
Building 5G L2/L3 Protocol Stack

A Project Report

submitted by

TEJARAM SANGADI

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUL 2020

CERTIFICATE

This is to certify that the thesis (or project report) titled Building 5G L2/L3 Protocol

Stack, submitted by Tejaram Sangadi, to the Indian Institute of Technology Madras,

for the award of the degree of Bachelor of Technology, is a bona fide record of the

project work done by him (her) under my (our) supervision. The contents of this thesis

(or project report), in full or in parts, have not been submitted to any other Institute or

University for the award of any degree or diploma.

Prof. Radha Krishna Ganti
Project Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Prof. Krishna Jagannthan
Project Guide
Associate Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 24th July 2020

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. Krishna Jagannathan and

Prof. Radha Krishna Ganti for giving me the opportunity to contribute to this chal-

lenging project. Their invaluable guidance has helped significantly while doing this

project.

I am also grateful to the 5G Protocol Stack Development team, IIT Madras for their

continued support during the project period.

Finally, I would like to thank my parents who have been supportive throughout the

journey.

i

ABSTRACT

KEYWORDS: 4G LTE ; 5G NR; L2/L3 Protocol Stack; MAC; ASN1;

Looking at the trends of evolution of cellular technology from 1G to 4G, there have been

significant improvements. These improvements have been the backbone for globalisa-

tion. 4G LTE technology has revolutionised the usage of smartphones by connecting

people with food aggregators, cab-hailing services, payment platforms and many more

services which have opened the potential for a new market. The problem faced now

is congestion of the networks due to heavy bandwidth requirement and subscriber de-

mand. The next cellular technology has been architected to solve the problems of the

existing technology and offers many more features. 5G NR is the latest cellular tech-

nology which unlocks the key to the advent of exhaustive applications. This has been

possible due to key improvements in existing 4G cellular technology (LTE). This work

focuses on understanding what goes into building next-generation cellular technology,

design of the MAC module and the usage of ASN1 in the 5G NR Protocol L2/L3 pro-

tocol stack.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . i

ABSTRACT . ii

LIST OF FIGURES . v

GLOSSARY . vi

ABBREVIATIONS . vii

CHAPTER 1: INTRODUCTION . 1

1.1 Why 5G? . 1

1.2 What is 5G? . 2

1.3 How is 5G Developed? . 4

CHAPTER 2: Literature Review. 5

2.1 Open Solutions . 5

2.2 ORAN Architecture . 6

CHAPTER 3: MAC Module . 9

3.1 MAC Functionalities . 9

3.2 Code Architecture . 10

CHAPTER 4: ASN.1 . 12

4.1 Introduction . 12

4.2 Encoding rules . 12

4.3 ASN1 compilers . 13

4.3.1 Obj-sys compiler . 14

4.3.2 OSS Noklava compiler . 14

iii

CHAPTER 5: Discussion of Findings . 16

5.1 MAC Execution Time . 16

5.2 F1-Setup Encoding & Decoding . 18

5.2.1 Introduction . 18

5.2.2 Procedure . 18

5.2.3 Decoded Data . 20

5.2.4 Conclusion . 23

APPENDIX A: ASN1C Open Source Compiler v9.29 26

A.1 Installation Guide . 26

APPENDIX B: Extracting ASN1 From 3GPP Technical Specifications. . . 28

B.1 Procedure from Specification . 28

B.2 Steps for Extraction . 28

B.3 Working of the Python Script . 29

APPENDIX C: Socket Programming in C/C++. 32

C.1 Introduction . 32

C.2 API’s for server . 33

C.2.1 Socket creation . 33

C.2.2 setsockopt . 33

C.2.3 Bind . 33

C.2.4 Listen . 34

C.2.5 Accept . 34

C.3 API’s for client . 34

C.3.1 Socket creation . 34

C.3.2 Connect . 34

REFERENCES . 37

LIST OF FIGURES

Figure Title Page

1.1 Requirements for 5G Networks, Wikipedia (2020) 3

1.2 5G Development Process . 4

2.1 Interfaces in 5G, Dahlman et al. (2018) 6

2.2 L2/L3 O-RAN architecture for gNB, O_RAN© (2019) 7

2.3 O-CU Block and its Internal APIs, O_RAN© (2019) 8

2.4 O-DU Block and Internal APIs, O_RAN© (2019) 8

3.1 MAC Functionalities . 9

3.2 MAC-Scheduler Interface, O_RAN© (2019) 10

3.3 Threaded Implementation . 11

4.1 Encoding rules, Walkin (2010) . 12

4.2 Comparison of different encoding rules, Walkin (2010) 13

4.3 ASN1C Workflow, objective SYSTEMS© (2020) 13

4.4 ASN1C Studio. 15

5.1 Timing for Thread 1 and Thread 2 17

5.2 F1-Setup Request. 18

5.3 F1-Setup Request on ASN1C Studio. 19

5.4 Encoded Data in Hex. 19

5.5 ASN1C Open Source Compiler Support, Walkin (2010) 24

5.6 RRC ASN1 Encoding Scheme: UPER, 3GPP (2020c) 24

5.7 F1AP ASN1 Encoding Scheme: APER, 3GPP (2020a) 24

5.8 NGAP ASN1 Encoding Scheme: APER, 3GPP (2020b) 25

C.1 State diagram for server and client model. 32

v

GLOSSARY

The following are some of the commonly used terms in this report:

Protocol

Stack

Conceptual description of the layered structure of communication pro-

tocols in which layers are depicted in hierarchical form. Every layer in

the protocol stack is capable of doing a specific functionality and can

have a mode of operation. Examples of protocol stacks: OSI (Open

System Interconnection) model and the TCP/IP protocol stack.

Software

Defined

Networking

SDN defines the process of abstracting and concentrating many of the

control actions related to packet forwarding and handling processes

which would typically take place within an individual network router

or switch.

gNB The gNB Next Generation base station which supports the 5G NR

architecture.

API A set of methods, protocols, and tools used while developing software.

SDU The Service Data Unit identifies the message transferred between peer

layer entities but not understood by the supporting lower-layer entities.

PDU A Protocol Data Unit contains data and control information which is

transferred between layers in a protocol stack. Mpirical (2020)

vi

ABBREVIATIONS

NR New Radio

LTE Long Term Evolution

MAC Medium Access Control

UE User Equipment

RAN Radio Access Network

SDAP Service Data Adaptation Protocol

PDCP Packet Data Convergence Protocol

RLC Radio Link Control

MAC Media Access Control

RRC Radio Resource Control

DL Downlink

UL Uplink

SDU Service Data Unit

PDU Protocol Data Unit

HARQ Hybrid Automated Repeat Request

TB Transport Block

gNB 5G Base Station

ASN1 Abstract Syntax Notation 1

BCCH Broadcast Control Channel

PCCH Paging Control Channel

CCCH Common Control Channel

vii

DCCH Dedicated Control Channel

DTCH Dedicated Traffic Channel

BCH Broadcast Channel

PCH Paging Channel

DL-SCH Downlink-Shared Channel

UL-SCH Uplink-Shared Channel

RACH Random Access Channel

CBG Code Block Group

viii

CHAPTER 1

INTRODUCTION

1.1 Why 5G?

The immense growth in the number and type of connected devices and the abundant

increment in user/network traffic volume and types, upon the performance constraints

in 4G technologies, have driven industry efforts and investments towards defining, de-

veloping and deploying systems for the fifth-generation (5G) of mobile networks. The

5th generation of mobile broadband wireless networks have been designed to meet the

challenging system and service requirements of the existing and emerging applications

in 2020 and beyond.

The future connected societies are portrayed by the vital growth in connectivity

and traffic density, network densification, and the broad range of new use cases and

applications.

As a consequence, there is a constant need to push the performance envelope of the

wireless systems to the new frontiers in order to satisfy the requirements for larger capa-

bilities through virtualized and software-defined network (SDN) architectures. Ahmadi

(2019)

1.2 What is 5G?

ITU defines 5G in IMT-2020 (vision document for 5G Networks by ITU)and has de-

fined three use cases described below briefly:

1. Provides 100x faster user-experienced data rate than LTE: enhanced Mobile Broad-
band (eMBB):

2. Has an end-to-end system latency of 1ms: Ultra-Reliable Low-Latency Commu-
nications (URLLC)

3. Can handle 1 million devices/sq.km: massive Machine-Type Communications
(mMTC).

The eMBB use case is fundamentally based on the progression and improvement of

LTE technology. Ahmadi (2019)

The below picture depicts all the requirements for 5G networks:

2

Fig. 1.1: Requirements for 5G Networks, Wikipedia (2020)

3

1.3 How is 5G Developed?

3GPP, an industry body has many working groups which try to reach the goals set by

ITU in IMT-2020. The below picture depicts the process of development. The process

involves bringing all the major tech giants and research labs together to devise universal

technical specifications. These specifications are approved by several standards organ-

isations (ETSI, TSDSI, . . .) and published as standards. The open-source community

develops solutions in compliance with these standards. Casaccia (2017)

Fig. 1.2: 5G Development Process

4

CHAPTER 2

Literature Review

2.1 Open Solutions

3GPP technical specifications emphasise more on the aspects of the UE and implementation-

specific details of Basestation are left to be managed by vendors and operators.

This is where O-RAN alliance comes into the picture offering an open solution focusing

on bringing white box hardware and open interfaces

O-RAN specifications of Working Group 8 (WG8):Stack Reference Design, offer an

open architecture for implementing Basestation L2/L3 Stack.

The purpose of Working Group 8 is to design the software architecture and release plans

for the O-CU (O-RAN Central Unit) & O-DU (O-RAN Distributed Unit) building upon

the O-RAN and 3GPP specifications for the 5G protocol. stack.O_RAN© (2019)

The architecture of 5G NR consists of three major components:

1. UE: User Equipment (Eg. Mobile Phone)

2. Basestation (gNB)

3. 5G Core Network

These components further consist of different modules. The below picture depicts the

5G network comprising different interfaces between the modules.

Fig. 2.1: Interfaces in 5G, Dahlman et al. (2018)

2.2 ORAN Architecture

gNB, The Basestation for 5G is further split into two components gNB-CU and gNB-

DU.

gNB-CU: Central Unit in O-RAN architecture is defined as O-CU.

gNB-DU: Distributed Unit in O-RAN architecture is defined as O-DU.

O-RAN in WG8 Specifications has pointed out the API blocks and Call flows for

L2/L3 Architecture. The below figures depict the architecture and modules for O-CU

and O-DU

6

Fig. 2.2: L2/L3 O-RAN architecture for gNB, O_RAN© (2019)

7

Fig. 2.3: O-CU Block and its Internal APIs, O_RAN© (2019)

Fig. 2.4: O-DU Block and Internal APIs, O_RAN© (2019)

8

CHAPTER 3

MAC Module

3.1 MAC Functionalities

MAC unit is the final module in the L2 stack which consists of many functionalities.

Below picture depicts the functionalities present in the MAC unit.

Fig. 3.1: MAC Functionalities

The below architecture from O-RAN depicts the functionalities of MAC module, ie

Mux/DeMux and HARQ. The remaining functionalities are taken care by other APIs.

Fig. 3.2: MAC-Scheduler Interface, O_RAN© (2019)

3.2 Code Architecture

The test source code follows the model of using threads to implement MAC’s function-

alities of Multiplexing and Demultiplexing.

A thread is a singular sequence stream in a process. Since threads have some of

the features of processes, they are also called lightweight processes. Threads are not

independent of each other like processes. Threads share their code section, data section

and OS resources (open files and signals) with other threads. Similar to a process, a

thread has its own program counter (PC), a register set, and a stack space. Jain (2020)

Functions of Each Thread at gNB side:

Thread 1: Generate data which is to be received from RLC and perform MAC func-

tionalities (Multiplexing and Adding 8/16 bit header)

Thread 2: Send the data to PHY if the TB size reaches max_TB_size.

Functions of Each Thread at UE side:

10

Fig. 3.3: Threaded Implementation

Thread 1: Received data after MAC functionalities (De-Multiplexing and Extracting

8/16 bit header) and store it in the RLC Buffer.

Thread 2: Send the data to PHY if the TB size reaches max_TB_size.

Sending and Receiving from PHY is emulated using socket programming, see C

The use of a link loopback server helped to send and to receive data packets in the same

system. The source code of MAC module is present in L2 Protocol Stack hosted by the

server of 5G Testbed Lab, IITM.

11

https://10.21.16.27:8181

CHAPTER 4

ASN.1

4.1 Introduction

Abstract Syntax Notation 1 is a representation used for defining data transmitted by

telecommunications protocols, unmindful of language implementation and physical de-

scription of these data, whatever the application, regardless of the complexity. ITU

(2014)

4.2 Encoding rules

ASN.1 has a collection of rules exactly specifying how messages need to be "encoded"

for communication with another machine. Every set of "encoding rules" has distinct

characteristics, like compactness or decoding speed, which make it a good fit for partic-

ular environments. All the encoding rules are able to represent any messages we would

like to exchange.Walkin (2010)

Fig. 4.1: Encoding rules, Walkin (2010)

The ASN.1 standard describes many ways to encode data. A protocol developer can

select textual, binary-based or compact bit-packed encoding rules depending on space,

interoperability and efficiency requirements.

Fig. 4.2: Comparison of different encoding rules, Walkin (2010)

4.3 ASN1 compilers

Fig. 4.3: ASN1C Workflow, objective SYSTEMS© (2020)

13

There are many ASN1 compilers available online and can be broadly divided into

two categories:

• Commercial: Examples of some notable ones are OSS Nokalva and Object Systems

• Open Source: asn1c compiler on Github written by Lev Walkin.

4.3.1 Obj-sys compiler

The Obj-Sys ASN1C compiler translates ASN.1 and/or XML schema (XSD) source

specs into C, C++, C#, Java, or Python source code. Developers can use this code

to translate structures/objects to and from finished ASN.1 messages using ITU-T/ISO

encoding rules BER, CER, DER, OER, PER, UPER, JER(JSON), or XER(XML). [ob-

jective SYSTEMS© (2020)]

4.3.2 OSS Noklava compiler

The OSS ASN.1 Tools for C is a comprehensive development toolkit for swiftly devel-

oping applications using ASN.1. This product highlights a powerful ASN.1:2015 capa-

ble compiler, a runtime library with ASN.1 BER, CER, DER, PER/UPER, CPER/CU-

PER, OER, COER, XER, CXER, E-XER, and JSON encoder/decoder engines, and a

vibrant set of services to simplify and boost the development.[OSS_Nokalva© (2020)]

14

https://www.oss.com/
https://www.obj-sys.com/
https://github.com/vlm/asn1c

ASN1Studio is a handy tool from OSS Nokalva for building Applications involving

usage of ASN1.

Fig. 4.4: ASN1C Studio.

It makes checking constraints for IEs easier which in turn helps in faster debug-

ging. Fig 5.3 depicts the F1 Setup Request IE with filled IEs (first message transferred

between O-DU and O-CU).

15

CHAPTER 5

Discussion of Findings

5.1 MAC Execution Time

The timing analysis was performed using clock() function defined in <time.h> library.

clock function gives the time used by the program so far (user time + system time). The

result is CLOCKS_PER_SECOND is program time in seconds.

Code was run on a computer with an Intel(R) Core(TM) i5-7200U CPU running @

2.50GHz using 8GB of RAM, running Ubuntu version 16.04 with following specs:

• CPU MHz: 600.014

• CPU max MHz: 3100.0000

• CPU min MHz: 400.0000

• Thread(s) per core:2

• Core(s) per socket:2

• Socket(s):1

(Generate Data and Perform MAC functionalities)

Order of execution time for thread1: 0.01ms

(Sending Transport Block Over the Socket)

Order of execution time for thread2: 0.1ms

Fig. 5.1: Timing for Thread 1 and Thread 2

17

5.2 F1-Setup Encoding & Decoding

5.2.1 Introduction

F1-Setup is one of the initial messages sent from the gNB-DU to the gNB-CU in order

to initiate the setup procedure between both the units. It is the initiating message for a

potential handshake consisting of 4 different messages for the setup of the F1-interface.

Fig. 5.2: F1-Setup Request.

5.2.2 Procedure

The ASN1STUDIO software was used to compile the F1 interface.asn file in order to

generate the C files. Later the C structures were filled using the APER encoding rule in

order to generate the desired output.

18

Fig. 5.3: F1-Setup Request on ASN1C Studio.

Fig. 5.4: Encoded Data in Hex.

19

5.2.3 Decoded Data

The encoded hexadecimal data was then decoded to get back the original contents at

the other side of the interface

1 value F1SetupRequest ::=

2 {

3 protocolIEs

4 {

5 {

6 id 78,

7 criticality reject,

8 value TransactionID : 12

9 },

10 {

11 id 42,

12 criticality reject,

13 value GNB-DU-ID : 2

14 },

15 {

16 id 45,

17 criticality ignore,

18 value GNB-DU-Name : "cell1"

19 },

20 {

21 id 44,

22 criticality reject,

23 value GNB-DU-Served-Cells-List :

24 {

25 {

26 id 43,

27 criticality reject,

28 value GNB-DU-Served-Cells-Item :

29 {

30 served-Cell-Information

31 {

32 nRCGI

33 {

20

34 pLMN-Identity ’000000’H,

35 nRCellIdentity ’00000000 00000000 00000000 00000000

000 ...’B

36 },

37 nRPCI 0,

38 servedPLMNs

39 {

40 {

41 pLMN-Identity ’000000’H

42 }

43 },

44 nR-Mode-Info fDD :

45 {

46 uL-NRFreqInfo

47 {

48 nRARFCN 0,

49 freqBandListNr

50 {

51 {

52 freqBandIndicatorNr 1,

53 supportedSULBandList

54 {

55 {

56 freqBandIndicatorNr 1

57 }

58 }

59 }

60 }

61 },

62 dL-NRFreqInfo

63 {

64 nRARFCN 0,

65 freqBandListNr

66 {

67 {

68 freqBandIndicatorNr 1,

69 supportedSULBandList

21

70 {

71 {

72 freqBandIndicatorNr 1

73 }

74 }

75 }

76 }

77 },

78 uL-Transmission-Bandwidth

79 {

80 nRSCS scs15,

81 nRNRB nrb11

82 },

83 dL-Transmission-Bandwidth

84 {

85 nRSCS scs15,

86 nRNRB nrb11

87 }

88 },

89 measurementTimingConfiguration ’00’H

90 },

91 gNB-DU-System-Information

92 {

93 mIB-message ’25’H,

94 sIB1-message ’AB’H

95 }

96 }

97 }

98 }

99 },

100 {

101 id 171,

102 criticality reject,

103 value RRC-Version :

104 {

105 latest-RRC-Version ’000’B,

106 iE-Extensions

22

107 {

108 {

109 id 199,

110 criticality ignore,

111 extensionValue OCTET STRING : ’0F0900’H

112 }

113 }

114 }

115 }

116 }

117 }

5.2.4 Conclusion

The message was successfully encoded and decoded which allows it to pass through the

F1 interface present between gNB-CU and gNB-DU.

23

Fig. 5.5: ASN1C Open Source Compiler Support, Walkin (2010)

Fig. 5.6: RRC ASN1 Encoding Scheme: UPER, 3GPP (2020c)

Fig. 5.7: F1AP ASN1 Encoding Scheme: APER, 3GPP (2020a)

24

Fig. 5.8: NGAP ASN1 Encoding Scheme: APER, 3GPP (2020b)

The reason behind going towards commercial compilers is APER support which

is to be followed according to the specifications, see Pg:24. The present version of

open-source compiler doesn’t have APER support.

25

APPENDIX A

ASN1C Open Source Compiler v9.29

A.1 Installation Guide

1. Clone this branch of repository from github as this branch contains some bug
fixes of the original repository.

int sockfd = socket(domain, type, protocol);

2. Before installing make sure the below packages are present in your system fol-
lowing command can be used:

dpkg -s pkg-name

Replace pkg-name with following names:
• automake

• libtool

• bison

• flex

3. If these packages are not present then install using following command:
sudo apt-get install pkg-name

Where pkg-name can be automake,libtool,flex.

4. For installing bison 2.x we need to follow different commands as above command
will install bison 3.x version

1 wget http://launchpadlibrarian.net/140087283/libbison-dev_2
.7.1.dfsg-1_amd64.deb

2 wget http://launchpadlibrarian.net/140087282/bison_2.7.1.
dfsg-1_amd64.deb

3 dpkg -i libbison-dev_2.7.1.dfsg-1_amd64.deb
4 dpkg -i bison_2.7.1.dfsg-1_amd64.deb
5

To prevent the update manager from overwriting this package:
apt-mark hold libbison-dev
apt-mark hold bison

[source]

https://github.com/vlm/asn1c
https://askubuntu.com/questions/444982/install-bison-2-7-in-ubuntu-14-04

5. Now that we have all the requirements for installing we can follow this installation guide:
Go inside the cloned repository and run the below commands:

test -f configure || autoreconf -iv
./configure
make

Before running the above commands check if autoconf is installed using below
command:

dpkg -s autoconf

For installing:
sudo apt-get install autoconf

6. Ensure asn1c is still behaving well after compiling on your platform To be run
inside asn1c repository

make check

The above command will run test cases and it will take a while to complete
Possible Test-case Failure : XFAIL:1 (check-158.-fcompound-names.c)
From this issue of repository, this is an expected failure and we need not worry
about it too much.

7. From inside the repository, install using the below command:
make install

After installation to check if it is installed properly:
man asn1c

[source]

8. After successful install, an example to try out:
1 asn1c -gen-PER -fcompound-names -findirect-choice -fno-

include-deps rrc.asn

where rrc.asn is ASN1 extracted from TS 38.331 document. see B.

27

https://github.com/mouse07410/asn1c/blob/vlm_master/REQUIREMENTS.md
https://github.com/vlm/asn1c/blob/master/INSTALL.md
https://github.com/vlm/asn1c/issues/357
https://github.com/mouse07410/asn1c/blob/vlm_master/INSTALL.md

APPENDIX B

Extracting ASN1 From 3GPP Technical Specifications

B.1 Procedure from Specification

The procedure to extract ASN1 is followed according to A.3.1.1 of 38.331. The proce-

dure is as follows:

A typical procedure for extraction of the complete

ASN.1 code consists of a first step where the

entire RRC PDU contents description (ultimately the

entire specification) is saved into a plain text ASCII

file format, followed by a second step where

the actual extraction takes place, based on the

occurrence of the ASN.1 start and stop tag.

B.2 Steps for Extraction

1. Download the .docx version of specification from 3gpp website.
For RRC, click here

2. Extract the zip file and Open the .docx

3. File-> Save As..-> Choose .txt format

4. Use ExtractASN1.py and pass the .txt file as argument (along with path if in a
different directory).

python ExtractASN1.py rrc.txt

5. Check for rrc.asn created in the directory from which python script was run.

https://www.etsi.org/deliver/etsi_ts/138300_138399/138331/15.09.00_60/ts_138331v150900p.pdf
http://www.3gpp.org/ftp//Specs/archive/38_series/38.331/38331-f80.zip

B.3 Working of the Python Script

There can be many ways for searching for all occurrences of substrings. One easy way

is to use regular expression.

This python script uses functions of regular expression library re to search for ""–

ASN1START" and "– ASN1STOP" substrings.

The function re.finditer(pattern,string,flags=0) :

Return an iterator yielding match objects over all

non-overlapping matches for the RE pattern in string.

The string is scanned left-to-right, and matches

are returned in the order found. Empty matches

are included in the result.

ExtractASN1.py : Working of script is explained below in snippets.

1 import sys

2 import re

3 # count the arguments

4 arguments = len(sys.argv)

5 if(arguments!=2):

6 print("Expected No. of Arg = 1\t Given No. of Arg = "+ str(

arguments-1))

7 print("usage:" + "\t" + sys.argv[0] + "\t" "<inputfile.txt>")

8 exit()

The above code imports libraries and checks for the input .txt file.

9 with open (sys.argv[1], ’rt’) as myfile:

10 contents = myfile.read()

11 alpha = re.finditer("-- ASN1START|-- /example/ ASN1START|-- /bad

example/ ASN1START", contents)

12 beta = re.finditer("-- ASN1STOP|-- /example/ ASN1STOP", contents)

13 alpha_start = []

14 alpha_end = []

29

1. Opens the input file Spec) and reads it into string variable contents

2. re.finditer() function finds for all occurrences of substrings "– ASN1START" or
"– /example/ ASN1START" or "– /bad example/ ASN1START" and – ASN1STOP
or – /example/ ASN1STOP in the specification.

3. This function returns an iterator which yields match objects which can be used to
find where the expression occurs in the document.

4. The reason for searching — /example/.* is for matching no. of occurrences of "–
ASN1START" with " ASN1STOP". As some examples in the spec end with "- -
ASN1STOP" rather than "– /example/ ASN1STOP".

5. If we try to search only for "— ASN1START" and "— ASN1STOP" we would
end up with more number of "— ASN1STOP" than "— ASN1START". Eventu-
ally we have to ignore examples in the actual output.

6. We create empty lists which will hold start and end positions of match objects in
alpha for ("– ASN1START|/example/ ASN1START|/bad example/ ASN1START")
and beta ("– ASN1STOP| /example/ ASN1STOP").

15 for match in alpha:
16 start,end = match.span()
17 alpha_start.append(start)
18 alpha_end.append(end)
19
20 for match in beta:
21 start,end = match.span()
22 beta_start.append(start)
23 beta_end.append(end)
24

7. The match.span() method gives out start and end position of each occurrence in
alpha .

8. The variables start and end are appended to list variables and alpha_end for
every match respectively.

9. Steps 7 and 8 are repeated for beta

25 name = sys.argv[1]
26 lastpos = name.rfind(’.’)
27 filename = name[0:lastpos]
28
29 asnfile = open(filename+".asn","w")
30 for x in range(len(beta_start)):
31 if alpha_end[x]-alpha_start[x] == 12 and beta_end[x]-

beta_start[x] == 11:
32 asnfile.write(contents[alpha_start[x]:beta_end[x]])

write contents
33 asnfile.write(’\n\n’)
34 asnfile.close()
35

30

10. open() function is used to create a new file with same name as the argument in
write mode.

11. We run a for loop no. of times substrings "– ASN1START or
– /example/ASN1START or – /bad example/ ASN1START" occur.
In the above code len(beta_start could be used as well. As both len(beta_start)
and len(alpha_start) are equal.

12. Now we need to check for only ("– ASN1START") and ("– ASN1STOP") which
translates to checking if alpha_end[x]-alpha_start[x]==12 and
beta_end[x]-beta_start[x]==11 .

13. if statement statement helps in excluding matches "– /example/ ASN1START|
/bad example/ ASN1START" and "– /example/ ASN1STOP".

14. Finally we write contents[alpha_start[x]:beta_end[x] { -
-ASN1START....–ASN1STOP} into the file and write a newline to separate the
next match. The process continues for all the occurences.

15. Close the file after all the writes finish.

31

APPENDIX C

Socket Programming in C/C++

C.1 Introduction

Socket programming is a means of uniting two nodes on a network to interact with each

other. One of the sockets listens on a specific port at an IP address, whilst another socket

reaches out to the other to create a connection. The server creates the listener socket

while the client tries to reach out to the server. Sinha (2020)

Fig. C.1: State diagram for server and client model.

C.2 API’s for server

C.2.1 Socket creation

int sockfd = socket(domain, type, protocol) ;

sockfd: socket descriptor is an integer similar to a file-handle

domain: Type: integer;communication domain Example: IPv4 protocol: AF_INET,

IPv6 protocol: AF_INET6 ()

type: communication type

• SOCK_STREAM: TCP(reliable, connection oriented)

• SOCK_DGRAM: UDP(unreliable, connectionless)

protocol: Protocol value for Internet Protocol(IP) is zero. The same number ap-

pears on the protocol field in the IP header of a packet. (man protocols can give out

more information)

C.2.2 setsockopt

int setsockopt(int sockfd, int level, int optname,

const void *optval, socklen_t optlen);

The setsockopt function assists in managing options for the socket indicated by the file

descriptor sockfd. This functionality is fully optional. However, it can help in reuse of

the address and the port. Sinha (2020)

C.2.3 Bind

int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

33

Following the formation of the socket, the bind function is responsible for binding the

socket to the address and port number specified in addr(custom data structure).

C.2.4 Listen

int listen(int sockfd, int backlog);

It sets the server socket in an idle mode. In this mode, it waits for the client to

reach the server to create a connection. The backlog specifies the maximum length

till which the queue of pending connections for sockfd may grow. If a connection

request reaches when the queue is full, the client can receive an error with a sign of

ECONNREFUSED .

C.2.5 Accept

int new_socket= accept(int sockfd, struct sockaddr *addr,

socklen_t *addrlen);

It selects the first connection request on the queue of pending connections for the

listening socket, sockfd. Creates a new connected socket, and then returns a new file de-

scriptor referring to that socket. At this moment, the connection is established between

client and server, and are ready for transferring data.

C.3 API’s for client

C.3.1 Socket creation

Precisely the same as that of socket creation at the server-side.

C.3.2 Connect

int connect(int sockfd, const struct sockaddr *addr,

socklens_t addrlen);

34

The connect() system call is responsible for connecting the socket indicated by the

file descriptor sockfd to the address given by addr. The Server’s address and port are

defined in addr structure. Sinha (2020)

35

REFERENCES

1. 3GPP (2020a). NG-RAN; F1 Application Protocol (F1AP); Protocol specifica-
tion. Technical Specification (TS) 38.473, 3rd Generation Partnership Project (3GPP).
URL https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3260. Version 15.9.0.

2. 3GPP (2020b). NG-RAN;NG Application Protocol (NGAP). Technical Spec-
ification (TS) 38.413, 3rd Generation Partnership Project (3GPP). URL
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3223. Version 15.8.0.

3. 3GPP (2020c). NR; Radio Resource Control (RRC); Protocol specification.
Technical Specification (TS) 38.331, 3rd Generation Partnership Project (3GPP).
URL https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3197. Version 15.9.0.

4. Ahmadi, S. (2019). 5G NR: Architecture, Technology, Implementation, and Opera-
tion of 3GPP New Radio Standards. Elsevier Science. ISBN 9780128134023. URL
https://books.google.co.in/books?id=RZadDwAAQBAJ.

5. Casaccia, L. (2017). Understanding 3gpp – starting with the ba-
sics. URL https://www.qualcomm.com/news/onq/2017/08/02/
understanding-3gpp-starting-basics.

6. Dahlman, E., S. Parkvall, and J. Skold (2018). 5G NR: The Next Generation Wire-
less Access Technology. Elsevier Science. ISBN 9780128143247. URL https:
//books.google.co.in/books?id=C5poDwAAQBAJ.

7. ITU (2014). Introduction to asn.1. URL https://www.itu.int/en/ITU-T/
asn1/Pages/introduction.aspxf.

8. Jain, R. (2020). Multithreading in c. URL https://www.geeksforgeeks.
org/multithreading-c-2/.

9. Mpirical (2020). Glossary. URL https://www.mpirical.com/glossary.

10. objective SYSTEMS© (2020). Asn1c: Asn.1 compiler. URL https://www.
obj-sys.com/products/asn1c/index.php.

11. O_RAN© (2019). Base Station O-DU and O-CU Software Architecture and APIs. URL
https://www.o-ran.org/. V1.0.0.

12. OSS_Nokalva© (2020). Asn.1 made simple — what is asn.1? URL https://www.
oss.com/asn1/resources/asn1-made-simple/introduction.html.

36

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3260
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3260
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3223
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3223
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3197
https://books.google.co.in/books?id=RZadDwAAQBAJ
https://www.qualcomm.com/news/onq/2017/08/02/understanding-3gpp-starting-basics
https://www.qualcomm.com/news/onq/2017/08/02/understanding-3gpp-starting-basics
https://books.google.co.in/books?id=C5poDwAAQBAJ
https://books.google.co.in/books?id=C5poDwAAQBAJ
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspxf
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspxf
https://www.geeksforgeeks.org/multithreading-c-2/
https://www.geeksforgeeks.org/multithreading-c-2/
https://www.mpirical.com/glossary
https://www.obj-sys.com/products/asn1c/index.php
https://www.obj-sys.com/products/asn1c/index.php
https://www.o-ran.org/
https://www.oss.com/asn1/resources/asn1-made-simple/introduction.html
https://www.oss.com/asn1/resources/asn1-made-simple/introduction.html

13. Sinha, A. (2020). Socket Programming in C/C++. URL https://www.
geeksforgeeks.org/socket-programming-cc/.

14. Walkin, L. (2010). Open source asn.1 compiler asn1c quick start sheet. URL http:
//lionet.info/asn1c/asn1c-quick.pdf.

15. Wikipedia (2020). International mobile telecommunications-2020. URL https:
//en.wikipedia.org/wiki/IMT-2020.

37

https://www.geeksforgeeks.org/socket-programming-cc/
https://www.geeksforgeeks.org/socket-programming-cc/
http://lionet.info/asn1c/asn1c-quick.pdf
http://lionet.info/asn1c/asn1c-quick.pdf
https://en.wikipedia.org/wiki/IMT-2020
https://en.wikipedia.org/wiki/IMT-2020

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	GLOSSARY
	ABBREVIATIONS
	INTRODUCTION
	Why 5G?
	What is 5G?
	How is 5G Developed?

	Literature Review
	Open Solutions
	ORAN Architecture

	MAC Module
	MAC Functionalities
	Code Architecture

	ASN.1
	Introduction
	Encoding rules
	ASN1 compilers
	Obj-sys compiler
	OSS Noklava compiler

	Discussion of Findings
	MAC Execution Time
	F1-Setup Encoding & Decoding
	Introduction
	Procedure
	Decoded Data
	Conclusion

	ASN1C Open Source Compiler v9.29
	Installation Guide

	Extracting ASN1 From 3GPP Technical Specifications
	Procedure from Specification
	Steps for Extraction
	Working of the Python Script

	Socket Programming in C/C++
	Introduction
	API's for server
	Socket creation
	setsockopt
	Bind
	Listen
	Accept

	API's for client
	Socket creation
	Connect

	REFERENCES

