and Ardupilot application

The IP Addresses in this table are of Ground Control Station (GCS) and must be changed as

28

the existing network. This scheme of IP Addresses have been explained in later chapter on

concept of MAVlink over VPN. The concept of MAVlink has also been explained in following

chapters.

Step2 After getting the table ready as per our requirement, we now need to create ardupilot

environment file with the data from table above: -

sudo nano /etc/default/ardupilot (later for editing use sudoedit /etc/default/ardupilot)

Add the blow mentioned lines

TELEM1="-A udp:192.168.7.1:1194"

GPS="-B /dev/ttyO2"

TELEM2="-C /dev/ttyO1"

TELEM3="-D udp:100.96.1.34:1194"

RANGER="-F /dev/ttyO5"

Figure 2.28: Creating Ardupilot environment file as per table above

Ctrl+O and enter to save configuration followed by and Ctrl+X to exit

Step 3 Create system file for running Arducopter (version of Ardupilot) as a service at

startup

29

sudo nano /lib/systemd/system/arducopter.service

Add the below mentioned lines

[Unit]

Description=ArduCopter Service

After=networking.service

StartLimitIntervalSec=0

Conflicts=arduplane.service ardurover.service antennatracker.service

[Service]

EnvironmentFile=/etc/default/ardupilot

ExecStartPre=/usr/bin/ardupilot/aphw

ExecStart=/usr/bin/ardupilot/arducopter $TELEM1 $TELEM2 $TELEM3 $GPS

$RANGER

Restart=on-failure

RestartSec=1

[Install]

WantedBy=multi-user.target

Figure 2.29: Creating arducopter.service for execution at startup as service

Ctrl+O and Ctrl+X to save configuration

30

Step 4 We need to create ardupilot directory where we will build and compile the Ardupilot

autopilot stack.

 sudo mkdir -p /usr/bin/ardupilot

Step 5 We need to create Ardupilot hardware configuration file aphw at location

/usr/bin/ardupilot/aphw, which is run by the services prior to running the Ardupilot

executables.

sudo nano /usr/bin/ardupilot/aphw

Add the below mentioned lines

#!/bin/bash

aphw

ArduPilot hardware configuration.

#/bin/echo 80 >/sys/class/gpio/export

#/bin/echo out >/sys/class/gpio/gpio80/direction

#/bin/echo 1 >/sys/class/gpio/gpio80/value

/bin/echo pruecapin_pu >/sys/devices/platform/ocp/ocp:P8_15_pinmux/state

The lines 5 to 7 has been commented out by me as I don’t wish to activate or switch on power

to the Beagle Bone Blue's +5V servo rail. I have made a conscious effort to ensure that power

of 5V is fed directly from DC-DC convertor to the sensor or peripheral and nothing is powered

from Beagle Bone Blue. This ensures that Beagle Bone Blue is protected from any power

related issues. However, the option of doing that exists in case we uncomment the lines. In

order to draw power from Beagle Bone Blue esp 5V, the recommended input power is 12V-

18V through DC Barrel jack. 5V snt available when powering BBB through micro USB cable.

I have provided 12V to Beagle Bone Blue through Barrel jack just to ensure enough power.

Also, the only module to draw power directly from Beagle Bone Blue is the 4G LTE module

connected on the USB 2.0 of Beagle Bone Blue (5V and 500mA)

31

Figure 2.30: Creating arducopter hardware configuration file

Ctrl+O and enter to save configuration followed by and Ctrl+X to exit

Step 6 Give permission to the file/folder

sudo chmod 0755 /usr/bin/ardupilot/aphw

sudo chmod 0755 /usr/bin/ardupilot/a*

Step 7 Compiling Ardupilot on Beagle Bone Blue itself. We need to install the requisite

packages before:-

sudo apt-get install g++ make pkg-config python python-dev python-lxml python-pip

Figure 2.31: Installing pre-requisites for compiling Ardupilot application on Beagle Bone

32

Blue itself.

Figure 2.32: Installing pre-requisites for compiling Ardupilot application on Beagle Bone

Blue itself

Figure 2.33: Pre-requisites installed successfully

33

sudo pip install future

Figure 2.34: Installing Future

git clone https://github.com/ArduPilot/ardupilot

Figure 2.35: Downloading Ardupilot repository from github successful

cd ardupilot

git branch -a # <-- See all available branches. Press q to exit.

Figure 2.36: Selecting Ardupilot branch to compile. For me I have compiled latest 4.0.7

stable and also 4.1 (Beta)

34

I have compiled Ardupilot 3.6, 4.0.5, 4.0.7 all being stable versions. Later to support the mm

Wave radar which is a 3D radar, I have compiled 4.1.0 (Beta) version. Hence, select the

Ardupilot version one wishes to compile.

git checkout Copter-4.0 # <-- Arducopter 4.0 is selected by this command

Git submodule init to initialize our local configuration file, and git submodule is used to update

to fetch all the data from Ardupilot github repository

git submodule update --init --recursive

Figure 2.37: Updating submodule of Ardupilot

Now we use the waf command which is a build automation tool. It is designed to assist in the

automatic compilation and installation of application/computer software. Now we name the

compilation folder Blue as its Beagle Bone Blue.

./waf configure --board=blue # <-- BeagleBone Blue.

35

Figure 2.38: The compilation will happen in folder named blue

The compilation starts from the step below:-

./waf

Figure 2.39: The compilation process is on

36

Figure 2.40: The compilation process is on

Figure 2.41: The compilation process is successfully completed

37

The compilation for Arducopter 3.6 took about 2 hours, while for Arducopter 4.0.5, (stable)

Arducopter 4.0.7 (stable) and Arducopter 4.1.0 (Beta) took almost 12 hours !!!! Now we copy

the compiled bin file to the execution folder and give permission.

sudo cp ./build/blue/bin/a* /usr/bin/ardupilot

sudo chmod 0755 /usr/bin/ardupilot/a*

Step 8. Now we enable Arducopter service after successfully compiling it on Beagle Bone

Blue itself.

sudo systemctl enable arducopter.service

Figure 2.42: The arducopter.service enabled successfully

To start Arducopter service,

sudo systemctl start arducopter.service

To check arducopter service status

sudo systemctl status arducopter.service

To disable and stop arducopter service

sudo systemctl disable arducopter.service

sudo systemctl stop arducopter.service

To restart service after making any change will require following command,

sudo systemctl daemon-reload

sudo systemctl restart arducopter. service

38

CHAPTER 3

SENSORS AND COMPONENTS

Figure 3.1: Flow of thesis until now

 In the previous chapter I have worked on the Beagle Bone Blue as Flight Controller

Unit (FCU) which is the brain and the most critical part of drone design. All sensors and

components work around the choice of FCU, type of frame, type of mission and the overall

budget. In this chapter I have focused on the sensors connected directly to FCU namely:

• Integration of GPS with compass with FCU

• Radio Controller (RC) Receiver integration with FCU

• LIDAR integration with FCU

• Power Module integration with FCU

39

Ardupilot autopilot application that we successfully compiled on Linux board Beagle Bone

Blue supports a wide variety of sensors from many different manufacturers. Being an open

source application, it is supported by developers all across the world and its scope of sensor

integration is ever increasing. The application supports multiple communication protocols such

as I2C, SPI, UART (or Serial) and CANBUS (in particular UAVCAN) protocols. Beagle Bone

Blue provides hardware support for all these communication protocols. However, in the course

of making our drones, I have utilized UART and I2C communication protocols only.

 A brief introduction to all the supported protocols is as under:

 I2C

• one master, many slaves possible

• a relatively simple protocol which is good for communicating over short-distances (i.e.

less than 1m).

• bus runs at 100kHz or 400kHz but the data rate is relatively low compared to other

protocols.

• only 3 pins are required (GND, SDA, SCL). VCC is only to power the sensor. [3]

Figure 3.2: I2C Protocol [3]

40

SPI

• works in one master, one slave configuration

• The clock speed of 20Mhz+ speed much faster than I2C

• short distances protocol upto 10cm max

• requires at least 4 pins namely GND, SCLK, Master-Out-Slave-In, Master-In-Slave-Out +

1 slave select pin per slave. VCC is only to power the sensor. [3]

Figure 3.3: SPI protocol [3]

Serial / UART

• works in one master, one slave configuration

• being a character based protocol. Better than I2C and SPI for long distance

communication (i.e. 1m)

• it is relatively fast at 57Kbps ~ 1.5Mbps

• it requires at least 3 pins (GND, TX, RX) Two pins (Clear-To-Send, Clear-To-Receive)

are optional. VCC is only to power the sensor. [3]

41

Figure 3.4: UART protocol

CAN bus with UAVCAN

• works in multimaster bus architecture as any node can initiate transmission of data as per

need to do basis

• being a packet based protocol, its useful for very long distances

• can achieve high speed of the order of 1 Mb but only 50% of the bus bitrate is usable

without major collisions

• requires at least 3 pins (GND, CAN HI, CAN LO). VCC is only to power the sensor.

• Recommended for point-to-point topology and not Star or stubs topology

• All end of busses need to be terminated [3]

Figure 3.5: CAN Protocol [3]

42

 Broad overview of code for sensor integration

 An important concept adopted by Ardupilot autopilot application as part of its sensor

driver architecture is the front-end and back-end split mode of implementation. The main

Ardupilot code only calls into the front end libraries i.e front end sensor drivers. When the

system starts up, the front-end creates one or multiple instances of back-ends based either on

• Automatic detection of the sensor (i.e., probing for a response on a known I2C address)

• Using the user defined _TYPE params (i.e. RNGFND_TYPE, RNGFND_TYPE2).

Pointers to each back-end is maintained by front-end. It is held within an array named drivers

and incase of user settable parameters; it is always held within front-end. [3]

Figure 3.6: Overview of code interaction [3]

Understanding the back-end working of code which runs in background. Sensor raw data is

collected and converted to standard units and then the values are held in buffers within drivers.

Incase of copters, the vehicle main code thread runs regularly at 400Hz. It accesses latest

available data through methods in drivers’ front-end. For example , the AHRS/EKF pulls the

latest accelerometer, gyroscope and compass information from the sensor drivers’ front-ends.

The running of background threads ensure that the high-rate communication with the sensor as

it does not affect the main loop’s performance. Serial (i.e UART) interfaced sensor codes are

43

safe to run in the main thread as the underlying serial driver collects data in the background

and includes a buffer. It does not affect the main vehicle code. Hence, I have preferred UART

as the interface of choice for most sensors.[3]

Figure 3.7: Driver code interaction flowchart [3]

3.1 Connecting GPS using UART and Compass (inbuilt with

GPS) using I2C

 GPS with Compass features

➢ The GPS is driven by Ublox Neo-M8N module

➢ It has navigation sensitivity of 167 dBm

➢ It takes 26secs for GPS Cold starts

➢ Utilizes Low Noise Amplifier MAX2659ELT+

➢ Supported by a ceramic patch of 25 x 25 x 4 mm

➢ Supported with 3.3V low noise voltage regulator [7]

44

Figure 3.8: Block diagram of UBlox module as per datasheet [7]

Figure 3.9: Pix Hawk4 GPS with compass pinout

45

The connectivity diagram for GPS (with Compass) to Beagle Bone Blue as Fight

Controller Unit (FCU)

Figure 3.10: Connectivity diagram for physical integration of GPS with compass with Beagle

Bone Blue which is the FCU

3.2 Connecting Radio Controller (RC) receiver on SBUS

 GPS with compass is the bare minimum sensor required for reliable and stable flight

operation of a drone. Now for a drone to be manually controller we need a controller. Incase

of drones we have a Radio Controller (RC) Transmitter available in various channel

configurations to control the drone operations manually from ground station. The RC

transmitter is binded to a RC receiver on radio link. The RC receiver present onboard the drone

is connected to Flight Controller over wired link running the option of multiple communication

protocols.

 RC Receiver protocols enable communication with the Flight Controller Unit (FCU).

Some communication protocols are proprietary and some are non-proprietary. The list of

46

protocols are PWM (universal), PPM or CPPM (universal), SBUS (Futaba, Frsky), IBUS

(Flysky), XBUS (JR), MSP (Multiwii), CRSF (TBS Crossfire), SPEKTRUM1024 (Spektrum

DSM2), SPEKTRUM2048 (Spektrum DSMX), FPort (Frsky). I am using the SBUS protocol

for the choice of RC receiver i.e X8R. It is connected to SBUS interface on Beagle Bone Blue

incase of all three drones i.e X-Type, V-Type and Hexacopter. It requires The 5V and 1-2 Amp

power is provided separately through DC convertor and the overall connectivity diagram in

Figure 3.10. SBUS is a bus protocol utilized by receivers in order to send commands. Its a

digital loss-less bus architecture protocol which uses only 3 wires (signal, power, ground) for

multiple channels. Compared to commonly used PPM which is a signal in time domain, SBUS

protocols is digital and requires a serial port on the flight controller i.e UART. A single serial

line supports upto 16 channels with each receiving a unique command. This SBUS protocol

uses an inverted serial logic. It has a baud rate of 100000, 8 data bits, even parity, and 2 stop

bits. The packet size of SBUS is 25 bytes and contains:

Byte[0]: SBUS header, 0x0F

Byte[1 -22]: 16 servo channels, 11 bits each

Byte[23]

Bit 7: channel 17 (0x80)

Bit 6: channel 18 (0x40)

Bit 5: frame lost (0x20)

Bit 4: failsafe activated (0x10)

Byte[24]: SBUS footer

 RC Transmitter protocols enable communication with the RC Receiver onboard drone

over radio link. Its communication protocol for radio transmitter and receiver (two way link).

Some communication protocols are proprietary and some are non-proprietary. The list of

protocols are ACCST (Frsky), ACCESS (Frsky), DSM (Spektrum), DSM2 (Spektrum), DSMX

(Spektrum), AFHDS (Flysky), AFHDS 2A (Flysky), A-FHSS (Hitec), FASST (Futaba), Hi-

Sky (Deviation / Devo), Frsky’s TX Protocols. Frsky has two TX protocols, ACCST and

ACCESS. I have utilized Frsky RC transmitter.

47

Figure 3.11: Connectivity diagram for physical integration of Radio controller (RC) Receiver

with Beagle Bone Blue which is the FCU. The Radio controller (RC) transmitter is connected

to RC receiver over radio link.

3.3 Connecting LIDAR as proximity sensor on UART

 A2 RP LIDAR Model: A2M3, A2M4 was integrated with the Hexacopter. Its a 360-

degree 2D laser scanner (LIDAR) with 6 meter range. It supports up to 4000 samples of laser

ranging per second with high rotation speed. It performs 360-degree 2D to generate 2D point

cloud data which is used for mapping, localization and object/environment modeling. The

scanning frequency is 10hz (600rpm) with best resolution of 0.9-Degrees. It adopts low-cost

laser triangulation measurement system. It emits modulated infrared laser, during its ranging

process. The signal and the laser signal is reflected by the object in its field of view. The

reflected signal is sampled by vision acquisition system and then the embedded DSP starts

processing the sample data with distance and angle between object and RPLIDAR through

communication interface. The motor system, drives the range scanner core which rotates

clockwise to perform the 360-degree scan [6].

48

Figure 3.12: Pictorial representation of LIDAR working as per datasheet [6]

 The light source of LIDAR system is a low power infrared laser. It drives the system

by using modulated pulse. The duration of laser light emission is very short and complies with

Class I laser safety standard as per product datasheet. The sample point data contains the

information as shown in picture below [6]:

Figure 3.13: Distance and angle information sent as part of data sample as per datasheet [6]

49

Figure 3.14: Rotation and angle calculation philosophy in LIDAR [6]

Figure 3.15: Operating values of LIDAR as per datasheet

50

Figure 3.16: Pinout details of LIDAR connector as per datasheet [6]

 LIDAR Connectivity diagram The LIDAR on drone has to be mounted

horizontally. It could be on the top or bottom. The black cable must point towards the rear of

the vehicle. The field of view of the sensor must remain unobstructed which includes the ,

drone frame parts like legs, GPS mast or any other component.

Figure 3.17: Connectivity diagram for physical integration of LIDAR with Beagle Bone Blue

which is the FCU

51

3.4 Connecting power module to ADC of Beagle Bone Blue

 Power Module The APM power Module is connected to ADC port of the

Beagle Bone Blue. The power module sits between Input from battery and power distribution

for drone components with XT60 Connectors, Male and Female connectors on respective sides.

The APM module provides clean power from battery and also provide voltage measurement

between 6-28V (upto 6s battery) and 90 Amps of current. The signal output for voltage

measurement is 5V while ADC input range is 1.8V max. Thus, we use 1k and 2k resistors to

keep signal voltage less than 1.8V. The pinout and connection details are in the connectivity

diagram below:-

Figure 3.18: Power module pinout

Figure 3.19: Connectivity diagram for physical integration of power module with Beagle Bone

Blue which is the FCU

52

3.5 Connecting Electronic Speed Control (ESC) and motor to

PWM input of Beagle Bone Blue

 Electronic Speed Control (ESC) and Motors The connectivity of Electronic

Speed Control with motors and Flight Controller Unit i.e Beagle Bone Blue is illustrated in

picture below.

Figure 3.20: Connectivity diagram for physical integration of Electronic Speed Control (ESCs)

and motors with Beagle Bone Blue which is the FCU

We have utilized the Brushless DC motors procured off the shelf. The motor and ESC make

and model details are available in figure 1.11 and 1.12. The BLDC motor meets the requirement

for a mechanical commutator as required in drone application by reversing the motor set-up.

As a result, the windings become the stator and the permanent magnets therefore become part

of the rotor. These BLDC motors are powered by MOSFET bridge controllers popularly known

as ESCs using pulse-width modulation (PWM). The windings are commutated in a controlled

sequence. As a result of that, it produces a rotating magnetic field which “drags” the rotor

around and consequently drives the attached load which in our case our propellers. We have

tested propellers from carbon fiber to composite materials during our multiple flight tests.

Learning from the existing ESC and motor combines being used by us, we have been able to

simulate motor design and are in the final stages of fabricating motor with inhouse design. This

aspect of understanding motor theory and inhouse design has been covered in detail by Akhil

Sharma, the other student as part of this project in his thesis. The frame and the aerodynamic

part of the drone is covered by Tony Joseph as part of his thesis in the project.

53

CHAPTER 4

UNDERSTANDING MAVLINK BETWEEN DRONE AND

GROUND STATION (GCS)

Figure 4.1: Flow of thesis until now

 The Micro Air Vehicle Link (MAVlink) is a light-weight serialization communication

protocol for bidirectional communication between unmanned aerial vehicles/drone and GCS

for bi-direction communication. The MAVlink protocol defines a complete set of messages

that are exchanged between drone and ground stations. The generated libraries in this protocol

are MIT-licensed and can be used without limits in any open or closed-source application

without the need for publishing the source code. MAVLink was first released in 2009 by Lorenz

Meier and is being supported by a large community of developers. This protocol is utilized by

most widely used ArduPilot and PX4. The most popular autopilot software Ardupilot actively

supported by a battery of enthusiasts all across for world for over a decade has seamless

integration with this communication protocol. [5]

54

 The binary serialization makes it lightweight with minimal overhead. Due to its small

size, it can be reliably utilized over wireless links including Wifi, low data rate telemetry links

and even on internet. MAVlink protocol defines the mechanism on the structure of messages,

how to serialize them at the application layer and way to forward to the lower layers (i.e.,

transport layer, physical layer) which can be transmitted on the network. As a result ,it can be

transmitted through WiFi, Ethernet (i.e., TCP/IP Networks) or low-bandwidth serial telemetry

links (namely 433 MHz, 868 MHz or 915 MHz). The use of these low-data rate frequencies

allow for higher range of operations. MAVLink protocol ensures the reliability and integrity

of messages by double checksum verification in its packet header. [5]

 MAVLink follows the latest hybrid publish-subscribe and point-to-point design pattern

• Data streams are sent or published as topics

• All configuration sub-protocols adopted in MAVlink protocol (e.g mission protocol) or

parameter protocol are defined as point-to-point with retransmission.

Messages are defined in XML files. The message set supported by a particular MAVLink

system referred as a "dialect". The reference message set implemented by GCS and autopilots

is defined in common.xml upon which most dialects are built upon. Code generators create

software libraries for specific programming languages from XML message definitions. This is

utilized by drones, ground control stations, and other MAVLink systems to communicate. All

these features make MAVLink protocol the most utilized protocol. [5]

Figure 4.2: MAVlink between drone and Ground Control Station (GCS) application i.e Mission

Planner in my case [3]

55

 In our drone setup, I have utilized IP Network to stream MAVlink messages. The IP

network utilizes the private VPN over internet which will be explained in detail in next chapter.

MAVLink protocol typically supports both UDP and TCP connections at the transport layer

between the ground station and the drone. The choice between the two depends upon the

reliability of the network link end to end. UDP is a connectionless datagram protocol which

requires no connection between the client and server. It has no acknowledgement mechanism

between sender and receiver ,making it less tolerant to errors. However, it is light-weight, fast

and real time. On the other hand TCP protocol which adopts a connection oriented approach

leading to multiple retransmissions and overheads leading to congestion. As a result, I have

preferred UDP over TCP protocol for MAVlink over private VPN through 4G LTE Modem.

[5]

 MAVLink being a binary telemetry protocol is designed for resource-constrained

systems including bandwidth. It is deployed in two major versions: v1.0 and v2.0. v2.0 is

backwards-compatible. The telemetry data streams are sent in a multicast design. The protocol

aspects which change the system configuration requiring guaranteed delivery such as mission

protocol or parameter protocol are point-to-point with retransmission capability. [5]

Figure 4.3: MAVlink frame v2 [3]

56

4.1 Introduction to Ground Control Station (GCS)

 A Ground Control Station (GCS) is a software application which communicates with

the drone through a serial or network interface by exchanging MAVLink messages. The

communication either takes place over serial port through a telemetry device or via a network

interface using UDP or TCP over Wifi (Local Area Network or internet) or 4G Communication

module like in our case. The aspect of MAVlink over internet is explained in detail

subsequently. Various types of GCS are as below:-

Figure 4.4: Types of Ground Control Station (GCS) applications [5]

 Mission Planner is one of the most popular GCS which allows a number of

customizations and is completely open source. It was created and is regularly supported by

Michael Oborne. It runs on Windows platforms only. It has host of features from planning an

autonomous mission to taking full control of the drone. It provides support for video streaming

and changing the internal parameters of the autopilot along with the ability for calibration of

the sensors of the autopilot. We can download logs and analyze flight performance post mission

with support for simulations to improve piloting. All configurations of drone (FCU) can be

done from here and is stored in log files for analysis. I have used Mission Planner as GCS for

doing the project and dedicated a chapter to understanding and utilizing Mission Planner later

in the thesis. Any reference to GCS from hereon will mean Mission Planner for the purpose of

my thesis. Also I am using UDP over network interface established over private VPN over 4G

LTE modem. [5]

 QGroundControl is also a very famous QGC which supports both Ardupilot and PX4

autopilot applications. It supports the MAVLink protocol and has several functionalities,

57

including defining and planning autonomous missions, complete control of the drone, graphical

visualization of the map and location tracking of the drone through its GPS coordinates. It

provides support for video streaming and changing the internal parameters of the autopilot

along with the ability for calibration of the sensors of the autopilot. QGroundControl can run

on different platforms, namely, Windows, Mac OS, IOS, and Android devices [5]. However.

QGroundControl has a lot of automated functions providing little less options than Mission

Planner to customize drone settings. Hence, I preferred Mission Planner as GCS though the

concept of utilization remains the same for both.

 In Small Drones the MAVlink will be established directly between Beagle Bone Blue

(BBB) which is a Linux based Flight Controller Unit (FCU) and Mission Planner which is the

Ground Control Station (GCS) over UDP protocol. The link can be engineered over wifi (Local

LAN) or over internet (VPN). This setup was tested with X-Type Drone as Beagle Bone Blue

as acting like FCU and also onboard computer running Linux. The MAVlink is over private

VPN using UDP protocol and 4G LTE Modem as hardware. This configuration is only possible

with drones having Beagle Bone Blue as FCU.

 In Medium and Large Drones the MAVlink is established indirectly between the FCU

(in my case Beagle Bone Blue) and Mission Planner which is the Ground Control Station

(GCS) via companion computer (Raspberry Pi 4 or Jetson Nano). The Flight controller Unit

(FCU) is Beagle Bone Blue (BBB) but the configuration suggested is equally applicable to any

other FCU (STM based running RTOS). The link between FCU and Companion computer will

be through UART and companion computer to GCS over private VPN using UDP protocol and

4G LTE Modem. This setup was tested on both V-Type and Hexacopter. The difference was

that V-Type has Raspberry Pi 4 as companion computer while Hexacopter has Jetson Nano as

companion computer.

58

Figure 4.5: Flow of MAVlink

Figure 4.6: Mission Planner as GCS

4.2 Concept of MAVlink over internet using 4G LTE modem

 In order to be able to communicate with drone from ground station using MAVlink, we

want to utilize the internet over 4G LTE Modem to achieve unlimited range of communication

link. However, to be able to establish point to point link over internet we need to be able to

route data packets over internet. This is possible with below mentioned options:-

 Option 1 If we have dedicated IP addresses over internet purchased from Internet

Service Provider (ISP) for each component namely FCU, Companion computer, GCS and any

59

other networked station. Then we can route packets over internet between the FCU (in our case

its Beagle Bone Blue) to GCS (in our case Mission Planner) either directly using MAVlink or

indirectly through companion computer using MAVPROXY. MAVPROXY is a command line

GCS and we will see the configuration of companion computer in later chapters. The advantage

of this setup is its very simple and anybody can implement it. The disadvantage is that this

setup requires purchase of IP Addresses which has monetary implications, the MAVlink is not

encrypted and this setup results in dependency on a particular internet service provider.

 Option II In the second option we have two variations. One is to use Dynamic

DNS and a dedicated VPN Server to create own private network over Internet. This ensures

encryption (MAVlink security) but requires dedicated infrastructure. The second variation of

this option is to utilize VPN from a service provider through cloud-based services. i.e VPN as

a service over cloud. This option allows the benefit of VPN (encrypted MAVlink between

Drone and Ground Control Station) without any dedicated infrastructure needed to implement.

Hence, I chose this option to implement my setup or rather demonstrate this proof of concept.

I am utilizing cloud-based VPN services offered by OpenVPN. This website allows a registered

user to create as many VPN clients but simultaneous use is restricted to three free clients.

Beyond three one has to pay to avail services. The setup utilized by me is depicted in figure

4.7 . The X Type quadcopter was used to demonstrate the small drone implementation while V

Type quadcopter and Hexacopter were utilized to demonstrate medium/large drone setup to

validate the proof of concept.

Figure 4.7: Private VPN network created through OPENVPN Cloud based services

60

Step 1 Creating profile on OpenVPN cloud website https://myaccount.openvpn.com/

using email address.

Figure 4.8: Creating my profile on OPENVPN portal for creating private VPN network

Step 2 Create host profile like the one below for each of the client i.e Beagle Bone Blue

based Flight Controller Unit (FCU), ground station, one for companion computer and one for

Ground Control Station.

Figure 4.9: Creating VPN profiles on OPENVPN portal for various networking components i.e

FCU, companion computer, GCS and Jetson TX2

https://myaccount.openvpn.com/

61

Step 3 Download the profile in .ovpn format for each client profile on your machine. I have

created a VPN Folder where I have downloaded all the .ovpn files. These files give all the

configuration details for the device to auto connect with VPN cloud.

Figure 4.10: List of VPN Clients created

4.3 Installation 4G LTE communication modem and running

VPN as a service on Beagle Bone Blue (BBB) FCU for small

drones

 4G LTE Modem integration with Beagle Bone Blue Flight Controller Unit (FCU)

Preparing Beagle Bone Blue to integrate with 4G LTE Modem over USB Connection.

Figure 4.11: V-Type drone with 4G LTE Modem

62

Step 1 We need to prepare Beagle Bone Blue for connecting to 4G USB based dongle for

internet access. Beagle Bone Blue does not connect to internet through 4G module via USB

port but wifi as default option. But I don’t trust wifi of Beagle Bone Blue, hence prefer to

connect to internet via USB port. Hence, we need to do the below steps to enable that. This is

one reason why in all drones irrespective of companion computer being present on drone or

not, I have connected 4G Module to Beagle Bone Blue so that I can take remote ssh reliably at

any time. Companion computer connected to 4G Module over wifi. We need usb mode switch

to enable networking through usb port. Thereafter, we enable DHCP so that IP allotted by 4G

LTE modem can be utilized by Beagle Bone Blue.

sudo apt-get update

sudo apt-get install usb-modeswitch

ip addr show usb1

Figure 4.12: Checking IP Address allotted on Eth (USB) to Beagle Bone Blue

sudo nano /etc/network/interfaces

Add the following lines

#USB data dongle w/ onboard device (dynamic IP).

auto usb1

iface usb1 inet dhcp

dns-nameservers 8.8.8.8

63

Figure 4.13: Enabling DHCP in /etc/network/interfaces

Ctrl+O and then Ctrl+X. The config gets saved. Now Beagle Bone Blue can connect to

internet via USB 4G LTE modem connected to it directly through USB port.

Step 2 Install Open VPN application on Beagle Bone Blue This step is required

incase we want Beagle Bone Blue to connect to Ground Control Station (GCS) directly without

companion computer. This is recommended for smaller drones only. In.order to establish

MAVlink between Beagle Blue as FCU and Mission Planner as GCS over internet using VPN

we need to install OpenVPN on Beagle Bone Blue. I do this step irrespective to be able to take

remote ssh of Beagle Bone Blue over internet for any remote configuration check or

troubleshooting.

sudo apt-get install openvpn

Use WinSCP application on windows to transport the folder VPN_Folder that contains all my

.ovpn files. Let me remind you that the VPN_Folder contains .ovpn files for FCU, Companion

computer and GCS. I only need .ovpn file that I created for Beagle Bone Blue from the folder.

However, I am transporting the entire folder just for the ease of it. I will do the same process

for Companion computer too later in the document to maintain uniformity. Please note the

relevant file in VPN_Folder for me is bbbhexa_ssh.ovpn which I renamed after download

from OpenVPN website as above. The folder was first copied to location /home/debian being

default directory as shown below:-

64

Figure 4.14: Using WinSCP to port VPN_Folder from Windows Laptop to default directory

location of Debian Linux (Beagle Bone Blue)

Now move the folder from /home/debian to /etc/openvpn for execution

sudo mv /home/debian/VPN_Folder /etc/openvpn/

Step 3 Create systemd file for startup of VPN services at boot

sudo nano /lib/systemd/system/vpn.service

Figure 4.15: Using nano through remote ssh console to create vpn.service

Add the following lines

[Unit]

Description=VPN Service

After=networking.service

StartLimitIntervalSec=0

[Service]

Type=idle

ExecStart=/usr/sbin/openvpn /etc/openvpn/VPN_Folder/bbbhexa_ssh.ovpn

Restart=on-failure

RestartSec=1

65

[Install]

WantedBy=multi-user.target

Figure 4.16: Creating vpn.service file at /lib/systemd/system directory location for VPN

services to start at startup

sudo systemctl enable vpn.service

sudo systemctl start vpn.service

sudo systemctl status vpn.service

Now Beagle Bone Blue will connect to internet through 4G LTE Modem on startup and will

be accessible over internet over VPN network. We need to find the IP Address of Beagle Bone

Blue allotted to it over VPN Network. This will remain the defacto…………….. IP Address

for taking ssh over internet or connecting to Ground Control Station (GCS) like mission planner

explained later.

Figure 4.17: Enabling, starting and checking status of vpn.service. The service started

successfully

66

sudo systemctl daemon-reload (only to reload service incase some changes are made)

 Its important to note that VPN as a service on Beagle Bone Blue is required only in

small drones where Beagle Bone Blue which is the FCU also acts as onboard computer running

Linux and establishes MAVlink with GCS. However, incase of medium and larger drones this

work of MAVlink over VPN is done by Companion computers like Raspberry Pi 4 or Jetson

Nano which will be explained in subsequent chapters. However, if we have a VPN profile to

spare, its always a good idea to install VPN on Beagle Bone Blue too so that remote ssh can be

taken to troubleshoot any errors on FCU. Also, the choice of 4G LTE Modem location is totally

on user. I have proposed the idea of 4G LTE Modem being connected to USB port of Beagle

Bone Blue meaning the modem gets powered by Beagle Bone Blue and internet is accessed

over USB. The companion computer utilizes the wifi to connect to internet. You can always

reverse the order of plugging 4G LTE Modem to companion computer and Beagle Bone Blue

can connect to internet on wifi (medium or large drones). The choice is entirely on user.

However, from experience I find the wifi reliability of Companion computer is much better

than that of Beagle Bone Blue, hence I connect 4G LTE Modem to Beagle Bone Blue

67

CHAPTER 5

RASPBERRY PI 4 AS COMPANION COMPUTER

5.1: Flow of thesis until now

 Companion Computers can be used to interface and communicate with ArduPilot on a

flight controller unit (FCU) using the MAVLink protocol. By doing this the companion

computer gets all the MAVLink data produced by the autopilot (including GPS data) and can

use it to make intelligent decisions during flight and reduce computing load over FCU. In this

chapter we will configure Raspberry Pi 4 as companion computer. The Raspberry Pi 4 is the

latest product in the Raspberry Pi range, boasting an updated 64-bit quad core processor

running at 1.4GHz with built-in metal heatsink, USB 3 ports, dual-band 2.4GHz and 5GHz

wireless LAN, faster (300 Mbps) Ethernet, and PoE capability via a separate PoE HAT. Some

68

of the features are as below-

• 4GB RAM

• Quad-Core 64-bit Broadcom 2711, Cortex A72 Processor

• WLAN 802.11 b/g/n/ac (2,4 + 5,0 GHz)

• LAN RJ45 10/100/1000 Mbit (Gigabit LAN over USB 3.0)

• Operating Power 5V@3A via USB Type-C Port

• Dual-Display Micro HDMI Ports which supports H 265 Decode for 4K Video @60p

5.1 Preparing Raspberry Pi 4

Step 1 Download the latest raspios-buster-armhf.img from official site. Use pi imager or

any other SD card flashing software like Balena Etcher to flash SD card of 8/16/32 Gb. I am

using Raspberry Pi imager and windows laptop to flash the SD card with Raspbian OS (Linux

OS)

Figure 5.2: Flashing SD card for Raspberry Pi 4 using Raspberry Pi Imager

Step 2 To access Raspberry Pi on ssh (headless), after flashing SD Card, open the directory

and add a .txt file and rename it ssh without any file extension.

69

Figure 5.3: Adding ssh file with no extension to SD card for headless access to Raspberry Pi 4

Use this sd card to boot Raspi Pi 4

 Identifying IP of Raspberry Pi 4 over local LAN for wireless ssh access

Step 1 Connect Raspberry Pi 4 on LAN through ethernet. Scan for its IP address using any IP

Scanner tool to find IP allotted. Use that IP to access Raspberry Pi 4 on ssh using Putty client.

Figure 5.4: Using Advanced IP Scanner to detect IP Address allotted to Raspberry Pi 4 over

LAN

70

Use that IP address to access Raspberry Pi 4 through Putty application

Default username- pi

Default password- raspberry

Figure 5.5: Remote ssh access to Raspberry Pi 4 over local LAN

Step 2 Now we have been able to access Raspberry Pi 4 over LAN. Npw we p[rovide it with

Wifi credentials to connect over Wifi in future. We need to access raspi-config to save Wifi

credentials.

sudo raspi-config

Step 3 Go to system options

Figure 5.6: Select System Options

Step 4 Select wireless LAN

71

Figure 5.7: Select Wireless LAN

Select country to India

Figure 5.8: Select country option

Enter SSID of wifi

72

Figure 5.9: Enter SSID option

Enter password

Figure 5.10: Enabling, starting and checking status of vpn.service. The service started

successfully

Select finish

73

Figure 5.11: Select Finish Option

Reboot system. The Raspberry Pi 4 will now connect on wifi.

Figure 5.12: Option to reboot now

Reboot the Raspberry Pi when you are done

sudo reboot

After reboot, Raspberry Pi 4 will connect to wifi. We need to find the IP Address by using any

74

IP Scanner tool and using Putty application take remote ssh for configuring Raspberry Pi 4.

Use below mentioned commands to update and upgrade Raspi OS.

sudo apt-get update

sudo apt-get upgrade

5.2 Installation of VPN as a service

 As we want to establish MAVlink using UDP protocol over internet using 4G LTE

Modem, we need VPN. To install VPN, the process is similar to the once explained above for

Beagle Bone Blue in Chapter 4.

Step1 First install Open VPN application on Raspberry Pi 4

sudo apt-get install openvpn

Use WinSCP application on windows to transport the folder VPN_Folder that contains all

my .ovpn files. Let me remind you that the VPN_Folder contains .ovpn files for FCU,

Companion computer and Ground Control Station (GCS). I only need .ovpn file that I created

for Raspberry Pi 4 from the folder. However, I am transporting the entire folder just for the

ease of it. I have done the same process for Beagle Bone Blue above in Chapter 4. Please note

the relevant file in VPN_Folder for me is raspi_4.ovpn which I renamed after download from

OPENVPN website. The folder was first copied to location /home/pi being default directory

as shown below:-

75

Figure 5.13: Using WinSCP to port VPN_Folder from windows Laptop to Default location in

Raspberry Pi 4 OS

Now move the folder from /home/pi to /etc/openvpn for execution

sudo mv /home/pi/VPN_Folder /etc/openvpn/

Step 2 Create systemd file for startup at boot

sudo nano /etc/systemd/system/vpn.service

Figure 5.14: Creating vpn.service at /etc/systemd/system location

[Unit]

Description=VPN Service

After=networking.service

StartLimitIntervalSec=0

76

[Service]

Type=idle

ExecStart=/usr/sbin/openvpn /etc/openvpn/VPN_Folder/raspi_4.ovpn

Restart=on-failure

RestartSec=1

[Install]

WantedBy=multi-user.target

Figure 5.15: Creating content of vpn.service

sudo systemctl enable vpn.service

sudo systemctl start vpn.service

sudo systemctl status vpn.service

sudo systemctl daemon-reload (only to reload service incase some changes are made)

5.3 Installation of MAVPROXY (Command Line Ground

Control Station) as a service

 MAVPROXY is the command line Ground Control Station (GCS) to be installed in

companion computer. In my case its Raspberry Pi 4. This MAVPROXY will receive MAVlink

77

data (link between Ardupilot running on FCU i.e Beagle Bone Blue and companion computer)

over serial interface and relay it back to the ground control station i.e Mission Planner running

over laptop/PC. The MAVlink is installed over secure VPN using UDP protocol over internet

connection extended by 4G LTE Modem.

Step 1 First disable SSH login on serial port

sudo raspi-config

And in the utility, select “Interfacing Options”:

Figure 5.16: Accessing Interfacing options through raspi-config

Step 2. Select Serial Port option

Figure 5.17: Disabling shell messages on serial port

78

Step 3. When prompted, select no to “Would you like a login shell to be accessible over

serial?”

Figure 5.18: Disabling shell messages on serial port

Step 4 When prompted, select yes to “Would you like serial port hardware to be

enabled?

Figure 5.19: Enabling serial port hardware option

79

Figure 5.20: Final dialog box displaying login shell disabled and serial interface enabled

Figure 5.21: Closing raspi.config option

Step 5 Reboot the system by clicking yes

80

Figure 5.22: Reboot system after making changes to configuration file

 Installing dependencies for MAVPROXY

sudo apt-get install python3-dev python3-opencv python3-wxgtk4.0 python3-pip

python3-matplotlib python3-lxml python3-pygame

pip3 install PyYAML mavproxy --user

echo "export PATH=$PATH:$HOME/.local/bin" >> ~/.bashrc

Incase user permission issues (optional)

sudo usermod -a -G dialout <username>

To update an existing installation with the current release on Python 3 based systems

pip3 install mavproxy --user –upgrade

5.4 Interfacing with Beagle Bone Blue Flight Controller Unit

(FCU)

 Connectivity Diagram Raspberry Pi 4 serial interface will connect with UART1

of Beagle Bone Blue as mentioned below: -

81

Figure 5.23: Connectivity diagram for physical interfacing between Raspberry Pi 4 as

companion computer and Beagle Bone Blue as FCU

 Testing MAVlink over MAVPROXY Testing MAVlink though

MAVPROXY Command Line GCS. In order to test the configuration, the below mentioned

command will have to be run in Terminal window of Raspberry Pi 4. Both Beagle Bone Blue

and Raspberry Pi 4 have to be configured as explained till now to be able to test it.

(a) Both Companion computer and GCS on local LAN, then use

python3 $HOME/.local/bin/mavproxy.py --master=/dev/ttyS0 –

out=udp:192.168.1.7:14550

(b) VPN Command Example.

python3 $HOME/.local/bin/mavproxy.py --master=/dev/serial0 --

out=udp:100.96.1.34:1194

Kindly note that the Raspberry Pi’s serial port will now be usable on /dev/serial0 or

dev/ttyS0 and 1194 is port for VPN while local LAN uses 14550. The IP Address 192.168.1.7

is the IP Address of GCS on local LAN while 100.96.1.34 is IP on VPN. Replace with your

82

own IP Addresses.

Figure 5.24: MAXPROXY command output in console window

83

CHAPTER 6

JETSON NANO AS COMPANION COMPUTER

Figure 6.1: Flow of thesis until now

 NVIDIA Jetson Nano Developer Kit B-02 is a small, powerful computer which

supports running of multiple neural networks in parallel for applications such as image

classification, object detection, segmentation, and speech processing with reasonably

affordable price. With performance comes excellent power management and the option to run

in less than 5 watts. It delivers 472 GFLOPS for running modern AI algorithms fast, with a

quad-core 64-bit ARM CPU, a 128-core integrated NVIDIA GPU, as well as 4GB LPDDR4

memory. It has the ability to processes several high-resolution sensors simultaneously. So, for

drones running Artificial Intelligence and computer vision specific roles, Jetson Nano is the

choice of companion computer. The Jetson Nano will be running the Ubuntu 16.04 LTS with

Jetpack 4.5.1.

84

6.1 Preparing Jetson Nano

 Preparing SD Card for Jetson Nano

Step 1 Download the latest sd-blob-b01.img latest from

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write

which is the official site.

Figure 6.2: Downloading OS for Jetson Nano from official website

Use any SD card flashing software like Balena Etcher or Pi imager to flash sd card of 8/16/32

Gb.

Figure 6.3: Flashing SD card for Jetson Nano using Raspberry Pi Imager

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit#write

85

Step 2. Boot Jetson Nano from SD Card and connect with ethernet cable to local LAN with

internet. Connect Monitor via HDMI port to do the startup process. Configure your Ubuntu

installation progress (language, keyboard type, location, username & password etc.). Connect

Jetson Nano to the internet to create username and password just like any Ubuntu startup and

update/upgrade OS.

Figure 6.4: Configuring Ubuntu Operating System profile

sudo apt-get update

sudo apt-get upgrade

Use ifconfig command to check IP Address allotted to Jetson Nano over local LAN. This is

now used for taking ssh also. The point to note is that Jetson Nano does not have an inbuilt wifi

and requires ethernet based connection for internet access. So, any access over local network

using ssh will require physical ethernet connection to Jetson Nano. Later I will explain how we

can use USB to Wi-Fi adaptor to connect Jetson Nano over internet at startup in headless mode

just like Raspberry Pi4. By default, Wi-Fi isn’t enabled on Jetson Nano unless user logins to

his/her profile. This problem has been solved later in the document as it’s an important

requirement for Jetson Nano as companion computer onboard drone. Username and password

are defined by user during startup process. The same is required for taking ssh later on

6.2 Installation of VPN as a service

To install VPN, the process is similar to the once explained in Chapter4.

86

Step1. First install Open VPN application on Jetson Nano.

sudo apt-get install openvpn

Use WinSCP application on windows to transport the folder VPN_Folder that contains all my

.ovpn files. Let me remind you that the VPN_Folder contains .ovpn files for FCU, Companion

computer and Ground Control Station (GCS). I only need .ovpn file that I created for Jetson

Nano from the folder. However, I am transporting the entire folder just for the ease of it. I have

done the same process for Raspberry Pi 4 in Chapter 5 above Please note the relevant file in

VPN_Folder for me is jetson.ovpn which I renamed after download from OpenVPN website

as shown in Chapter 4. The folder was first copied to location /home/yash being default

directory as shown below:-

Now move the folder from /home/yash to /etc/openvpn for execution

sudo mv /home/yash/VPN_Folder /etc/openvpn/

Step 2. Create systemd file for startup at boot

sudo nano /etc/systemd/system/vpn.service

Figure 6.5: Creating vpn.service at location /etc/systemd/system in Ubuntu Operating System

(OS)

[Unit]

Description=VPN Service

After=networking.service

StartLimitIntervalSec=0

[Service]

Type=idle

87

ExecStart=/usr/sbin/openvpn etc/openvpn/VPN_Folder/jetson.ovpn

Restart=on-failure

RestartSec=1

[Install]

WantedBy=multi-user.target

Figure 6.6: Creating content of vpn.service for enabling VPN services on startup

sudo systemctl enable vpn.service

sudo systemctl start vpn.service

sudo systemctl status vpn.service

sudo systemctl daemon-reload (only to reload service incase some changes are made)

6.3 Installation of MAVPROXY (Command Line Ground

Control Station) as a service

 MAVPROXY is the command line Ground Control Station (GCS) to be installed in

companion computer. This MAVPROXY will receive MAVlink data (link between Ardupilot

running on FCU i.e Beagle Bone Blue and companion computer) over serial interface and relay

it back to the ground control station i.e Mission Planner running over laptop/PC. The MAVlink

is installed over secure VPN using UDP protocol over internet connection extended by 4G LTE

88

Modem. Kindly note that the serial port in Jetson Nano is identified as /dev/ttyTSH0

Installing dependencies for MAVPROXY

sudo apt-get install python3-dev python3-opencv python3-wxgtk4.0 python3-pip

python3-matplotlib python3-lxml python3-pygame

pip3 install PyYAML mavproxy --user

echo "export PATH=$PATH:$HOME/.local/bin" >> ~/.bashrc

Incase user permission issues (optional)

sudo usermod -a -G dialout <username>

To update an existing installation with the current release on Python 3 based systems

pip3 install mavproxy --user –upgrade

6.4 Interfacing with Beagle Bone Blue Flight Controller

Unit (FCU)

 Connectivity Diagram Jetson Nano serial interface will connect with UART1

of Beagle Bone Blue as mentioned below: -

Figure 6.7: Connectivity diagram for physical interfacing of Jetson Nano as companion

computer with Beagle Bone Blue as FCU

 Testing MAVlink over MAVPROXY Testing MAVlink though

89

MAVPROXY Command Line GCS. In order to test the configuration, the below mentioned

command will have to be run in Terminal window of Jetson Nano 4. Both Beagle Bone Blue

and Jetson Nano have to be configured as explained till now to be able to test it.

(a) Both Companion computer and GCS on local LAN, then use

sudo python3 $HOME/.local/bin/mavproxy.py --master=/dev/ttyTSH0 –

out=udp:192.168.1.7:14550

(b) VPN Command Example.

sudo python3 $HOME/.local/bin/mavproxy.py --master=/dev/ttyTSH0 –

out=udp:100.96.1.34:1194

Kindly note that the Raspberry Pi’s serial port will now be usable on /dev/ttyTSH0 and

1194 is port for VPN while local LAN use 14550. IP Address 192.168.1.7 is local LAN IP

Address while 100.96.1.34 is the VPN IP Address of GCS. Replace with your own IP Address

to test.

6.5 Running WIFI on headless startup (peculiar to Jetson

Nano)

 Unlike Raspberry Pi 4, the Jetson Nano does not have an inbuilt wifi and requires

external adaptor (USB Wifi). In our case, the 4G LTE Modem is on Beagle Bone Blue, hence

Jetson Nano is required to connect to internet on wifi on startup. We want Jetson Nano to

connect with wifi onboard drone as an when the drone starts and allow us to take remote ssh

over VPN and also establish MAVlink over VPN. Thus, we require to disable power saving

mode and allow wifi connection on startup through below steps:-

Step 1. Update the Ubuntu OS on Jetson Nano first

sudo apt-get update

Step 2. Install dependencies

90

sudo apt-get install git linux-headers-generic build-essential dkms

Step 3. Git clone repository

git clone https://github.com/pvaret/rtl8192cu-fixes.git

The list of wifi adaptors supported for Jetson Nano

ASUSTek USB-N13 rev. B1 (0b05:17ab)

Belkin N300 (050d:2103)

D-Link DWA-121 802.11n Wireless N 150 Pico Adapter [RTL8188CUS]

Edimax EW-7811Un (7392:7811)

Kootek -RPWF (0bda:8176)

OurLink 150M 802.11n (0bda:8176)

Plugable USB 2.0 Wireless N 802.11n (0bda:8176)

TP-Link TL-WN725N (0bda:8176)

TP-Link TL-WN821Nv4 (0bda:8178)

TP-Link TL-WN822N (0bda:8178)

TP-Link TL-WN823N (only models that use the rtl8192cu chip)

TRENDnet TEW-648UBM N150

sudo dkms add ./rtl8192cu-fixes

sudo dkms install 8192cu/1.11

sudo depmod -a

sudo cp ./rtl8192cu-fixes/blacklist-native-rtl8192.conf /etc/modprobe.d/

sudo echo options rtl8xxxu ht40_2g=1 dma_aggregation=1 | sudo tee

/etc/modprobe.d/rtl8xxxu.conf

Now we need to enable auto login. This ensures that wifi will not lose connectivity on ssh.

sudo nano /etc/gdm3/custom.conf

In this file, uncomment the following:

https://github.com/pvaret/rtl8192cu-fixes.git

91

AutomaticLoginEnable = true

AutomaticLogin = user // put your user name here e.g. jetson

sudo reboot now

92

CHAPTER 7

INTEGRATING BATTERY MANAGEMENT (BMS) OF

SMART BATTERY WITH COMPANION COMPUTER

LIKE RASPBERRY PI 4 OR JETSON NANO TO PROVIDE

LIVE DASHBOARD

Figure 7.1: Flow of thesis until now

 Basic working philosophy The Battery Management System (BMS) of the smart

battery provides data in human readable form through RS485 interface. This from RS485 can

be directly converted to USB or RS485 to TTL to USB for integrating on companion computer.

This data is then captured through minicom application running on companion computer

(Raspberry Pi 4 or Jetson Nano) and dumped into .csv file with date and time stamp. The .csv

file data contains all the data instances (roughly 108 data packets per second). However, the

python script captures one instance of data every 1 minutes to plot it on the dashboard.

93

7.1 Integrating smart battery with Battery Management

System (BMS) with drone

The steps to install and configure the package is

Step 1 Install minicom application on companion computer

sudo apt-get install minicom

Figure 7.2: Installing minicom application for reading serial data from Battery Management

System (BMS)

Step 2 Get the repository from my github account in the name of yashlancers

git clone https://github.com/yashlancers/BattMgmtSys_Dashboard.git

Figure 7.3: Downloading Battery Dashboard repository from my github account yashlancers

https://github.com/yashlancers/BattMgmtSys_Dashboard.git

94

Step 3 After successful download of the repository, move into the file directory of the folder

downloaded.

cd BattMgmtSys_Dashboard

The folder contains following files

• csvData is for dumping serial data from BMS RS 485 to USB in .csv file

• bms_data_capture.py script is for capturing BMS data

• app.py script is for plotting the data from .csv file to dashboard

• template folder contains index.html file for dashboard

• static folder contains images and other resource of dashboard

Step 4 The intelligent Battery has a Battery Management System (BMS) designed inhouse by

Centre for Battery Engineering and Electric Vehicles (CBEEV) at Indian Institute of

Technology, Madras Research Park (IITMRP). The dashboard has been created by us as part

of the project.

Figure 7.4: Screenshot of the intelligent dashboard for monitoring vital statistics of the battery

The BMS provides data about the Battery voltage, battery current, Battery pack energy

consumed, Battery Temperature, State of Health (SoH) and State of Charge (SoC). The data

from BMS is captured through bms_data_capture.py python script which is run on startup

95

though a startup master_script.py explained in later chapters of the thesis. This captured data

is dumped in csvData folder with date and time stamp. The latest data file is picked up by

app.py python script and plotted on web-based dashboard using index.html and flash server.

All these files are auto downloaded when we download the repository from github.

Step 5 We need to create a startup script for plotting of battery BMS data on startup of

system.

sudo nano /etc/systemd/system/bms_host.service

Figure 7.5: Creating bms_host.service at /etc/systemd/system directory location Linux

Operating System (OS) of companion computer

[Unit]

Description=BMS DATA HOST Service

After=networking.service

StartLimitIntervalSec=0

[Service]

ExecStartPre=/bin/sleep 59

ExecStart=/usr/bin/python3 /home/pi/ BattMgmtSys_Dashboard/app.py

Restart=on-failure

RestartSec=1

[Install]

WantedBy=multi-user.target

96

Figure 7.6: Creating content of bms_host.service so that it can run the web-based dashboard on

startup

Press Ctrl+O, enter and then Ctrl+X to save and exit. To enable bms_host.service, then

start and check status. After status is successful, we are confirmed the service is good to

go.

sudo systemctl enable bms_host.service

sudo systemctl start bms_host.service

sudo systemctl status bms_host.service

Important point to note Its important to note that the process for getting battery data is

same for Raspberry Pi or Jetson Nano as companion computer. Only file paths and port

interfaces will change as per the computer being used in python scripts.

7.2 Testing smart battery in field

This smart battery was tested on Agricopter and the data was recorded on the online dashboard

over VPN to battery performance against peak motor throttle and sustained motor throttle. The

battery was tested with motor throttle above 50% all times and taking it to peak 100% to test

battery discharge capacity against peak requirements. Battery was tested for 18 minutes and

reached peak discharge current of 122 Amps. The rate of energy consumption was 18Wh per

min to test battery under stress conditions.

Battery type NMC

Battery pack voltage 24V (6s)

Battery Current Capacity 43 Ah

Battery Energy 1032 Wh

Peak current discharge at 100% Motor throttle 122 Amps

97

Average current discharge 50 Amps with throttle >50%

Total test time 18 minutes

Total energy consumption 188 Wh

Figure 7.7: Testing smart battery with Battery Management System (BMS) on Agricopter

Figure 7.8: Energy and current utilization on intelligent dashboard of smart battery with Battery

Management System (BMS) during testing on agricopter

98

Figure 7.9: Energy and current utilization on intelligent dashboard of smart battery with Battery

Management System (BMS) during testing on agricopter

Figure 7.10: Energy and current utilization on intelligent dashboard of smart battery with

Battery Management System (BMS) during testing on agricopter

99

Figure 7.11: Voltage, SOC, SOH and temperature values on intelligent dashboard of smart

battery with Battery Management System (BMS) during testing on Agricopter

Figure 7.12: Voltage, SOC, SOH and temperature values on intelligent dashboard of smart

battery with Battery Management System (BMS) during testing on agricopter

100

CHAPTER 8

INTEGRATING ANTENNA ON PACKAGE (AOP) RADAR

THROUGH COMPANION COMPUTER LIKE

RASPBERRY PI 4 OR JETSON NANO TO FCU

Figure 8.1: Flow of thesis until now

 mmWave Radar IWR6843AOPEVM The IWR6843AOP device is antenna-on-

package (AoP) evaluation module (EVM) which is a 60-GHz mmWave sensor evaluation

platform. It integrates a wide 120-degrees field-of-view (FoV) antenna and enables access to

point-cloud data and power over a USB interface. Examples of its existing applications are:

• Industrial level sensing

• Industrial automation sensor fusion with radar

• Traffic intersection monitoring with radar

• Industrial radar-proximity monitoring

• People counting

• Gesturing

101

Figure 8.2: Texas Instruments mm Wave radar IWR843AOPEVM picture including antenna

closeup

8.1 Understanding the hardware design

 RF and Analog Subsystem includes the Radio Frequency and analog circuitry which

comprises of the synthesizer, Power Amplifier, Low Noise Amplifier, mixer, IF and Analog

to Digital Convertor. It also includes the temperature sensors and crystal oscillator. Two out of

the three transmit channels can be operated simultaneously in 1.3-V mode. [1]

 Clock Subsystem generates 60-64 GHz from an input reference of 40-MHz crystal.

The clock subsystem has a built-in oscillator circuit which is followed by a clean-up PLL and

RF synthesizer circuit. The output of the RF synthesizer is then processed by an X3 multiplier

to create the required frequency in the 60 to 64 GHz spectrum. The required waveform for

sensor operation by modulating the RF synthesizer output by the timing engine block.

Thereafter, for the host processor, the clean-up PLL provides a reference clock after system

wakeup. There is a built-in mechanism for detecting the presence of a crystal. It is also

monitoring the quality of the generated clock. [1]

102

Figure 8.3: Block diagram of Clock Sub System as per datasheet [1]

 Transmit Subsystem consists of three parallel transmit chains with each having its

own independent amplitude and phase control supporting Transmit Beam forming applications,

6-bit linear phase modulation for Multiple Input Multiple Output (MIMO) radar and also

interference mitigation. The programmable backoff supported transmit chains system

optimization. [1]

Figure 8.4: Block diagram of Transmission Sub System as per datasheet [1]

 Receive Subsystem consists of four parallel channels. Every receive channel consists

of an LNA, mixer, IF filtering, A2D conversion, and decimation as a complete unit. All four

receive channels can function at the same time while an individual power-down option which

103

ensures system optimization is also available. The complex baseband architecture of this device

uses quadrature mixer and dual IF and ADC chains to deliver complex I and Q outputs for each

of the receiver channel. It targeted for fast chirp systems. The band-pass IF chain has lower

cutoff frequencies above 175 kHz which are configurable. It can support bandwidths up to 10

MHz. [1]

Figure 8.5: Block diagram of Receive Sub System as per datasheet [1]

Figure 8.6: Block diagram of Processor Sub System as per datasheet [1]

104

 Processor Subsystem At a high level it has two customer programmable

subsystems. It is shown by a dotted line in figure 8.5. Left hand side is the DSP Subsystem

which contains Texas Instruments high-performance C674x DSP, hardware accelerator, a high-

bandwidth interconnect for high performance (128-bit, 200MHz), and associated peripherals –

four DMAs for data transfer, LVDS interface for Measurement data output, L3 Radar data cube

memory, ADC buffers, CRC engine, and data handshake memory (additional memory

provided on interconnect). The right side shows the Master subsystem which is the master of

the device and controls all the device peripherals and house-keeping activities of the device. It

contains Cortex-R4F (Master R4F) processor and associated peripherals and housekeeping

components such as DMAs, CRC and Peripherals (I2C, UART, SPIs, CAN, PMIC clocking

module, PWM, and others) connected to Master Interconnect through Peripheral Central

Resource. HIL module is seen in both the subsystems. It is used to perform the radar operations

which involves feeding the captured data from outside into the device. It does not involve the

RF subsystem. HIL. HIL on DSPSS is for high speed ADC data input while on master SS is

for controlling the configuration. Both HIL modules uses the same IOs on the device. One

additional IO (DMM_MUX_IN) allows for selecting between the two. Host Interface can be

provided through a SPI, UART, or CAN-FD interface. [1] The IWR6843AOP device

communicates with the host radar processor over the following main interfaces:

• Reference Clock is available for host processor after device wakeup

• Control – 4-port standard SPI (slave) for host control. All radio control commands (and

response) flow through this interface.

• Reset – Active-low reset for device wakeup from host

• Host Interrupt - an indication that the mmwave sensor needs host interface

• Error – Used for notifying the host in case the radio controller detects a fault

 Features of the device

• FMCW transceiver consisting of Integrated 4 receivers and 3 transmitters with Antennas-

On-Package (AOP), Integrated PLL, transmitter, receiver, Baseband, and A2D. It has 60-

to 64-GHz coverage with 4-GHz continuous bandwidth, supports 6-bit phase shifter for TX

Beam forming and ultra-accurate chirp engine based on fractional-N PLL

• Built-in calibration and self-test with ARM® Cortex®-R4F-based radio control system,

Built-in firmware (ROM) and self-calibrating system across frequency and

105

• C674x DSP for advanced signal processing

• Memory compression

• Hardware accelerator for FFT, filtering, and CFAR processing

• ARM-R4F microcontroller for object detection, and interface control

• Supports autonomous mode (loading user application from QSPI flash memory)

• Internal memory with ECC 1.75 MB, divided into MSS program RAM (512 KB), MSS

data RAM (192 KB), DSP L1 RAM (64KB) and L2 RAM (256 KB), and L3 radardata

cube RAM (768 KB)

• Other interfaces available to user application supports upto 6 ADC channels (low sample

rate monitoring), 2 SPI ports, 2 UARTs and 1 CAN-FD interface, I2C and GPIOs. It also

has 2 lane LVDS interface for raw ADC data

• Power management with Built-in LDO network for enhanced PSRR and I/Os support

dual voltage 3.3 V/1.8 V

• Clock source 40.0 MHz crystal with internal oscillator and supports external oscillator at

40 MHz. It also supports externally driven clock (square/sine) at 40 MHz

• Easy hardware design with 0.8-mm pitch, 180-pin 15 mm × 15 mm FCBGA package

(ALP) for easy assembly and low-cost PCB design ensuring small form factor

• Operated in the range of –40ºC to 105ºC [1]

Antenna Positions and Radiation patterns

Figure 8.7: IWR6843AOPEVM mm Wave radar antenna positions [1]

106

Figure 8.8: IWR6843AOPEVM mm Wave radar antenna positions [1]

Figure 8.9: IWR6843AOPEVM mm Wave radar Transmission antenna radiation patterns [1]

107

Figure 8.10: IWR6843AOPEVM mm Wave radar receive antenna radiation patterns [1]

Figure 8.11: IWR6843AOPEVM mm Wave radar Normalized Antenna Gain vs Angle

(Elevation) [1]

108

Figure 8.12: IWR6843AOPEVM mm Wave radar Normalized Antenna Gain vs Angle

(Azimuthal) [1]

8.2 mmWave radar integration with companion computer

The mmWave antenna is to be connected to the companion computer via USB port. This USB

interface supports two UART links, one for configuring the radar and other for data transfer.

The configuration file needs to be created via Texas Instruments visualizer and .cfg file then

can be saved on the computer. Now we need to send the configuration file each time the

mmWave radar starts and then data starts flowing which has to be interpreted and then

forwarded to Ardupilot running on Flight Controller Unit. Hence, python script does this job

of sending configuration file to mm Wave radar to open sensor and start receiving data. The

incoming data is sliced and interpreted. This logical data is sent to MAVPROXY by the python

script. The MAVPROXY Command Line Ground Control Software (GCS) packetizes the data

as part of MAVlink to send it as proximity sensor data to Flight Controller Unit which in my

case is Beagle Bone Blue. This setup can work with any FCU with companion computer.

109

Figure 8.13: IWR6843AOPEVM mm Wave radar data flow from companion computer to

Beagle Bone Blue FCU

 Implementation steps In order for mmWave radar to successfully communicate

with the companion computer, we need to carry out below mentioned actions.

 We need to install latest python and pip3 package on companion computer. I have

built Python 3.7 from source on my companion computer. To build Python package from

source.

sudo apt update

sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-

dev libreadline-dev libffi-dev curl libbz2-dev

Download the latest python release source code using curl command:

curl -O https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tar.xz

After download, we need to extract the tarball :

tar -xf Python-3.7.3.tar.xz

Navigate to the Python source directory and run the configure script which performs number

of checks to ensure all the dependencies are available on system. The optimizations option runs

multiple tests to check system readiness but makes the process slower.

110

cd Python-3.7.3

./configure --enable-optimizations

Run make to start the build process:

make -j 4

To achieve quicker build time, we can modify the -j flag according to the processor. Depends

on number of cores and for the processor how many cores it has, can be found by typing the

command nproc. Once the build is done we install the Python binaries.

sudo make altinstall

We must avoid using standard make install as it will overwrite the default system python3

binary which we don’t want. At this point, Python 3.7 is installed on my Debian system and is

ready. We can verify it

python3 --version

Python 3.7.3

Next we want to install pip3. First we update the package list for Linux OS

sudo apt update

Next, we install pip for Python 3 with all of its dependencies

sudo apt install python3-pip

To erify the installation

pip3 --version

The version number could vary something like below. Hence we must upgrade pip.

pip 9.0.1 from /usr/lib/python3/dist-packages (python 3.5)

Upgrade pip package

python3 -m pip install –upgrade

 Install dependencies

pip3 install pyserial

111

pip3 install apscheduler

pip3 install numpy

sudo apt-get install libatlas-base-dev

 Getting mavlink ready (uninstall pymavlink older version if any and install latest

version)

pip3 uninstall pymavlink

git clone https://github.com/ArduPilot/ardupilot

cd ardupilot

git branch master

git submodule update --init –recursive

cd /ardupilot/modules/mavlink/pymavlink

python3 setup.py install --user

 Get mm wave radar code folder from my github repository

git clone https://github.com/yashlancers/mm_Wave_Radar_IWR6843AOPEVM.git

Figure 8.14: Downloading IWR6843AOPEVM mm Wave radar working repository from my

github account containing all codes including mmWave radar configuration file

https://github.com/ArduPilot/ardupilot

112

8.3 Creating mmWave radar configuration file

 Configuration file for mmWave radar from TI visualizer (optional) The github

repository that we downloaded contains the configuration file .cfg that’s tried and tested for

proximity sensor usage of mmWave radar. However, incase it needs to be generated again

keeping any specific requirement in mind, the process below explains it with details. We will

use the Texas Instruments visualizer to create configuration file for the mmWave radar. This

action has to be done once. It has to be repeated only when we want to make changes to

parameters of mmWave radar. Using Google Chrome and access

https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/3.5.0/ If

prompted, follow the on-screen instructions for installing TI Cloud Agent (this is needed the

first time on a new PC)

In the GUI menu, select Options → Serial Port

Figure 8.15: Using Texas Instruments visualizer to connect to IWR6843AOPEVM mm Wave

radar for generating radar configuration file

https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/3.5.0/

113

In the serial port window, COM4 for configuration (11500 bauds) and COM5 (921600) for

data.

Figure 8.16: COM Port selection for connecting to mm Wave radar IWR6843AOPEVM though

Texas Instruments visualizer tool

Figure 8.17: Understanding Texas Instruments visualizer for generating radar configuration file

for IWR6843AOPEVM mm Wave radar

The configuration file can be generated by selecting save to PC. The configuration file is

already part of the repository that we downloaded from github. We can even see the output of

radar on Texas Instruments visualizer as standalone sensor

114

Figure 8.18: Output of IWR6843AOPEVM mm Wave radar on dashboard of Texas

Instruments Visualizer application/tool

 Testing python script to open sensor (mmWave radar) and get sliced data output.

Connect mmWave radar to companion computer using USB port. Make sure that the interface

details (COM Ports in Linux) are updated correctly in python script. It can be checked with

sudo ls /dev/ttyUSB*

Incase of Raspberry Pi 4

python3 /home/pi/mm_Wave_Radar_IWR6843AOPEVM/mmwave_to_mavlink.py

Incase of Jetson Nano

python3 /home/yash/mm_Wave_Radar_IWR6843AOPEVM/mmwave_to_mavlink.py

Replace yash by your username

115

Figure 8.19: Running python script from the downloaded repository from github on

caompanion computer to check output

First the script mmWave_to_mavlink.py sends configuration to mmWave radar to start/open

the sensor

Figure 8.20: Configuration for opening IWR6843AOPEVM mm Wave radar sent by

mmWave_to_mavlink.py python script

Python script reading data in terms of no of objects detected, x,y,z coordinates , velocity,

acceleration and azimuth angle.

116

Figure 8.21: Proximity data being generated by IWR6843AOPEVM mm Wave radar in the

console window.

Now the mmWave radar is working as proximity sensor sending data from companion

computer to Ardupilot running on FCU which in my case is Beagle Bone Blue. If we connect

FCU to GCS like Mission Planner , we can see the radar output as seen in next image. We need

to make changes to Ardupilot running on FCU through Mission Planner to be able to see output

of sensors in Mission Planner which is the GCS. Hence, I have dedicated an entire chapter 10

to understanding configuration of Ardupilot through Mission Planner later in the thesis . For

now, the next image shows the mmWave radar output in Mission Planner.

Figure 8.22: Proximity data being generated by IWR6843AOPEVM mm Wave radar is seen

in Mission Planner

117

Also we need to run this python script automatically on start up. Hence, I have written a

master_python.py script in next chapter (Chapter 8) to run all above individual python scripts

with one master python script.

118

CHAPTER 9

RUNNING ALL THE ABOVE PYTHON SCRIPTS AS

SINGLE MASTER PYTHON SCRIPT ON STARTUP ON

COMPANION COMPUTER

Figure 9.1: Flow of thesis until now

 We have seen that VPN services incase of Beagle Bone Blue or companion computer

are auto running on startup using systemd file. But the MAVPROXY for MAVlink, BMS data

capture and mm Wave radar python scripts need to be run on start up. Hence, we make a master

python script which will run all the three python scripts on startup using .bashrc file on startup.

This master python script will auto run incase of Raspberry Pi 4 but incase of Jetson Nano, the

user will have to login to ssh before all are master python script is triggered on due to higher

security settings in Jetson Nano. This allows better user control and security of drone incase of

Jetson Nano.

119

 Master python script is used to run MAVPROXY, BMS Data capture and mm

Wave Radar python scripts on startup though .bashrc file. Once can always omit the part not

required by commenting the relevant section of this python script.

For running master_script.py on boot, amend bash.rc

For Raspberry Pi 4

sudo nano /home/pi/.bashrc

Add the lines

echo Running at boot

python3 master_script.py

For Jetson Nano

sudo nano /home/yash/.bashrc

Add the lines

echo Running at boot

sudo python3 master_script.py

Note: Replace yash with your username on Nano

9.1 Master_script.py for Raspberry Pi 4

#!/usr/bin/env python3

Running these two scripts simultaneously: ##

- mmwave_to_mavlink.py ##

- bms_data_capture.py ##

- mavproxy.py ##

import os

import os.path

import threading

import serial

connection_in_port = “/dev/ttyS0” # Serial port connected to FCU

connection_in_baud = “921600” # As per Mission Planner settings

120

connection_out_p01 = “127.0.0.1:14550” # Radar

connection_out_p02 = “100.96.1.34:1194” # Mission Planner

def mavproxy_create_connection():

 os.system(“python3 $HOME/.local/bin/mavproxy.py” + \

 “ –master=” + connection_in_port + \

 “ –baudrate=” + connection_in_baud + \

 “ –out udp:” + connection_out_p01 + \

 “ –out udp:” + connection_out_p02)

def run_radar():

 os.system(“python3 ~/mm_Wave_Radar_IWR6843AOPEVM/mmwave_to_mavlink.py”)

def run_battcapture():

 os.system(“python3 ~/BattMgmtSys_Dashboard/bms_data_capture.py”)

thread1 = threading.Thread(target=mavproxy_create_connection)

thread1.start()

thread2 = threading.Thread(target=run_radar)

thread2.start()

thread3 = threading.Thread(target=run_battcapture)

thread3.start()

9.2 Master_script.py for Jetson Nano

#!/usr/bin/env python3

Running these two scripts simultaneously: ##

- mmwave_to_mavlink.py ##

- bms_data_capture.py ##

- mavproxy.py ##

import os

import os.path

import threading

import serial

connection_in_port = “/dev/ttyTHS1” # Serial port connected to FCU

connection_in_baud = “921600” # As per Mission Planner settings

connection_out_p01 = “127.0.0.1:14550” # Radar

connection_out_p02 = “100.96.1.34:1194” # Mission Planner

def mavproxy_create_connection():

 os.system(“python3 /home/yash/.local/bin/mavproxy.py” + \

121

 “ –master=” + connection_in_port + \

 “ –baudrate=” + connection_in_baud + \

 “ –out udp:” + connection_out_p01 + \

 “ –out udp:” + connection_out_p02)

def run_radar():

os.system(“python3 /home/yash/mm_Wave_Radar_IWR6843AOPEVM/mmwave_to_mavlink.py”)

def run_battcapture():

 os.system(“python3 /home/yash/BattMgmtSys_Dashboard/bms_data_capture.py”)

thread1 = threading.Thread(target=mavproxy_create_connection)

thread1.start()

thread2 = threading.Thread(target=run_radar)

thread2.start()

thread3 = threading.Thread(target=run_battcapture)

thread3.start()

9.3 Overall companion computer connectivity diagram

Overall Connectivity diagrams So now we see the overall connectivity diagram of

companion computers with connected peripherals/sensors namely proximity sensor

IWR6843AOPEVM mm Wave radar, onboard camera and smart battery with BMS.

For Raspberry Pi 4 as companion computer

Figure 9.2: The connectivity diagram for physical integration of Companion computer

122

(Raspberry Pi 4) with proximity sensor IWR6843AOPEVM mm Wave radar, onboard camera

and smart battery with BMS

For Jetson Nano as companion computer

Figure 9.3: The connectivity diagram for physical integration of Companion computer (Jetson

Nano) with proximity sensor IWR6843AOPEVM mm Wave radar, onboard camera and smart

battery with BMS

 The overall power distribution connectivity block diagram of the drones have been

depicted below. It is important to note that a dedicated effort was done to keep the power and

signal connections separate with no sensor being powered through Beagle Bone Blue. Though

Beagle Bone Blue is capable of providing 5V power to sensors like GPS and 5V power output

option, it was intentionally avoided to prevent any damage to Beagle Bone Blue which being

the Flight Controller Unit (FCU) is the most critical component of a drone. Hence, the power

to each sensor or component has been distributed separately through power distribution board

or DC-DC convertor. The setup was tested on all three drones.

 Small X-Type quadcopter The small X-type drone is powered through 3s (11.1V

nominal and 12.6V peak) LiPo battery pack. Here, the power was distributed through a power

distribution panel with frame itself for Electronic Speed Controls which in turn are powering

the motors. The sensors have been powered by 5V DC-DC convertor. There are only two

sensors/peripherals on board namely GPS with compass and radio controller 9RC) receiver.

The flight controller is Beagle Bone Blue and it acts like both the FCU and companion

123

computer. The 4G communication module is connected to Beagle Bone Blue. The broad

connectivity diagram for power distribution is as below

Figure 9.4: Overall power distribution block diagram of X-Type Quadcopter

 Small V Type quadcopter The small V type drone is powered through 4s (14.8V

nominal and 16.8V peak) LiPo battery pack. Here the power was distributed through a power

distribution module which takes input of 4s (16.5V) and gives 16.5V for distribution to ESCs

and DC-DC converted 12V and 5V output for powering sensors. Only Companion computer

was powered through another dedicated DC-DC convertor giving 5V and 2-3 Amps as

companion computer was powering the mmWave radar through USB and camera through

USB. The board connectivity diagram is as below:

Figure 9.5: Overall power distribution block diagram of V-Type Quadcopter

124

 Medium weight drone (Hexacopter) The medium weight Hex copter type

drone is powered through 6s (22.2V nominal and 25.2V peak) LiPo battery pack. Here the

power was distributed through dedicated DC-DC convertor giving 12V output for Beagle Bone

Blue while 5V for all other sensors including companion. The board connectivity diagram is

as below

Figure 9.6: Overall power distribution block diagram of Hexacopter

125

CHAPTER 10

UNDERSTANDING MISSION PLANNER FOR

CONFIGURING DRONE FOR FLIGHT

Figure 10.1: Flow of thesis until now

 Now we come to the most important part of the configuration. We assume that all

hardware connections have been made as per information provided in previous chapters. Each

individual part has been tested and validated for hardware and software configuration. Now we

install the Mission Planner Ground Control Application on our Laptop or PC. We connect

internet to the laptop and follow the steps below in the order to avoid running errors.

Step 1 Install Mission Planner GCS Application on laptop or PC.

Step 2. Connect laptop to internet and download OpenVPN windows client. Use the .ovpn

126

file that we created in chapter IV. We had created .ovpn files for each component from FCU,

Companion computer to GCS and placed them in a folder VPN_Folder on the laptop. We can

drag and drop on OVPN client our gcs.ovpn file and connect to VPN like below:-

Figure 10.2: Windows Client of OpenVPN installed and connected on laptop/PC running

Mission Planner Ground Control Station (GCS) application

Step 3 Scroll down and note VPN IP Address. This IP Address is the IP Address of our

ground control station (GCS). In my case its 100.96.1.34 (Kindly refer the VPN diagram in

Chapter IV). All configuration of MAVlink in chapters above has assumed this IP Address.

Please note that the IP Addresses will depend on your VPN service provider and your

account created.

Figure 10.3: VPN connection details of laptop/PC running Mission Planner Ground Control

127

Station (GCS) application

 Now, power up the drone, ensure all components works (no visible hardware error) and

4G LTE Modem is connected to service provider. Make sure there are no propellers on the

drone. One can take remote ssh of Beagle Bone Blue and Companion Computer to check

whether all working ok. If all OK lets connect Mission Planner GCS to the Drone. Here, it is

important to note that it does not matter whether you are connecting MAVlink to Beagle Bone

Blue directly incase of small drones or Companion computer incase of medium or large drones.

The procedure remains the same. Because even when we establish MAVlink via companion

computer using MAVPROXY, the link is indirectly between Ardupilot running on Flight

Controller Unit which is Beagle Bone Blue and GCS i.e Mission Planner.

10.1 Configuring the Drone (FCU) as per frame design,

calibration of sensors and validating outputs

 Connecting MAVlink between drone (FCU) to Ground Control Station (GCS) i.e

Mission Planner MAVPROXY via companion computer or directly to Ardupilot (FCU).

When we run Mission Planner with Admin rights it ensures access through windows firewall

or Anti-virus Firewall. As we have defined the IP Address of this laptop while configuring

FCU and companion computer, the MAVlink traffic will be directed to it over local LAN or

VPN depending upon the scheme adopted. Here, we simply need to select UDP as protocol,

921600 as baudrate and connect. UDP is the internet protocol to connect to FCU directly or

indirectly via companion computer at 921600 baudrate. (Refer Chapter 4). Hence, from now

we will refer to link with Ardupilot running on FCU directly or via companion computer as

MAVLink assuming we refer both unless there is a need to specify the exact arrangement.

 Mission Planner (GCS) is used to configure Ardupilot autopilot application running on

FCU. We configure the FCU (Ardupilot application) as per our drone design, calibrate the

sensors onboard, validate the outputs and be ready to fly by choosing the flight options. All

this will be covered in the thesis from hereon.

128

Figure 10.4: Connecting Mission Planner (GCS) application to MAVlink

Figure 10.5: Understanding Mission Planner Ground Control Station (GCS) dashboard

129

 Frame configuration After successfully establishing connection for the first time,

between Drone FCU (Beagle Bone Blue) and GCS (Mission Planner) (irrespective or direct or

indirect MAVlink), we need to select the frame type as per design of drone. This is not a

repetitive step but done for the first time or after any major reset.

Mission Planner > Setup > Mandatory Hardware > Frame Selection

Figure 10.6: Selecting frame type in Mission Planner (GCS application) to send configuration

instructions to FCU (Beagle Bone Blue) through MAVlink

 After doing the frame selection, we need to do motor numbering and select the correct

orientation. Incase of quadcopter, the number of motors are 4 where motor A/motor 1 and

motor C/motor 2 are clockwise while motor B/motor 4 and motor D/motor 3 are anticlockwise.

The pairwise ordering has to be same, however we can reverse the clockwise to anticlockwise

as per our choice. The main point is A-C or 1-2 will rotate in same direction while B-D or 3-4

will rotate in other direction opposite to the other combination.

 Incase of Hexacopter, the number of motors are 6 where motor A/motor 2, motor

C/motor 4 and motor E/motor 7 are clockwise while motor B/motor 1, motor D/motor 3 and

motor F/motor 8 are anticlockwise. The pairwise ordering has to be same, however we can

reverse the clockwise to anticlockwise as per our choice. The main point is A-C-E or 2-4-7 will

rotate in same direction while B-D-F or 1-3-8 will rotate in other direction opposite to the other

combination.

130

 The frame can be of X type or plus type depends upon the direction of forward move

of the drone. It has been observed that X type frames are much more stable than the Plus type

frame as the front move is handled by two motors instead of a single motor incase of plus. The

detailed analysis on the frames, its types and other considerations have been discussed in the

thesis of my project partner. The pictorial view of the frame motor numbering is given below

to allow physical connection and propeller type to be put as per schematic given below:-

Figure 10.7: The ordering of motors with direction of rotation

Figure 10.8: Checking motor/ESC detection and servo output and rotation direction including

sequence

Mission Planner > Setup > Mandatory Hardware > Servo Output

131

 Radio Calibration We need to calibrate the Radio Controller (RC) transmitter here

to check for throttle, pitch, yaw, roll and flight modes are selected. We need to validate that the

response to full range of controls for throttle, pitch, yaw and roll while toggle switches are

programmed for flight mode selection and any other control we wish to have. This is important

for all manual missions. Even for autonomous missions we need to test the drone locally before

takeoff. Hence, it’s an important step. I will be using Taranis as Radio Controller (RC)

transmitter and the X8R as the Radio controller (RC) receiver which we connected to FCU in

chapter 3.

Mission Planner > Setup > Mandatory Hardware > Radio Calibration

Figure 10.9: Calibrating Radio Controller (RC) Transmitter through Mission Planner (GCS

application) through MAVlink

 Before doing Accelerometer and compass calibration, we need to see the orientation of

FCU with respect to the drone. In my case the FCU is in the line of aircrafts forward movement,

hence the default AHRS orientation works for me. But incase the design of aircraft is such that

FCU is facing in any other direction other than the direction of forward move of the drone then

AHRS orientation needs to be done at

Mission Planner > Config > Full Parameter List > AHRS_ORIENTATION

132

Incase of any other orientation, refer to the link for its value

https://ardupilot.org/copter/docs/parameters.html#ahrs-orientation e.g

AHRS_ORIENTATION value is 1 for yaw45 degrees and so on. Default value is 0.

 The Beagle Bone Blue has onboard 9-Axis Inertial Measurement Unit (IMU) which combines

a 3-axis gyroscope, 3-axis accelerometer and 3-axis compass. This IMU works by detecting

linear acceleration using accelerometers, rotational rate using gyroscopes and heading

reference using magnetometer. It contains one accelerometer, gyro, and magnetometer per axis.

This is for each of the three principal axes i.e pitch, roll and yaw. The raw IMU measurements

is utilized to calculate altitude, angular rates, linear velocity and position relative to a global

reference frame. Hence, we need to calibrate accelerometer and compass to provide the same.

The Ardupilot autopilot application utilizes Extended Kalman Filter (EKF) algorithm to

estimate vehicle position, velocity and angular orientation based on rate gyroscopes,

accelerometer, compass, GPS, airspeed and barometric pressure measurements. The EKF is

superior to the conventional complementary filter algorithms such as Inertial Navigation. It

fuses all available measurements and is better able to reject measurements with considerable

errors. This reduces the vulnerability of the drone to faults of a single sensor. This EKF

algorithm also provides the option of integration of advanced optional sensors such as lasers

and optical flow for more accurate navigation. [3]

Figure 10.10: Understanding yaw, pitch and roll with respect to a drone frame

133

 Accelerometer Calibration In accelerometer calibration, we need to orient the flight

controller by calibrating accelerometer for positional awareness of the drone. The drone has to

be moved in all directions namely level, left, right nose up, node down and back as is prompted

by voice guide.

Mission Planner > Setup > Mandatory Hardware > Accelerometer Calibration

Figure 10.11: Calibrating Accelerometer through Mission Planner (GCS application) to send

configuration instructions to FCU (Beagle Bone Blue) through MAVlink

 Compass and Magnetometer calibration Next, we need to calibrate compass and

magnetometer. We need to remove any missing compass and reboot the vehicle/FCU. Then we

can see the compass identified by the ArduPilot application. We then calibrate magnetometer

and rotate the vehicle in all directions until success message is received. We now need to reboot

the FCU for changes to get saved. We must also ensure that the propellers are never on during

this entire process.

Mission Planner > Setup > Mandatory Hardware > Compass and Magnetometer

calibration

134

Figure 10.12: Calibrating Compass and Magnetometer through Mission Planner (GCS

application) to send configuration instructions to FCU (Beagle Bone Blue) through MAVlink

 Flight Modes. We can select upto six flight modes programmable on the Radio

Controller (RC) Transmitter subject to the number of channels it supports. The communication

between RC transmitter happens with FCU via RC receiver we saw in Chapter 3 above. The

details on flight modes are available later in this Chapter.

Mission Planner > Setup > Mandatory Hardware > Flight Modes

Figure 10.13: Selecting Flight Modes through Mission Planner (GCS application) to send

135

configuration instructions to FCU (Beagle Bone Blue) through MAVlink

 Electronic Speed Control (ESC) calibration and motor test Next, we are

required to calibrate ESCs so that we can define the minimum and maximum PWM signal for

running motors. When we click calibrate ESC, we need to reboot the drone/vehicle (FCU). We

hear a sweet sound of ESC calibration on reboot. We must reboot again for getting drone ready

for motor test. Thus, we carry out reboot twice to get ESCs and motor ready for dry run. Note

all this is done without propellers.

Mission Planner > Setup > Mandatory Hardware > ESC Calibration

Figure 10.14: Calibrating Electronic Speed Controller (ESC) through Mission Planner (GCS

application) to send configuration instructions to FCU (Beagle Bone Blue) through MAVlink

 Servo output. Next, we go to servo output to check if all ESCs have been detected. If

it’s a quadcopter then we will see the servos green from 1 to 4 and incase of Hexacopter it will

be from 1 to 6. After validating, we now carry out ESC calibration and motor test.

Mission Planner > Setup > Mandatory Hardware > Servo Output

Mission Planner > Setup > Optional Hardware > Motor Test

136

Figure 10.15: Checking motor/ESC detection and servo output and rotation direction including

sequence

Click test all in sequence. Check the direction of move and order as per example above. The

motors will start rotating for 2 secs with 5% throttle in sequence. The duration and throttle can

be changed. Be sure to be without propellers. Check the picture to ascertain the expected

direction of motor rotation and sequence. The clockwise and anti-clockwise motors have to be

in their respective locations following the correct sequence as per the type of frame design.

 Power module calibration We are using the APM Power module which is between

the battery and power distribution board to monitor the current and voltage drawn by the drone

(all components). This power module gives battery state to ground operator as well as

situational awareness to FCU. The smart battery with Battery Management System (BMS) has

been explained in Chapter 7 above but is restricted to bigger drones. Most drones use LIPO

batteries with no intelligence, hence this is an important step as battery is the most crucial part

of drone working and single point of failure. Even when using smart batteries, having this

power module is a good idea as overlay.

Mission Planner > Setup > Optional Hardware > Battery Monitor

Setting depends on hardware used. I have used generic APM power monitoring module. Make

the below mentioned changes:_

• Battery Capacity as per actuals

137

• Monitor- Select Analog current and voltage or Analog voltage only depending upon what

you want to measure

• Sensor- Select Others

• HW Ver – APM2- 2.5 non 3DR

• Reboot vehicle/drone after making changes

Figure 10.16: Configuring battery monitoring through power module being done from Mission

Planner (GCS application) and instructions sent to FCU (Beagle Bone Blue) through MAVlink

After reboot, go again and feed the measured values of voltage and current to calibrate the

module. We can then see the output on the console as above. Note: This power module gives

signal output of 5V and is connected to ADC of Beagle Bone Blue which can take only 1.8V

max. Thus, we use resistors to divide voltage as shown in Chapter 3 connectivity diagram.

 Configuration of parameter list for UARTs We need to configure the UARTs

we had logically mapped in Chapter 2 while configuring the Beagle Bone Blue as the FCU.

Just a recap that on Beagle Bone Blue, Serial 0 was MAVlink over micro-USB cable, Serial 1

was MAVlink with serial interface of Companion computer and Serial 2 is MAVlink directly

with Beagle Bone Blue incase connecting directly to GCS (small drones). Now on the Mission

Planner end, we need to define serial0, serial1 and serial2 protocols as MAVlink2 and baudrate

as 921600. (Serial0 is configured by default so micro USB will work by default to connect for

MAVlink). This configuration will enable the ports to act as MAVlink interfaces for Ardupilot

application which is running on FCU. Make sure to write parameters after making changes.

138

Mission Planner > Config > Full Parameter List > Serial0 or Serial1 or Serial2

Figure 10.17: UART configuration through Mission Planner (GCS application) and

instructions sent to FCU (Beagle Bone Blue) through MAVlink

 Selection and configuration of proximity sensor (LIDAR or mmWave radar)

LIDAR Configuration If we wish to use LIDAR as our proximity sensor, then we need

to configure the serial 5 in full parameter list as given below. Refer Chapter 2 where we had

logically mapped UART 5 of Beagle Bone Blue with UART 5 of ArduPilot (Switch F). The

physical connection of LIDAR is also at UART 5 of Beagle Bone Blue FCU (Refer Chapter 3

for physical connectivity diagram). Change Serial5_PROTOCOL to any other make of LIDAR

incase you wish to use some other make or model from the list of supported LIDARs.

• Mission Planner > Config > Full Parameter List > Serial 5

• SERIAL5_PROTOCOL = “11” (“Lidar360”)

• SERIAL5_BAUD = “115” if using Serial1

• PRX_TYPE = “5”

• PRX_ORIENT = “0” if mounted on the top of the vehicle, “1” if mounted upside-

down on the bottom of the vehicle.

 In our configuration above in the previous chapters, one can note that mmWave radar

if connected to the drone (companion computer) will be sending data as master python script

139

runs automatically on startup. But the choice to select and read proximity data from LIDAR or

mmWave radar rests with Ardupilot running on FCU. It is the PRX_TYPE which determines

the selection.

For LIDAR

Mission Planner > Config > Full Parameter List > PRX_TYPE=5

For mmWave radar, its 2 means data will come on MAVlink via Companion Computer

Mission Planner > Config > Full Parameter List > PRX_TYPE=2

Figure 10.18: UART configuration for LIDAR through Mission Planner (GCS application) and

instructions sent to FCU (Beagle Bone Blue) through MAVlink

The proximity sensor data can be seen on Mission Planner irrespective of the choice of sensor

as seen below:-

Mission Planner > Setup > Advanced Hardware > Proximity

(Ctrl+F is the shortcut)

140

Figure 10.19: Proximity sensor output in Mission Planner (GCS application). The choice of

proximity sensor between LIDAR and mmWave radar is as per instructions above. The

instructions sent to FCU (Beagle Bone Blue) through MAVlink

10.2 Pre-Arm safety checks and failsafe configuration [3]

 The ArduPilot autopilot application includes a set of Pre-arm safety checks. These

ensure that the drone/vehicle will not arm i.e the motors will not fire up until all the set of

conditions satisfied. It acts as a critical safety check to prevent any risk to drone or the operator.

The points on the pre-arm safety checklist can be enabled or disabled as per user requirement.

The pre-arm safety checks are performed by Ardupilot autopilot application, each time we

power on the drone/vehicle. Thus we can select the arming checklist to ensure that the

necessary actions are pre-requisite to arming of motors for safety of both the pilot and the

drone. The settings can be done as per path given below

Mission Planner > Config > Full Parameter List > ARMING_CHECK

After making requisite changes, the parameters need to be written by clicking write parameters

to save it permanently. The FCU needs to be rebooted after any change. The option to write

parameters is given on right side as seen in the picture below:

141

Figure 10.20: Arming check selection option

Whenever the drone is connected to the Mission Planner and the pilot tries to arm the aircraft

using Radio Controller (RC) transmitter, the pre-arm check failure messages will be displayed

to inform the pilot to take corrective action. Some of these messages are:-

 GPS related failure messages and their reasons:

GPS Glitch : This message appears when the drone is in a flight mode such as Auto or Position

hold which requires GPS. Hence, the user is advised to change mode to stabilize which is

completely manual mode not requiring GPS and troubleshoot the issue of GPS glitch which

could be temporary in nature or require hardware change (GPS) change.

Need 3D Fix : This message informs the pilot that again GPS hasn’t got 3D fix. The GPS uses

3D trilateration to determine its on the earth's surface with a minimum of four satellites. The

pilot must wait, take the drone to an open area and ensure 3D fix before using it in flight modes

requiring GPS else operate the drone in stabilize mode where the controls are manual and does

not require GPS.

Bad Velocity : This message informs the Pilot that the drones’s velocity as per its inertial

navigation system is above 50cm/s. Possible reasons for this error message are bad

accelerometer calibration, GPS updating below 5Hzs or drone moving/dropping.

142

High GPS HDOP : The GPS’s high dilution of precision (HDOP) message above 2.0 value is

undesirable for safety of drone operation. The pilot needs to wait for this error to auto resolve

on its own as the GPS finds more and more satellites or change position. Normally a count of

12 satellites is good enough to get the requisite HDOP. This error could also be due to GPS

interferences which needs to be resolved by moving any such source of interference away.

The pilot has the option to disable the fence and take-off in a flight mode which does not require

GPS such as stabilize or a AltHold and then switch to Loiter after arming. However, this is not

recommended and GPS issues be resolved before takeoff.

Figure 10.21: Satellite counts and HDoP value in yellow box

 Inertial Navigation System (INS) related error messages:

INS not calibrated: This error message comes when one or all of the accelerometer’s offsets

are zero which requires the pilot to recalibrate the accelerometer as shown earlier in the chapter.

Accels or Gyros not healthy: This error message usually means a hardware issue or a recent

firmware update related issue. The pilot needs to get this issue resolved by exploring both

options before flying. Hardware issues are mostly resolved by replacing the faulty hardware

but firmware update issues require either reverting back to the old firmware, or carrying out

update again. Incase the firmware update issue is identified; it must be reported to Ardupilot

143

developers on the forum to find possible solutions or issue fixes for resolving the same.

Accels inconsistent: This error message is again an indication to recalibrate accelerometer as

shown earlier in the chapter or carry out hardware change incase recalibration does not help.

Gyro cal failed: This error message indicate that the gyro calibration has failed to capture the

offsets. This in most cases is caused as a result of drone being moved during the calibration

process. It can likely be resolved by unplugging and plugging the battery again without jostling

the drone. If the issue remains, then it could also be due to sensors hardware failure such as

spikes).

Gyros inconsistent: The error message is displayed when two gyroscopes are reporting drone

rotation rates differing by more than 20deg/sec. This could be due to a hardware failure or

caused due to bad gyro calibration.

 Battery/Power Monitor message:

The power module calibration that we did earlier ensures that both voltage and current

utilizations are tracked for the drone. The pilot or drone operator has the option of providing

minimum voltage level as the failsafe value below which the drone will alert the drone

pilot/operator and carry out emergency action i.e land or return to launch (RTL) as per user

settings incase the drone is airborne. In pre-arm check it simply alerts the pilot/operator to

check battery or replace faulty power module. We have the option of configuring minimum

arming voltage and remaining capacity parameters for the battery/power monitor by adding

values to the BATT_ARM_VOLT and BATT_ARM_MAH parameters in complete

parameters list.

Mission Planner > Config > Full Parameter List > BATT_ARM_VOLT

Mission Planner > Config > Full Parameter List > BATT_ARM_MAH

This ensure and checks for the battery above failsafe levels and has enough capacity for flight

operations.

 Radio failsafe error message:

144

This message is displayed when the radio link between the drone and Radio Controller (RC)

receiver is broken. During pre-arm it could be due to hardware failure such broken antenna or

improper settings of RC transmitter. During flight this message could be due to drone being

out of range. The drone has a setting to return to launch (RTL) incase of this error message.

We will disable this message for auto or guided mission as our MAVlink will be on 4G LTE

modem based internet and the range of drone operation much more that radio link range of RC

transmitter and receiver. The disabling of the setting for auto flight mode will be covered in

next sub chapter.

 No proximity sensor:

This error message is displayed when proximity sensor settings are enabled but sensor signal

is unavailable. We need to check for physical connectivity issues or hardware error to resolve

this.

10.3 Understanding Flight modes [5]

 After understanding the MAVlink protocol, we also require to understand the flight

modes to be able to proceed with system configuration and piloting of unmanned system

running Ardupilot and MAVLink protocol. Ardupilot defines multiple flight modes, some

important ones are listed below:

 The STABILIZE mode enables complete control to user. The drone will respond to

every input provided by user using RC transmitter. Its like a manual override option available

for user to take control from autopilot (autonomous mission) incase of issues with the drone. It

requires careful handling of the drone and practice to operate the drone in this mode. We can

analyze the quality of piloting of drone by analyzing logs which has been explained in detail

in subsequent chapter on post-mission analysis.

 ALTITUDE HOLD (ALT_HOLD) mode automatically controls the altitude of the

unmanned system by the autopilot. However, it does not control the heading and position of

the drone and is controlled by user instead. It’s a relatively easier mode to operate the drone as

the user does not have to bother to maintain altitude. This mode is more recommended for

beginners and does not require a GPS as it estimates the altitude with the barometer. It is

possible to tune the setting of the proportional–integral–derivative (PID) controller of the

145

ALT_HOLD mode in GCS (Mission Planner). The altitude is maintained with proportional

controller. It estimates the error between the desired altitude and the actual altitude and in turn

tunes the vertical acceleration proportionally to the error. The proportional gain can be set

through a GCS (Mission Planner) and will be discussed later in this chapter. The Proportional

gain has to be selected keeping in mind the fact that a very high gain makes the control more

aggressive and less stable, on the contrary a very low gain will make the control sluggish and

nonresponsive.

 LOITER mode is even more convenient than the previous ALT_HOLD mode as the

drone in this mode maintains the altitude, its position and heading once the user stops giving

control signals through RC Transmitter. It kind of freezes in the place last left by user. In this

mode the drone maintains the current location, orientation and altitude last operated by the user.

So it’s a combination mode with STABLIZE mode till the time user is operating and then goes

in auto mode when user stops providing it any input though RC transmitter. The LOITER mode

requires a GPS 3D fix and HDOP (Horizontal dilution of precision) is smaller than 2.0) for it

to work or an optical flow. We cannot arm the vehicle in LOITER mode unless we meet the

requirement. To achieve better performance, the drone must be in low magnetic interference

of the compass and low vibrations. The PID controller gains can be tuned from the GCS

(Mission Planner). The LOITER SPEED represents maximum horizontal speed in cm/s which

is typically 5m/s. The default configuration is that the maximum acceleration is half of LOITER

SPEED which is 2.5m/s2. The parameters of the LOITER mode can be configured through a

GCS (Mission Planner) by setting PID control gains of the altitude, position and orientation

(Yaw, Pitch and Roll) and is discussed later in the chapter.

 The LAND mode forces the drone to land to the ground mostly incase of emergency.

 The RTL (Return to Launch) mode forces the drone to return to start position from

where it took-off. Both LAND and RTL mode are used in case of violation of navigation safety

and geofence. An example of RTL is on loss of communication for a particular duration

specified before take-off. The configuration of drone to LAND immediately or RTL

automatically incase of battery going below threshold, is called GEOFENCE.

 The GUIDED mode is one of the most important mode which operates only with GPS.

The GPS of drone performs 3D fix and is activated, then the drone navigates autonomously to

146

a particular GPS coordinate as provided by GCS. As the name suggests, the drone in the

GUIDED mode is guided by the user to navigate autonomously to a specific waypoint as

provided by the user. The GUIDED mode which works in conjunction with GPS, allows the

user to send the drone to specified waypoint as defined by their GPS coordinates. The drone is

not armed in the GUIDED mode until it achieves the GPS 3D fix. A GCS is used to send a

navigation waypoint to the drone over MAVlink to navigate to it thereby requiring complete

reliability over the link. We can click on map to provide next waypoint to the drone.

 The AUTO mode refers to the autonomous mode, where the drone follows a predefined

mission where a set of waypoints is fed and stored in ardupilot autopilot application. The drone

follows the aerial path through waypoints in the same order as defined by the user before the

start of mission. Utilizing the 4G LTE communication for Beyond Visual Line of Sight

(BVLOS) communication, we intend to use the AUTO and guided modes without the need for

RC transmitter. Hence, we need to make changes to the drone configuration to allow its

operation in AUTO or GUIDED mode. When we are sure about our way points we use AUTO

mode, but when we need to guide the drone with waypoints changing on the fly we prefer

GUIDED mode.

Figure 10.22: Auto flight plan including guided flight mode option (Chemplast IITM)

Be sure to select Mission Planner > Setup > FailSafe > Radio > Enabled continue with

mission in Auto Mode

147

10.4 Understanding error messages during flight and Post

mission flight log analysis

Figure 10.23: Flow of thesis until now

 After doing are complete configuration and calibration of the drone, the drone is good

enough to fly. However, we must carry out a limited duration flight test to evaluate the logs.

The logs help us to understand the complete behavior of the drone for any possible error to

prevent loss of aircraft or injury during its operation. Also the logs help us fine tune the various

settings esp PID (Proportional - Integral - Derivative) tuning for optimum performance. The

analysis of the logs must be done after each flight to improving the performance of drone

iteratively and also prevent/avoid future failures by picking on the tell-tale signs as part of best

practice.

 The logs are stored in two ways during a flight as Telemetry Logs or Data Flash logs.

148

Figure 10.24: Options to retrieve logs in Mission Planner

The desired data rate at which the data is sent from the autopilot to the ground station can be

controlled through the mission planner though Mission Planner > Config > Planner As all

the logging data is sent over the telemetry link (MAVlink).

Figure 10.25: Option for changing data rate option for logs as per bandwidth requirement

 Telemetry logs (also known as “tlogs”): These logs are recorded by the Mission

Planner which is the GCS on the local laptop/PC running the application as and when drone is

connected on telemetry link over radio or 4G LTE Modem. The log files are made in the format

149

YYYY-MM-DD hh-mm-ss.tlog and can be accessed from Document > Mission Planner >

log > frametype.

Figure 10.26: Procedure to retrieve Telemetry Logs

Mission Planner > Telemetry logs >Tuning displays the parameters of the log we want to

see. Incase we want to change the parameters of logs which we wish to see, double click on the

tuning top bar and the select window opens.

Figure 10.27: Procedure to customize Telemetry Logs

We can also convert .tlog to KML+GPX to view 3D flight plan in google earth. The converted

150

file with .tlog.kml is in the same log sub folder. The graph log option can be used to view static

graphs from .tlog file using the interactive window as shown below

Figure 10.28: Converting tlogs to KML file or viewing static graphs

Figure 10.29: Window for viewing static graphs in telemetry logs window

 Dataflash logs These logs are recorded on the Flight Controller i.e part of the

ardupilot autopilot stack. They are downloaded using Mission Planner or going into the

directory /var/lib/ardupilot incase of Beagle Bone Blue and can be downloaded directly. The

log files are made in the format YYYY-MM-DD hh-mm-ss.bin and can be accessed from

151

Document > Mission Planner > log > frametype just like tlogs as seen above.

Figure 10.30: Accessing data flash logs through Mission Planner

The data flash logs have two options namely auto analysis and review a log. The auto analysis

is a quick log summary view and does not contain much details.

Figure 10.31: Auto analysis of data flash log i.e .bin file

Review a log is a more detailed analysis for in-depth understanding of functioning of

152

components as logged by Ardupilot autopilot application. For the purpose of my thesis I will

use review a log as it provides me with a log browser where I can review each parameter of

the log file as static graphs to better understand the working of drone software and hardware

during flight operations. Unlike tlogs which are moving logs like a live review, the data flash

logs are static graphs.

Figure 10.32: Review a log option of data flash log i.e .bin file

Figure 10.33: Log browser to access data flash log in review a log option i.e .bin

153

 Understanding data flash logs using review a log option

In order to better understand the flight logs we need to be clear on the end aim of the analysis.

Irrespective of the fact whether we use tlogs or data flash logs (review a log) option, the aim is

to analyses the working of drone from key failure or error perspective to minimize failure of

flight operations. Also, the nomenclature of log parameters more or less remain the same which

means the same knowledge of data flash logs can help us analyze tlogs too. Its entirely on the

drone operator or pilots choice to adopt which method for log analysis. The subsequent analysis

of logs in the thesis is relevant for tlogs too.

There are six major types of errors to look for while analyzing logs. The analysis also helps us

to optimize the design, improve configuration and do advanced tuning for improved flight

operations. I will review actual logs in my thesis to explain the analysis and possible solutions

during the course of my thesis.

 Mechanical Failures The most common error that can occur to any drone is due to

mechanical fault such as motor or ESC failure, propeller damage etc resulting in sudden

divergence in the desired roll/pitch/yaw to the actual roll/pitch/yaw which we will analyze

through the log browser of data flash logs. This deviation from desired values can be seen in

the Altitude information seen as ATT in log analysis. The details of this log settings are as

below:

Figure 10.34: Altitude information ATT log abbreviation table

The log review of altitude information, ATT from log file of V type drone flown at Chemplast

154

stadium of IITM. The x axis depicts the time of flight while the y axis is degrees for roll and

pitch while degree heading for yaw. We see in the logs that both from the table or the pictorial

graph we see roll and pitch leading desired values but Yaw is lagging desired value. It requires

PID tuning to fine tune the value such that desired and actual are as close as possible. The PID

tuning is discussed in the subsequent part of this chapter.

Figure 10.35: Altitude information ATT log view in log browser

Figure 10.36: Altitude information ATT log view in log browser

155

 Vibrations High vibrations results in drone’s accelerometer based altitude and

horizontal position estimates to drift far off from reality which leads to problems with altitude

hold. This can result in the drone quickly shooting up in the sky in flight modes such as Loiter,

PosHold, Auto, etc. Vibration levels below 30m/s/s are acceptable levels while above 30m/s/s

may result in problems. The values above 60m/s/s will surely cause problems with flight modes

position or altitude hold. Hence, this analysis is key to ensure safe flight. The real time

vibrations can also be seen during flight while post flight vibrations graphs can be seen in VIBE

in log analysis. The details of this log settings are VibeX , VibeY and VibeZ which denote

measured standard deviation of the primary accelerometer’s output in x, y and z axis

respectively in m/s/s. Clip0, Clip1 and Clip2 are the values which increase each time one of

the accelerometers reaches its maximum limit (16G)

The Realtime vibration measurements can be see from Mission Planner > Vibe Option

Figure 10.37: Live view of vibration measurements in Mission Planner

The log review of vibration information, VIBE from log file of V type drone flown at

Chemplast stadium of IITM. The vibration measurement along x, y and z axis of drone is below

30 m/s/s which is the desired output. Both from the table or the pictorial graph we see that

vibration values as measured along all three axis is very low thereby validating the frame design

and drone assembly. The x axis in graph is the time of flight and y axis is vibration measured

156

in m/s/s for each of the axis of drone frame (x,y and z)

Figure 10.38: Vibration information VIBE log view in log browser

Figure 10.39: Vibration information VIBE log view in log browser

 Compass interference Interferences to compass can be caused on drone by power

distribution board, motors, battery, ESCs and other electrical devices. These can disrupt

157

compass heading resulting in circling or drone flying in completely wrong direction. It is a very

important parameter to look for to ensure optimum design considerations often requiring to

tune the frame design. Post flight this data can help understand the behavior of the drone.

The mag_field fluctuations are acceptable between 10-20% range when throttle is raised upto

a max of 30%. Fluctuations above 60% is dangerous with increase in throttle. MagX, MagY

and MagZ are raw magnetic field values for x, y and z axis respectively. OfsX, OfsY and

OfsZ are raw magnetic offsets. They will only change if COMPASS_LEARN parameter is 1.

MOfsX, MOfsY and MOfsZ are Compassmot compensation for throttle or current.

The log review of compass readings depicted by MAG and MAG2. We have two compasses

on board. One inbuilt compass as part of BeagleBone Blue package while the other external

compass as part of GPS package. The compass log information MAG and MAG2 from log file

of V type drone flown at Chemplast stadium of IITM. The Magnetic field measurements along

all three axis is consistent thereby validating no interference from any other drone component.

The pictorial graph is showing measurements for both compass but table displays only one

compass readings at any point of time. The x axis in graph is the time of flight and y axis is

measured magnetic field in Gauss for each of the axis of drone frame (x,y and z) for both

compasses onboard the drone.

Figure 10.40: Magnetic fluctuation information as MAG and MAG2 logs view in log browser

158

Figure 10.41: Magnetic fluctuation information as MAG and MAG2 logs view in log browser

 GPS glitches The GPS glitch is an important parameter to evaluate during logs

analysis especially when flying in flight modes requiring GPS input to make decision such as

Loiter, RTL, Auto, etc. Position errors as a result of erroneous GPS readings can lead to

unreliable or aggressive behavior of the drone. Two key fields to look for in GPS logs are

Horizontal dilution of precision (HDop) and Number of satellites locked on to (NSats) values.

Hdop < 1.5 is very good are very good while above 2.0 indicates a problem. The number of

satellites < 12 is undesirable. The pilot must wait for these values to fall in range before taking

off. A considerable change in these two values results in GPS position change. The GPS values

during flight can be seen as GPS in log analysis. The details of this log settings are as below:

The log review of GPS readings depicted by GPS in log browser. The number of satellites

during flight have been consistent as 14 which is > 12 (threshold value as discussed earlier).

The HDOP is <1 which is well within the threshold of <2 for reliable flight. The altitude

measurement has been consistent thereby confirming reliability of GPS as a sensor. The

readings validate that there is no interference to GPS or GPS glitch thereby validating both the

hardware status and the location of GPS on the drone has no interference from motors. The

pictorial graph is showing measurements of important GPS parameters such as number of

satellites, HDOP value, altitude value and latitude and longitude values. for both compass but

table displays only one compass readings at any point of time. The x axis in graph is the time

159

of flight and y axis is number for satellite count, decimal number for HDOP value, and latitude

and longitude in degrees.

Figure 10.42: GPS information as GPS log view in log browser

Figure 10.43: GPS information as GPS log view in log browser

160

 Altitude variations EKF errors The power to the all drone components is routed

from the battery through the power module which also measures the voltage and current

consumption if configured and calibrated. We need to see graphs of GPS, barometer altitude

(BAlt) or altitude above home (CTUN Alt). The CTUN log gives us lot many details including

throttle percentages ThH and ThO. It also gives us barometer altitude, desired altitude, terrain

altitude and the climbed rates abbreviations are as below

Figure 10.44: CUTN log abbreviations

Any sudden loss of altitude or abrupt reading co-related with GPS altitude readings can point

to sudden power failure. The realtime EKF readings can be seen here:

Figure 10.45: Live view of EKF measurements in Mission Planner

161

We also need to understand how Ardupilot takes altitude reading both from sensor and its own

estimation readings. The altitude above (mean) Sea Level (ASL) is the altitude of the drone

with respect to the mean sea level (MSL) of the world. Altitude above Ground Level (AGL)

the altitude of the drone above its rest position. Relative altitude is the one measured above

HOME/ORIGIN position and is what is displayed in the ground station. OSD as the vehicle’s

altitude. Terrain altitude (ALT) is the height above sea level (asl) of a terrain position. This

may or may not any natural or man-made additions to the terrain’s ground altitude. Estimated

altitude (ALT) is the autopilot’s EKF estimation of vehicle Relative altitude above ORIGIN.

This measurement is used internally by the drone’s Altitude Controller to maintain or obtain

the Target ALT in flight modes such as ALTHOLD, LOITER/GUIDED etc where altitude is

controlled. Target altitude (ALT) is the desired altitude in the above mentioned flight modes

where altitude is maintained.

Figure 10.46: Understanding altitude information in Ardupilot autopilot stack [3]

The EKF takes the IMU, GPS, and BARO sensor inputs and integrates them to provide this

Estimated altitude (ALT). The EKF subsystem is also responsible for estimating attitude,

position and velocity of the drone which is utilized for navigation and control systems. The

estimated altitude is then fed to the vehicle’s altitude control system. It attempts to reach the

Target ALT in flight modes where altitude is maintained as mentioned before. The altitude

controller can be fed terrain altitude data or data from range finder to attempt to reach target

altitude. The flow of data for altitude control as as below:

162

Figure 10.47: Altitude information flow in Ardupilot autopilot application stack [3]

The log review of ALT readings depicted by CUTN, BARO and GPS in log browser. We can

see consistent altitude offset between Barometer altitude and GPS altitude. The Extended

Kalman Filtering which integrates the measured values with the IMU data to estimate correct

altitude shown as measured Altitude of CUTN. Here we see that CUTN Estimated Altitude is

close to Barometer altitude and maintains a consistent offset with GPS altitude thereby

providing reliable altitude measurements. Hence, the altitude estimation for the drone is

reliable as per log analysis of V Type drone flown at Chemplast Stadium at IITM. The x axis

in graph is the time of flight and y axis is the altitude in meters.

Figure 10.48: Altitude information in log browser

163

Figure 10.49: Altitude information in log browser

 Batt monitor errors Battery monitor logs are the most important to view during the

flight as well as after flight. The battery statistics are captured through APM power module

between the battery pack and the power distribution board or DC-DC convertor. The battery

consistency is a must for reliable drone operations. Also, the battery experiences the maximum

wear and tear after each drone subject to multiple conditions. Hence, its important to monitor

any abrupt variations in battery voltage , current or energy consumption to estimate the overall

operating state of battery pack powering the drone. Failure of battery pack is a single point of

failure for entire drone and hence the logs must be reviewed in detail each time drone is

airborne. The details of battery monitor (BAT) log settings is as given below:

Figure 10.50: Battery BAT log abbreviation table

The log review of BAT readings in log browser shows there is no inconsistency observed in

the discharge of battery current or energy as seen from the logs. The voltage reading is fairly

164

consistent too. The battery pack is able to retain charge and is able to provide and keep up with

the power requirements of the drone. Hence, we conclude after analyzing the BAT logs in log

browser that the battery pack utilization has been consistent. The battery pack in this case 4s

(16.8 Volts max) and 5200 mAh LiPo Lithium Polymer battery seems to be performing

satisfactorily during the flight operation of the drone. These logs have been analysed after the

flight of V Type drone flown at Chemplast Stadium at IITM. The x axis in the graphs is the

time of flight while y axis is in volts for voltage readings, amperes for current, Watt second for

energy and ohm for resistance.

Figure 10.51: Battery information through BAT logs in log browser

165

Figure 10.52: Battery information through BAT logs in log browser

 Unexpected ERRORS codes during log analysis including Failsafes The

unexpected behavior of drone will generate the error codes by ERR for each log type and can

be filtered out and analyzed for resolving them. The list of codes as below:

Figure 10.53: List of error codes ERR with their numbers

166

 Event Codes The logs viewer also has the option of viewing events given by EV in

the graph browser. The Event viewer codes are as given below:-

Figure 10.54: List of event EV with their numbers

 PWM signal to motors and its output logs RCIN & RCOUT (Pulse Width

Modulation (PWM) input and output to individual RC outputs ine motor/ESC combine. The

RCIN and RCOUT logs give us a view in to performance of each ESC/motor combine during

the flight. RC1, RC2, RC3, RC4 incase of quadcopter and so on for any frame type gives details

of Pulse Width Modulation (PWM) command sent by Ardupilot autopilot application during

the flight to the ESC/motor/RC input and output. The RCIN and RCOUT log graphs have to

be read in conjunction with mechanical errors described before using ATT and RATE. RATE

is similar to ATT logs as explained earlier but gives the rate of change of yaw, pich and roll.

ATT gives degrees of deviation between desired and actual values while RATE gives degrees

per second deviation between expected and actual values for change in yaw, pitch and roll.

These logs analyzed together can give important analysis for finding out about mechanical

failures as well as requirement of tuning to improve stability of drone. The PID tuning is done

based on the output of these graphs and will be discussed subsequently.

Below are important warning messages which are displayed in Mission Planner during flight

and the same can be seen during the log analysis of RCOUT, ATT and RATE. Understanding

167

them is critical to reliable functioning of the drone.

 Thrust Loss and Yaw Imbalance Warnings This warning is received mostly

incase of incorrect hardware selection, hardware failure in propulsion system or improper

tuning of PID values with respect to the frame type. If these warnings are displayed just with

the take-off of aircraft then its more to do with hardware failure or poorly tuned aircraft but

when received mid-flight its more likely a sudden hardware failure.

 Potential Thrust Loss This message is displayed on GCS i.e Mission Planner or

during log analysis signifies saturation of motor at 100% throttle. This mostly happens when

one motor fails and the other tries to compensate for thrust loss of faulty motor/ESC combine.

As a result of this saturation, the Ardupilot autopilot application is unable to achieve desired

/required roll, pitch, yaw and throttle output. This can potentially result in drone crash. A

message like `Potential Thrust Loss (3)` signifies potential thrust loss for Motor number 3.

We need to evaluate the RCOUT to see which motor failed for which this motor tried to

compensate. In the screenshot of drone crash on 11 June 2021 clearly depicts motor 1 failed

resulting in Motor 3 trying to compensate and going into saturation with potential thrust loss.

As a result the drone flipped on right and crashed. The reason for failure of motor will need

further analysis to find the reason for it such as mechanical failure of motor or ESC or simply

propeller damage. This can be done by physical examination and table top testing.

Figure 10.55: RCIN and RCOUT PWM signal log information in log browser

168

Figure 10.56: RCIN and RCOUT PWM signal log information in log browser

If such error messages are received during hover or an altitude mode then it could probably be

due to increased weight to thrust ratio requiring to retune to frame design and its components

to reduce overall weight or change in propulsion system (motor/propellers). We must not that

change in propulsion system must be done with proper drone calculations as higher propulsion

system will require a bigger battery increasing the weight. This trade-off of thrust vs weight

must be done as shown in chapter 1 earlier.

Incase of aggressive climbing and maneuvers, there is a requirement to lower the requested

speed and acceleration.

Yaw Imbalance The yaw imbalance warning depicts how much effort the drone is working

on yaw. Incase of saturation, the ability of drone to maintain yaw is lost. 100% means complete

saturation. The message reads something like this giving percentage of yaw imbalance. `Yaw

Imbalance 87%`. The yaw imbalance mode in hover or fixed altitude flight mode, the issue is

most probably with the hardware. We need to evaluate the logs for PWN input signal in RCIN

log settings and compare the PWN between pars in opposing motors. If large throttle level

difference between the clockwise and anti/counter clockwise motors is seen in the logs, then it

is again likely due to hardware error. Most probably its when motors are not vertically on

169

circular arms. This error can be cleared by rotating the motors to compensate for it as the thrust

angle will assists the yaw in its rotation direction. If this yaw imbalance warning is seen during

aggressive yaw maneuvers, the warning threshold need to be increased by raising

ATC_RAT_YAW_IMAX in full parameter list.

Thus, after understanding all about configuration, fail safe pre arm checklist, understanding

about logs and its impact on drone operations, all the logs messages we are now in a position

to finally tune PID values for advanced configuration options.

Other log evaluation options

IMU (accelerometer and gyro information)

GyrX, GyrY, GyrZ The raw gyro rotation rates in radians/second for each of x,y and z axis

AccX, AccY, AccZ The raw accelerometer values in m/s/s for each of x,y and z axis

Figure 10.57: Other log parameters for information exploring in log browser

10.5 Advanced tuning option for optimized flight operations

 In PID (Proportional - Integral - Derivative) tuning is a control loop mechanism by

which the drone firmware stabilizes the drone/vehicle. P stands for Proportional which refers

170

to the immediate Correction. The more we are off this value, the bigger is the correction. I

stands for Integral which refers to over time or steady state correction. The additional

corrections are added if we don’t make progress. D stands for derivative which means like take

it easy correction. It slows down or dampen if the corrections are too fast.

 Roll/Pitch tuning, the rate parameter is the most important. It convert the desired rate

of rotation into motor output. The Rate Roll and Pitch P tuning page has most information

about tuning them. The Stabilize Roll and Pitch P converts the required angle into a desired

rotation rate. This rate is thereafter fed to the rate controller. A higher value makes the

drone/copter more responsive the inputs while lower value will make it smoother. A very high

value makes drone/copter to oscillate on the roll and or the pitch axis. A very low value makes

drone/copter sluggish.

 Yaw tuning, the Stabilize Yaw and Rate Yaw parameters are used to tune yaw which

in most cases does not require tuning. It is similar to roll and pitch. If the value is too high the

drone/copter will oscillate else will be unable to maintain heading if too low.

 Altitude Tuning, hold related tuning parameters. Altitude Hold P is used to convert the

altitude error which is the difference between the desired altitude and the actual altitude in

order to maintain desired climb or descent rate. It the value is high, the drone/copter will make

aggressive attempt to gain altitude and very high will give jerky throttle response to pilot inputs.

 The Throttle Rate more than often does not require any change. It converts the desired

climb or descent rate into a corresponding acceleration up or down. The Throttle Accel

(Proportional - Integral - Derivative) PID gains convert the acceleration error. It is the

difference between the desired acceleration and the actual acceleration into a motor output. The

1:2 ratio of P to I is recommended to be maintained.

 Loiter Tuning, does not require much tuning in the case Roll and Pitch are tuned

correctly with GPS working well and vibrations below accepted levels.

Mission Planner > Config > Extended Tuning

171

Figure 10.58: Understanding PID tuning. The Roll or Pitch is in yellow box, Yaw is in orange

box while, Altitude hold is in green box and Loiter is in pink box. The Waypoint navigation is

in blue box. [3]

Figure 10.59: Suggested PID tuning values that need to be configured through Mission Planner

(GCS application) and instructions sent to Ardupilot autopilot through MAVlink

172

CHAPTER 11

LIVE VIDEO STREAMING FROM DRONE OVER

INTERNET (VPN) AND IMAGE DETECTION USING

ARTIFICIAL INTELLIGENCE TOOL (YOLO v4 & YOLO

v4 (TINY))

Figure 11.1: Flow of thesis until now

 One of the most important aspect of any drone mission is the ability to live stream video

feed from an onboard camera. This live feed can then be viewed at ground control station or

be utilized by Artificial Intelligence (AI) tools like You Only Look Once (Yolo) for object

detection. The AI algorithm can be trained for specific drone mission requirement such as

surveillance, rescue, disaster relief or intelligent payload delivery. In this chapter I have

illustrated the configuration for creating a streaming server onboard companion computer to

173

live stream video feed over encrypted and secure VPN link. The configuration has been tested

for both Raspberry Pi 4 and Jetson Nano. The live feed has been received at Jetson TX2 and

processed for object detection using Yolo v4 Tiny. However, training the algorithm for specific

dataset has not left out of the scope of this chapter.

11.1 Making video streaming server on companion

computer like Raspberry Pi 4/Jetson Nano

 Video streaming server on companion computer onboard drone In order to

get live stream from drone, we need to create a streaming server on companion computer. The

companion computer could be Raspberry Pi 4 or Jetson Nano, the process is same. We need to

be careful with the directory paths which will be different for Raspberry Pi 4 or Jetson Nano

as per your environment.

Step 1. Install MJPEG server on Raspberry Pi 4 or Jetson Nano. First update, upgrade OS

followed by downloading streameye repository from github.

sudo apt-get update

sudo apt-get upgrade

git clone https://github.com/ccrisan/streameye.git

Figure 11.2: Downloading streameye github repository for MJPEG streaming server for

https://github.com/ccrisan/streameye.git

174

onboard companion computer

cd streameye

make

sudo make install

If there are no particular drivers required to be installed, all connected video devices /

cameras will be displayed by using the following Linux command

ls /dev/video*

Figure 11.3: Detecting all video devices connected to companion computer

If you are using one of the official camera modules, it is important to do the following so

that the camera is displayed immediately (preferably by autostart)

sudo modprobe bcm2835-v4l2

To get camera or HDMI capture card details on Companion Computer,

v4l2-ctl -V

Figure 11.4: Getting camera/capture card device information

175

 Step 2. Create a script to run the streameye application installed on companion

computer with our required configuration.

 sudo nano run.sh

 Add the below commands

#!/bin/bash

ffmpeg -re -f video4linux2 -i /dev/video0 -s 640x480 -fflags nobuffer -f mjpeg -qscale 8 -

2>/dev/null | streameye

Figure 11.5: Creating content of run.sh, a script for triggering streameye MJPEG server with

particular video streaming options

No we need to create a camera_stream.service to auto run the camera script run.sh on

start up. For this use the command

sudo nano /etc/systemd/system/camera_stream.service

Figure 11.6: Creating startup service file for running run.sh script automatically on startup

using systemd

176

[Unit]

Description=Camera Streaming Service

After=networking.service

StartLimitIntervalSec=0

[Service]

Type=idle

ExecStart=/home/pi/run.sh

Restart=on-failure

RestartSec=1

[Install]

WantedBy=multi-user.target

Press Ctrl+O, enter and then Ctrl+X to save and exit. To enable camera service, then start

and check status. After status is successful, we are confirmed the service is good to go.

sudo systemctl enable camera_stream.service

sudo systemctl start camera_stream.service

sudo systemctl status camera_stream.service

Figure 11.7: camera_streaming.service successfully created, enabled and started with running

status

11.2 Receiving video feed on ground control station

application i.e Mission Planner

 Receiving video feed on ground station i.e., Mission Planner

177

To view feed in Mission Planner, we need to firs install GStreamer version 1.14 for windows

msi package. Then open Mission Planner, right click on Mission Planner panel > video >

Set GStreamer Source and add the link

Figure 11.8: Importing video feed directly into Mission Planner GCS application

Add this link

souphttpsrc location=http://100.96.1.66:8080/mjpeg do-timestamp=true ! decodebin !

videoconvert ! video/x-raw,format=BGRA ! appsink name=outsink

Figure 11.9: Importing video feed directly into Mission Planner GCS application

178

Figure 11.10: Successfully imported video feed directly into Mission Planner GCS application

The same feed is simultaneously available through browser. Open browser on ground station

connected on OpenVPN. Type http://100.96.1.66:8080/ to view live feed. If on local network

then put local IP of Raspberry Pi 4 else VPN IP on VPN network or Public IP incase it’s on

open network.

Figure 11.11: Video feed available in browser on any PC/Laptop connected to private VPN

http://100.96.1.66:8080/

179

11.3 Preparing Jetson TX2 with latest Ubuntu 16.04 LTS

and Jetpack 4.5.1

 Jetson TX2 is the computer on ground. It will receive the video feed from drone on

VPN and do object detection on it using Yolov4 Darknet framework. Installing latest Jetpack

4.5.1 on JetsonTX2 to install all the pre-requisites. The list of pre-requisites required for

YoloV4 are: -

• CMake >= 3.18

• CUDA >= 10.2

• OpenCV >= 2.4

• cuDNN >= 8.0.2

• GPU with CC >= 3.0

Jetpack 4.5.1 installs all these prerequisites as a package. We will refresh the operating System

Ubuntu 16.04 LTS with Jetpack 4.5.1 on Jetson TX2. We require a host Linux machine with 8

Gb RAM minimum running minimum Ubuntu 16.04 LTS. I am using my dual boot Laptop to

do the same. Connect the Jetson TX2 to your laptop using micro-USB cable, while power to

Jetson TX2 is provided by the power adaptor. Install Nvidia SDK Manager on Linux host

machine.

 Step 1 Power the Jetson TX2 with power adaptor and connect to Linux Laptop (Host

Machine) over micro-USB cable.

➢ press power button then wait for boot led lights up.

➢ press reset & recovery buttons together

➢ release reset button

➢ and release the recovery button after 3 seconds later.

Step 2 Open terminal window on the host machine running Linux. Use command lsusb

and you should see "NVidia Corp." title in the terminal.

180

Figure 11.12: Detecting Jetson TX2 connected to Laptop/PC running Linux Ubuntu ready for

configuration

Step 3 Next, we need to set configurations in the Nvidia SDK Manager. We are required

to set up the SDK Manager by making an account. Target Hardware must be autodetected as

your Jetson TX2. Accept the license agreement and continue.

Figure 11.13: Using Nvidia SDK Manager application running on host Linux PC/Laptop to

configure Jetson TX2 via micro USB cable

Continue to next step

181

Figure 11.14: Installing Ubuntu 16.04 as Operating system with Jetpack 4.5.1

Step 4 Nvidia SDK Manager will for password to complete installation. Provide

password to continue.

Figure 11.15: Authorization of superuser/administrator

Step 5 After all packages have been downloaded, Jetson OS will be installed on the

Jetson TX2.

Figure 11.16: Downloading OS and Jetpack on Jetson TX2

Step 6 The SDK Manager asks your Jetson TX2 NX's username and password. Need to

connect monitor and keyboard to Jetson TX2 and complete step 7 and then proceed here again.

182

Figure 11.17: Login credentials of Jetson TX2 to proceed

 Step 7 Complete the SDK Manager installation progress. Configure your Ubuntu installation

progress (language, keyboard type, location, username & password etc.).

Figure 11.18: Configuring user profile on Ubuntu 16.04 installed on Jetson TX2

Step 8 Type your username and password in SDK Manager then click "Install".

183

Figure 11.19: Downloading remaining packages

Figure 11.20: Ubuntu 16.04 with Jetpack 4.5.1 successfully installed

Now we have a fresh copy of Ubuntu 16.04 LTS with Jetpack 4.5.1 ready for installation of

Yolov4 Darknet framework.

184

11.4 Installing VPN as a service to make Jetson TX2 as part of

our private VPN

 Now we need to install VPN to receive video feed on the private VPN from onboard

companion computer. The process is similar to the one done in Chapter III above.

Step 1 First install Open VPN application on Jetson Nano.

sudo apt-get install openvpn

Use WinSCP application on windows to transport the folder VPN_Folder that contains all my

.ovpn files. Let me remind you that the VPN_Folder contains .ovpn files for FCU, Companion

computer and Ground Control Station (GCS). For doing this Artificial Intelligence based object

detection, I created another profile for Jetson TX2 and named it jetsontx2.ovpn. Rest the

process remains the same as shown in Chapter 4 of how to transport the .ovpn file. Again, I

have transported the entire folder VPN_Folder first to default location using WinSCP. It allows

transportation of files/folders from windows to Linux. Then using below mentioned command,

I will move folder to location of ovpn application for execution.

Now move the folder from /home/yash to /etc/openvpn for execution

sudo mv /home/yash/VPN_Folder /etc/openvpn/

Step 2 Create systemd file for startup at boot

sudo nano /etc/systemd/system/vpn.service

Figure 11.21: Creating vpn.service at /etc/systemd/system for running VPN as a service on

startup

185

[Unit]

Description=VPN Service

After=networking.service

StartLimitIntervalSec=0

[Service]

Type=idle

ExecStart=/usr/sbin/openvpn /etc/openvpn/VPN_Folder/jetson.ovpn

Restart=on-failure

RestartSec=1

[Install]

WantedBy=multi-user.target

Figure 11.22: Creating content of vpn.service startup file

sudo systemctl enable vpn.service

sudo systemctl start vpn.service

sudo systemctl status vpn.service

sudo systemctl daemon-reload (only to reload service incase some changes are made)

11.5 Using Darknet framework and YOLO v4 artificial

intelligence algorithm for detecting objects on live camera feed

using Jetson TX2 located at ground station

186

 Installation of Darknet framework Now after Drone and Jetson TX2 both

are connected to VPN (internet), we need to install the Darknet framework to do object

detection on live video stream. The installation process is as below:-

Step 1 Git clone the darknet repository from github

https://github.com/AlexeyAB/darknet.git

Step 2. Move inside Darknet folder

Figure 11.23: Darknet folder containing YOLO weights and other configuration file for

Artificial Intelligence implementation on Jetson TX2

Figure 11.24: Changes to Makefile for make install on Jetson TX2

https://github.com/AlexeyAB/darknet.git

187

You can amend the Makefile either through GUI by connecting keyboard and monitor to the

Jetson TX2 or using remote ssh.

Incase doing through terminal window or remote ssh of Jetson TX2, use below commands. I

have made changes to Makefile as per my hardware Jetson TX2 running Arch Linux. Need to

amend as per hardware used.

cd darknet

sudo nano Makefile

Amend the Makefile as above and then Ctrl+O and Ctrl+X to save and exit.

Step 3. After making changes, to the Makefile, we need to make install it. Need to do this in

terminal window or through remote ssh. We are still in darknet directory.

make

Step 4. If all goes well then, we are ready to test live video feed for image detection. First

make sure companion computer is on and connected to onboard camera. It is accessible on

VPN from Jetson TX2 over Internet. Jetson TX2 being on ground can utilize any type of

internet connection from OFC based to 4G LTE Dongle as per the availability. Also, connecting

monitor and keyboard to Jetson TX2 is suggested over taking remote ssh from GCS laptop.

Open browser in Jetson TX2 and check availability of video feed from Companion computer

on url http://100.96.1.66:8080 You must put the IP Address of your companion computer

(VPN or local LAN)

Step 5. Testing live video feed for object detection using YOLO version 4. Open terminal

window.

If we want to use YOLOv4

cd darknet

./darknet detector demo cfg/coco.data cfg/yolov4.cfg yolov4.weights

http://100.96.1.66:8080/video?dummy=param.mjpg

http://100.96.1.66:8080/
http://100.96.1.66:8080/video?dummy=param.mjpg

188

Figure 11.25: Executing YOLO version 4 for object detection through terminal on live feed

from onboard camera over private VPN

Figure 11.26: Executing YOLO version 4 for object detection through terminal on live feed

from onboard camera over private VPN

189

Figure 11.27: Objects detected with Frame per second (FPS) statistics

If we want to use YOLOv4-tiny

cd darknet

./darknet detector demo cfg/coco.data cfg/yolov4-tiny.cfg yolov4-tiny.weights

http://100.96.1.66:8080/video?dummy=param.mjpg

Figure 11.28: Executing YOLO-tiny version 4 for object detection through terminal on live

feed from onboard camera over private VPN

http://100.96.1.66:8080/video?dummy=param.mjpg

190

Figure 11.29: Executing YOLO-tiny version 4 for object detection through terminal on live

feed from onboard camera over private VPN

Figure 11.30: Objects detected with Frame per second (FPS) statistics

191

Figure 11.31: Objects detection on live video feed

Figure 11.32: Objects detection on live video feed

YoloV4 is more accurate than YOLOv4-tiny, however YOLOv4-tiny is much faster

than YOLOv4. It entirely depends upon the requirement and resources available. A

192

quick understanding of the concept is as per pictures below

Figure 11.33: Speed vs accuracy comparison of YOLO versions

Figure 11.34: Speed vs accuracy comparison of YOLO versions

193

CHAPTER 12

CODES REPOSITORIES ON GITHUB

Figure 12.1 Flow of thesis until now

 All the python scripts or codes/application dumps utilized during the implementation

of the project is part of my github page https://github.com/yashlancers

Two repositories developed by me specifically for this project implementation are

BattMgmtSys_Dashboard and mm_Wave_Radar_IWR6843AOPEVM. They have been

developed after studying various different repositories available on github and their urls/links

are part of the Bibliography.

Others repositories which I utilized directly from github have been forked to my account for

easy reference. These are namely Ardupilot and streameye. Ardupilot was utilized to compile

the autopilot software on Flight Controller Unit (FCU) i.e Beagle Bone Blue as seen in Chapter

2. Streameye repository was used for compiling MJPEG video streaming server on companion

computer as seen in Chapter 11

https://github/

194

Figure 12.2: My Github repository https://github.com/yashlancers

195

CHAPTER 13

MISCELLANEOUS CONFIGURATIONS

13.1 To identify device as serial on USB

 All devices connected to USB are allotted different identity /dev/ttyUSB* which can

change depending upon various factors resulting in error while executing python scripts for

mmWave radar orrs485 to USB convertor. In order to uniquely identify USB connected devices

we need to define rules.

Step1 Connect all USB devices to companion computer and use the below command to

identify unique identifiers.

udevadm info --name=/dev/ttyUSB0 --attribute-walk

Figure 13.1: Console output of walkthrough for USB device connected

196

Similarly do for udevadm info --name=/dev/ttyUSB1 --attribute-walk, udevadm info --

name=/dev/ttyUSB2 --attribute-walk, udevadm info --name=/dev/ttyUSB3 --attribute-walk

and so on

Step2 Add the rules as given below to uniquely identify USB connected devices-

sudo nano /etc/udev/rules.d/99-usb-serial.rules

SUBSYSTEM=="tty", ATTRS{idVendor}=="1a86", ATTRS{idProduct}=="7523",

SYMLINK+="usb2uart"

SUBSYSTEM=="tty", ATTRS{interface}=="Standard Com Port",

ATTRS{bInterfaceClass}=="ff", SYMLINK+="data"

SUBSYSTEM=="tty", ATTRS{interface}=="Enhanced Com Port",

ATTRS{bInterfaceNumber}=="00", SYMLINK+="config"

SUBSYSTEM=="tty", ATTRS{idVendor}=="2109", ATTRS{bDeviceClass}=="09"

,ATTRS{version}==" 2.10", SYMLINK+="rs485"

Figure 13.2: Creating /etc/udev/rules.d/99-usb-serial.rules

197

Step3 Update the rules

sudo udevadm control --reload-rules && udevadm trigger

Now for example in my case instead of /dev/ttyUSB0 for a convertor (RS485 to USB), I can

use /dev/usb2uart in python script and it won’t change.

13.2 Backup of Raspberry Pi 4 or Beagle Bone Blue

 We require to take backup of SD card to save our OS with configuration from any SD

card failure and the ability to quickly restore the configuration incase of SD card failure. I have

used Win32DiskImager. This application can take backup of SD card of Beagle Bone Blue or

Raspberry Pi 4but not for Jetson Nano. The process is explained in the photo below. Need to

provide the directory path for backup including the destination filename i.e backup file name.

The extension of backup must be .img (image file). We click Read to begin the backup process

as SD card is auto detected unless working on more than two SD cards simultaneously. The

backup generated is the replica of the original SD card containing the OS with all

configurations done till now and can be readily used.

Figure 13.3: Using Win32 Disk Imager to take SD card backup for Beagle Bone Blue or

Raspberry Pi 4

 Backup of Jetson Nano SD Card The backup of Jetson Nano SD card is quite

different from the process above. We need a Linux machine to take backup. We will use the

198

dd command which is the oldest disk imaging tool on Linux.

Step 1 Use Disks GUI application to check for the SD card details still in use.

Figure 13.4: SD card details on Linux PC/Laptop

Step 2 Make sure the SD card is unmounted.

sudo umount /dev/sdX

 where X is SD card name

Step 3 Now we create backup in the home directory

sudo dd if=/dev/sdX conv=sync,noerror bs=64K | gzip -c > ~/backup_image.img.gz

Step 4. Now we can move this backup to windows and use any SD card flashing tool to

flash SD card as discussed in earlier chapters.

Step 5 If we wish to restore back on SD card in Linux itself

sudo su

199

$ gunzip -c ~/backup_image.img.gz | dd of=/dev/sdX bs=64K

13.3 Remote Desktop in Raspberry Pi 4

 Xrdp is an open-source implementation of the Microsoft Remote Desktop Protocol

(RDP) .It allows GUI based system access. We login to Raspberry Pi and run the below

mentioned commands to install Pixel desktop:

Update system

sudo apt update

sudo apt-get install raspberrypi-ui-mods xinit xserver-xorg

sudo reboot

As Xrdp package is available in the default Raspbian Buster repositories, we can install it right

away

sudo apt install xrdp

After installation process is completed, the Xrdp service will automatically start. We verify it

by

systemctl show -p SubState --value xrdp

Now we need to add the user to the group

sudo adduser xrdp ssl-cert

To access Raspberry Pi 4 through remote session

Open RDP client on Windows, add IP address and establish connection.

200

Figure 13.5: For establishing Remote Desktop Session of Raspberry Pi 4 over VPN for remote

configuration is quite helpful

Put user and password for remote connection

Figure 13.6: User credentials for establishing Remote Desktop Session of Raspberry Pi 4 over

VPN for remote configuration is quite helpful

201

Figure 13.7: Remote Desktop Session of Raspberry Pi 4 over VPN established successfully

202

13.4 Bibliography

 This project had many implementational aspects for which I referred to a number of

blogs, websites and YouTube videos. I have tried to place some important links in

Bibliography.

“4G LTE Cellular BVLOS Drone Control - XRD.” Botlink, https://botlink.com/4g-

lte-cellular-bvlos-drone-control-xrd.

Adding a New MAVLink Message - Dev Documentation.

https://ardupilot.org/dev/docs/code-overview-adding-a-new-mavlink-message.html.

AdrieSentosaFollow. “Raspberry Pi - Data Logging.” Instructables,

https://www.instructables.com/Raspberry-Pi-Data-Logging/.

Advanced Tuning — Copter Documentation.

https://ardupilot.org/copter/docs/tuning.html.

Alexey. AlexeyAB/Darknet. 2016. 2021. GitHub,

https://github.com/AlexeyAB/darknet.

“Alro10/YOLO-Darknet-on-Jetson-TX2.” GitHub,

https://github.com/Alro10/YOLO-darknet-on-Jetson-TX2.

“ArduPilot Discourse.” ArduPilot Discourse, https://discuss.ardupilot.org/.

ArduPilot Documentation — ArduPilot Documentation.

https://ardupilot.org/ardupilot/index.html.

ArduPilot Firmware : /Tools/MissionPlanner/Gstreamer.

https://firmware.ardupilot.org/Tools/MissionPlanner/gstreamer/.

ArduPilot/Ardupilot. 2013. ArduPilot, 2021. GitHub,

https://github.com/ArduPilot/ardupilot.

Beagleboard:BeagleBoneBlack Debian - ELinux.Org.

https://elinux.org/Beagleboard:BeagleBoneBlack_Debian#Flashing_eMMC.

BeagleBoard.Org - Getting-Started. https://beagleboard.org/getting-started#update.

Camera Configuration - Raspberry Pi Documentation.

https://www.raspberrypi.org/documentation/configuration/camera.md.

Canu, Sergio. “YOLO V3 - Install and Run Yolo on Nvidia Jetson Nano (with

GPU).” Pysource, 29 Aug. 2019, https://pysource.com/2019/08/29/yolo-v3-install-

and-run-yolo-on-nvidia-jetson-nano-with-gpu/.

“Clone SD Card - Jetson Nano and Xavier NX.” JetsonHacks, 8 Aug. 2020,

https://botlink.com/4g-lte-cellular-bvlos-drone-control-xrd
https://botlink.com/4g-lte-cellular-bvlos-drone-control-xrd
https://github.com/AlexeyAB/darknet
https://github.com/ArduPilot/ardupilot
https://pysource.com/2019/08/29/yolo-v3-install-and-run-yolo-on-nvidia-jetson-nano-with-gpu/
https://pysource.com/2019/08/29/yolo-v3-install-and-run-yolo-on-nvidia-jetson-nano-with-gpu/

203

https://www.jetsonhacks.com/2020/08/08/clone-sd-card-jetson-nano-and-xavier-

nx/.

Shaun Taylor-Morgan Feed “The 7 Most Popular Ways to Plot Data in Python.”

Opensource.Com, https://opensource.com/article/20/4/plot-data-python.

Communicating with Raspberry Pi via MAVLink — Dev Documentation.

https://ardupilot.org/dev/docs/raspberry-pi-via-mavlink.html. Accessed 12 June

2021.

“Connect BeagleBone Black to Cellular with Huawei E303 Modem.” Hackster.Io,

https://www.hackster.io/hologram/connect-beaglebone-black-to-cellular-with-

huawei-e303-modem-0e14c2.

Copter Object Avoidance — Dev Documentation.

https://ardupilot.org/dev/docs/code-overview-object-avoidance.html.

“Debian - Trying to Run a Python Script as a Service Using Systemd.” Unix &

Linux Stack Exchange, https://unix.stackexchange.com/questions/364412/trying-to-

run-a-python-script-as-a-service-using-systemd.

“Debian - What’s the Difference between /Usr/Lib/Systemd/System and

/Etc/Systemd/System?” Unix & Linux Stack Exchange,

https://unix.stackexchange.com/questions/206315/whats-the-difference-between-

usr-lib-systemd-system-and-etc-systemd-system.

defgw. “Collecting Data from Serial Port and CSV Handling.” Defgw, 5 Apr. 2015,

https://defgw.wordpress.com/2015/04/05/collecting-data-from-serial-port-and-csv-

handling/.

Denecke, Mirko. Mirkix/Ardupilotblue. 2017. 2021. GitHub,

https://github.com/mirkix/ardupilotblue.

Derek. “About the Book.” Exploring BeagleBone, http://exploringbeaglebone.com/.

Downloading and Analyzing Data Logs in Mission Planner — Copter

Documentation. https://ardupilot.org/copter/docs/common-downloading-and-

analyzing-data-logs-in-mission-planner.html.

“DroneePlotter - Drone Flight Log Analysis Tool Works on Web Browser.”

Diydrones, 27 Oct. 2017, https://diydrones.com/profiles/blogs/droneeplotter-drone-

flight-log-analysis-tool-works-on-web-browser.

EKF — Dev Documentation. https://ardupilot.org/dev/docs/ekf.html.

EKF2 Estimation System — Dev Documentation.

https://ardupilot.org/dev/docs/ekf2-estimation-system.html.

Electronic Speed Controller (ESC) Calibration — Copter Documentation.

https://ardupilot.org/copter/docs/esc-calibration.html.

https://www.jetsonhacks.com/2020/08/08/clone-sd-card-jetson-nano-and-xavier-nx/
https://www.jetsonhacks.com/2020/08/08/clone-sd-card-jetson-nano-and-xavier-nx/
https://defgw.wordpress.com/2015/04/05/collecting-data-from-serial-port-and-csv-handling/
https://defgw.wordpress.com/2015/04/05/collecting-data-from-serial-port-and-csv-handling/
https://github.com/mirkix/ardupilotblue

204

Emmet. “How to Setup Raspberry Pi Remote Desktop.” Pi My Life Up, 24 Apr.

2019, https://pimylifeup.com/raspberry-pi-remote-desktop/.

“Enabling OpenVPN Configuration/Autostart on Ubuntu - DZone Integration.”

Dzone.Com, https://dzone.com/articles/enabling-openvpn-configuration-autostart-

on-ubuntu.

Extended Kalman Filter Navigation Overview and Tuning — Dev Documentation.

https://ardupilot.org/dev/docs/extended-kalman-filter.html.

“Ffmpeg - Raspberry Pi USB Webcam Stream to Computer Using Gstreamer.”

Stack Overflow,https://stackoverflow.com/questions/36023598/raspberry-pi-usb-

webcam-stream-to-computer-using-gstreamer.

“Five Ways to Run a Program On Your Raspberry Pi At Startup.” Dexter

Industries, https://www.dexterindustries.com/howto/run-a-program-on-your-

raspberry-pi-at-startup/.

Fixing Wifi Connectivity on Nvidia Jetson Nano: An Experience to Share.

https://www.datatobiz.com/blog/fixing-wifi-connectivity-nvidia-jetson-nano/.

Gorordo, Ibai. IbaiGorordo/AWR1843-Read-Data-Python-MMWAVE-SDK-3-.

2019. 2021. GitHub, https://github.com/ibaiGorordo/AWR1843-Read-Data-Python-

MMWAVE-SDK-3-.

Grinberg, Miguel. How to Build and Run MJPG-Streamer on the Raspberry Pi.

http://blog.miguelgrinberg.com/post/how-to-build-and-run-mjpg-streamer-on-the-

raspberry-pi.

Running a Flask Application as a Service with Systemd.

http://blog.miguelgrinberg.com/post/running-a-flask-application-as-a-service-with-

systemd.

Stream Video from the Raspberry Pi Camera to Web Browsers, Even on IOS and

Android. http://blog.miguelgrinberg.com/post/stream-video-from-the-raspberry-pi-

camera-to-web-browsers-even-on-ios-and-android.

Ground Effect Compensation — Copter Documentation.

https://ardupilot.org/copter/docs/ground-effect-compensation.html#ground-effect-

compensation.

Gst-Launch-1.0. https://gstreamer.freedesktop.org/documentation/tools/gst-

launch.html?gi-language=c.

“GStreamer with USB Webcam on Nvidia Jetson Nano.” Stack Overflow,

https://stackoverflow.com/questions/65492424/gstreamer-with-usb-webcam-on-

nvidia-jetson-nano.

Guoan, Xiao. “Using WPA_Supplicant to Connect to WPA2 Wi-Fi from Terminal

on Ubuntu 16.04 Server.” LinuxBabe, 23 Mar. 2017,

https://pimylifeup.com/raspberry-pi-remote-desktop/
https://github.com/ibaiGorordo/AWR1843-Read-Data-Python-MMWAVE-SDK-3-
https://github.com/ibaiGorordo/AWR1843-Read-Data-Python-MMWAVE-SDK-3-

205

https://www.linuxbabe.com/command-line/ubuntu-server-16-04-wifi-wpa-

supplicant.

Gus. “Raspberry Pi Port Forwarding & Dynamic DNS.” Pi My Life Up, 27 Apr.

2015, https://pimylifeup.com/raspberry-pi-port-forwarding/.

Hardware Setup of XWR6843AOPEVM for Flashing Mode.

https://dev.ti.com/tirex/explore/content/mmwave_automotive_toolbox_3_2_0/mmw

ave_sdk_ccs_projects/common/docs/hardware_setup/hw_setup_aop_modular_mod

e_flashing.html.

Henry-Stocker, Sandra. “How to Share Files between Linux and Windows.”

Network World, 24 Apr. 2018,

https://www.networkworld.com/article/3269189/sharing-files-between-linux-and-

windows.html.

“How to Set Up an OpenVPN Server on a Raspberry Pi - DZone IoT.” Dzone.Com,

https://dzone.com/articles/how-to-setup-an-openvpn-server-on-a-raspberry-pi.

“How To Setup Autorun a Python Script Using Systemd.” TecAdmin, 28 Sept.

2017, https://tecadmin.net/setup-autorun-python-script-using-systemd/.

“How To Use Systemctl to Manage Systemd Services and Units.” DigitalOcean,

https://www.digitalocean.com/community/tutorials/how-to-use-systemctl-to-

manage-systemd-services-and-units.

“HowTo: Setup RaspberryPi with OpenVPN Client.” A Guy, Named Urban Jack, 2

Dec. 2013, https://urbanjack.wordpress.com/2013/12/02/howto-setup-raspberrypi-

with-openvpn-client/.

“IBM AIX.” IBM Developer, https://developer.ibm.com/components/aix/.

imfatant. Imfatant/Test. 2017. 2021. GitHub, https://github.com/imfatant/test.

Index of /Data/Pkg/Windows/1.14.4.

https://gstreamer.freedesktop.org/data/pkg/windows/1.14.4/. Accessed 12 June

2021.

Installing Darknet. https://pjreddie.com/darknet/install/.

Installing the Latest Python 3 on Raspberry Pi.

https://samx18.io/blog/2018/09/05/python3_raspberrypi.html.

JetPack 4.5.1 Installation for Jetson TX2 NX on DSBOARD-NX2 | Forecr.Io.

https://www.forecr.io/blogs/installation/jetpack-4-5-1-installation-for-jetson-tx2-nx-

on-dsboard-nx2.

Kapoor, Chetan. “How to Install Python 3.8 on Raspberry Pi (Raspbian).”

Installvirtual, 15 Oct. 2019, https://installvirtual.com/how-to-install-python-3-8-on-

raspberry-pi-raspbian/.

https://www.linuxbabe.com/command-line/ubuntu-server-16-04-wifi-wpa-supplicant
https://www.linuxbabe.com/command-line/ubuntu-server-16-04-wifi-wpa-supplicant
https://pimylifeup.com/raspberry-pi-port-forwarding/
https://www.networkworld.com/article/3269189/sharing-files-between-linux-and-windows.html
https://www.networkworld.com/article/3269189/sharing-files-between-linux-and-windows.html
https://tecadmin.net/setup-autorun-python-script-using-systemd/
https://urbanjack.wordpress.com/2013/12/02/howto-setup-raspberrypi-with-openvpn-client/
https://urbanjack.wordpress.com/2013/12/02/howto-setup-raspberrypi-with-openvpn-client/
https://github.com/imfatant/test
https://installvirtual.com/how-to-install-python-3-8-on-raspberry-pi-raspbian/
https://installvirtual.com/how-to-install-python-3-8-on-raspberry-pi-raspbian/

206

Linux - Autostart OpenVPN in Systemd (Ubuntu) - Getting Started OpenVPN —

VPNSecure. https://support.vpnsecure.me/articles/getting-started/linux-autostart-

openvpn-in-systemd-ubuntu.

“Linux - FFmpeg Starting Manually but Not with Systemd on Boot.” Stack

Overflow, https://stackoverflow.com/questions/62879992/ffmpeg-starting-

manually-but-not-with-systemd-on-boot.

“Linux - Systemd - Giving My Service Multiple Arguments.” Super User,

https://superuser.com/questions/728951/systemd-giving-my-service-multiple-

arguments.

Managing Gyro Noise with the Static Notch and Dynamic Harmonic Notch Filters

— Copter Documentation. https://ardupilot.org/copter/docs/common-imu-notch-

filtering.html.

Manual Roll and Pitch Tuning — Copter Documentation.

https://ardupilot.org/copter/docs/ac_rollpitchtuning.html. Accessed 12 June 2021.

Messages (Common) · MAVLink Developer Guide.

https://mavlink.io/en/messages/common.html#DISTANCE_SENSOR. Accessed 12

June 2021.

MmWave Demo Visualizer.

https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/3.5.0/.

NanoDano. “Creating Systemd Service Files.” DevDungeon, 16 Sept. 2016,

https://www.devdungeon.com/content/creating-systemd-service-files.

Ngo, Van Chan. Channgo2203/Test. 2019. 2019. GitHub,

https://github.com/channgo2203/test.

Piggybank. “NVIDIA Jetson: JetsonTX2 - Installation OS(Ubuntu 18.04 LTS) and

SDK.” NVIDIA Jetson, Winter 2019,

https://spyjetson.blogspot.com/2019/11/jetsontx2-installation-osubuntu-1804.html.

Pre-Arm Safety Checks — Copter Documentation.

https://ardupilot.org/copter/docs/common-prearm-safety-checks.html.

“PuTTY Equivalant on a Raspberry Pi.” Particle, 29 Mar. 2017,

https://community.particle.io/t/putty-equivalant-on-a-raspberry-pi/30961/14.

“Python 3.7.” NVIDIA Developer Forums, 19 June 2019,

https://forums.developer.nvidia.com/t/python-3-7/76655/7.

“Python Datalogger - Using PySerial to Read Serial Data Output from Arduino.”

Maker Portal, https://makersportal.com/blog/2018/2/25/python-datalogger-reading-

the-serial-output-from-arduino-to-analyze-data-using-pyserial.

https://www.devdungeon.com/content/creating-systemd-service-files
https://github.com/channgo2203/test
https://spyjetson.blogspot.com/2019/11/jetsontx2-installation-osubuntu-1804.html
https://community.particle.io/t/putty-equivalant-on-a-raspberry-pi/30961/14
https://forums.developer.nvidia.com/t/python-3-7/76655/7

207

Rajaraman, Jyotsna. “How to Read and Write from Serial Port Using Raspberry

Pi?” IoTEDU, 14 Apr. 2020, https://iot4beginners.com/how-to-read-and-write-

from-serial-port-using-raspberry-pi/.

Raspberry Pi Serial Data Logger with Display.

http://www.davesmotleyprojects.com/raspi/raspi-data-logger/raspi-data-

logger.html.

Raspberry Pi UART Communication Using Python and C | Raspberry Pi.

https://www.electronicwings.com/raspberry-pi/raspberry-pi-uart-communication-

using-python-and-c.

“Raspberry Pi Web-Based Data Logger Using MySQL and PHP.” Electronics-

Lab.Com, https://www.electronics-lab.com/project/raspberry-pi-web-based-data-

logger-using-mysql-php/.

Reading the Analog Inputs (ADC) - BeagleBone.

http://beaglebone.cameon.net/home/reading-the-analog-inputs-adc.

RPLidar A2 360 Degree Lidar — Copter Documentation.

https://ardupilot.org/copter/docs/common-rplidar-a2.html.

Serial Port Configuration Options — Copter Documentation.

https://ardupilot.org/copter/docs/common-serial-options.html.

Serial Ports / UART - BeagleBone.

https://sites.google.com/a/cameon.net/beaglebone/home/serial-ports-uart.

Simple Object Avoidance — Copter Documentation.

https://ardupilot.org/copter/docs/common-simple-object-avoidance.html.

Staff, Embedded. “Comparing Real-Time Scheduling on the Linux Kernel and an

RTOS.” Embedded.Com, 25 Apr. 2012, https://www.embedded.com/comparing-

real-time-scheduling-on-the-linux-kernel-and-an-rtos/.

“Start Mavproxy as a Service.” ArduPilot Discourse, 15 Apr. 2020,

https://discuss.ardupilot.org/t/start-mavproxy-as-a-service/54987.

Startup Options — MAVProxy Documentation.

https://ardupilot.org/mavproxy/docs/getting_started/starting.html.

Startup Scripts — MAVProxy Documentation.

https://ardupilot.org/mavproxy/docs/getting_started/mavinit.html.

Such, David. “Reefwing Robotics: The Falcon DS1 - BeagleBone Blue Drone (Part

1).” Reefwing Robotics, 21 June 2020,

https://reefwingrobotics.blogspot.com/2020/06/the-falcon-ds1-beaglebone-blue-

drone.html.

Systemd - Raspberry Pi Documentation.

https://www.raspberrypi.org/documentation/linux/usage/systemd.md.

https://iot4beginners.com/how-to-read-and-write-from-serial-port-using-raspberry-pi/
https://iot4beginners.com/how-to-read-and-write-from-serial-port-using-raspberry-pi/
https://sites.google.com/a/cameon.net/beaglebone/home/serial-ports-uart.
https://www.embedded.com/comparing-real-time-scheduling-on-the-linux-kernel-and-an-rtos/
https://www.embedded.com/comparing-real-time-scheduling-on-the-linux-kernel-and-an-rtos/
https://discuss.ardupilot.org/t/start-mavproxy-as-a-service/54987
https://reefwingrobotics.blogspot.com/2020/06/the-falcon-ds1-beaglebone-blue-drone.html
https://reefwingrobotics.blogspot.com/2020/06/the-falcon-ds1-beaglebone-blue-drone.html

208

“The Many Ways of Getting Data Into Charts.” CSS-Tricks, 1 May 2019,

https://css-tricks.com/the-many-ways-of-getting-data-into-charts/.

“This Drone w/ a BBBlue and ArduPilot/ArduCopter.” BeagleBoard Projects,

https://beagleboard.org/p/functt/this-drone-w-a-bbblue-and-ardupilot-arducopter-

0ee27b.

“Tutorial - Auto Run Python Programs on the Raspberry Pi.” Dexter Industries,

https://www.dexterindustries.com/howto/auto-run-python-programs-on-the-

raspberry-pi/.

UART at Raspberry Pi GPIO Pinout. https://pinout.xyz/pinout/uart.

UARTs and the Console — Dev Documentation.

https://ardupilot.org/dev/docs/learning-ardupilot-uarts-and-the-console.html.

Untitled. https://dev.ti.com/tirex/explore/.

Using MAVExplorer for Log Analysis — Dev Documentation.

https://ardupilot.org/dev/docs/using-mavexplorer-for-log-analysis.html

Video Streaming Raspberry Pi Camera | Random Nerd Tutorials. 15 Aug. 2017,

https://randomnerdtutorials.com/video-streaming-with-raspberry-pi-camera/.

Website:Follow, scottkildallScott Kildall. “Raspberry Pi: Launch Python Script on

Startup.” Instructables, https://www.instructables.com/Raspberry-Pi-Launch-

Python-script-on-startup/.

YOLOv4 on Jetson Nano. https://jkjung-avt.github.io/yolov4/.

https://css-tricks.com/the-many-ways-of-getting-data-into-charts/
https://randomnerdtutorials.com/video-streaming-with-raspberry-pi-camera/

209

REFERENCES

1. IWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package

(AOP) datasheet - URL https://www.ti.com/product/IWR6843AOP

2. IWR14xx/16xx/18xx/68xx/64xx Industrial Radar Family Technical Reference

Manual - URL https://www.ti.com/product/IWR6843AOP

3. Ardupilot Development Site - URL https://ardupilot.org/dev/

4. Beagle board official webpage – URL https://beagleboard.org/blue

5. Koubaa, Anis & Allouch, Azza & Alajlan, Maram & Javed, Yasir & Belghith,

Abdelfettah & Khalgui, Mohamed. (2019). Micro Air Vehicle Link (MAVLink) in a

Nutshell: A Survey. – URL

https://www.researchgate.net/publication/334028415_Micro_Air_Vehicle_Link_M

AVLink_in_a_Nutshell_A_Survey

6. A2 RP LIDAR Datasheet - URL

https://www.digikey.com/htmldatasheets/production/2801237/0/0/1/rplidar-a2-

a2m7-a2m8.html

7. UBLOX GPS Datasheet - URL https://www.u-blox.com/sites/default/files/NEO-M8-

FW3_DataSheet_UBX-15031086.pdf

https://ardupilot.org/dev/
https://beagleboard.org/blue
https://www.researchgate.net/publication/334028415_Micro_Air_Vehicle_Link_MAVLink_in_a_Nutshell_A_Survey
https://www.researchgate.net/publication/334028415_Micro_Air_Vehicle_Link_MAVLink_in_a_Nutshell_A_Survey
https://www.digikey.com/htmldatasheets/production/2801237/0/0/1/rplidar-a2-a2m7-a2m8.html
https://www.digikey.com/htmldatasheets/production/2801237/0/0/1/rplidar-a2-a2m7-a2m8.html
https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf
https://www.u-blox.com/sites/default/files/NEO-M8-FW3_DataSheet_UBX-15031086.pdf

