Hardware Architectures for Accelerated Computing of
Generative Adversarial Networks (GANs) for SHAKTI
C-Class Processor

Sai Krishna Shanmukh Bachotti (EE19B009)
Guide: Prof. Kamakoti V., Dept. of CSE, IIT Madras
Advisor from SHAKTI: Hemant Kumar (CS20S055)

Abstract of the Problem

GANSs have a high compute and memory require-
ment. GAN computations have irregular data de-
pendencies which lead to a high amount of band-
width pressure. Since GANs have both Convo-
lutional and De-convolutional layers, they do not
map well to conventional neural network accelera-
tors which are designed only for convolutions. Fur-
ther, the DeConv operations involve upsampling
strategies which lead to repeated multiplications
and a large number of ineffective computations.
Hence there is a need for customized accelerators
for achieving high efficiency with GANs.

Introduction

Artificial Intelligence has pervaded into a wide
range of engineering disciplines in recent years.
With increasingly available data, supervised learn-
ing models are thriving to become the state-of-the-
art solutions. However, training and deployment
of supervised learning models is not feasible in do-
mains where procurement of labeled data is expen-
sive and existing data size is inadequate for reli-
able model training. To solve this problem, data
augmentation using Generative Neural Networks
has been a novel and promising approach. Gener-
ative Adversarial Networks (GANs) are one of the
most popular and effective unsupervised learning
models to generate synthetic realistically looking
data with high fidelity which share similar features
as the original data. Several GANs have been pro-
posed in applications like image to image transla-
tion [I], image compression [2], style transfer [3]
and text to image conversion [4].

The underlying working principle in most of the
GAN based models is the same. It consists of a
synthesis network, also called the generator, which
takes a low dimensional input such as a randomly

12x 12 12x12

4x4

!
!
|
|
% | i
= | (%) =
!
!
|
|
|

®

Figure 1: (Left) Representation of CONV opera-
tion, (Right) Representation of DeCONV opera-
tion

sampled noise or a latent code produced by a de-
coder network from a sample of real image data.
The aim of this generator is to learn to gener-
ate high dimensional output such as fake images
with certain attributes which vary from model to
model. GANs also consist of a Discriminator net-
work which learns to distinguish the generated
fake samples from the real data. Typically the dis-
criminators are CNN based classifiers and are used
only during the training phase of the model. The
model is trained until the generator is well learnt
to fool the discriminator. During deployment, the
generator model can function stand alone without
the involvement of a discriminator.

The generator network in GANs has Deconvolu-
tion (DeCONV) layers which are responsible for
increasing the dimensionality of the output. Ide-
ally, DeCONYV operation has inverse functional-
ity of that of the convolution operation. How-
ever, GANs use a mathematically closer operation
called the Upconvolution also called the trans-
posed convolution (TrCONV). Both words are
used interchangeably in the rest of the paper. In
Figl, on the left, we see that a 12 x 12 image
is convoluted with 5 x 5 filter resulting in a 4 X
4 output. Whereas the Upconvolution operation
can be broken down into upsampling the image
and then applying convolution. In Fig 1, on the
right, we see that 6 x 6 image is upsampled to
12 x 12 by zero-insertion upsampling, resulting

Table 1: Profiling Upconvolution on SHAKTI C
Class Processor on 3 different workloads

Zero
Insertion

Image Weight | Redundancy | Cycles
(16,16,3) | (16,3,3,3) 75.638% 145240
(16,16,3) | (32,3,7,7) 75.323% 903691
(32,32,3) | (32,3,7,7) 75.263% 4282445

in 8 x 8 image which is larger than the input we
started with. However, the zero-insertion strat-
egy leads to a large number of ineffective com-
putations. With 4 x 4 input and a stride of 2,
nearly 87% computations are redundant, and with
16 x 16 input and a stride of 32, 99.8% computa-
tions become redundant[5]. Table 1 characterizes
the percentage of redundant multiplications in Up-
convolution operation and the number of cycles of
execution on SHAKTI C Class processor for three
different workloads with different combinations of
image size and weight size. This data is observed
by compiling and executing |C code of UpConvo-
lution and run on bare-metal SHAKTI C Class
processor.

The traditional convolution neural network accel-
erators like Eyeriss, Envision, or our home grown
ShaktiMAAN focus on optimizing multiply and
accumulate operations and their scheduling algo-
rithms to support maximum parallelism. However
these architectures are indifferent to the zero up-
sampling strategy which is the primary culprit in
causing redundancy in the DeCONYV layer compu-
tation time of GANs. Hence there is a need for a
better architecture to solve this problem.

Accelerated Architectures for

GANs

Chang et al. [6] propose a Winograd algorithm
based accelerator for DeCONV operation. Here
they transform the DeCONYV layer to a CONV
layer problem where the number of filters are in-
creased by a multifold. Later these filters and im-
ages are transformed to the Winograd domain in
which the convolution operation becomes element-
wise multiplication. Di et al. [7] propose an FPGA
architecture for implementing TrCONYV. They ob-
serve that the CONV operation, when applied to a
5x5 filter and a 6x6 padded input, can be divided
into four sub-filters, each with a different num-
ber of non-zero elements. To optimize the imple-
mentation, they reorganize these sub-filters into
a 3x3 shape, enabling the transformation of one

ing& || Shuffling& ||
Combining

Decomposing
"B
ng@ wit
Figure 2: Decomposition based approach for De-

CONV

TrCONYV with a 5x5 filter into four CONV opera-
tions between 3x3 filters and suitably padded in-
put feature map. Ineffectual operations are elim-
inated through this process, and this technique
is referred to as decomposition. Subsequently,
these four CONV operations are executed using
the Winograd fast algorithm. By reducing the
sub-filter size to 3x3, the implementation ben-
efits from the application of the Winograd fast
algorithm. Both the architectures utilize decom-
position technqgiue and Winograd based convolu-
tion.

Another effective and novel approach was pro-
posed by Chen et al. [§] which utilizes Decomposi-
tion technique (Fig 2.). They utilize a Processing
In Memory (PIM) - based Resistive RAM architec-
ture for accelerating GAN computations. This ar-
chitecture benefits from PIM as they directly per-
form arithmetic operations like shift and add near
memory without bringing them all the way to the
core or compute engine. This approach reported a
7.6x speedup over a Geforce GTX 1080 GPU and
is also energy efficient. However, the ReRAM are
not reliable in the long run as they last upto 3.5
years for continuous GAN workload. Jiale Yan
et al.[9], proposed a reconfigurable and efficient
architecture called Generative Network Accelera-
tor (GNA) that can operate in both CONV and
DeCONYV acceleration modes for the same hard-
ware. They also included an extended architec-
ture to avoid additional off-chip memory access in
residual layer computation, which are also found
in some GAN based model architectures. They
also provide various precision modes and band-
width reconfiguration for processing elements and
memory buffers respectively, resulting in flexible
bit-width support. In this paper, we adapt some
of the ideas discussed to design a DeCONV layer
accelerator.

https://github.com/shanmukh2607/upconv

GNA: Algorithm, Architecture &
Bluespec Implementation

In typical convolution accelerators, each process-
ing element (PE) is mapped to do multiply and ac-
cumulate (MAC) operations and compute one out-
put pixel. This is referred to as Output Oriented
Mapping (OOM). When OOM is applied to Trans-
posed Convolution operation, we can observe that
PEs are load imbalanced. Refer to Fig.3, we can
see that in a CONV operation, each PE has equal
load of 9 multiplications. However, in DeCONV
operation, we find loads of 1,2 and 4 effective mul-
tiplications per PE leading to poor hardware uti-
lization. Hence, we use an input oriented map-
ping (IOM), where each PE is mapped to one in-
put pixel. The proposed algorithm ensures that
all loads are balanced and hardware utilization is
maximum. To understand the algorithm, we spec-
ify some variables and parameters to characterize
the problem. Let the input image be of the size
(N, H, L) where N is the number of channels, H is
the height and L is the length. Each weight filter
is of the shape (N, Kh, K1) and there are M such
filters. Then the output is of the shape (M,R,C).
We define two tiling parameters Tl and Tm. TI
is the number of values chosen from a given chan-
nel and a given row of input image for the com-
puting engine. Tm corresponds to the number of
filters chosen for the computing engine. The orig-
inal work also includes a tiling parameter for the
number of channels (Tn) but that results in a 3D
grid of processing elements and we skip it to de-
velop a lighter architecture. By choosing Tn = 1,
we restrict our problem to a 2D grid of processing
elements. Since no tiling is done along channels,
we also interchange Loop N and Loop Kl (as com-
pared to the original algorithm) and computation
of Loop Kl is part of computing engine in the pro-
posed algorithm of this paper.

for(h = 0; h < H; h++) Loop H
for(m = 0; m < M; m+=Tm) Loop M
for(kkh = 0; kkh < Kh; kh++) Loop Kh
for(l = 0; 1 < L; 1+= T1) Loop L
for(n = 0; n < N; n++) Loop N
// Computation in Core
for(kkl = 0; kkl < K1; kkl++)
r <- sxh + kkh
c <- s*1 + kkl
:m tom + Tm,
ii: 1 to 1 + T1,
out [wi] [r] [c] += inp[n][h] [ii]
*w[wi] [n] [kkh] [kk1]

wi

utput Map}, ;2
CONV b

Non-zero Zero
Filter
otz s L7 7 3 |

Figure 4: DeCONYV using Input oriented mapping

The DeCONV algorithm is shown before. The
crux of the algorithm is that each processing ele-
ment (PE) multiplies an input pixel to a filter ma-
trix. These products of different inputs are strided
across the output pane and overlapped areas are
summed to get the output (as shown in Fig. 4).
To compute the stride, a mathematical equation
for unified stride is defined as S = (convolution
stride)/(1 + pad). Zero insertion up sampling
strategy ensures the pad to be 1, hence S = 0.5
for convolution stride of 1. This is mathematically
equivalent to striding the products of each input
pixel with a stride of 2. In this way, PEs workload
is balanced throughout the computation.

The architecture for this accelerator (as shown in
Fig. 5) comprises an input buffer which stores the
image input and on which the DeCONYV is per-
formed. The weight buffer contains the weights of
M filters. A tile of weight and input are sent to
the computing core where each input is multiplied
to all weights of the tile. The coordinator module
computes the (r,c) output coordinate based on the
position (h,]) from which the image tile is picked.
The output partial sums are then sent to corre-
sponding location in the output buffer. We also
maintain a cold buffer to stitch and accumulate
the overlapping portions of outputs that are com-
puted across the iterations. In the original paper,

Weight Buffer

[‘ TnxTm xKix1 @
na— t

Computing Core
TaxTix1

aInput Buffer Output Buffer
LN,

TmxTrxTe

T
d

|
e

HeT

ou
J [[cold Bufter ¥}

| Input Maps Output Maps

Coordinator

Figure 5: Architecture for GNA

11 = Variable('L'

2 h = Variable('H'

3 n = Variable('N'

4 k = Variable('K’

5m = Variable('M')

6 TO = Variable('T0')

7

8 constraints = ij

9 constraints.append(l*h*n <= 4992)
10 constraints.append(m*n*k*k <= 13824)

Table 3: Bluespec Simulation Cycles for GNA

Image | Weight | Sim. Cycles
(16,16,3) | (16,3,3,3) 915
(16,16,3) | (32,3,7,7) 7227
(32,32,3) | (32,3,7,7) 25371

11 constraints.append(2*1 + k <= T0)
12 constraints.append(h >= 70)

13 constraints.append(l >= 70)

14 constraints.append(n >= 1)

15 constraints.append(m >= 1)

16 constraints.append(k >= 117)

17

18 objective = TO # Twa

19 m = Model (objective, nstraints)
20 sol = m.solve(verbosity = 1)

21 Twall = sol["variables"]["T0"]

Using solver 'mosek_cli'

for 6 free variables

in 9 posynomial inequalities.
Solving took 0.0199 seconds.

Figure 6: Using Geometric Programming solver
to estimate hardware constraint for Cold Buffer.
Here, Twall solution is 256

Table 2: Paper proposed design parameters

Buffer Size
Image Buffer | 19.5KB
Weight Buffer 54KB
Output Buffer | 136.5KB

(Tm, TI) (16,16)

the cold buffer is of (K -S) length, where K is size
of kernel and S is the stride. Every image tile tl
sent to CE, generates an output of size Tm x T1
x K. The Tl x K matrix is unloaded to the out-
put buffer in steps of K and the last (K - S) values
are saved in the cold buffer which are utilized in
the next iteration. To directly unload the entire
partial products as and when computed, we use
a larger cold buffer which is of size of maximum
length of the output. This design choice saves T1
cycles for each tile at the expense of additional
hardware. The estimation of the hardware bud-
get for cold buffer, given the sizes of input buffer
and weight buffer can be written as posynomial
constraints and is geometric programming prob-
lem. Using MOSEK (Licensed) on Google Colab-
oratory, we model the problem (as show in Fig.
6). Table 2 contains the hardware budget for the
proposed architecture. The tiling parameters are
chosen equal for a symmetric PE grid i.e., Tm =
T1 = 16. A Bluespec simulation for these design
choices tested positive for functional correctness
when run on the same three workloads used be-
fore and the the number of simulation cycles were
measured (shown in Table 3)

Table 4: Synthesis Report for Scaled Down Ver-
sion of GNA

Type Number
Slice LUTS (Logic) 2458
Slice Registers 766
DSP48E1 54

The simulation cycles are comparatively smaller in
magnitude w.r.t to Tablel, as the clock frequency
of the processor will be different from the hard-
ware designed. To get an estimate of the target
clock period we need to generate the Verilog code
from the Bluespec design. However, this couldn’t
be done on my personal machine as the stack over-
flowed (upto 2GB allocation) for the design met-
rics proposed in the paper. This can be primar-
ily attributed to the huge unfolding that happens
when all register units of a buffer are initialized to
0. Also, the cold buffer needs to reset after com-
pletion of every row of image, hence adding more
to the unfolding degree. The inputs are read in us-
ing RegFile package provided by Bluespec which
internally utilizes readmemh from Verilog. How-
ever, this setup has a limitation on the number
of read ports i.e., only 5 read ports are available
and becomes a bottleneck for file to buffer trans-
fer. Hence, a scaled down version of the model
was used with tiling parameters as (4,4) and a
total hardware budget of 4KB which resulted in
successful Verilog generation. The generated Ver-
ilog synthesized successfully when run on Vivado
for XA Artix FPGA. The mapped hardware re-
sources are also listed in Table 4.

Future Work

The Bluespec implementation of GNA enables it
to be integrated with processor after adding a few
more features. The current design reads/writes
the data from/to a file. A direct memory access or
a protocol based memory transfer logic should be
written between the main memory unit of the pro-
cessor and the buffers of the GNA. Also, some par-
ticular input and weight configurations can make

the output buffer overflow without completing the
entire computation. An exception handling mod-
ule should also be added to stop the execution,
load the warm content of the buffer to memory
and resume the operation. The current hardware
accelerator is designed for 32b data. Implementing
precision based acceleration allows it to operate in
16b/8b mode for lighter workloads which makes it
energy-efficient.

Code Repository for Bluespec implementa-
tion of GINA

References

[1] StarGAN: Unified Generative Adversarial
Networks for Multi-Domain Image-to-Image
Translation by Yunjey Choi et al.,2018

[2] High-Fidelity Generative Image Compression
by Fabian Mentzer et al., 2020

[3] P2-GAN: Efficient Style Transfer Using Single
Style Image by Zhentan Zheng et al., 2020

[4] /A Style-Based Generator Architecture for
Generative Adversarial Networks by Tero Kar-
ras et al. from NVIDIA, 2019

[5] A Survey of Hardware Architectures for GANs

[6] Towards design methodology of efficient fast
algorithms for accelerating generative adver-
sarial networks on FPGAs by Chang et
al.,2020

[7] X. Di, H. Yang, Z. Huang, N. Mao, Y. Jia,
and Y. Zheng, “Exploring Resource-Efficient
Acceleration Algorithm for Transposed Con-
volution of GANs on FPGA,” in International
Conference on Field-Programmable Technol-
ogy (ICFPT), 2019, pp. 19-27.

[8] ZARA: A Novel Zero-free Dataflow Accelera-
tor for Generative Adversarial Networks in 3D
ReRAM by Fan Chen et al.,2019

[9] GNA: Reconfigurable and Efficient Architec-
ture for Generative Network Acceleration by
Jiale Yan et al.,2018

https://github.com/shanmukh2607/gna_makesim
https://github.com/shanmukh2607/gna_makesim
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/1711.09020.pdf
https://arxiv.org/pdf/2006.09965.pdf
https://arxiv.org/pdf/2006.09965.pdf
https://arxiv.org/pdf/2001.07466.pdf
https://arxiv.org/pdf/2001.07466.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://arxiv.org/pdf/1812.04948.pdf
https://www.researchgate.net/publication/352706814_A_Survey_of_Hardware_Architectures_for_Generative_Adversarial_Networks
https://arxiv.org/pdf/1911.06918.pdf
https://arxiv.org/pdf/1911.06918.pdf
https://arxiv.org/pdf/1911.06918.pdf
https://arxiv.org/pdf/1911.06918.pdf
https://dl.acm.org/doi/pdf/10.1145/3316781.3317936
https://dl.acm.org/doi/pdf/10.1145/3316781.3317936
https://dl.acm.org/doi/pdf/10.1145/3316781.3317936
https://ieeexplore.ieee.org/document/8412607
https://ieeexplore.ieee.org/document/8412607
https://ieeexplore.ieee.org/document/8412607

