
5G L2/L3 Protocol Stack Development

A Project Report

submitted by

NITIN PRIYADARSHINI SHANKAR

in partial fulfilment of the requirements

for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS

JUL 2020

CERTIFICATE

This is to certify that the project report titled 5G L2/L3 Protocol Stack Develop-

ment, submitted by Nitin Priyadarshini Shankar, to the Indian Institute of Tech-

nology Madras, for the award of the degree of Bachelor of Technology, is a bonafide

record of the project work done by him under my supervision. The contents of this

project report, in full or in parts, have not been submitted to any other Institute or Uni-

versity for the award of any degree or diploma.

Place: Chennai

Date: 18th Jul 2020

Prof. Krishna Jagannathan
Project Guide
Professor
Dept. of Electrical Engineering
IIT Madras, 600 036

ACKNOWLEDGEMENTS

I would like to take this opportunity to sincerely thank my guide Dr. Krishna Ja-

gannathan for his encouragement and guidance. I thank him for the opportunity he has

given me to explore cutting-edge telecommunications from a highly practical viewpoint

as part of the prestigious 5G test-bed project.

I would also like to thank Jaswanthi Mandalapu, Jitesh Kumar Gupta and the

other members of the IITM testbed team for helping me learn new things in such a

vast field. I would also like to acknowledge the help and knowledge provided by the

CEWiT which helped me understand the implementation specific aspects of mobile

communications.

Finally I would like to thank my parents for supporting me in all my endeavors and

being there for me in the toughest of times and making me into who I am today.

i

ABSTRACT

KEYWORDS: 5G-NR ; SDAP; LTE; Makefile; ASN.1 ; RRCs.

The L2/L3 protocol stack is a main component of the Radio Access Network. This

document contains a summary of my work done for the stack. The main focus of my

work was to develop the SDAP sub-layer, which is the highest layer of the protocol

stack. It is new to 5G-NR and was not present in LTE (the previous generation).

The development of the API required some knowledge on Makefiles and their ap-

plications, which was also studied during this project course. Makefiles are an efficient

way of handling projects which contains multiple execution files and they are explained

in this report.

ASN.1 was also studied in order to encode and decode the messages related to RRC

sub-layer and the interface messages. Various tools, both open source and commer-

cial were learnt in order to process the ASN.1 structures and convert them to the C

programming language.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . i

ABSTRACT . ii

LIST OF FIGURES . vi

GLOSSARY . vii

ABBREVIATIONS . viii

CHAPTER 1: Makefile . 1

1.1 Introduction . 1

1.2 Basic Makefile structure . 1

1.2.1 Dependency Rules . 1

1.2.2 Macros . 2

1.2.3 Suffix rules . 3

1.3 Order of execution . 3

1.4 Sample Makefile . 4

CHAPTER 2: The L2/L3 Protocol Stack 6

2.1 Introduction . 6

2.1.1 Protocol stack architecture 7

2.1.2 Data Flow . 8

CHAPTER 3: The SDAP Sub-Layer . 9

3.1 Introduction . 9

3.2 QoS Handling . 9

3.2.1 Example QoS Requirements 10

3.3 SDAP Entity . 11

3.4 Architecture (Specified by 3GPP) 12

iii

3.4.1 Structure . 12

3.4.2 Functions . 13

3.5 PDU types of the SDAP sub-layer 14

CHAPTER 4: The SDAP API . 16

4.1 Introduction . 16

4.2 Functionality . 16

4.3 Code fragments and performance . 19

4.3.1 Header Addition . 19

4.3.2 Header Removal . 20

4.3.3 Mapping . 21

CHAPTER 5: ASN.1 . 23

5.1 Introduction . 23

5.2 Encoding rules . 23

5.3 ASN1 compilers . 24

5.3.1 obj-sys compiler . 25

5.3.2 OSS Noklava compiler . 25

5.4 F1-Setup Encoding . 27

5.4.1 Introduction . 27

5.4.2 Procedure . 27

5.4.3 Decoded Data . 29

5.4.4 Conclusion . 32

APPENDIX A: Socket Programming in C/C++. 33

A.1 Introduction . 33

A.2 API’s for server . 33

A.2.1 Socket creation . 33

A.2.2 Bind . 34

A.2.3 Listen . 34

A.2.4 Accept . 34

A.3 API’s for client . 35

iv

A.3.1 Socket creation . 35

A.3.2 Connect . 35

APPENDIX B: Timing Analysis . 36

B.1 Introduction . 36

B.2 <time.h> . 36

B.3 Calculation . 37

B.4 Sample Program . 37

REFERENCES . 38

LIST OF FIGURES

Figure Title Page

2.1 The 5G User-plane and Control-plane protocol stack. 6

2.2 NR downlink user-plane protocol architecture as seen from the device. 7

2.3 Example of user-plane data flow. 8

3.1 GBR type QoS Flows. 10

3.2 Non-GBR type QoS Flows. 11

3.3 Structural View. 12

3.4 Functional View. 13

3.5 An example of an SDAP data PDU when the header is not configured. 14

3.6 Format of an SDAP data PDU formed during Downlink and if the
header is configured. 14

3.7 Format of an SDAP data PDU formed during Uplink and if the header
is configured. 15

3.8 Format for an end marker control PDU. 15

4.1 Control of SDAP entity. 17

4.2 Sample DL data flow in an SDAP entity. 18

5.1 Encoding rules. 23

5.2 Comparison of different encoding rules. 24

5.3 ASN1C Workflow. 24

5.4 ASN1C Studio. 26

5.5 F1-Setup Request. 27

5.6 F1-Setup Request on ASN1C Studio. 28

5.7 Encoded Data in Hex. 28

A.1 Describes various states followed by the server and client. 33

vi

GLOSSARY

The following are some of the commonly used terms in this thesis:

Sub-layers A bunch of Protocols that work together in order to achieve the func-

tionality of that particular layer it is part of.

UE mea-

surement

Various parameters such as power, signal strength etc which are mea-

sured periodically and reported.

QoS flow Parameters used to distinguish data based on the priority requirements

of different types of data.

MAC TB It is the output of the MAC sub-layer which is passed on to the Physi-

cal layer.

Downlink Flow of data from the 5GC to the UE.

Network

slicing

Network slicing is a specific form of virtualization that allows multiple

logical networks to run on top of a shared physical network infrastruc-

ture.

vii

ABBREVIATIONS

UE User Equipment

RAN Radio Access Network

RLC Radio Link Control

IP Internet Protocol

NAS Non - Access Stratum

QoS Quality of Service

DL Downlink

PDCP Packet Data Convergence Protocol

UL Uplink

DRB Data Radio Bearer

SDU Service Data Unit

PDU Protocol Data Unit

ARQ Automated Repeat Request

HARQ Hybrid ARQ

TB Transport Block

SAP Service Access Point

QFI QoS Flow Indicator

LTE Long Term Evolution

gNB 5G Base Station

MAC Media Access Control

EPC Evolved Packet Core

GBR Guaranteed Bit-Rate

RRC Radio Resource Control

viii

SDAP Service Data Adaptation Protocol

5GC 5G Core Network

ASN.1 Abstract Syntax Notation 1

gNB-DU Distributed Unit of 5G Base station

gNB-CU Central Unit of 5G Base station

ix

CHAPTER 1

Makefile

1.1 Introduction

This chapter is referred from Stallman (2020). These are some of the important points

regarding make files.

• The make package is used for managing computer programs consisting of many
executable files. The make package automatically decides which parts of a large
program code need to be recompiled and issues suitable command to recompile
them.

• GNU make reads its instruction from a Makefile. It searches for the presence of
the Makefile in the current folder by default.

• A Makefile establishes a set of rules to determine which parts of an application
need to be compiled again, and issues commands to recompile them.

• A Makefile helps in simplifying software development other complex tasks with
various dependencies.

• The Makefile comprises of 3 parts namely, dependency rules, macros and suffix
rules.

1.2 Basic Makefile structure

1.2.1 Dependency Rules

A rule has three parts, at least one target, any number of dependencies, and any number

of commands with the following syntax:

target: dependencies

<tab> command(s) to make target

• The <tab> character is necessary before each command.

• A target can be the name of a file or an action such as clean, print etc.

• Dependencies are files that are required by the target to execute its contents.

• Each command that is present in a rule is interpreted by the default shell.

• By default, make uses the /bin/sh shell.

• If the “make target” command is invoked in the shell, it will:
1. Make sure all the dependencies are up to date.

2. If make finds out that a target is older than any of its dependencies, it re-
compiles the target using the specified commands.

• Typing “make” creates the first target that is described in the Makefile by default.

• A phony target is not a target file. It will only have a list of commands to perform
certain actions such as clean. It has no dependencies.

Example: clean: rm -rf *.o

1.2.2 Macros

• By using macros, we can avoid repeating text entries and thereby making the
makefile easy to modify.

• Macro definitions are of the form:

’Macro Name’ = text string
Example: CC = g++

• Macros are later referenced by placing the macro name in between parentheses
and preceding it with the $ sign.

Example:
$(CC) main.o factorial.o hello.o -o prog

• ’Command line macros’ are macros that can be defined on the command line.

Example:
make DEBUG_FLAG=-g

• Internal macros
– The Internal macros are predefined in make and can be used without explicit

definitions.

2

– “make -p” is a type of internal macro that is used to display a list of all the
macros, suffix rules and targets that are present in the current build.

• Special macros
– The macro @ is used to evaluate the name of the current target.

Example:

prog1 : $(objs)
$(CXX) -o $@ $(objs)

is equivalent to

prog1 : $(objs)
$(CXX) -o prog1 $(objs)

1.2.3 Suffix rules

Is is a way of defining default rules that ’make’ can use to build a program. There are

two types of suffixes namely, double-suffix and single-suffix.

• Doubles-suffix is written in terms of a source suffix and a target suffix.

Example:

.cpp.o:
$(CC) $(CFLAGS) -c $<

– This rule is used to substitute the .o files and .cpp files from the command.

– $< is a special macro which in this case stands for a .cpp file that is used to
produce a .o file.

• This is same as the pattern rule “%.o : %.cpp”

%.o : %.cpp
$(CC) $(CFLAGS) -c $<

1.3 Order of execution

• The make utility keeps track of the modification times of the target files and the
dependency files. If any dependency file that is used by a target file has been
modified after the last compilation, the make utility issues commands to compile
the target file again.

3

• The first target file is the one that is built. The rest of the targets are ignored unless
the first target depends on other targets defined below.

• Make takes care of the order in which the targets have to be created.

1.4 Sample Makefile

1 IDIR1 = ../../../gNB/inc

2 IDIR2 = ../../../common/ringBuffer/inc

3 IDIR3 = ../../../common/headers/inc

4 SDIR1 = ../../../gNB/src

5 SDIR2 = ../../../common/ringBuffer/src

6 SDIR3 = ../../../common/headers/src

7

8 CC=gcc

9 CFLAGS =-I$(IDIR1)

10 CFLAGS +=-I$(IDIR2)

11 CFLAGS +=-I$(IDIR3)

12

13 ODIR=obj

14 LDIR =../lib

15

16 LIBS=

17

18 _DEPS1 = gNB_map.h make_gNB_data.h

19 DEPS = $(patsubst %,$(IDIR1)/%,$(_DEPS1))

20

21 _DEPS2 = ringBuffer.h

22 DEPS += $(patsubst %,$(IDIR2)/%,$(_DEPS2))

23

24 _DEPS3 = SDAP_headers.h

25 DEPS += $(patsubst %,$(IDIR3)/%,$(_DEPS3))

26

27 _OBJ = gNB_RX.o make_gNB_PDU.o make_gNB_SDU.o ringBuffer.o

SDAP_headers.o

28 OBJ = $(patsubst %,$(ODIR)/%,$(_OBJ))

29

4

30

31 $(ODIR)/%.o: %.c $(DEPS)

32 $(CC) -c -o $@ $< $(CFLAGS)

33

34 $(ODIR)/%.o: $(SDIR1)/%.c $(DEPS)

35 $(CC) -c -o $@ $< $(CFLAGS)

36

37 $(ODIR)/%.o: $(SDIR2)/%.c $(DEPS)

38 $(CC) -c -o $@ $< $(CFLAGS)

39

40 $(ODIR)/%.o: $(SDIR3)/%.c $(DEPS)

41 $(CC) -c -o $@ $< $(CFLAGS)

42

43 test_gNB_RX: $(OBJ)

44 $(CC) -o $@ $^ $(CFLAGS) $(LIBS)

45

46 .PHONY: clean

47

48 clean:

49 rm -f $(ODIR)/*.o test_gNB_RX

The above makefile was used in the development of the SDAP API

5

CHAPTER 2

The L2/L3 Protocol Stack

2.1 Introduction

The L2/L3 Protocol Stack is part of the RAN (UE + gNB). It has the following Sub-

Layers that help achieve its functionality.

Figure 2.1: The 5G User-plane and Control-plane protocol stack.

The Sub-layers that are part of the L2/L3 protocol stack are as follows:

• User - Plane
– SDAP
– PDCP
– RLC
– MAC

• Control - Plane
– RRC
– PDCP
– RLC
– MAC

The SDAP sublayer will be studied in detail.

2.1.1 Protocol stack architecture

Figure 2.2: NR downlink user-plane protocol architecture as seen from the device.

This is the architecture as specified by 3GPP which we have followed in order to

build the protocol stack. We are able to see the various connections between differ-

ent sub-layers also known as service access points(SAPs). There are various types of

connections between two subsequent layers which is also shown in the diagram.

7

2.1.2 Data Flow

Figure 2.3: Example of user-plane data flow.

This picture shows an example data flow between the sub-layers according to the

architecture specified by 3GPP. We can see that the SDAP and PDCP Sub-layers add

their headers in the respective radio bearers.

In the RLC sub-layer, there is an option of segmentation in which the packets are

split on one side and combined back together on the other side.

The MAC sub-layer takes care of appending various packets together and forming

the MAC TB. Then the TB is passed on to the physical layer.

8

CHAPTER 3

The SDAP Sub-Layer

3.1 Introduction

The SDAP sub-layer is responsible for mapping between a QoS flow from the 5GC and

a DRB in the gNB, as well as marking the quality-of- service flow identifier (QFI) in

UL and DL packets. The reason for the introduction of SDAP in NR is the new quality-

of-service handling compared to LTE when connected to the 5G core. The SDAP sub-

layer is also responsible for the mapping between QoS flows and DRBs. This chapter

has been cited from Dahlman et al. (2018)

3.2 QoS Handling

The 5GC is in charge of the QoS control, not the radio-access network. QoS handling

is essential for the realization of network slicing. For each UE, there are multiple PDU

sessions, each having multiple QoS flows which are mapped to different DRBs. The IP

packets are mapped to the QoS flows according to the QoS requirements, for example

in terms of delay or required data rate. Each packet can be marked with a QoS Flow

Identifier (QFI) to assist UL QoS handling.

The second step, mapping of QoS flows to DRBs, is done in the 5G RAN. Thus,

the core network is aware of the service requirements, while the radio-access network

only maps the QoS flows to DRBs. The QoS flow to DRB mapping is not necessarily a

1-to-1 mapping. It means that, multiple QoS flows can be mapped to the same DRB

There are two ways of controlling the mapping from QoS flows to DRBs in the UL:

reflective mapping and RRC configurations. In the case of reflective mapping, when

connected to the 5G core network, the device observes the QFI in the DL packets for

the PDU session. This provides the device with knowledge about which IP flows are

mapped to which QoS flow and radio bearer. The device then uses the same mapping

for the UL traffic. In the case of explicit mapping, the QoS flow to DRB mapping is

configured in the device using RRC signaling.

3.2.1 Example QoS Requirements

Figure 3.1: GBR type QoS Flows.

10

Figure 3.2: Non-GBR type QoS Flows.

3.3 SDAP Entity

The SDAP sublayer is made up of several SDAP entities. There is an SDAP entity

established for every PDU session. An SDAP entity receives SDAP SDUs from the

upper layers and submits the SDAP PDUs to the lower layer. It also receives SDAP

PDUs from the upper layers and submits the SDAP SDUs to the upper layer.

A PDU session is a logical connection between a UE and the UPF (present in the

core network). It is of various types mainly IPv4, IPv6, Ethernet etc. They enable

transfer of data from the core network to the UE and vice-versa

11

3.4 Architecture (Specified by 3GPP)

Images cited from Bi (2018)

3.4.1 Structure

Figure 3.3: Structural View.

The PDU sessions are created in the 5GC. For each PDU session, a corresponding

SDAP entity has to be initialised in order to cater to the QoS flows of that particular

PDU session. The QoS flows are mapped to DRBs in the SDAP entity and then the data

is passed onto the PDCP entity. There is a PDCP entity established for each DRB that

has been configured. We are able to see the connection between the PDCP and SDAP

as the PDCP SAP.

12

3.4.2 Functions

Figure 3.4: Functional View.

• Transfer of user plane data.

• Mapping between a QoS flow and a DRB for both DL and UL.

• Marking QoS flow ID in both DL and UL packets according to the formats given.

• Reflective QoS flow to DRB mapping for the UL SDAP data PDUs. It is done
only on the UE side.

13

3.5 PDU types of the SDAP sub-layer

Figure 3.5: An example of an SDAP data PDU when the header is not configured.

Figure 3.6: Format of an SDAP data PDU formed during Downlink and if the header is
configured.

14

Figure 3.7: Format of an SDAP data PDU formed during Uplink and if the header is
configured.

Figure 3.8: Format for an end marker control PDU.

15

CHAPTER 4

The SDAP API

4.1 Introduction

This chapter is about the SDAP application developed here at IITM 5G Lab according

to 3GPP’s specifications as described in the previous chapter. This API is meant to be

placed in between the NG - interface and the PDCP sub-layer.

The main functionality of this API is the addition of the SDAP header. Each instance

of this code can be treated as one SDAP entity and hence the code can be instantiated

with different parameters in order to cater to each and every PDU session of an UE.

The API has been developed using the C programming language. (Ritchie, 1972–)

4.2 Functionality

• Transfer of UL data to the upper layers.

• Transfer of DL data to the lower layers.

• Addition of the SDAP header.

• Mapping of the QoS flows to the respective Data Radio Bearers.

Figure 4.1: Control of SDAP entity.

17

Figure 4.2: Sample DL data flow in an SDAP entity.

This is a depiction of a sample data flow happening in the SDAP Sub-layer. The data

is being received from the source buffer and the header is added to it in the sub-layer.

Later the packet is being stored in the destination buffer.

18

4.3 Code fragments and performance

4.3.1 Header Addition

1 uint8_t *make_UL_PDU(uint32_t sdu_len, ringBuffer *src_buffer,

ringBuffer *dest_buffer, bool header_present, uint8_t D_C, uint8_t

QFI)

2 {

3 uint8_t * pdu;

4 uint8_t * sdu;

5 uint8_t * temp;

6

7 ul_header_p header;

8

9 if(header_present)

10 {

11 pdu = (uint8_t *) calloc(1,sdu_len + 1);

12 if(!pdu) printf("PDU Memory allocation failed");

13 else

14 {

15 if(D_C)

16 {

17 sdu = pdu + 1;

18 readFromBuffer(src_buffer, sdu_len, sdu);

19 }

20 header = SDAP_ul_header_fill (D_C, QFI);

21 temp = (uint8_t *) header;

22 *pdu = *temp;

23 writeToBuffer(dest_buffer, sdu_len + 1, pdu);

24 }

25 }

26 else

27 {

28 pdu = (uint8_t *) calloc(1,sdu_len);

29 if(!pdu) printf("PDU Memory allocation failed");

30 else

31 {

19

32 sdu = pdu;

33 readFromBuffer(src_buffer, sdu_len, sdu);

34 writeToBuffer(dest_buffer, sdu_len, pdu);

35 }

36 }

37 return pdu;

38 }

Description

The above function creates the SDAP PDU by taking in the SDAP SDU and other

header parameters as input. Memory is allocated according to whether the header is

configured for the following DRB or not. After the PDU is created it is written the the

destination DRB(buffer).

Timing Analysis

Execution time taken by this function to finish the following tasks is around 10 µs

4.3.2 Header Removal

1 uint8_t * make_UL_SDU (uint32_t pdu_len, ringBuffer *src_buffer,

ringBuffer *dest_buffer, bool

header_present, ul_header_p header)

2 {

3 uint8_t * pdu;

4 uint8_t * sdu;

5 ul_header_p temp;

6 if(header_present)

7 {

8 pdu = (uint8_t *) calloc(1,pdu_len);

9 if(!pdu) printf("SDU Memory allocation failed");

10 else

11 {

12 readFromBuffer(src_buffer, pdu_len, pdu);

20

13 sdu = pdu + 1;

14 header = calloc(1,sizeof(ul_header_t));

15 temp = (ul_header_p) pdu;

16 *header = *temp;

17 writeToBuffer(dest_buffer, pdu_len - 1, sdu);

18 }

19 }

20 else

21 {

22 pdu = (uint8_t *) calloc(1,pdu_len);

23 if(!pdu) printf("SDU Memory allocation failed");

24 else

25 {

26 readFromBuffer(src_buffer, pdu_len, pdu);

27 sdu = pdu;

28 writeToBuffer(dest_buffer, pdu_len, sdu);

29 }

30 }

31 return sdu;

32 }

Description

The above function creates the SDAP SDU by taking in the SDAP PDU input. header is

extracted according to whether the header is configured for the following DRB or not.

After the SDU is created it is written the the destination QoS(buffer).

Timing Analysis

Execution time taken by this function to finish the following tasks is around 21 µs

4.3.3 Mapping

1 #define MAX_QOS_ENT 64

2 #define MAX_DRB_ENT 29

3 #define DEFAULT_DRB 0

21

4 typedef struct gNB_map_ent

5 {

6 uint8_t QFI;

7 uint8_t DRB;

8

9 } gNB_map_t, *gNB_map_p;

Description

These are some of the parameters related to the mapping of the QoS flows to DRBs and

vice versa.

22

CHAPTER 5

ASN.1

5.1 Introduction

ASN.1 is a universal language used for defining data transmitted by telecommunications

protocols, regardless of language implementation and physical representation of these

data, whatever the application, whether complex or very simple. ITU (2014)

5.2 Encoding rules

ASN.1 has sets of rules specifying how messages must be "encoded" for communica-

tion with machines running other languages. Each set of "encoding rules" has specific

characteristics, such as compactness or decoding speed, which make it suitable for par-

ticular environments. All of the encoding rules are able to represent any messages we

would like to exchange. Walkin (2010)

Figure 5.1: Encoding rules.

The ASN.1 standard defines a variety of methods to encode data. Depending on

space, interoperability and efficiency requirements, a protocol designer selects textual,

binary-based or compact bit-packed encoding rules.

Figure 5.2: Comparison of different encoding rules.

5.3 ASN1 compilers

Figure 5.3: ASN1C Workflow.

There are many ASN1 compilers available online and can be broadly divided into

two categories:

24

• Commercial: Examples of some notable ones are OSS Nokalva and Object Sys-
tems

• Open Source: asn1c compiler on Github written by Lev Walkin.

5.3.1 obj-sys compiler

This ASN.1 compiler converts ASN.1 and/or XML schema source files into C, C++,

C#, Java, or Python source code. This code can then be used by developers to translate

structures/objects to and from finished ASN.1 messages using ITU-T/ISO encoding

rules BER, CER, DER, OER, PER, UPER, JER(JSON), or XER(XML). obj sys (2020)

5.3.2 OSS Noklava compiler

The OSS® ASN.1 Tools for C is a complete development toolkit for rapidly build-

ing applications using ASN.1. This compiler features a powerful ASN.1:2015 capable

compiler, a runtime library with ASN.1 BER, CER, DER, PER/UPER, CPER/CUPER,

OER, COER, XER, CXER, E-XER, and JSON encoder/decoder engines, and an assort-

ment of utilities to ease and speed app development. Our ASN.1 products support LTE

Advanced Pro including NB-IoT, C-V2X and LTE-M. OSS products support the 3GPP

5G specifications. OSS-Noklava (2020)

25

ASN1Studio is a handy tool from OSS Nokalva for building Applications involving

usage of ASN1.

Figure 5.4: ASN1C Studio.

It makes checking constraints for IEs easier which in turn helps in faster debugging.

Figure 5.6 depicts the F1 Setup Request IE with filled IEs (first message transferred

between gNB-DU and gNB-CU).

26

5.4 F1-Setup Encoding

5.4.1 Introduction

F1-Setup is one of the initial messages sent from the gNB-DU to the gNB-CU in order

to initiate the setup procedure between both the units. It is the initiating message for a

potential handshake consisting of 4 different messages for the setup of the F1-interface.

Figure 5.5: F1-Setup Request.

5.4.2 Procedure

The ASN1STUDIO software was used to compile the F1 interface.asn file in order to

generate the C files. Later the C structures were filled using the APER encoding rule in

order to generate the desired output.

27

Figure 5.6: F1-Setup Request on ASN1C Studio.

Figure 5.7: Encoded Data in Hex.

28

5.4.3 Decoded Data

The encoded hexadecimal data was then decoded to get back the original contents at

the other side of the interface

1 value F1SetupRequest ::=

2 {

3 protocolIEs

4 {

5 {

6 id 78,

7 criticality reject,

8 value TransactionID : 12

9 },

10 {

11 id 42,

12 criticality reject,

13 value GNB-DU-ID : 2

14 },

15 {

16 id 45,

17 criticality ignore,

18 value GNB-DU-Name : "cell1"

19 },

20 {

21 id 44,

22 criticality reject,

23 value GNB-DU-Served-Cells-List :

24 {

25 {

26 id 43,

27 criticality reject,

28 value GNB-DU-Served-Cells-Item :

29 {

30 served-Cell-Information

31 {

32 nRCGI

33 {

29

34 pLMN-Identity ’000000’H,

35 nRCellIdentity ’00000000 00000000 00000000 00000000

000 ...’B

36 },

37 nRPCI 0,

38 servedPLMNs

39 {

40 {

41 pLMN-Identity ’000000’H

42 }

43 },

44 nR-Mode-Info fDD :

45 {

46 uL-NRFreqInfo

47 {

48 nRARFCN 0,

49 freqBandListNr

50 {

51 {

52 freqBandIndicatorNr 1,

53 supportedSULBandList

54 {

55 {

56 freqBandIndicatorNr 1

57 }

58 }

59 }

60 }

61 },

62 dL-NRFreqInfo

63 {

64 nRARFCN 0,

65 freqBandListNr

66 {

67 {

68 freqBandIndicatorNr 1,

69 supportedSULBandList

30

70 {

71 {

72 freqBandIndicatorNr 1

73 }

74 }

75 }

76 }

77 },

78 uL-Transmission-Bandwidth

79 {

80 nRSCS scs15,

81 nRNRB nrb11

82 },

83 dL-Transmission-Bandwidth

84 {

85 nRSCS scs15,

86 nRNRB nrb11

87 }

88 },

89 measurementTimingConfiguration ’00’H

90 },

91 gNB-DU-System-Information

92 {

93 mIB-message ’25’H,

94 sIB1-message ’AB’H

95 }

96 }

97 }

98 }

99 },

100 {

101 id 171,

102 criticality reject,

103 value RRC-Version :

104 {

105 latest-RRC-Version ’000’B,

106 iE-Extensions

31

107 {

108 {

109 id 199,

110 criticality ignore,

111 extensionValue OCTET STRING : ’0F0900’H

112 }

113 }

114 }

115 }

116 }

117 }

5.4.4 Conclusion

The message was successfully encoded and decoded which allows it to pass through the

F1 interface present between gNB-CU and gNB-DU.

32

APPENDIX A

Socket Programming in C/C++

A.1 Introduction

Socket programming helps in transferring data between two nodes on a network. There

are two types of nodes required to initiate data transfer between them. The two node

types are a server and a client. Server creates a socket capable of listening on a particular

port whereas the client forms a socket which reaches out to the server from a particular

port on its side. This appendix chapter has been cited from Sinha

Figure A.1: Describes various states followed by the server and client.

A.2 API’s for server

A.2.1 Socket creation

1 int sockfd = socket(domain, type, protocol)

sockfd: socket descriptor, it is an integer similar to that of a file descriptor used to

read or write data.

domain: it is an integer used to set the communication domain. example, AF_INET

(IPv4 protocol) , AF_INET6 (IPv6 protocol)

type: used to set the communication type (Transport layer protocol).

• SOCK_STREAM: TCP(reliable, connection oriented)

• SOCK_DGRAM: UDP(unreliable, connection-less)

protocol: Selects the network layer protocol for the transmission. 0 for IP protocol.

A.2.2 Bind

1 int bind(int sockfd, const struct sockaddr *addr,

2 socklen_t addrlen);

The bind function then binds the socket to the address and port number specified in the

addr data structure.

A.2.3 Listen

1 int listen(int sockfd, int backlog);

It makes the socket in the server to wait for any incoming connections. The backlog

parameter helps to set the maximum number of incoming connections to be handled si-

multaneously. If the number of connections exceeds the backlog number, the incoming

connection is refused with an error message.

A.2.4 Accept

1 int new_socket= accept(int sockfd, struct sockaddr *addr, socklen_t

2 *addrlen);

Out of all the pending connections, the first connection request is catered to by

creating a new socket descriptor for that connections thereby enabling the transfer of

34

data through that descriptor.

A.3 API’s for client

A.3.1 Socket creation

Exactly same as that of server’s socket creation

A.3.2 Connect

1 int connect(int sockfd, const struct sockaddr *addr,

2 socklens_t addrlen);

It is used to connect the socket mentioned in the sockfd descriptor to the address

specified in addr. Server’s connection parameters are mentioned in the addr custom

structure.

35

APPENDIX B

Timing Analysis

B.1 Introduction

Timing is a critical criteria when it comes to a protocol stack development because of

the various latency constraints that have to be met by the executing program.

A simple way to measure the amount of time taken by any segment of code will be

by calculating the number of clock cycles taken by that segment to finish execution.

We use the time.h header file and the various functions and constants present in the

C language in order to accomplish this task. This appendix chapter has been cited from

Kumar

B.2 <time.h>

The time.h header defines four variable types, two macro and various functions for

manipulating date and time. Some of the relevant features useful to us are listed below.

clock_t

This is a type suitable for storing the processor time.

CLOCKS_PER_SEC

This macro represents the number of processor clocks per second.

clock_t clock(void);

Returns the processor clock time used since the beginning of an implementation defined

era (normally the beginning of the program).

B.3 Calculation

1 time_spent = (double) (end - begin)/CLOCKS_PER_SEC;

B.4 Sample Program

1 #include <bits/stdc++.h>

2 using namespace std;

3

4 void fun()

5 {

6 for (int i=0; i<10; i++);

7 }

8

9 int main()

10 {

11 clock_t start, end;

12

13 start = clock();

14

15 fun();

16

17 end = clock();

18

19 double time_taken = double(end - start) / double(CLOCKS_PER_SEC);

20 cout << "Time taken by program is : " << fixed

21 << time_taken << setprecision(5);

22 cout << " sec " << endl;

23 return 0;

24 }

37

REFERENCES

1. Bi, H. (2018). Lte; 5g; evolved universal terrestrial radio access (e-utra) and nr; ser-
vice data adaptation protocol (sdap) specification (3gpp ts 37.324 version 15.1.0 release
15). URL https://www.etsi.org/deliver/etsi_ts/137300_137399/
137324/15.01.00_60/ts_137324v150100p.pdf.

2. Dahlman, E., S. Parkvall, and J. Sköld, 5G NR: The Next Generation Wireless Access
Technology. Elsevier, 2018.

3. ITU (2014). Introduction to asn.1. URL https://www.itu.int/en/ITU-T/
asn1/Pages/introduction.aspxf.

4. Kumar, V. (). Measure execution time with high preci-
sion in c/c++. URL https://www.geeksforgeeks.org/
measure-execution-time-with-high-precision-in-c-c/.

5. obj sys (2020). Asn1c asn.1 compiler. URL https://www.obj-sys.com/
products/asn1c/index.php.

6. OSS-Noklava (2020). Asn.1 made simple — what is asn.1?r. URL https://www.
oss.com/asn1/resources/asn1-made-simple/introduction.html.

7. Ritchie, D. (1972–). The C programming language.

8. Sinha, A. (). Socket programming in c/c++. URL https://www.
geeksforgeeks.org/socket-programming-cc/.

9. Stallman, R. (2020). GNU make. URL https://www.gnu.org/software/
make/manual/html_node/.

10. Walkin, L. (2010). Open source asn.1 compiler asn1c quick start sheet. URL http:
//lionet.info/asn1c/asn1c-quick.pdf.

38

https://www.etsi.org/deliver/etsi_ts/137300_137399/137324/15.01.00_60/ts_137324v150100p.pdf
https://www.etsi.org/deliver/etsi_ts/137300_137399/137324/15.01.00_60/ts_137324v150100p.pdf
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspxf
https://www.itu.int/en/ITU-T/asn1/Pages/introduction.aspxf
https://www.geeksforgeeks.org/measure-execution-time-with-high-precision-in-c-c/
https://www.geeksforgeeks.org/measure-execution-time-with-high-precision-in-c-c/
https://www.obj-sys.com/products/asn1c/index.php
https://www.obj-sys.com/products/asn1c/index.php
https://www.oss.com/asn1/resources/asn1-made-simple/introduction.html
https://www.oss.com/asn1/resources/asn1-made-simple/introduction.html
https://www.geeksforgeeks.org/socket-programming-cc/
https://www.geeksforgeeks.org/socket-programming-cc/
https://www.gnu.org/software/make/manual/html_node/
https://www.gnu.org/software/make/manual/html_node/
http://lionet.info/asn1c/asn1c-quick.pdf
http://lionet.info/asn1c/asn1c-quick.pdf

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	GLOSSARY
	ABBREVIATIONS
	Makefile
	Introduction
	Basic Makefile structure
	Dependency Rules
	Macros
	Suffix rules

	Order of execution
	Sample Makefile

	The L2/L3 Protocol Stack
	Introduction
	Protocol stack architecture
	Data Flow

	The SDAP Sub-Layer
	Introduction
	QoS Handling
	Example QoS Requirements

	SDAP Entity
	Architecture (Specified by 3GPP)
	Structure
	Functions

	PDU types of the SDAP sub-layer

	The SDAP API
	Introduction
	Functionality
	Code fragments and performance
	Header Addition
	Header Removal
	Mapping

	ASN.1
	Introduction
	Encoding rules
	ASN1 compilers
	obj-sys compiler
	OSS Noklava compiler

	F1-Setup Encoding
	Introduction
	Procedure
	Decoded Data
	Conclusion

	Socket Programming in C/C++
	Introduction
	API's for server
	Socket creation
	Bind
	Listen
	Accept

	API's for client
	Socket creation
	Connect

	Timing Analysis
	Introduction
	<time.h>
	Calculation
	Sample Program

	REFERENCES

