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ABSTRACT 

 
KEYWORDS: ARIMA, Balancing Market, Battery Sizing.  Electricity Market , 

Forecasting Methods, Frequency Control, Gate Closure 

Lithuania, Wind Power.  

 
The stochastic nature of renewable energy resources ,such as wind speed or solar 

radiation, presents a challenge for the grid integration of renewable power 

generation.Wind power is increasingly integrated into power systems through 

electricity markets. To make the market operation economically possible for wind 

power producers, the period between bids and delivery (gate closure time) is crucial. 

Thus, moving to shorter gate closure markets results in reduction of forecast errors 

and lowering of penalties to be paid by wind power producers .Further, the 

forecasting is done using the time series forecasting methods. These methods include 

Auto Regressive (AR), Moving Average (MA), Auto Regressive Integrated Moving 

Average (ARIMA), adoption of these methods lead to a further decrease in the 

forecasted errors. The imbalances between renewable power predictions and realised 

production are generally penalised by system operators since additional reserves are 

required to maintain the stability of the grid. The coupling of storage devices with 

renewable energy plants is one of the solutions studied to reduce those imbalances. In 

the present work , ARIMA based wind power forecasting method is used along with 

short gate closure to reduce forecasting error. Further, to reduce the penalty imposed 

by Independent System Operator (ISO) on wind power producers , due to imbalance 

caused by forecasting errors , Battery Energy Storage Systems (BESS) with proper 

rating is suggested. 

 

 

 



v  

 TABLE OF CONTENTS  

  

Title 

 

Page 

 ACKNOWLEDGEMENTS .  . . . . . . . . . . . . . . . . . . .. .  . .. . . . . .  . . . . . . . . .  i 

 ABSTRACT . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  ii 

 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  viii 

 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix 

 ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x 

 NOTATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi 

 CHAPTER 1   INTRODUCTION: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

 1.1 Introduction to Wind Energy  . . . . . . . . . . . . . . . .  . . . . . . . . . . . 1 
 

1.2 Introduction to Wind Power Forecasting . . . . . . . . . . . . . . . . . . .  1 
 

1.3   Wind Prediction Error and Electricity Market. . . . . . . . . . . . . . . . . . . 2 

 

1.4   Gate Closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

1.5   Battery Energy Storage Systems Integration. ……. .. ….. … . . . . . . . . 

.. . . . . . .  4 

1.6    Motivations and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.6   Organization of Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

 CHAPTER 2   ARIMA BASED WIND FORECASTING WITH SHORT 

GATE CLOSURE ALONG WITH BESS FOR REDUCING PENALTY 

ON WIND POWER PROVIDER.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 

 2.1    Naïve Wind Power Forecasting with Short Gate Closure 7 

2.2    Disadvantage of Naïve Forecast. .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  .      8 

 2.3    ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 10 

 2.3.1    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     10 

 2.3.2    Linear Models for Stationary Time Series. . . . . . . . . . . . . . . .  10 



vi  

 2.3.3    Stationarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

 2.3.4    Finite Order Moving Average Processes (MA) . . . . . . . . . . .  15 

 2.3.5    Finite Order Auto-Regressive Processes (AR) . . . . . . . . . . . .  20 

 2.3.6    Mixed Auto-Regressive Moving Average (ARMA) . . . . . . . . 29 

 2.3.7    Non Stationarity Processes : Auto-Regressive Integrated 

Moving Average (ARIMA) . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 
32 

 2.3.8    Time Series Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

 2.4    Battery Energy Storage Systems . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . 35 

 2.4.1    Battery Energy Storage Systems for reducing penalty on 

WPP in intra-day market. . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 
35 

 2.4.2    Various Storage Solutions. . . . . . . . . . . . . . .  . . . . . . . . . . . . . 35 

 2.4.3    Methodology for Battery Sizing . . . . . . . . . .  . . . . . . . . . . . . . 37 

 CHAPTER 3    SIMULATION   RESULTS 38 

 3.1    Lithuania : An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  . . 38 

 3.2    Data 39 

 3.2.1    Lithuania Wind Power Generation Data. . . . . . . . . . . . . . . . .  39 

 3.2.2    Lithuania Wind Power Forecast Data. . . . . . . . . . . . . . . . . . .  39 

 3.2.3    Lithuania Balancing Prices. . . . . . . . . . . . . . . . . . . . . . . . . . . .  40 

 3.3   Data Preparation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  40 

 3.4    Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . . . . . . . .  41 

 3.4.1    Short Term Forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  42 

 3.4.2    Implementation of ARIMA. . . . . . . . . . . . . . . . . . . . . . . . . . .  44 

 3.4.3    Storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  45 

 CHAPTER 4    CONCLUSION 48 

 4.1    Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  48 

 4.2    Future  Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . .  49 



vii  

 REFERENCES 51 

 

 
 

 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 
 

  

 

 

 



viii  

LIST OF TABLES 

 

Table 

 

Title 

 

Page 

2.1 Behavior of Theoretical ACF and PACF for Stationary Processes. .  31 

3.2 RMSE for DA forecast and Naïve Forecast. . . . . . . . . . .  . . . . . . . . . . 42 

3.3 APEN and Savings for various battery sizes . . . . . . . . . . . . . . . . . . . .  46 

3.4 Return on Investment for various battery sizes . . . . . . . . . . . . 47 

 
 

 



ix  

 LIST OF FIGURES  

 

Table 

 

Title 

 

Page 

2.1 1 Realizations of (a) stationary, (b) non-stationary . . . . . . . . . . . .  .. . . 12 

2.2 A realisation of MA (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
18 

2.3 A realisation of MA(2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

2.4 A realisation of AR(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. 
22 

2.5 Time series model Building . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

3.1 Plot of Wind Power Generated and Forecasted (Day Ahead) . . . . . . . . .  41 

3.2 Day Ahead and Two Hours Ahead Naïve Forecast Errors . . . . . . . . . . .  42 

3.3 MAE for Day Ahead & Hour Ahead Forecast . . . . . . . . . . . . . . . . . . . .  43 

3.4 ACF plot 44 

3.5 PACF plot 45 

 

 

 



x  

 

 

 

ABBREVIATIONS 
 

 
 

MW Megawatt 

EU European union 

TWH Terawatt Hours 

CO2 Carbon Dioxide 

RES Renewable energy sources 

PPA Power purchase agreements 

BESS Battery Energy Storage System 

NATO North Atlantic Treaty Organisation 

OECD 

 

NEIS 

Organisation for Economic Co-operation and 

Development 

National Energy  Integration  Survey 

GDP 

ARIMA 

WPP 

ACF 

PACF 

Gross domestic product 

                                  Auto Regressive Integrated Moving Average 

Wind Power Producers 

 

Autocorrelation function 

Partial Autocorrelation Function 

 

  



1  

 

 

 

NOTATION 

 
𝑌𝑇 Time Series  Value At Hour T 

�̂�𝑇+𝑘 Time Series Value At Hour T + k 

 φ Error Weights 

APEN Absorbed Penalty 

x Balancing Price 

E Prediction Error 

ROI Return on Investment  

 Rb Rating of Battery  

Cb Cost of Battery  

Xt           Time series value at time T 

L(x)           Linearise function 

Cov⁡(𝑥)         Covariance Function 

E(Yt)         Mean function 

𝛾𝑦(𝑘)        Covariance of k 

µ                Mean 

B               Back Step Operator 

ε                White Noise 

ϴ              Error Weights  

ϱy               Autocorrelation 

 

 

 

 



1 
 
 

CHAPTER 1 

 

INTRODUCTION 

 

1.1  Wind Energy 

 
In recent years, rapid economic growth has been owed to the power production increment in 

different ways. Energy extracted from fossil fuels has many opponents because it leads to air 

pollution, ozone depletion and global warming. According to the Paris agreement, for the aim 

of limiting the global temperature rise under 2 ◦C, renewable energies have to supply two-

thirds of the global energy demand up to 2050 [1]. Among all kinds of renewable energies 

like solar photovoltaic, tidal, waves and modern bioenergy, wind power has become 

extremely popular because it is highly efficient, cheap and beneficial for the environment [2]. 

Additionally, due to its abundance, wind energy plays a leading role in electricity production 

of the renewable energy sector [3]. It has the greatest demand and growth among all the 

renewable energy sources over the last decade [4]. At the EU level, Lithuania joined a 

coalition of five EU countries (Austria, Denmark, Ireland, Luxembourg and Spain) calling for 

the inclusion of a 100% renewable energy (electricity) scenario in the EU’s long-term climate 

projections. Under the 2018 NEIS, about 3.8 terawatt hours (TWh) of annual onshore wind 

generation is envisaged by 2030, which requires a total capacity of 1300 megawatts (MW) 

(an additional 400 MW by 2025 and another 370 MW by 2030). In 2050, Lithuania will need 

around 18 terawatt hours (TWh) of annual electricity generation, more than half of which – 

about 10 TWh – is expected to be produced from wind both onshore and offshore [5]. 

 

1.2 Introduction to Wind Power Forecasting 

 

The largest obstacle that suppresses the increase of wind power penetration within the power 

grid is uncertainty of wind speed. Therefore, accurate wind power forecasting is a 
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challenging task, which can significantly impact the effective operation of power system. 

Wind power forecasting is also vital for planning unit commitment, maintenance scheduling 

and profit maximisation of power traders. The current development of cost-effective 

operation and maintenance methods for modern wind turbines benefits from the advancement 

of effective and accurate wind power forecasting approaches. 

Also,Wind power prediction is extremely significant for evaluating future energy extraction 

from one or more wind turbines (referred to as a wind farm). However, the power generated 

by wind turbines varies rapidly due to the fluctuation of wind speed and wind direction. It is 

also dependent on terrain, humidity and time of the day [6]. This continuous change makes 

wind power management challenging for distribution networks, where a balance is highly 

desired between the power supply and demand. Therefore, one of the major reasons for wind 

power forecasting is to decrease the risk of uncertainties in wind, allowing higher penetration. 

It is also vital for better dispatch, maintenance planning, determination of required operating 

equipment, etc. Few published investigations, which have carried out wind power forecasting 

studies in recent years have been large enough to provide reliable estimates or guide for 

comparing different predictive methods. 

 

1.3 Wind Prediction Error and Electricity Market 

 

The initiation of wind power into power systems contributes to the reduction of CO2 

emissions and the security of supply through the use of endogenous resources. However, the 

increased share of electricity produced by fluctuating and not completely predictable 

renewable generation is altering the traditional operations of power systems. Its effects can be 

seen in an increased unpredictability of electricity prices patterns, in an increase to the use of 

intraday adjustments and on the increased request for reserves. Furthermore, the reduced 

utilisation factor of renewable generators reduce the profitability of the farms, because of 

additional network reinforcements. However, the limited predictability of wind power 

production represents a constraint for large-scale wind power integration [7]. 

The presence of negative prices stems not only from low operating cost of RES, but also due 

to government subsidies, auctions, and other fixed price agreements such as power purchase 
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agreements (PPA), which guarantees RES producers to make a profit despite the negative 

price biddings. On top of that, the significant cost associated with starting and shutting power 

plants also forces some plants to stay online during RES peak despite making a loss. 

Economically, renewable energy sources (RES) with intermittent supply (such as solar and 

wind) differ greatly from traditional sources of energy (such as coal, oil, and gas) in the 

fundamental fact that they do not require raw material for electricity generation. Hence, the 

cost of thes RES are mostly fixed and predictable - during the initial setup, and the 

subsequent maintenance. This advantage of low operating costs grants them the ability to 

drive down electricity prices in the presence of strong supply .Most electricity markets of the 

world have a large intermittent RES mix. Gas power plants, which are cheaper to turn on and 

off compared to coal plants, are typically put on standby to make up for the shortage in 

energy production from these intermittent RES. Hence, during the time of low sun / wind, 

electricity prices will surge up to that of gas prices; while prices can even be driven down to 

negative during the periods of high renewable power output  

In a competitive electricity market such as the Nordic and EU, accurate forecasting of wind 

speed can bring in great value as market prices are determined based on the cost of energy 

imbalances Besides that, it is also a critical aspect in developing a robust and well-

functioning hour-ahead and day-ahead markets . 

 

1.4 Gate Closure 

 

In the day-head markets the day-ahead forecast horizon is too long for wind power forecasts 

and results in large forecast errors and imbalances that have to be settled through imbalance 

costs, thus complicating and artificially increasing the overall cost of energy. The impact of 

using more accurate forecasts ,due to short gate closure, from 2-hours-ahead, was quite large 

causing less forecast errors [8]. Thus, moving to shorter gate closure markets results in 

reduction of forecast errors and lowering of penalties to be paid by wind power 

producers(WPP). 
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1.5 Battery Energy Storage  Integration 

 

The stochastic nature of renewable energies resources such as wind speed or solar radiation 

and long gate closure time represents a challenge for the grid integration of renewable energy 

plants. The imbalances between renewable power predictions and realised production are 

generally penalised by system operators since additional reserves are required to maintain the 

stability of the grid. The coupling of storage devices with renewable energy plants is one of 

the solutions studied to reduce those imbalances.  

A solution for part of these issues is the development of network storage capacity both 

associated and not associated with renewable producers. In particular, Storage associated 

with renewable power plants represents the most straightforward solution to mitigate 

renewables variability. As a flexible and adjustable power supply, the energy storage system 

provides a new idea to cope with the intermittent power integration . In various types of 

large-scale energy storage systems (such as pumped storage, compressed air storage, etc.), 

battery energy storage system (BESS) has the most promising broad in power applications 

benefiting from its high energy efficiency and weak requirement of geographical conditions 

[9]. Wind farm with BESS configuration will become a common model for large-scale wind 

power development in the future.  

However, in addition to the high investment cost of BESS, how to properly size BESS size to 

balance the investment cost and the effect of levelling wind power fluctuation and uncertainty 

has been a research hotspot in recent years. Storage can be used to absorb excess electricity in  

hours of high renewable production and low demand and to re-inject it into the network later. 

The operating performance of such storage can be highly improved by considering simple 

charge-discharge plans based on short-term predictions of the renewable production. These 

predictions, generated by physical or statistical models using weather predictions and 

measurements as input are nowadays widely used by system operators in several countries. 

This increased performance can be translated directly into a reduced size of the storage. 
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1.6 Motivations & Objectives 

 

Wind Power is a very popular but uncertain and less predictable renewable resource. The 

electricity markets do not have provision for bidding at short gate closure. This results in 

forecast error and higher imbalance costs [8].The implementation of better wind power           

forecasting techniques result in substantial reduction of forecast error [4]. There is a need for 

simultaneous adoption of better forecasting techniques, short gate closure and other relevant 

means to remove these shortcomings. 

Wind power integration along with various sources such as pumped storage, flywheels , ultra-

capacitors have been studied in recent past. These configurations were studied in order to 

provides a suitable means of reducing the uncertainty associated with wind power. Amongst, 

these configurations wind power along with BESS is most widely adopted. BESS can be used 

to absorb excess electricity in hours of high renewable production and low demand. Then, it 

can be supplied to the power system ,in times of low power generation and high demand.  

The objective of this thesis is to study the impact of short gate closure, better forecasting 

techniques and BESS on reduction of forecast error and imbalance cost.  

 

 

1.7 Organisation of Thesis 

 

Chapter 2 gives an overview of the disadvantage,  in terms of penalty , WPP face due to the 

large gate closure time. It states that the application of naïve forecast with short gate closure 

provides an incremental increase in the forecast accuracy. ARIMA based forecasting of wind 

power is explained. A method for choosing BESS size to reduce penalty in balancing markets 

is presented.  

Chapter 3 provides an overview of the Lithuanian electricity sector . It provides an insight 

into the history of power generation , the energy generation mix , electricity reforms market 

carried out in the country. ARIMA based wind forecasting is implemented on Lithuania 

system and compared with naïve forecast. Sizing of BESS to reduce penalty and increase 

Return on Investment (ROI) is estimated.    

 Chapter 4 major conclusions, along with future scope are presented. 
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CHAPTER 2 

 

ARIMA BASED WIND FORECASTING WITH SHORT 

GATE CLOSURE ALONG WITH BESS FOR REDUCING 

PENALTY ON WPP 

 

2.1 Naive Wind Power Forecasting with Short Gate Closure 

 
In a wholesale electricity market, gate closure refers to the time at which market participants 

must submit their final bids and offers for electricity.  Following gate closure, no further 

trades may take place unless certain circumstances apply. Gate closure is typically presented 

as a minor feature of market design. Yet, its implementation could be pivotal to how power 

markets will operate under increasing penetrations of renewable energy in the generation 

mix. 

At some point before real time, contracts (i.e., dispatch schedules) must be finalized for a 

predetermined upcoming delivery or settlement period. Gate closure is the point at which the 

finalization occurs. After gate closure, forward-looking data, such as physical information 

and contract volumes for the predetermined delivery period, are frozen. The system operator 

takes over the responsibility for balancing supply and demand through available reserves or 

ancillary services, thereby ensuring reliability, security, and the economic optimization of 

power system operations 

In [8], the effect of short gate closure on wind power forecasting error in hour-ahead markets 

was studied. Naive forecast method was used for wind power forecasting, Battery energy 

storage systems for mitigating the penalty in hour-ahead markets due to forecast errors was 

not considered. In this chapter ARIMA based wind power forecasting is used with short gate 

closure. BESS is also used to reduce the penalty on WPP in hour-ahead markets.   
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2.1.1 Gate Closure 

Gate closure time for bidding to day-ahead market is at noon of day D (Central European 

Time, CET) for all the 24 hours of the next day (D+1). This means a minimum of 12-36 

hours forecast horizon. Taking into account that the latest meteorological forecasts arrive in 

the morning, the forecasting horizon is often much more. For instance, in the case of a 

Portuguese wind producer participating in the day-ahead market, the time horizon between 

the latest meteorological forecasts at 6 am to the first delivery hour is 18 hours. Longer 

forecast horizon results in larger forecast errors for the wind power producers and requires 

trading more energy in balance settlement. 

The imbalances due to forecast errors need to be settled at either up or down balancing prices. 

In practice, the producer pays extra (in case of upward balancing is needed), or receives less 

(in case of downward balancing is needed) compared to spot price. The imbalance cost is 

therefore the amount that the producer needs to pay extra compared to getting spot price for 

all the generation. Significant reduction of imbalance is possible if short gate closure is sued. 

If closer to real time forecasts could be used in market bids, the imbalance costs could be 

reduced up to 50 % in Nordic countries (0.4-0.7 €/MWh),. In Portugal the imbalance costs 

were reduced by 1.7 €/MWh (by 30 %). 

Wind power is increasingly integrated into power systems through electricity markets. In case 

where wind power producers participate in electricity markets then they are obliged to bid 

their generation to day-ahead (DA) markets. Intra-day markets can be used, if necessary, to 

correct for forecast errors that would cause large imbalance costs in some situations [10][11].  

Wind power participating to system services, the so called Ancillary Services is studied with 

first pilots emerging in [12]. Balancing markets, one form of a manually operated frequency 

control, is the first option for wind power participation that is already happening to some 

extent in Denmark. In some areas, the participation of wind producers to balancing markets is 

not even possible (like Portugal) or is made technically and economically difficult by 

requiring that bidding be made more than a day in advance (Germany). 

In [8], the imbalance costs are analyzed for a wind power producer acting in markets. The 

day-ahead forecast horizon is too long for wind power forecasts and results in large forecast 

errors and imbalances that have to be settled through imbalance costs, thus complicating and 

artificially increasing the overall cost of energy. Two very different market settings were used 
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as case studies in [8]: Portugal in MIBEL and Finland and Denmark in Nordpool. The 

imbalance costs in Nordic countries were very low in the year 2014 case study, resulting in 1-

1.5 €/MWh extra cost for the wind power produced. In Portugal this extra cost was more than 

5 €/MWh. The impact of using more accurate forecasts, from 2-hours-ahead, was quite large, 

reducing the imbalance costs by 30-50 %. Moving to shorter gate closure markets would 

imply some costs both in transition and in work to trade in a more continuous basis. 

 

  2.2 Disadvantages of Naïve Forecast 

 
NAIVE forecast, is the benchmarking model, is one of the simplest forecasting methods 

available [13]. Not only is it fast and easy to implement, the method also requires no 

assumption on the characteristics of the time series. Therefore, for the purpose of this study, 

the NAIVE model will also serve as the baseline performance by which other more 

computationally intensive forecasting methods are compared against. Having a benchmark 

model allows a clear indication on the gain/loss in accuracy performance with respect to the 

additional computational complexity from all other models. Besides that, it can also be used 

to provide a quantitative idea of how difficult the forecast problem at hand - forecasting of 

wind speed is. The NAIVE has the straightforward assumption that the next value is the same 

as the current value, based on the persistence algorithm in (2.1): 

 

 �̂�𝑇+𝑘 ∣ 𝑇 = 𝑌𝑇 

 

(2.1) 

 

In [2.1] , the wind power at time T is given by YT. In naïve forecast, the forecasted wind 

power after “k” hours YT+k from T, is taken same as that of time T. In [8], a short gate 

closure is proposed where the WPPs can bid 2 hours before the actual supply .Therefore, with 

naïve forecast it is assumed that the wind power data available 2 hours before the actual 

supply will remain constant till the time of supply.The accuracy of this method can quickly 

deteriorate with the increment of prediction timescale [14].  
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 However, wind speed at the ground level and other related atmospheric phenomena are 

clearly non stationary because of diurnal, seasonal, and inter-annual cycles. For wind 

applications, persistence models perform poorly for time horizons involving appreciable 

variations in the diurnal cycle, which limits their use .Hence ,advanced techniques like 

ARIMA are beneficial to be used . 

 

2.3 ARIMA 

 

2.3.1    Introduction 

 

Forecasting methods based on naïve forecats are simplistic, inefficient and sometimes 

inappropriate because they do not take advantage of the serial dependence in the observations 

in the most effective way. To incorporate this dependent structure, a general class of models 

called Auto-Regressive Integrated Moving Average models or ARIMA models (also known 

as Box-Jenkins models) are widely used. 

 

2.3.2    Linear Models for Stationary Time Series 

The aim in forecasting is to find relationship between certain inputs and the output. These 

efforts usually result in models that are approximations of the relationship. A major 

assumption that often provides relief in modelling efforts is the linearity assumption. A linear 

filter, for example, is a linear operation from one time series~ Xt to another time series Yt. 

 
𝑦𝐼 = 𝐿(𝑥𝑡) = ∑  

+∞

𝑖=−∞

𝜓𝑖𝑥𝑙−𝑖 

 

(2.2) 

 

with t = ... , -I, 0, 1, .... In that regard the linear filter is a "process·· that converts the input, 

Xt, into an output, Yt. and that conversion is not instantaneous but involves all (present, past, 
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and future) values of the input in the form of a summation with different "weights", { 𝜓𝑖}, on 

each Xt. Furthermore, the linear filter in (2.2) is said to have the following properties: 

- Time Invariant 

- Physically realisable 

- Stable 

 

In linear filters, under certain conditions. some properties such as stationarity 

of the input time series are also reflected in the output. 

 

2.3.3    Stationarity 

 

The stationarity of a time series is related to its statistical properties in time. That is., a 

stationary time series exhibits similar "statistical behavior" in time and this is often 

characterized as a constant probability distribution in time. However, it is usually satisfactory 

to consider the first two moments of the time series and define stationarity (or weak 

stationarity) as follows: (I) the expected value of the time series does not depend on time and 

(2) the autocovariance function defined as Cov⁡(𝑦𝑡 , 𝑦𝑡+𝑘)for any lag k is only a function of k 

and not time: that is. y (k) = Cov (Yt, Yt+k ). 

The stationarity of a time series can be determined by taking arbitrary snapshots of the 

process at different points in time and observing the general behaviour of the time series. If it 

exhibits similar behavior, one can then proceed with the modeling efforts under the 

assumption of stationarity. Further preliminary tests also involve observing the behavior of 

the autocorrelation function. A strong and slowly dying ACF will also suggest deviations 

from stationarity.Also, ther a number of other tests which can detect absence of stationarity.  

Figure 5.1 shows examples of stationary and nonstationary time series data. 



12 
 
 

 

Figure 2.1 Realizations of (a) stationary, (b) non-stationary [31] 

 

 

 

For a time-invariant and stable linear filter and a stationary input time series x 1 with 𝜇𝑥 =

𝐸(𝑥𝑡) and 𝛾𝑥(𝑘) = Cov⁡(𝑥𝑖, 𝑥𝑡+𝑘), the output time series yt given in (2.2) is also a stationary 

time series with mean as   in ( 2.3) and covariance as in (2.4) 

 
𝑦𝐼 = 𝐿(𝑥𝑡) = ∑  

+∞

𝑖=−∞

𝜓𝑖𝑥𝑙−𝑖 
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𝐸(𝑦𝑡) = 𝜇𝑦 =∑  

∞

−∞

𝜓𝑖𝜇𝑥 

 

         (2.3) 

and 

 Cov⁡(𝑦𝑡, 𝑦𝑡+𝑘) = 𝛾𝑦(𝑘)

= ∑  

∞

𝑖=−∞

∑  

𝑥

𝑗=−𝑥

𝜓𝑖𝜓𝑗𝛾𝑥(𝑖 − 𝑗 + 𝑘) 

 

(2.4) 

 

It is then easy to show that the stable linear processs in (2.5) with white noise time series,∈𝑡  

is also stationary: 

 
𝑦𝑡 = 𝜇 +∑  

∞

𝑖=0

𝜓𝑖𝜀𝑡−𝑖 

 

(2.5) 

where ∈𝑡 represents the independent random shocks with E (∈𝑡 ) = 0, and  

  

𝛾𝜀(ℎ) = {
𝜎2     if ℎ = 0
0     if ℎ ≠ 0

 
(2.6) 

 

 

 

So for the auto co-variance function of 𝑦∈  for in (2.6), we have in 2.7 

  

𝛾𝑦(𝑘) =∑  

∞

𝑖=0

∑ 

∞

𝑗=0

𝜓𝑖𝜓𝑗𝛾𝜀(𝑖 − 𝑗 + 𝑘)

= 𝜎2∑ 

∞

𝑖=0

𝜓𝑖𝜓𝑖+𝑘

 
(2.7) 
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The linear process is written in terms of the backshift operator, B, as in eqn 2.8. 

 

 𝑦𝑡 = 𝜇 + 𝜓0𝜀𝑡 +𝜓1𝜀𝑡−1 +𝜓2𝜀𝑡−2 +⋯

= 𝜇 +∑ 

∞

𝑖=0

𝜓𝑖𝐵
𝑖𝜀𝑡

= 𝜇 + (∑  

∞

𝑖=0

𝜓𝑖𝐵
𝑖)

⏟        
=Ψ(𝐵)

𝜀𝑡

= 𝜇 + Ψ(𝐵)𝜀𝑡

 

 

 

(2.8) 

The (2.8) is also called the infinite moving average and serves as a general class of models 

for any stationary time series. The expression shows stationary time series can be seen as the 

weighted sum of the present and past values. Comparing (2.7) & (2.8) it is seen that relation 

between the weights and the auto covariance function.  

In modeling a stationary time series as in (2.8), it is obviously impractical to attempt to 

estimate the infinitely many weights . Although very powerful in providing a general 

representation of any stationary time series, the infinite moving average model is useless in 

practice except for certain special cases: 

- Finite order moving average (MA) models where, except for a finite number of 

the weights , they are set to 0. 

2. Finite order autoregressive (AR) models, where the weights are generated using only a 

finite number of parameters. 

3. A mixture of finite order autoregressive and moving average models (ARMA). 

These classes of models are studied in detail in subsequent sections. 
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2.3.4     Finite Order Moving Average (MA) Processes 

 

In finite order moving average or MA models, conventionally 1/Jo is set to I and the weights 

that are not set to 0 are represented by the Greek letter (ϴ) with a minus sign 𝜑0in front.  

 

Hence a moving average process of order q (MA(q)) is given as in (2.9) 

 

 𝑦𝑖 = 𝜇 + 𝜀𝑡 − 𝜃1𝜀𝑙−1 −⋯− 𝜃𝑞𝜀𝑡−𝑞 

 

(2.9) 

 

where ∈𝑡is white noise. Since (2.9) is a special case of Eq. (2.8) with only finite weights, a 

MA(q) process is always stationary regardless of values of the weights. In terms of the 

backward shift operator, the MA(q) process is given in (2.10). 

 𝑦𝐼 = 𝜇 + (1 − 𝜃1𝐵 −⋯− 𝜃𝑞𝐵
𝑞)𝜀𝑙

= 𝜇 + (1 −∑ 

𝑞

𝑖=1

𝜃𝑖𝐵
𝑖) 𝜀𝑡

= 𝜇 + Θ(𝐵)𝜀𝑡

 

 

(2.10) 

Where Θ(𝐵) = 1 − ∑  4
𝑖=1 𝜃𝑖𝐵

𝑖 

Furthermore, since ∈𝑡 is white noise, the expected value of the MA(q) process is as given in 

2.11. 

 𝐸(𝑦𝑡) = 𝐸(𝜇 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 −⋯− 𝜃𝑞𝜀𝑡−𝑞)

= 𝜇
 

 

(2.11) 
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And its variance is (2.12) 

 

 Var⁡(𝑦𝑡) = 𝛾𝑦(0) = Var⁡(𝜇 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 −⋯− 𝜃𝑞𝜀𝑡−𝑞)

= 𝜎2(1 + 𝜃1
2 +⋯+ 𝜃𝑞

2)
 

 

    (2.12) 

 

Similarly, the auto covariance at lag k can be calculated from eqn 2.13 

 

 𝛾𝑦(𝑘) = Cov⁡(𝑦𝑡 , 𝑦𝑡+𝑘)

= 𝐸[(𝜀𝑡 − 𝜃1𝜀𝑡−1 −⋯− 𝜃𝑞𝜀𝑡−𝑞)(𝜀𝑡+𝑘 − 𝜃1𝜀𝑡+𝑘−1 −⋯− 𝜃𝑞𝜀𝑡+𝑘−𝑞)]

= {
𝜎2(−𝜃𝑘 + 𝜃1𝜃𝑘+1 +⋯+ 𝜃𝑞−𝑘𝜃𝑞), 𝑘 = 1,2,… , 𝑞

0, 𝑘 > 𝑞

 

 

(2.13) 

 

 

From  (2.12) and (2.13), the auto covariance function of the MA(q) process is (2.14). 

 

 
𝜌𝑦(𝑘) =

𝛾𝑦(𝑘)

𝛾𝑦(0)

= {

−𝜃𝑘 + 𝜃1𝜃𝑘+1 +⋯+ 𝜃𝑞−𝑘𝜃𝑞

1 + 𝜃1
2 +⋯+ 𝜃𝑞2

. 𝑘 = 1,2……

0, 𝑘 > 𝑞

 

 

(2.14) 

 

  This feature of the ACF is very helpful in identifying the MA model and its appropriate 

order as it "cuts off' after lag q. In real life applications, however, the sample ACF, will not 

necessarily be equal to zero after lag q. It is expected to become very small in absolute value 

after lag q. For a data set of N observations, this is often tested against ±2/√N limits, where 

1/√N is the approximate value for the standard deviation of the ACF for any lag. 
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A special case would be white noise data for which Pj = 0 for all j's. Hence for a white noise 

process (i.e., no autocorrelation), a reasonable interval for the sample autocorrelation 

coefficients to fall in would be ±2/√N and any indication otherwise may be considered as 

evidence for serial dependence in the process. 

 

The First-Order Moving Average Process, MA(l) 

 

The simplest finite order MA model is obtained when q = I in. (2.15): 

 

 𝑦𝑡 = 𝜇 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 

 

(2.15) 

 

For the first-order moving average or MA(l) model, the auto covariance function as in (2.16) 

 

 𝛾𝑦(0) = 𝜎
2(1 + 𝜃1

2)

𝛾𝑦(1) = −𝜃1𝜎
2

𝛾𝑦(𝑘) = 0, 𝑘 > 1

 

 

(2.16 

 

 

) 

Similarly, we have the autocorrelation function as in (2.17) 

 

 
𝜌𝑦(1) =

−𝜃1
1 + 𝜃1

2

𝜌𝑦(𝑘) = 0, 𝑘 > 1
 

 

(2.17) 

From in. (2.18), we can see that the first lag autocorrelation in MA(l) is bounded as 

 
|𝜌𝑦(1)| =

|𝜃1|

1 + 𝜃1
2 ≤

1

2
 

 

(2.18) 
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and the autocorrelation function cuts off after lag 1.Consider in (2.19) for  MA(l) model: 

 

 𝑦𝑡 = 40 + 𝜀𝑡 + 0.8𝜀𝑡−1 

 

(2.19) 

 

A realization of this model with its sample ACF is given in Figure 2.2. A visual inspection 

reveals that the mean and variance remain stable while there are some short runs where 

successive observations tend to follow each other for very brief durations, suggesting that 

there is indeed some positive autocorrelation in the data as revealed in the sample ACF plot. 

 

 

Figure 2.2 A realisation of MA(1) [31] 

 

The Second-Order Moving Average Process, MA(2),  

Another useful finite order moving average process is MA(2), given in  (2.20) 

 

 𝑦𝑡 = 𝜇 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑙−2
= 𝜇 + (1 − 𝜃1𝐵 − 𝜃2𝐵

2)𝜀𝑡
 

 

(2.20) 
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The autocovariance and autocorrelation functions for the MA(2) model are given in (2.21) 

and (2.22). 

 𝛾𝑦(0) = 𝜎
2(1 + 𝜃1

2 + 𝜃2
2)

𝛾𝑦(1) = 𝜎
2(−𝜃1 + 𝜃1𝜃2)

𝛾𝑦(2) = 𝜎
2(−𝜃2)

𝛾𝑦(𝑘) = 0, 𝑘 > 2

 

 

(2.21) 

 

 

 

 

 
𝜌𝑦(1) =

−𝜃1 + 𝜃1𝜃2
1 + 𝜃1

2 + 𝜃2
2

𝜌𝑦(2) =
−𝜃2

1 + 𝜃1
2 + 𝜃2

2

𝜌𝑦(𝑘) = 0, 𝑘 > 2

 

(2.22) 

 

 

 

Figure 2.3 A realization of the MA(2) process [31] 

 

 

MA(2) model, the sample ACF cuts off after lag 2. 

 𝑦𝑡 = 40 + 𝜀𝑡 + 0.7𝜀𝑡−1 − 0.28𝜀𝑡−2 

 

(2.23) 
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2.3.5     Finite Order Autoregressive Processes 

 

Another interpretation of the finite order MA processes is that at any given time, of the 

infinitely many past disturbances, only a finite number of those disturbances "contribute" to 

the current value of the time series and that the time window of the contributors "moves" in 

time, making the oldest disturbance obsolete for the next observation. However,  some 

processes might have these intrinsic dynamics. Also, for some others, it may be required to 

consider the lingering contributions of the disturbances that happened back in the past. This 

may result in estimating infinitely many weights. Another solution to this problem is through 

the autoregressive models in which the infinitely many weights are assumed to follow a 

distinct pattern and can be successfully represented with only a handful of parameters. It can 

be considered by some special cases of autoregressive processes. 

First-Order Autoregressive Process, AR(l), 

Considering time series from (2.8) 

 
𝑦𝑖 = 𝜇 +∑  

∞

𝑖=0

𝜓𝑖𝜀𝑖−𝑖

= 𝜇 +∑  

∞

𝑖=0

𝜓𝑖𝐵
𝑖𝜀𝑡

= 𝜇 +Ψ(𝐵)𝜀𝑡

 

 

(2.23) 

 

As in the finite order MA processes, one approach to modeling this time series is to assume 

that the contributions of the disturbances that are way in the past should be small compared to 

the more recent disturbances that the process has experienced. Since the disturbances are 

independently and identically distributed random variables, we can simply assume a set of 

infinitely many weights in descending magnitudes reflecting the diminishing magnitudes of 

contributions of the disturbances in the past. A simple and yet intuitive set of such weights 

can be created following an exponential decay pattern. For that we will set 𝜓𝑖 = 𝜙
𝑖 , where 

|𝜙| < 1to guarantee the exponential "decay."  
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From (2.8), we then have 

 𝑦𝑡−1 = 𝜇 + 𝜀𝑡−1 + 𝜙𝜀𝑡−2 +𝜙
2𝜀𝑡−3 +⋯ 

 

(2.24) 

Also, from (2.24) we get (2.25) 

 𝑦𝑡 = 𝜇 + 𝜀𝑡 + 𝜙𝜀𝑡−1 + 𝜙
2𝜀𝑡−2 +⋯⏟            

=𝜙𝑦𝑡−1−𝜙𝜇

= 𝜇 − 𝜙𝜇⏟    
=𝛿

+𝜙𝑦𝑡−1 + 𝜀𝑡

= 𝛿 + 𝜙𝑦𝑖−1 + 𝜀𝑡

 

(2.25) 

  

 

 

The process in. (2.25) is called a first-order autoregressive process, AR(l). 

Hence an AR( 1) process is stationary if φ< I. The mean of a stationary AR(l) process is 

given in  (2.26). 

 
𝐸(𝑦𝑡) = 𝜇 =

𝛿

1 − 𝜙
 

 

(2.26) 

,The autocovariance function of a stationary AR( 1) can be calculated as given in (2.27)  

 
𝛾(𝑘) = 𝜎2𝜙𝑘

1

1 − 𝜙2
 for 𝑘 = 0,1,2,… 

 

(2.27) 

 

The variance can be given as in eqn 2.28 

 
𝛾(0) = 𝜎2

1

1 − 𝜙2
 

 

(2.28) 

 

 

Correspondingly, the autocorrelation function for a stationary AR(l) process is given as 
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𝜌(𝑘) =

𝛾(𝑘)

𝛾(0)
= 𝜙𝑘  for 𝑘 = 0,1,2,… 

 

(2.29) 

Hence the ACF for a stationary AR(l) process has an exponential decay form. A realization of 

the following AR(l) model of  (2.30), 

 𝑦𝑡 = 8 + 0.8𝑦𝑡−1 + 𝜀𝑡 

 

(2.30) 

is shown in Figure 2.4. As in the MA(l) model we can observe some short runs during which 

observations tend to move in the upward or downward 

 

 

Figure 2.4 A realization of the AR(l) process [31] 

 

 

Second-Order Autoregressive Process, AR(2), 

For AR(2) , extension of eqn 2.25 can be writeen as [eqn 2.31] 

 

 𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡 

 

(2.31) 
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The (2.31) can be represented in the infinite MA form and provide the conditions of 

stationarity for yt. 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2)𝑦𝑖 = 𝛿 + 𝜀𝑙 

or 

Φ(𝐵)𝑦𝑡 = 𝛿 + 𝜀𝑙 

Furthermore, eqn 2.32 is obtained. 

 𝑦𝑡 = Φ(𝐵)
−1𝛿⏟      

=𝜇

+Φ(𝐵)−1⏟    
=Ψ(𝐵)

𝜀𝑡

= 𝜇 + Ψ(𝐵)𝜀𝑡

 

(2.32) 

= 𝜇 +∑ 

∞

𝑖=0

𝜓𝑖𝜀𝑡−𝑖

= 𝜇 +∑ 

∞

𝑖=0

𝜓𝑖𝐵
𝑖𝜀t

 

 (2.32) is used to get the weights in terms of 𝜙1 and 𝜙2 

 

Φ(𝐵)Ψ(𝐵) = 1 

(1 − 𝜙1𝐵 − 𝜙2𝐵
2)(𝜓0 +𝜓1𝐵 + 𝜓2𝐵

2 +⋯) = 1 

 𝜓0 + (𝜓1 −𝜙1𝜓0)𝐵 + (𝜓2 −𝜙1𝜓1 − 𝜙2𝜓0)𝐵
2

+⋯+ (𝜓𝑗 −𝜙1𝜓𝑗−1 − 𝜙2𝜓𝑗−2)𝐵
𝑗 +⋯ = 1

 

 

(2.33) 

 

Right hand side of (2.33) does not have any backshift operators. 

For Φ(𝐵)Ψ(𝐵) = 1 , it should be eqn 2.34 

 𝜓0 = 1
(𝜓1 −𝜙1𝜓0) = 0

(𝜓𝑗 − 𝜙1𝜓𝑗−1 − 𝜙2𝜓𝑗−2) = 0 for all 𝑗 = 2,3,…
 

 

(2.34) 
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The equations in (2.34) can be solved for each 𝜓𝑗in an attempt to estimate infinitely many 

parameters. However, it should be noted that the in (2.34) satisfy the second-order linear 

difference equation and that they can be expressed as the solution to this equation in terms of 

the two roots m 1 and m2 of the associated polynomial. 

 

 𝑚2 − 𝜙1𝑚 − 𝜙2 = 0 

 

 

(2.35) 

 

 

The eqn 2.35 the roots m1 and m2 are both less than I in absolute value, then the AR(2) 

model is stationary. Note that if the roots are complex conjugates of the form a ± i b, the 

condition for stationarity is that √𝑎2 + 𝑏2 < 1,the mean is given by  (2.36) 

 

. 

 𝐸(𝑦𝑡) = 𝛿 + 𝜙1𝐸(𝑦𝑡−1) + 𝜙2𝐸(𝑦𝑡−2) + 0
𝜇 = 𝛿 + 𝜙1𝜇 + 𝜙2𝜇

⇒ 𝜇 =
𝛿

1 − 𝜙1 −𝜙2

 

 

(2.36) 

 

. 

The auto co-variance of (2.31) is given by ( 2.37)  

 𝛾(𝑘) = Cov⁡(𝑦𝑖 , 𝑦𝑡−𝑘)

= Cov⁡(𝛿 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + 𝜀𝑡 , 𝑦𝑡−𝑘)

= 𝜙1Cov⁡(𝑦𝑡−1, 𝑦𝑡−𝑘) + 𝜙2Cov⁡(𝑦𝑡−2, 𝑦𝑖−𝑘) + Cov⁡(𝜀𝑡 ⋅ 𝑦𝑖−𝑘)

= 𝜙1𝛾(𝑘 − 1) + 𝜙2𝛾(𝑘 − 2) + {
𝜎2  if 𝑘 = 0
0  if 𝑘 > 0

 

(2.37) 
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Thus 𝛾(0) = 𝜙1𝛾(1) + 𝜙2𝛾(2) + 𝜎
2 and 

 𝛾(𝑘) = 𝜙1𝛾(𝑘 − 1) + 𝜙2𝛾(𝑘 − 2), 𝑘 = 1,2,… 

 

(2.38) 

The (2.38) is called the Yule-Walker equations .Simillarly , the autocorrelation function is 

given by (2.39) 

 𝜌(𝑘) = 𝜙1𝜌(𝑘 − 1) + 𝜙2𝜌(𝑘 − 2). 𝑘 = 1, , ̸ … 

 

(2.39) 

 The Yule-Walker can be solved recursively as  

 

𝜌(1) = 𝜙1 𝜌(0)⏟
=1

+ 𝜙2 𝜌(−1)⏟  
=𝜌(1)

=
𝜙1

1 − 𝜙2
𝜌(2) = 𝜙1𝜌(1) + 𝜙2
𝜌(3) = 𝜙1𝜌(2) + 𝜙2𝜌(1)

 

 

A general solution can be obtained through the roots m 1 and m 2 of the associated 

polynomial⁡𝑚2 −𝜙
1
𝑚−𝜙

2
= 0. .There are three cases. 

Case 1. If m 1 and m 2 are distinct, real roots, we then have eqn 2.35  

 

 

 𝜌(𝑘) = 𝑐1𝑚1
𝑘 + 𝑐2𝑚2

𝑘, 𝑘 = 0,1,2,… 

 

(2.40) 
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where c1 and c2 are particular constants and can, for example, be obtained from p(O) and 

p(l). Moreover, since for stationarity, the autocorrelation function is a mixture of two 

exponential decay terms. 

Case 2. If m 1 and m 2 are complex conjugates in the form of a ± i b, we then have   (2.41) 

 

 𝜌(𝑘) = 𝑅𝑘[𝑐1cos⁡(𝜆𝑘) + 𝑐2sin⁡(𝜆𝑘)], 𝑘 = 0,1,2,… 

 

(2.41) 

where 𝑅 = |𝑚𝑖| = √𝑎2 + 𝑏2and A is determined by cos⁡(𝜆) = 𝑎/𝑅, sin⁡(𝜆) = 𝑏/𝑅 R. .Once 

again c 1 and c2 are particular constants. The ACF in this case has the form of a damped 

sinusoid, with damping factor R and frequency A; that is, the period is 2𝜋/𝜆. 

Case 3. If there is one real root m0 , m 1 = m 2 = m 0 , we then have  (2.42) 

 

 𝜌(𝑘) = (𝑐1 + 𝑐2𝑘)𝑚0
𝑘𝑘 = 0,1,2,… 

 

(2.42) 

In this case, the ACF will exhibit an exponential decay pattern. 

In case I, for example, an AR(2) model can be seen as an "adjusted" AR( I) model for which 

a single exponential decay expression as in the AR( 1) model is not enough to describe the 

pattern in the ACF, and hence an additional exponential decay expression is "added" by 

introducing the second lag term 𝑦𝑡−2. 

General Autoregressive Process, AR(p), 

A general, pth-order AR model is given as  (2.43) 

 

 𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 

 

(2.43) 
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Another representation of (2.43) , can be (2.44). 

 

 Φ(𝐵)𝑦𝑡 = 𝛿 + 𝜀𝑡
 where Φ(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵

2 −⋯−𝜙𝑝𝐵
𝑝 

 

(2.44) 

 

The AR(p) time series {y1 ) in Eq. (2.43) is stationary if the roots of the associated 

polynomial  

 𝑚𝑝 −𝜙1𝑚
𝑝−1 −𝜙2𝑚

𝑝−2 −⋯−𝜙𝑝 = 0 

 

 

are less than one in absolute value. Furthermore, under this condition, the AR(p) time series 

{y1 ) is also said to have an absolutely summable infinite MA representation 

 

 
𝑦𝑡 = 𝜇 + Ψ(𝐵)𝜀𝑡 = 𝜇 +∑ 

∞

𝑖=0

𝜓𝑖𝜀𝑡−𝑖 

 

(2.45) 

 

Whrere Ψ(𝐵) = Φ(𝐵)−1 with ∑  ∞
𝑖=0 |𝜓𝑖| < ∞, 

As in AR(2), the weights of the random shocks in  (2.45) is given by (2.46) 

 𝜓𝑗 = 0, 𝑗 < 0

𝜓0 = 1
𝜓𝑗 − 𝜙1𝜓𝑗−1 −𝜙2𝜓𝑗−2 −⋯−𝜙𝑝𝜓𝑗−𝑝 = 0 for all 𝑗 = 1,2,…

 

 

(2.46) 

 

It can be easily show that, for stationary AR(p ), 
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 𝛾(𝑘) = Cov⁡(𝑦𝑡 , 𝑦𝑡−𝑘)

= Cov⁡(𝛿 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡, 𝑦𝑡−𝑘)

=∑  

𝑝

𝑖=1

𝜙𝑖Cov⁡(𝑦𝑡−𝑖 , 𝑦𝑡−𝑘) + Cov⁡(𝜀𝑡, 𝑦𝑡−𝑘)

=∑  

𝑝

𝑖=1

𝜙𝑖𝛾(𝑘 − 𝑖) + {
𝜎2  if 𝑘 = 0
0  if 𝑘 > 0

 

 

(2.47) 

𝛾(0) =∑  

𝑝

𝑖=1

𝜙𝑖𝛾(𝑖) + 𝜎
2

⇒ 𝛾(0) [1 −∑  

𝑝

𝑖=1

𝜙𝑖𝜌(𝑖)] = 𝜎
2

 

 

By dividing Eq. (2.47) by y (0) for k > 0, it can be observed that the ACF of an AR(p) 

process satisfies the Yule-Walker (2.48) 

 

 

𝜌(𝑘) =∑  

𝑝

𝑖=1

𝜙𝑖𝜌(𝑘 − 𝑖), 𝑘 = 1.2… 

 

(2.48) 

 

The equations in (2.48) are pth-order linear difference equations implying that the ACF for an 

AR(p) model can be found through the p roots of the associated polynomial in Eq. (2.43 ). 

For example, if the roots are all distinct and real. we have (2.49) 

 

𝜌(𝑘) =∑  

𝑝

𝑖=1

𝜙𝑖𝜌(𝑘 − 𝑖), 𝑘 = 1.2… 

 

(2.49) 
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where c 1, c2 , ••. , c, are particular constants. However, in general, the roots may not all be 

distinct or real. Thus the ACF of an AR(p) process can be a mixture of exponential decay and 

damped sinusoid expressions depending on the roots of (2.49). 

 

2.3.6     Mixed Autoregressive-Moving Average(ARMA) Processes 

 

In an AR( 1) process,  the weights in the infinite sum are forced to follow an exponential 

decay form , But ,it may not be possible to approximate  an exponential decay pattern.For 

that, we will need to increase the order of the AR model to approximate any pattern that these 

weights may in fact be exhibiting. On some occasions, however, it is possible to make simple 

adjustments to the exponential decay pattern by adding only a few terms and hence to have a 

more parsimonious model. Hence instead of increasing the order of the AR model to 

accommodate for this anomaly, we can add an MA( I) term that will simply adjust weight 1 

while having no effect on the rate of exponential decay pattern of the rest of the weights. This 

results in a mixed autoregressive moving average or ARMA(l,l) model. In general, an 

ARMA(p, q) model is given as  (2.50) 

 

 

 𝑦𝑖 = 𝛿 + 𝜙1𝑦𝑡−1 +𝜙2𝑦𝑖−2 +⋯+𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 −⋯− 𝜃𝑞𝜀𝑡−4

= 𝛿 +∑ 

𝑝

𝑖=1

𝜙𝑖𝑦𝑡−𝑖 + 𝜀𝑡 −∑  

𝑞

𝑖=1

𝜃𝑖𝜀𝑡−𝑖
 

 

 

 

(2.50) 

Or 

 Φ(𝐵)𝑦𝑡 = 𝛿 + Θ(𝐵)𝜀𝑡 

 

    (2.51) 
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Stationarity of ARMA (p, q) Process 

The stationarity of an ARMA process is related to the AR component in the model and can be 

checked through the roots of the associated polynomial given in  (2.52). 

 

 𝑚𝑝 −𝜙1𝑚
𝑝−1 −𝜙2𝑚

𝑝−2 −⋯−𝜙𝑝 = 0 

 

    (2.52) 

If all the roots of (2.52) are less than one in absolute value, then ARMA(p, q) is stationary. 

This also implies that, under this condition, ARMA(p, q) has an infinite MA representation as 

(2.53) 

 

 
𝑦𝑡 = 𝜇 +∑ 

∞

𝑖=0

𝜓𝑖𝜀𝑡−𝑖 = 𝜇 + Ψ(𝐵)𝜀𝑡 

 

    (2.53) 

with Ψ(𝐵) = Φ(𝐵)−1Θ(𝐵) . The coefficients in Ψ(𝐵) can be found from (2.54) 

 

 𝜓𝑖 −𝜙1𝜓𝑖−1 − 𝜙2𝜓𝑖−2 −⋯− 𝜙𝑝𝜓𝑖−𝑝

= {
−𝜃𝑖 ,     𝑖 = 1…𝑞
0.     𝑖 > 𝑞

 

 

 

    (2.54) 

lnvertibility of ARMA (p, q) Process, 

Similar to the stationarity condition. the invertibility of an ARMA process is related to the 

MA component and can be checked through the roots of the associated polynomial given in 

eqn 2.55 

 𝑚𝑞 − 𝜃1𝑚
4−1 − 𝜃2𝑚

𝑞−2 −⋯− 𝜃𝑞 = 0     (2.55) 
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If all the roots of (2.55) are less than one in absolute value, then ARMA(p, q) is said to be 

invertible and has an infinite AR representation,invertibility in (2.57). 

 Π(𝐵)𝑦𝑖 = 𝛼 + 𝜀𝑙      

where 𝛼 = Θ(𝐵)−1𝛿 and Π(𝐵) = Θ(𝐵)−1Φ(𝐵), The coefficients in Π(𝐵) can be found from 

(2.57) 

 
𝜋𝑖 − 𝜃1𝜋𝑖−1 − 𝜃2𝜋𝑖−2 −⋯− 𝜃𝑞𝜋𝑖−4 = {

𝜙𝑖,     𝑖 = 1…𝑝
0,     𝑖 > 𝑝

 
    (2.57) 

 

ACF and PACF of ARMA(p,q) Process, 

As in the stationarity and invertibility conditions, the ACF and PACF of an ARMA  process 

are determined by the AR and MA components. respectively. It is seen that the ACF and 

PACF of an ARMA(p, q) both exhibit exponential decay and/or damped sinusoid patterns, 

which makes the identification of the order of the ARMA(p, q) model relatively more 

difficult. The theoretical values of the ACF and PACF for stationary time series are 

summarized in Table 2.1  

Table 2.1 Behavior of Theoretical ACF and PACF for Stationary Processes 

Model ACF PACF 

MA( 𝑞) Cuts off after lag 𝑞 

Exponential decay 

and/or damped 

sinusoid 

 AR (𝑝)  Exponential decay and/or damped 

 sinusoid 
 Cuts off after lag 𝑝  

ARMA( 𝑝, 𝑞) 

Exponential decay 

and/or damped 

sinusoid 

Exponential decay 

and/or damped 

sinusoid 
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 2.3.7  Nonstationary Processes 

A time series is homogeneous. nonstationary if it is not stationary but its first difference, or or 

higher-order differences. 𝑤𝑙 = (1 − 𝐵)
𝑑𝑦𝑙.produce a stationary time series. Further call 𝑦f an 

autoregressive integrated moving average (ARIMA) process of orders p,d,and q-that is, 

ARIMA(p, d, q)-fit s dth difference, denoted by 𝑤𝑡 = (1 − 𝐵)
𝑑𝑦𝑡• produces a stationary 

ARMA(p. ql process. The term integrated is used since, for d = I, for example, we can write 

Yt as the sum (or "integral") of the w1 process as (2.58) 

 

 𝑦𝑓 = 𝑤𝑖 + 𝑦𝑖−1
= 𝑤𝑡 + 𝑤𝑡−1 + 𝑦𝑡−2
= 𝑤𝑡 + 𝑤𝑡−1 +⋯+ 𝑤1 + 𝑦0

 

    (2.58) 

 

Eqn 2.53 

Hence an ARIMA(p, d, q) can be written as (2.59) 

 

 Φ(𝐵)(1 − 𝐵)𝑑𝑦𝑓 = 𝛿 + Θ(𝐵)𝜀𝑟     (2.59) 

Thus once the differencing is performed and a stationary time series  is obtained, the methods 

provided by ARMA can be used to obtain the full model. In most applications first 

differencing (d = I) and occasionally second differencing (d = 2) is enough to achieve 

stationarity 

Some Examples of ARIMA(p, d, q) Processes, 

ARIMA(O, 1, 0) is the simplest nonstationary modeL It is given by (2.60) 

 

 (1 − 𝐵)𝑦𝑖 = 𝛿 + 𝜀𝑓      (2.60) 
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suggesting that first differencing eliminates all serial dependence and yields a white noise 

process. 

 

 

The ARIMA(O, 1, 1) process is given by (2.61) 

 

 (1 − 𝐵)𝑦𝑡 = 𝛿 + (1 − 𝜃𝐵)𝜀𝑡     (2.61) 

 

The infinite AR representation of Eq. (2.61),is derived and is given by (2.62) 

 

 𝜋𝑖 − 𝜃𝜋𝑖−1 = {
1,     𝑖 = 1
0,     𝑖 > 1

 
    (2.62) 

 

vith 𝜋0 = −1 . Thus we have (2.63) 

 

 
𝑦𝑡 = 𝛼 +∑  

∞

𝑖=1

𝜋𝑖𝑦𝑡−𝑖 + 𝜀𝑡

= 𝛼 + (1 − 𝜃)(𝑦𝑡−1 + 𝜃𝑦𝑡−2 +⋯) + 𝜀𝑡

 

    (2.63) 

 

 

This suggests that an ARIMA(O, I, I)  can be written as an exponentially weighted moving 

average (EWMA) of all past values.Thus , it is clear that differencing leads to a stationary 

time series  .In most of the applications the d=2 second differencing is sufficient for making 

the time series stationary. 
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2.3.8   Time Series Model Building 

A three-step iterative procedure is used to build an ARIMA model. First, a tentative model of 

the ARIMA class is identified through analysis of historical data. Second, the unknown 

parameters of the model are estimated. Third, through residual analysis, diagnostic checks are 

performed to determine the adequacy of the model, or to indicate potential improvements. 

 

Figure 2.5  Time Series Model Building 

 

- Model Identification, Simple time series plots should be used as the preliminary 

assessment tool for stationarity. The visual inspection of these plots should later be confirmed 

as described, If nonstationarity is suspected, the time series plot of the first (or dth) difference 

should also be considered.  The unit root test by Dickey and Fuller can also be performed to 

make sure that the differencing is indeed needed.  

The null hypothesis of the ADF test is that the time series is non-stationary. So, if the p-value 

of the test is less than the significance level (0.05) then you reject the null hypothesis can be 

rejected and it can be inferred that the time series is stationary.However, if p-value of ADF 

test is greater than 0.05 ,then first order differencing (d=1) is done and autocorrelation plot is 

examined. 

If the autocorrelations are positive for many number of lags (10 or more), then the series 

needs further differencing. On the other hand, if the lag 1 autocorrelation itself is too 

negative, then the series is probably over-differenced. Generally, the series become stationary 

by maximum of second order differencing (d=2). 

Model 
Identification

Parameter 
Estimation

Diagnostic 
Testing
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- Estimation of Parameters , the required number of AR terms or the p-value is found  by 

inspecting the Partial Autocorrelation (PACF) plot .The PACF plot presents the correlation 

between the lag and the series. Initially take the order of AR term to be equal to as many lags 

that crosses the significance limit in the PACF plot. 

MA term is the error of the lagged forecast.The order of the MA terms or q-value is decided 

by plotting the ACF plot ,The lags in the plot which exceed the significance limit are taken as 

the order of q-value. Intially , a lower order can be taken and corrected in case unsatisfactory 

results. 

- Diagnostic Testing, This step the forecasted values are compared to the actual values in 

order to ascertain the correctness or accuracy of the model fit. In this dataset is divided into 

training and testing dataset by splitting the time series into 2 contiguous parts in 

approximately 50:50 ratio or  a reasonable proportion based on the time series. The ARIMA 

model with p,d,q values (estimated in the parameter estimation step) is then trained on 

training dataset and the values forecasted. In the next step the actual values and the forecasted 

values are compared to gauge the accuracy of the model.The various accuracy metrics  used 

to gauge the accuracy of the model are RMSE MAE MAPE etc. In case the accuracy metrics 

indicate a poor forecast , then the parameters can be adjusted to get a good fit. 

Moreover, after the parameter estimation , train-test and implementation of model .If the 

accuracy metric indicates poor forecast ,then a loop is designed to run the ARIMA model for 

a range of  (p,d,q) values. Thereafter, the accuracy results of the various combinations of 

p,d,q values is ccompared and the most accurate model  is adopted.This approach has been 

used in this work for estimating  a good  fit. 

 

2.4 Battery Energy Storage Systems 

 

2.4.1 Battery Energy Storage Systems for reducing penalty on WPP in 

intra-day market 
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Energy Storage associated with renewable power plants represents the most straightforward 

solution to mitigate renewables variability. As a flexible and adjustable power supply, the 

energy storage system provides a new idea to cope with the intermittent power integration 

[24]. In various types of large-scale energy storage systems (such as pumped storage, 

compressed air storage, etc.), battery energy storage system (BESS) has the most promising 

broad in power applications benefiting from its high energy efficiency and weak requirement 

of geographical conditions. 

 

2.4.2 Various Storage Solutions 

 

Several solutions have been envisaged for the coordination between wind farms and storage 

plants. An example is the participation in electricity markets using pumped storage. 

Castronuovo and Lopes proposed in [17] the coordination between a wind farm and a 

pumped storage facility for increasing the controllability of the wind farm and maximize 

profits when participating in the Portuguese market. In [18] the same authors described new 

considerations about the optimal size of the pumped storage station. In [19] various 

methodologies are presented for coupling wind generation and storage for coordinated market 

participation. Reference [20] a method for sizing and operating an energy storage system 

coupled with a wind power plant under the Norwegian market conditions. [21] analysed the 

utilization of a generic energy storage device for balancing the differences between predicted 

and real productions in a wind farm located in Norway when acting in a market environment. 

Reference [22], analysed the combined operation of wind farms and a pumped storage facility 

for participating in the Spanish electricity market considering the uncertainties of both wind 

power generation and market prices. 

All the above mentioned works showed that the optimal management of pumped storage 

coupled to wind farms results in an economic benefit and increase the controllability of the 

wind farm. However, for the specific case of isolated systems without hydropower potential, 

the use of DES is necessary. Several DES technologies such as battery storage [23], [24], 

ultra-capacitors [25] or flywheels [26], [27] are considered as an efficient way, together with 

accurate prediction models, to increase renewable energy penetration in islands without 

installing additional reserves (i.e. based on thermal generation), with the additional advantage 

of increasing energetic independence of these areas. DES can also be used to overcome 
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network congestion problems or to allow wind farms to respect grid codes. The work in [28] 

showed that pumped storage can be also very useful in isolated systems, improving both the 

dynamic security and the economic operation of the grid. Another example is presented in 

[29] where the sizing of a battery for a grid connected wind farm in order to provide 

frequency support is described. 

Wind farm with BESS configuration will become a common model for large-scale wind 

power development in the future. However, in addition to the high investment cost of BESS, 

how to properly size BESS to balance the investment cost and the effect of levelling wind 

power fluctuation and uncertainty has been a research hotspot in recent years. Storage can be 

used to absorb excess electricity in hours of high renewable production and low demand and 

to re-inject it into the network later. The operating performance of such storage can be highly 

improved by considering simple charge-discharge plans based on short-term predictions of 

the renewable production. These predictions, generated by physical or statistical models 

using weather predictions and measurements as input are nowadays widely used by system 

operators in several countries. This increased performance can be translated directly into a 

reduced size of the storage. 

 

2.4.3  Methodology for battery sizing 

 

Research on storage sizing for renewable energy integration is driven in part by the high 

capital cost of storage. In general storage sizing is studied as a minimisation problem of the 

fixed costs of the storage and and  penalisation amount paid by the WPP  .  A complete 

analysis of the cash flow of a BESS used for integrating renewable power is studied and used 

to optimise the sizing of the storage. Then ,the return on investment (ROI) of the system is 

calculated taking into account the expected length of the battery life, calculated considering 

the known lifetime in cycles and the number of expected cycles of the storage. Furthermore, 

the desired lifetime is chosen for determining the optimal utilisation of the battery in the 

conditions chosen. In the sizing of a BESS for grid is calculated considering a risk based 

trade off method where the probability of not supplying the load is weighted against the cost 

of the necessary incremental capacity of the storage. 
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CHAPTER 3 

 

SIMULATION RESULTS 

 

3.1 Lithuania : An Overview 

Lithuania imports around three-quarters of its electricity needs, as domestic electricity 

generation is fairly small, with only 3.6 Terawatt Hours (TWh) in 2019 .There has been 78% 

decrease in power generation ,since the end of 2009, when the country shut down its second 

(and last) nuclear reactor. In 2019, renewable energy dominated domestic electricity 

generation, accounting for 76% . Wind power makes up almost half of the total and has 

increased its role considerably. Net imports of 9 TWh play an important role to satisfy a 

consumption of 11 TWh, which is largely driven by the industry and services sectors. 

The government has set ambitious targets for reaching 80% renewables in final energy 

demand by 2050. In the electricity mix, the country aims for a renewables share of 45% by 

2030 and 100% by 2050 [30].  

Lithuania has carried out a major restructuring of its electricity sector, in line with the 

EU(European Union). A range of critical reforms are being implemented based on the 

Lithuanian Electricity Market Development and Implementation. The government unbundled 

supply and transmission and market operation activities (Litgrid, AmberGas, EPSO-G, 

Ignitis), third-party access to transmission and distribution, and access to power trading 

within the Nord Pool market area .Lithuania balancing needs are met by balancing market of 

the Baltic countries.   
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3.2 Data 

 

This section first familiarizes with data sets utilized in the thesis, followed by an in depth into 

explanation of the relevant features and compositions of the main data set - Lithuanian wind 

generation and forecast data. It aims to illustrate the stochastic nature of the wind speed 

through visualization and interpretation .The section then concludes with stationarity tests, to 

establish a generic idea on linear assumptions in the data, and necessary steps taken to 

prepare the data for further analysis. 

Three data are used in this paper: 

-  Historical  wind power generation data. 

- Historical  Day Ahead wind power forecast data 

- Balancing prices 

 

3.2.1  Lithuania Wind Power Generation Data 

 

The main data set, Lithuanian Wind Power Generation data, is a complete data set containing 

hourly time series data wind farms of Lithuania. The duration of data spans across 1 year 

(2019), from 01.01.2019 00:00 to 31.12.2019 23:00. 

 

3.2.2  Lithuanian Wind Power Forecast Data 

This data set, Lithuanian Wind Power Forecast data from Nordpool, is a complete data set 

containing hourly time series data wind farms of Lithuania. The duration of data spans across 

1 year (2019), from 01.01.2019 00:00 to 31.12.2019 23:00. 
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3.2.3   Lithuania Balancing Prices 

 

This data set, Lithuanian balancing prices data from Baltic States Balancing Market, is a 

complete data set containing hourly time series market of Lithuania. The duration of data 

spans across 1 year(2019), from 01.01.2019 00:00 to 31.12.2019 23:00. 

 

. 

3.3 Data Preparation 

 

To formulate and evaluate forecasting models, all time series  data was first split into train set 

and test set. Since 2019 is the  complete year of data, all observations of data points from 

01.01.2019 00:00:00 to 02.07.2019 23:00:00 were held out as test data. Also, besides the 

removal of duplicates and empty values were replaced by mean of the total data set.  

The first step of ARMA model development is to determine the order of the AR and MA 

processes, p and q, respectively. This is known as the model identification phase, and it 

involves the analysis of the autocorrelation and partial autocorrelation factors.            

After estimation, the model was checked with several diagnostics. It is not uncommon for a 

promising model identification to lead to a poorly performing model, so the diagnostic phase 

is important because it was used to remove the combination of orders that did not work well. 

Simplistic persistence method is a primitive method of wind forecasting. This approach uses 

the past hour wind speed (or wind power) as the forecast for the next hour. As a forecasting 

technology, this method is not impressive, but it is nearly costless, and less complex. 

Therefore, other forecast methods are measured by the extent it can improve on persistence 

forecasts. That is the approach that was applied in this thesis. The persistence forecast can 

offer a range of forecasting accuracy, depending on the wind regime and the number of 

periods to be forecast. We calculated the root mean square error (RMSE) of each forecast 

over the relevant time period to compare our methods with the persistence model. A lower 

RMSE implies that the forecast is more accurate, whereas a high RMSE value implies less 

accuracy. 
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A similar set of p,d and q orders were applied to the time-series data The model specification, 

the ARIMA(1,2,4), did the best overall job. However, it is worth noting that the 

ARIMA(1,0,0) model and whereas the ARMA(0,0,3) models gave reasonable but not very 

accurate results. 

 

3.4 Results 

 

For Lithuania wind power generation data and day-ahead wind power forecasts were 

collected  from Nord pool for the year 2019. The imbalance prices were taken from the Baltic 

countries balancing market for the year 2019. 

A plot was drawn to give visual interpretation of the variation in the wind power generation 

and forecast. The plot of wind power generated and forecasted can be seen in Figure 3.6, 

forecasted value deviates from the other substantially, due to forecast error.  

 

 

 

 

Figure 3.1  Plot of Wind Power Generated v/s Forecasted (Day Ahead) 
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3.5.1 Short term forecasts 

 

A simple short term forecast (equation 3.1)  was used for a short gate closure of markets. To 

simulate the available information 2 hours ahead, the forecast was made using a simple 

persistence / naïve forecast. 

 P(t) = P(t-2) 

 

     (3.1) 

 

 

Figure 3.2 Plot  for DA forecast & Naïve Forecast Error 

 

 

The RMSE for 2-hours-ahead forecast was 40.42 %. The Figure 3.7 depicts the plot of the 

forecast error for Day Ahead &2 hour Ahead forecast It is evident from the plot that  Day 

Ahead forecast error magnitude and variance is much more than 2 Hour Ahead Forecast.  

Table 3.2 RMSE for DA forecast & Naïve Forecast 

GATE CLOSURE RMSE 

Day Ahead 72.19 % 

2 Hour Ahead 40.42 % 
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Also on comparison of RMSE for Day Ahead forecast & naïve forecast .It is clear from Table 

3.2, when shorter gate closure of 2 Hour Ahead is implemented, the short-gate closure results 

in significant decrease of RMSE. 

 

 

Figure 3.3  MAE for Day Ahead & Hour Ahead Forecast 

 

 

The MAE for day ahead forecast and Hour ahead forecast (naïve forecast) can be seen in Fig 

3.8..The bar chart clearly shows that the forecast error in case of Day Ahead is much larger 

than the hour Ahead forecast. Thus all the above mentioned results give credence to the fact 

that shorter gate closure has significant impact on wind forecast errors. 
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3.5.2 Implementation of ARIMA 

 

The 2-hour-ahead forecast could be improved by using advanced statistical forecasting 

methods. Above, for this analysis a simplistic approach was taken as the aim is just to 

illustrate the difference between day-ahead and a more close to real time forecasting. In order 

to deal with imperfect wind power prediction, system operators have to face additional cost 

as a result of increasing reserve levels. The unexpected large forecast deviations would cause 

more operating costs, because it requires more balancing energy to balance the wind power 

forecast errors and the cost of balancing energy will be calculated with balancing energy 

price. A sophisticated forecasting strategy can be use of forecasting methods like  AR, MA, 

ARIMA  can avoid more cost caused by short-time forecast errors. 

In order to implement the ARIMA, firstly the times series was checked for stationarity by 

performing ADF test .The  p-value after performing the ADF test came as 0.124419, which is 

above the significance level of 0.05.This made it evident that the series is not stationary 

.Hence, in order to make the series stationary first order differencing (d=1) was applied .This 

resulted in lowering the p-value but still slightly above the significant limit. But, still the  

intial value of parameter d was taken as  1. 

Thereafter, Auto-Regressive (AR) term  the ACF  was plotted to get the value of p-parameter. 

The plot was studied to find that the lag 1 is very significant. Hence, the tentative value of p- 

parameter was taken as 1.  

 

Figure 3.4 ACF Plot 
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The PACF plot was studied to find the value of q or the MA term.The PACF plot (Figure 3.5) 

shows the lags which crossed the significant limit was lag 4.Therefore the value of q was 

taken as 4.  

 

Figure  3.5 PACF plot 

The parameter estimation gave an insight into the possible range of p,d,q values. Therefore, 

the various ARIMA models were made to run for the various combinations of p,d,q 

parameter values .The range of values was taken for p,q from 1 to 4 and for d from 0 to 2 

.The RMSE for the various models of ARIMA were calculated to arrive at the best fit. It  was 

found that ARIMA (1,2,4) gave the best RMSE value of 21.26 % 

Also, the implementation of AR(1),MA(2),ARIMA gives the following MAEs 23.82% , 

67.12% , 21.26 % respectively . 

Since , RMSE for naive , ARIMA forecast are 72.19 % , 21.26 % . Hence, it is evident from 

the results that adoption ARIMA(1,2,4) method resulted in significant improvement of the 

forecast accuracy. 

 

3.5.3 Storage 

 

The sizing of the battery integrated with wind power is done by trial & error method  where 

the characteristics of the storage, as well as its operation are taken into account. The battery is 

also characterised by its rating Rb [kWh] and its cost Cb [€/kWh]. 
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The battery is used to filter the prediction error E, a time series of m elements representing 

the errors for each hour. The sizing of the battery is an maximisation of ROI problem, 

described by aimed at identifying the optimal power and energy rating of the storage.The 

objective function is considered to be equal to ROI, calculated as in Equation .The terms Rb 

[€] and Cb [€] represent the value of the rating of the battery and the cost of the battery 

respectively 

 APEN  = x*E 

 

(3.1) 

 
𝑅𝑂𝐼 =

𝐴𝑃𝐸𝑁 − (𝐶𝑏𝑥𝑅𝑏)

𝐶𝑏𝑥𝑅𝑏
𝑥100 

 

(3.2) 

 

 

The cost of the battery (Cb) in (3.2) has been calculated by dividing the total cost of the 

battery by its lifetime (8 years). This approximation has been made, as the wind power data is 

considered only for one year. The constraint of the optimisation problem is represented by the 

necessity for the battery to avoided penalties that would be paid if the battery was not 

connected. This can be expressed analytically above The terms APEN (the avoided 

penalties), found in Equations where x [kWh] is the value of a prediction error and E[€/kWh] 

is the cost paid for each penalty. 

After , the integration of BESS with the wind power. The APEN and the expenditure saved 

due to utilisation of BESS of 5 %, 10 % , 15 % was studied. It was found , refer table 3.3, that 

the APEN also increases ,with the increase in BESS size. 

 

Table 3.3 APEN & Savings for various battery sizes 

Battery Size (As percentage of total 

Wind Generation) 

APEN(in MW) Savings(in Euros) 

5 6309 3,73,201 

10 11621 4,60,000 

15 16250 5,83,463 
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Table 3.4 Return on Investment for various battery sizes 

Battery Size (As percentage of total 

Wind Generation) 

ROI (%) 

5 29.8 

10 21.47 

15 15.63 

 

As shown in the Table 3.3, the size of the battery is taken as 5%,10%,15% of the total wind 

power generation capacity . The ROI for the above battery sizes are 29.8 % , 21.47 % , 15.63 

% . The ROI at various battery capacities are depicted above .It is evident that based on the 

avoided penalties ,battery size of 5% of total wind power generation capacity provides the 

best ROI. 
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CHAPTER 4 

 

CONCLUSION 

 

4.1  Conclusion 

 

In this work the Day Ahead error forecasts and hour ahead forecast using short gate closure 

time were studied Further, the forecasting was done by sophisticated the time series 

forecasting methods .These methods include AR,MA,ARIMA ,adoption of these methods 

lead to a significant decrease in the forecasted errors. As it can be seen  that the RMSE for 

Day Ahead forecast and Hour Ahead forecast is 72.19 % and 23.93 %. The implementation 

of AR,MA,ARIMA gives the following RMSEs 23.82% , 67.12% , 21.26 % respectively, 

The various forecasting errors give credence to the fact that short gate closure times and 

sophisticated forecasting methods give less RMSE . 

A method for sizing and operating an energy storage system coupled with a wind power plant 

under the Lithuanian market conditions was implemented .The utilization of a generic energy 

storage device for balancing the differences between predicted and real productions in a wind 

farm located in Lithuania when acting in a market environment was analysed. The analysis of 

combined operation of wind farms and battery storage facility for participating in the 

Lithuanian electricity market considering the uncertainties of both wind power generation 

and market prices was done. 

The storage sizing for renewable energy integration is driven in part by the high capital cost 

of storage. In general storage sizing is studied as a maximisation problem of the ROI. The 

initial capital cost of a BESS is considered along with a complete analysis of the cash flow of 

a BESS used for integrating renewable power is studied and used to optimise the sizing of the 

storage.Furthermore, the desired lifetime is chosen for determining the optimal utilisation of 

the battery in the conditions chosen. In the sizing of a BESS calculated considering the 
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avoided penalty (APEN) incurred due to not supplying the load as per forecast . The sizing of 

battery is done by trial and error method.The size of the battery is taken as 5%,10%,15% of 

the total wind power generation capacity. 

The ROI at vaious battery capacities are computed .It is evident from the results that based on 

the avoided penalties , 5 % battery energy storage size provides the best ROI. 

 

4.2   Future Scope 

 

The Naïve,AR,MA,ARIMA model, also known as the Box-Jenkins model or methodology,  

has been analysed for forcasting wind power generation in this study. But, Artificial neural 

networks (ANNs) as a soft computing technique are the more accurate and widely used as 

forecasting models. Its wide usage is due to the several distinguishing features of ANNs that 

make them better than ARIMA. ANNs are data-driven, self-adaptive methods with few prior 

assumptions. They are also good predictor with the ability to make generalized observations 

from the results learnt from original data, thereby permitting correct inference .ANN-based 

approach is expected to demonstrate superior performance over the ARIMA. In future 

studies, ANN or hybrid of intelligent techniques using ARIMA- can be utilised to improve 

existing predictive models .  

In this work, a balance has been found between the need to describe a realistic use case and 

an abstraction necessary to extract the fundamental behaviour of the phenomenon. the choice 

of reaching a specific rating of the battery namely 5%,10%15% of the total generation 

capacity is arbitrary.This should ideally be dictated by a result of an optimisation function 

In real life application the storage system considered will be composed by an inverter .The 

inverter is characterised by its own rating, cost and effciency ] which may be included in 

future studies.The simplified model used has not incorporated the change due to various 

battery technologies .Therefore, it can also be improved by modifying and if necessary 

adding new relations able to describe the behaviour of the specific battery technology. Also 
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the results obtained are relative to a simplified storage with perfect efficiency and no losses 

from auxiliaries. 

 

The objective function and constraints have also an impact on the results of the work, the 

choice of maximising the ROI is reasonable but could be coupled with the optimisation of 

other parameters and could be possibly further area of research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



51 
 
 

 

 

REFERENCES 

 
[1]  D. Gielen, F. Boshell, D. Saygin, M. Bazilian, N. Wagner and R. Gorini, "The role of 

renewable energy in the global energy transformation", Energy Strategy Reviews, 

vol. 24, pp. 38-50, 2019. 

[2] Z. Lin and X. Liu, "Assessment of Wind Turbine Aero-Hydro-Servo-Elastic 

Modelling on the Effects of Mooring Line Tension via Deep Learning", Energies, 

vol. 13, no. 9, pp. 2264, 2020.  

[3] J. Zhang, J. Yan, D. Infield, Y. Liu and F. Lien, "Short-term forecasting and 

uncertainty analysis of wind turbine power based on long short-term memory 

network and Gaussian mixture model", Applied Energy, vol. 241, pp. 229-244, 

2019.  

[4]  Y. Zhao, L. Ye, Z. Li, X. Song, Y. Lang and J. Su, "A novel bidirectional mechanism 

based on time series model for wind power forecasting", Applied Energy, vol. 177, 

pp. 793-803, 2016. 

[5]  International Energy Agency, "Lithuania Energy Policy Review 2021", International 

Energy Agency, 2021. 

[6]   S. Singh, T. Bhatti and D. Kothari, "Wind Power Estimation Using Artificial Neural 

Network", Journal of Energy Engineering, vol. 133, no. 1, pp. 46-52, 2007.  

[7] M. Ortega-Vazquez and D. Kirschen, "Estimating the Spinning Reserve 

Requirements in Systems With Significant Wind Power Generation 

Penetration", IEEE Transactions on Power Systems, vol. 24, no. 1, pp. 114-124, 

2009.  

[8] H. Holttinen, J. J. Miettinen, A. Couto, H. Algarvio, L. Rodrigues and A. 

Estanqueiro, "Wind power producers in shorter gate closure markets and balancing 

markets," 2016 13th International Conference on the European Energy Market 

(EEM), 2016, pp. 1-5, doi: 10.1109/EEM.2016.7521309. 

[9]  B. Dunn, H. Kamath and J. Tarascon, "Electrical Energy Storage for the Grid: A 

Battery of Choices", Science, vol. 334, no. 6058, pp. 928-935, 2011.  

 [10]  J. M. Morales, A. J. Conejo, J. PÉrez-Ruiz. “Short-Term Trading for a Wind Power 

Producer”. IEEE Transactions on Power Systems, Vol.25,1, pp 554 – 564, 2010. 

[11] Holttinen, Hannele. 2005. “Optimal electricity market for wind power”.Energy 

Policy, Vol. 33, No. 16, pp. 2052 - 2063 

[12]  F. Van Hulle, H. Holttinen, J. Kiviluoma, M. Faiella, P. Kreutzkamp, N. Cutululis, 



52 
 
 

M. Rekinger, A. Gubina, F. Chapalain, B. Ernst, S Wachtel, G. Quiñonez-Varela, 

D. Craciun, I. Pineda, B. Stoffer, J.Corbett y A. Flament, «REserviceS: Synthesis 

Report,» 2014 

 [13] R.J. Hyndman and G. Athanasopoulos, "Forecasting: Principles and Practice (3rd 

ed)", Otexts.com, 2018. [Online]. Available: https://otexts.com/fpp3/. [Accessed: 15- 

Jun- 2021]. 

[14]  Hanifi, S., Liu, X., Lin, Z. and Lotfian, S., 2020. A Critical Review of Wind Power  

Forecasting Methods—Past, Present and Future. Energies, 13(15), pp.37-64. 

[15]   NREL, "Opening Markets , Designing Windows and Closing Gates", NREL, 2021. 

[16]  X. Jiang, G. Nan, H. Liu, Z. Guo, Q. Zeng and Y. Jin, "Optimization of Battery    

Energy Storage System Capacity for Wind Farm with Considering Auxiliary  

Services Compensation", Applied Sciences, vol. 8, no. 10, pp. 19-57, 2018 

[17]   Castronuovo ED, Lopes JAP.” On the Optimization of the Daily Operation of a 

Wind-Hydro Power Plan”t. IEEE Trans Power Syst ;pp 1599–1606,2004 

[18] Castronuovo ED, Lopes JAP. “Optimal operation and hydro storage sizing of a 

wind–hydro power plant”. Int Journal Electr Power Energy Syst:pp 771–778, 2004. 

[19]  Castronuovo ED, Usaola J, Bessa R, Matos M, Costa IC, Bremermann L, et al.” An 

integrated approach for optimal coordination of wind power and hydro pumping 

storage: Integrated approach for optimal coordination of wind power and hydro. 

Wind Energy”  pp 829-852, 2014. 

[20]  Korpaas M, Holen AT, Hildrum R. “Operation and sizing of energy storage for 

wind power plantsin a market system.” Int Journal Electr Power Energy Syst 

vol;25:pp  599–606.  

[21] Korpås M. “Increasing the Network In-Feed Accuracy of Wind Turbines with      

Energy Storage Devices”. Sixth Word Energy Syst. Conf., pp. 365–70, 2006. 

[22] Garcia-Gonzalez J, de la Muela RMR, Santos LM, Gonzalez AM. “Stochastic Joint 

Optimization of Wind Generation and Pumped-Storage Units in an Electricity 

Market”. IEEE Trans Power Syst ,pp. 460-468, 2008. 

[23] Aditya SK, Das D. “Application of battery energy storage system to load frequency 

control of an isolated power system”. Int Journal Energy Res vol 23:pp 247–258 , 

1999. 

[24] Mercier P, Cherkaoui R, Oudalov “A. Optimizing a Battery Energy Storage System 

for Frequency Control Application in an Isolated Power System.” IEEE Trans 

Power Syst, pp 469–477, 2004. 

 [25] Delille G, Francois B, Malarange G.” Dynamic frequency control support: A virtual 

inertia provided by distributed energy storage to isolated power systems”, IEEE; 

pp. 1–8. , 2010. 

 [26] Hamsic N, Schmelter A, Mohd A, Ortjohann E, Schultze E, Tuckey A, et al. 

“Increasing Renewable Energy Penetration in Isolated Grids Using a Flywheel 



53 
 
 

Energy Storage System”, IEEE; 2007, pp.195–200. 

[27] Takahashi R, Tamura J. “Frequency control of isolated power system with wind 

farm by using Flywheel Energy Storage System”, IEEE; 2008, pp. 1–6.,2008. 

[28] Brown PD, Peas Lopes JA, Matos MA. “Optimization of Pumped Storage Capacity 

in an Isolated Power System With Large Renewable Penetration”. IEEE Trans 

Power Syst, vol 23:pp 523–531,2008  

 [29] Johnston L, Díaz-González F, Gomis-Bellmunt O, Corchero-García C, Cruz-

Zambrano M. “Methodology for the economic optimisation of energy storage 

systems for frequency support in wind power plants.”, Appl Energy ,pp 660–

669,2015.  

[30]  International Energy Agency, "Lithuania Energy Policy Review 2021", 2021 

[Online]. Available: https://www.iea.org/events/lithuania-energy-policy-review-

2021. [Accessed: 17- Jun- 2021] 

[31]   D. Montgomery, C. Jennings and M. Kulahci, Solutions manual to accompany 

Introduction to time series analysis and forecasting. Hoboken: Wiley, 2009.  

 
 


