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ABSTRACT

KEYWORDS: Compressive Sensing; Measurement matrix; Restricted Isometry

Property; Mutual Coherence.

Compressive Sensing (CS) is a signal acquisition paradigm to simultaneously acquire

and reduce dimension of signals that admit sparse representation. This is achieved by

collecting linear measurements of a signal, which can be formalized as a multiplying

the signal with a “Measurement Matrix”. If the measurement matrix satisfies the so-

called Restricted Isometry Property (RIP), Then it will be appropriate for compressive

sensing.

In this project, the focus is on Construction and Optimization of deterministic mea-

surement matrices in compressed sensing. The construction of the deterministic matrix

mainly based on the Optical Orthogonal Code (OOC) structure , This base matrix can

be used to construct Gaussian, Binary, Hadamard, Discrete Cosine Transform (DCT)

measurement matrices. The optimization is mainly to reduced Mutual Coherence value

of the above mentioned measurement matrices based on Projection technique.
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Chapter 1

INTRODUCTION

This chapter gives an overview on the traditional methods and their drawbacks. Intro-

duction to the compressive sensing concept, scope and objective of the project.

1.1 Background

Signal acquisition is a main topic in signal processing. Sampling theorems provide

the bridge between the continuous and the discrete-time worlds. With of advent of

information technology such as information transfer, the demand for sampling rate in-

creases hugely.As a benchmark for traditional signal processing shown in Fig. 1.1, the

Nyquist sampling theorem requires that the rate of sampling at least two times faster

than its bandwidth to prevent information from losing when uniformly sampling a sig-

nal. In general, if a signal can be approximated well by k large coefficients, then it

can be defined as compressible signal. Without loss of generality, any signal in theory

has compressibility, i.e., can be effectively compressed and sampled, as long as it can

find its corresponding sparse representation space. Therefore,all types of signals can

be considered with respect to sampling and compressing. However,two main dilemmas

are caused by this traditional method.On the one hand,for many applications, includ-

ing digital image,video cameras,a lot of sampling resources are waste associated with

the process of compressing after sampling with high-speed. For example,only a few

hundred Kbyte data is used to transform the image associated with a digital camera

equipped with a megapixel image sensor.On the other hand,for other applications, in-

cluding imaging systems (medical scanners, radars) and high-speed analog-to-digital

converters,the requirement about the relationship between sampling rate and bandwidth

is too strict to satisfy,which may give rise to huge consumption by increasing the sam-

pling rate or density beyond the current state of the art.



Figure 1.1: Process of traditional compression

1.2 Motivation

CS concept , (Candès and Wakin, 2008), a novel sampling paradigm that goes further

than Shannon-Nyquist’s theorem. CS allows to compress signals with sparse or com-

pressible representation while they are sampled. It originates from the idea that it is

not necessary to invest a lot of power into observing the entries of a sparse signal be-

cause most of them will be zero. Considering a sparse signal, it should be possible to

collect only a small number of measurements that still allow for reconstruction. As it

is explained in , (Donoho, 2006), most of the data acquired by modern systems and

technologies can be thrown away with almost no perceptual lost. This phenomenon

raises very natural questions: why to acquire all the data when most of that will be

thrown away? why don’t we try to just directly measure the part that will not be thrown

away? Obviously, image/signal compressing and sampling can be processed simulta-

neously in terms of compressed sensing theory, which can reduce the cost greatly and

avoid wasting sampling resources. Meanwhile,the recovery of signals is an optimization

problem,which can be resolved by efficient algorithms. Therefore,this theory proposes

an effective way to directly compress and sample signals into digital form, whose char-

acteristic is direct sampling information. To sum up, the technology of CS will lead to

the coming of new era with respect to information. In addition, the attraction of CS the-

ory is that it has important influence and practical significance in many fields of applied

science and engineering, such as statistics,information theory, coding, and so on.

1.3 Scope

From, Fig. 1.2 we can find that the signal processing with CS can be generally divided

into two main parts. Firstly, a measurement matrix called (compressed) sensing matrix

φ should be used to collect the information and simultaneously compress signals, which

can be shown as the part associated with compressing and sampling with low-speed.
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Figure 1.2: Compressive Sensing Technique

Secondly, the recovery of signals after transmitting and storage should be accomplished

by solving an optimization problem with effective algorithms.

1.4 Objective

Objective is to construct a various determined measurement matrix using combinatorial

designs and to compare those measurement matrices in Error rate and SNR (signal to

noise ratio) perspective using OMP (orthogonal matching pursuit) as a reconstruction

algorithm.

Optimization of constructed deterministic matrices based on minimization of mutual

coherence value by projection technique.

1.5 Applications

1.5.1 Image Compression

A fundamental assumption in digital image processing is that natural images are piece

wise smooth in the pixel basis. That is, there are very few edges in the image, and

therefore, the differences between the values of adjacent pixels are usually zero or al-

most zero. The wavelet transform can be used to map images from the pixel domain

to the wavelet domain in which they have sparse (or approximately sparse) representa-

tions.
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Here, CS can be used as a new data acquisition framework, to overcome the in-

efficiencies of the classical image compression approach. In contrast to the classical

approach, which involves sensing a high-resolution signal and then compressing it by

throwing away part of the sensed data, CS attempts to develop methods to sense signals

directly into compressed form.

1.5.2 Biomedical Imaging

Another important application for CS is in reducing the sampling rate in magnetic res-

onance imaging (MRI). Traditional MRI scanners sequentially sample Fourier coef-

ficients of the human brain’s image. Unfortunately, this traditional MRI approach is

very costly, as the speed of data collection is limited by physical and physiological

constraints However, most MRI images are sparse in the Fourier domain. As a result

compressed sensing can be used to significantly decrease the number measurements

without reducing the accuracy of the MRI image.

1.5.3 Digital Communications

The problem of wireless networks to enable network communication in the presence

of inference is one of the major challenges facing communication research. One im-

portant case is managing inference in peer to peer networks and in an uplink where

multiple sensors look to communicate with an access point. the interference mitigation

for downlink communications in which a single transmitter (e.g. a cellular base station)

communicates simultaneously with multiple (N) receivers.

The key idea connecting compressed sensing to wireless communication is that at

each time only a small number of K × N receivers are active. The sender then maintains

an M × N sensing matrix , such that the ith columns of is associated with the ith user.

At each transmission time, the transmitted signal is constructed as the sum of individual

signals, each intended to a different receiver. That is, the transmitted signal is a super-

position of at most K columns of the matrix. With this strategy, each receiver can also

invoke sparse reconstruction algorithms and decode its own information.

4



1.5.4 Quantum Computing

A major obstacle to engineer quantum devices such as quantum computers had been

lack of an effective scheme for noise characterization in many component systems. The

number of parameters required to represent the state of a quantum system grows expo-

nentially with the number of its components in contrast to a classical system. As a result

the number of measurements needed for full characterization of the noisy dynamics of

a quantum system becomes astronomically large. So the CS technique effectively deal

with this large data.

1.6 Organisation

In chapter 2, we will discuss some fundamental aspects in CS. In chapter 3, we will

discuss construction of the different measurement matrices based on the combinatorial

design. In chapter 4, we will discuss optimization of deterministic measurement ma-

trices based on projection technique. In chapter 5, conclusions are made based on the

observations drawn from the simulations specified in chapter 3 and chapter 4.

5



Chapter 2

FUNDAMENTAL ASPECTS

This chapter, gives overview on the fundamental aspects of the CS which are used in

the project.

2.1 Measurement Principle

CS theory states that a sparsely re-presentable signal can be reconstructed using very

few number of measurements compared to the signal dimension. So the measurement

principle used in CS is the Dimensionality Reduction Technique. We are concerned

with under sampled situations in which the number m of available measurements is

much smaller than the dimension n of the signal f. This raises an important question

about accurate reconstruction from m ≪ n measurements only. This can be achieved

through the set of operations is shown in Fig. 2.1 .

Figure 2.1: Dimensionality Reduction Technique

• A=Sensing Matrix

• X=N Dimensional Signal vector

• Y=M Dimensional Signal vector



2.2 Sparsity

Signals/images are sparse if it can have very few nonzero coefficients representation in

certain subspace. The concept that most signals in our natural world are sparse. If it is

not sparse in one domain it may sparse in another domain like if a signal is not sparse in

time domain it may appear sparse in Fourier transform domain. So discarding the large

number of zeroes with approximately reconstructs the original image/signal. Consider

the following example shown in Fig. 2.2.

Figure 2.2: Role of Sparsity in the reconstruction of an image

(a) Original image

(b) Coefficients of image in wavelet domain

(c) Reconstructed image

2.3 Restricted Isometry Property

To decide what matrix is appropriate, we need some criteria. An insight into the ge-

ometry of sensing matrices leads to a widely used criterion named Restricted Isometry

Property(RIP). A matrix φ is said to satisfy the RIP of order k if we have a constant

0 ≤ δk <1 such that

(1− δk)||x||22 ≤ ||φx||2
2
≤ (1 + δk)||x||22 (2.1)

7



Figure 2.3: Schematic representation of how RIP can ensure measurement error does

not blow up

such that holds for every k-sparse signal. In other words, if φ satisfies the RIP of or-

der k, holds for any k-sparse signal x. δk is called Restricted Isometry constant(RIC) of

order k, which is the smallest non negative number any k column vectors from behave

like an almost orthogonal system. RIP is a sufficient condition which guarantees exact

and robust reconstruction of sparse signals via l1-minimization.

2.4 Coherence Factor

Coherence plays a central role in the deterministic constructions, because small coher-

ence implies the RIP. The coherence of a matrix can be calculated by following formula

(2.2)

µ{A} = max
|〈aij〉|

||ai||2.||aj||2
for, i 6= j, 1 ≤ i, j ≤ n (2.2)

For a dictionary A, its mutual coherence is defined as the largest absolute and nor-

malized inner product between different columns in the A.

2.4.1 Relation between Sparsity level and Mutual Coherence

||α0||0 ≤
1

2
(+

1

µ{A}) (2.3)

Where ||α0||0 is the Sparsity level

µ{A} is the Mutual Coherence value of a matrix A

8



2.4.2 Gram Matrix

The mutual coherence value can also be calculated using Gram matrix. µ is the maxi-

mum off diagonal value of a Gram matrix. The Gram matrix can be calculated by the

equation (2.4)

G = AT
q .Aq (2.4)

Aq is the matrix obtained after normalizing columns of A matrix.

2.5 Reconstruction Algorithm

There are many recovery algorithms are there. Classification of Sparse Recovery Algo-

rithms shown in Fig. 2.4 based on (Arjoune et al., 2017).

Figure 2.4: Classification of Sparse Recovery Algorithms

In this project we used OMP as the recovery algorithm to find the error rate of the

constructed deterministic matrices and to compare their Performance. Fig. 2.5 describes

the flow of OMP or working of the OMP.

9



Figure 2.5: Flowchart of OMP
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Chapter 3

Construction of Deterministic Measurement Matrices

In this chapter, we discuss how to construct determinstic measurement matrices based

on combinatorial designs (Bryant et al., 2017)and their performance.Deterministic ma-

trices can be constructed in many ways, In this project the construction of measurement

matrices having two main steps. First step is to construct a basis matrix based on OOC

structure (Li and Ge, 2014). In the second step we construct the measurement matrices

of different distributions using the basis matrix constructed in the first step (Bryant

et al., 2017), (Dias and Rane, 2013) .

3.1 Basis Matrix Design

Basis matrix is constructed by using OOC from structure of (n,ω,λ) which is equal to

(q2 + q + 1, q + 1, 1), where q is a integer values between 2 ≤ q ≤ 16 . By using the

following look up table mentioned in Fig. 3.1 (Shen et al., 2016) , we can construct a

square matrix of size (q2 + q + 1, q2 + q + 1).

Figure 3.1: OOC structure look up table



3.2 Construction of Measurement Matrix

Consider matrix C1 as random square matrix of Gaussian or Binary or Hadamard or

DCT matrices. Each column x of B determines rx columns of measurement matrix,

each zero in column x is replaced with the 1 × rx row vector (0, 0, . . . , 0), and each 1

in column x is replaced with a distinct row of C1 matrix which is shown in Fig. 3.2.

Example

N=3,q=4, B[7,7], OOC-B[7,28]

Figure 3.2: Example of Construction of Measurement Matrix

• B=Basis matrix

• C1=Distribution matrix(Hadamard)

• OOC-B or A=Measurement matrix

3.3 Simulations

In this project the performance analysis can be categorized by firstly its error rate

i.e,least square error between original matrix and reconstructed matrix. Secondly SNR

value i.e, calculated by input as signal and noise as the difference between the input sig-

nal and reconstructed signal. So following graphs are drawn taking those two parame-

ters as a reference with respect to the sparsity level by varying N value. The simulations

are obtained using MATLAB tool.
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3.3.1 Comparison of various Measurement Matrices

Here we are comparing Gaussian, Binary, Hadamard, DCT measurement matrices based

on their error rate and SNR.

In Fig. 3.3 graph is drawn between sparsity versus error rate and sparsity versus

SNR for the matrix dimensions are obtained as B[21,21],A[21,84] taking N=4,q=4. So,

from the graph we can say that Gaussian and Binary are giving good results both in

SNR and error parameters comparing to other two measurement matrices.
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Figure 3.3: Comparison of error rate and SNR of various measurement matrices w.r.t

sparsity having matrix size [21,84]

In Fig. 3.4 graph is drawn between sparsity versus error rate and sparsity ver-

sus SNR for the matrix dimensions are obtained as B[273,273],A[273,1092] taking
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N=4,q=16.So,from the graph we can say that Gaussian and Binary are giving good re-

sults both in SNR and error parameters. Here Hadamard is giving less error rate but its

SNR is low comparing to Gaussian and Binary and also Hadamard can only implement

with matrix size is multiples of 4.
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Figure 3.4: Comparison of error rate and SNR of various measurement matrices w.r.t

sparsity having matrix size [273,1092]

In Fig. 3.5 graph is drawn between sparsity versus error rate and sparsity versus

SNR for the matrix dimensions obtained as B[273,273],A[273,2184] taking N=8,q=16.

Here matrix dimensions are higher compared to other two examples i have mentioned

above. In this case also Gaussian and Binary giving good results.
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Figure 3.5: Comparison of error rate and SNR of various measurement matrices w.r.t

sparsity having matrix size [273,2184]
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3.3.2 Performance Analysis based on the Sparsity of input matrix

From the above we can see that the Gaussian and Binary are giving good results in

maximum test cases. So,taking those two matrix as reference to get relation between

sparsity and input matrix size in performance analysis.

In Fig. 3.6 graph is drawn between input matrix size versus error rate and input

matrix size versus SNR for the matrix dimensions n × N*n (where n=21) for various

Sparsity levels(k) ,Where size of input matrix = N*n taking Binary Matrix as reference

measurement matrix.
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Figure 3.6: Comparison of error rate and SNR of various on sparsity w.r.t N value hav-

ing matrix size [N,n*N] of a Binary matrix (where n=21)

In Fig. 3.7 graph is drawn between input matrix size versus error rate and input
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matrix size versus SNR for the matrix dimensions n × (N)*n (where n=21) for various

sparsity levels(k), where size of input matrix = N*n taking Gaussian matrix as reference

measurement matrix. Here sparsity(k) increases means no of non zero elements in

input matrix increases. From the graph it is clear that sparsity increases performance

decreases.
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Figure 3.7: Comparison of error rate and SNR level of various on sparsity level w.r.t N

value having matrix size [N,n*N] of a Gaussian matrix (where n=21)
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3.4 Observations

• Gaussian and Binary measurement matrices performance is good as N value in-

creases. Hadamard matrix is having one limitation the matrix should be 4 multiple

size.

• As the sparsity level increases the error rate also increases since OMP gives better

results for low sparse input signals.

• As N increases it is difficult to recover but if sparsity is constant number of non

zero elements decreases since total matrix size is increasing so automatically error

rate decreases.
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Chapter 4

Optimization of Deterministic Measurement Matrices

In the previous chapter, we have observed that sparsity i.e, the number of non zero

elements in the input matrix increases will decreases the performance. So, we are now

concerned on how to get better performance at high sparsity. This can be achieved with

reference to the equation (2.4) by reducing the mutual coherence value. The mutual

coherence value can be minimized ref, (Elad, 2007), (Oey, 2014), (Abolghasemi et al.,

2010), (Xu et al., 2010). In this chapter we will discuss how to construct the optimized

projection matrix to reduce the mutual coherence value.

4.1 Projection Technique

As mentioned in the equation (2.4) the Sparsity level and the mutual coherence value

are closely related. Suppose that the projection matrix P has been designed such that

µ{PD} is as small as possible, this allows a wider set of candidate signals to reside

under the umbrella of successful compressive sensing behaviour. Here ||α0||0 value

increasing means number of non zero elements may present in a input matrix to get a

good reconstruction using any recovery algorithm.

||α0||0 ≤
1

2
(+

1

µ{PD}) (4.1)

4.2 Projection matrix Construction

To minimize the mutual coherence value the optimized projection matrix construction

is explained by the following algorithm.



Algorithm 1: How to construct a Projection matrix

Result: Optimized P matrix

Inputs

Dictionary/Measurement matrix(D), Down sampling Factor(x), Threshold of

Coherence value(t), Number of iterations(I), Matrix dimensions of P,D.

Initialization

Let P matrix be an arbitrary random matrix with required size (taking Y and

measurement matrix into consideration).

initialize q=0

while q<I do

D̂= P*D

Dq = Normalizing columns of D̂

Gq = D̂q.Dq

Updation of G matrix

if i==j then

ĝij = 1;

else

if gij>t then

ĝij =gij*x;

else
ĝij =gij;

end
end

Rank Reduction

Applying SVD to reduce rank of Ĝq to be equal to P matrix rank.

Square root

Ĝq = ST
q .Sq where Sq obtained should be having dimension equal to the P

matrix.

P matrix updation

Updating the P matrix by minimizing the error of the ||Sq - PD||2.

Set q=q+1

end

New Measurement matrix = PD
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4.2.1 Initialization

Let D be m × n matrix. Here we will initialize P matrix be p × m of any arbitrary

random matrix. To get the mutual coherence of a PD matrix first we will calculate the

gram matrix(G) with reference to the equation (2.3).

4.2.2 Updation of G matrix

To decrease the mutual coherence we have to update G matrix off diagonal elements.

The updation of the G matrix is the crucial part. In G matrix diagonal elements are

updated as 1 to improve SNR and decreasing the off diagonal elements which are greater

than the threshold value by multiplying with down sampling factor. Threshold value is

our choice but we have to choose wisely i.e, it should be lower than the measurement

matrix that we are going to be optimize.

4.2.3 Rank Reduction and Square Root

The rank reduction based on SVD technique. SVD decomposes any matrix into U,∆,V.

Let P matrix has the dimension of p rows. Here Ĝq is a square matrix here we will

consider only p highest eigen values or p rows since P matrix has p rows.

From the knowledge of linear algebra ATA,AAT are the symmetric matrices of

any A matrix. For a symmetric matrix U and V of the SVD are same. Here Ĝq is the

symmetric matrix so we can easily decompose matrix into ST
q Sq. So,Sq be U

√
∆.

4.2.4 Minimization of error based on Least Square Approximation

Updating the P matrix by minimizing the error of the ||Sq−PD||2 based on least square

approximation. We can minimize Sq = PD with respect to P as P = SqD
T (DDT )−1.
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4.3 Simulations

4.3.1 Explanation on how Projection improves performance

In Fig. 4.1 graph is drawn between sparsity versus error rate and sparsity versus SNR

for the dimensions of the P matrix as [21 x 91] ,D matrix as [91 x 819], using above

mentioned algorithm comparing with the dimensions of the D matrix as [21 x 819]

without any Projection. Here taking Binary matrix as a reference measurement matrix,

threshold value as 0.015 and down sampling factor as 0.4. From the graph it is evident

that optimization based on the above algorithm decreases the error rate and increases

the SNR.
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Figure 4.1: Comparison of error rate and SNR of projected and not projected Binary

matrix w.r.t sparsity level having matrix size [21,819]
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In Fig. 4.2 graph is drawn between sparsity versus error rate and sparsity versus

SNR for the dimensions of the P matrix as [21 x 91] , D matrix as [91 x 819],Using

above mentioned algorithm comparing with the dimensions of the D matrix as [21 x

819] without any Projection. Here taking Gaussian matrix as a reference measurement

matrix, threshold value as 0.01 and down sampling factor as 0.2. Since Gaussian is

having low mutual coherence value compared to Binary, so we have to consider a low

threshold value and down sampling factor compared to Binary.From the graph it is

evident that optimization based on the above algorithm decreases the error rate and

increases the SNR.
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Figure 4.2: Comparison of error rate and SNR of projected and not projected Gaussian

matrix w.r.t sparsity having matrix size [21,819]

In Fig. 4.3 graph is drawn between sparsity versus error rate and sparsity versus
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SNR for the dimensions of the P matrix as [21 x 273] , D matrix as [273 x 2457],Using

above mentioned algorithm comparing with the dimensions of the D matrix as [21 x

2457] without any projection. Here taking Binary matrix as a reference measurement

matrix, threshold value as 0.015 and down sampling factor as 0.4. From the graph it

is evident that optimization based on the above algorithm decreases the error rate and

increases the SNR to the higher size of the matrix also.
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Figure 4.3: Comparison of error rate and SNR of projected and not projected Binary

matrix w.r.t sparsity having matrix size [21,2457]

In Fig. 4.4 graph is drawn between sparsity versus error rate and sparsity versus

SNR for the dimensions of the P matrix as [21 x 273] , D matrix as [91 x 2457], us-

ing above mentioned algorithm comparing with the dimensions of the D matrix as [21

x 2457] without any projection. Here taking Gaussian matrix as a reference measure-
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ment matrix, threshold value as 0.01 and down sampling factor as 0.2.Since Gaussian

is having low mutual coherence value compared to Binary, so we have to consider a

low threshold value and down sampling factor compared to Binary. From the graph it

is evident that optimization based on the above algorithm decreases the error rate and

increases the SNR.
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Figure 4.4: Comparison of error rate and SNR of projected and not projected Gaussian

matrix w.r.t sparsity having matrix size [21,2457]

4.3.2 Performance Analysis of Random and Optimized Projections

Projecting the measurement matrix with certain dimension gives good results only when

the projection matrix is constructed in an optimized way to decrease the coherence value

if it is a random projection matrix then it will not give any improvement in performance
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besides, in some cases random projection matrix decreases performance of the original

measurement matrix. The comparison between random projection and the optimized

projection as shown Fig. 4.5 in having dimension of the matrix as P-[21 x 91] ,D-[91 x

819] taking Gaussian matrix as reference.
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Figure 4.5: Comparing the error rate and SNR of random P and optimized P w.r.t spar-

sity of a Gaussian matrix

4.4 Observations

• Projection matrix P constructed using the algorithm discussed in this chapter

gives better Performance.

• Only optimized P matrix gives better performance compared to random P ma-

trix(optimized P is the projection matrix constructed using the algorithm dis-

cussed in this chapter).
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Chapter 5

Conclusion

We studied compressive sensing basic principles and successfully implemented the

OOC structure based deterministic matrix design to construct Gaussian, Binary, DCT,

Hadamard measurement matrices and compared there performance based on the error

rate and SNR. We further optimized the deterministic measurement matrix by projec-

tion technique to minimizing the mutual coherence value to get less error rate at high

sparsity level.

The results obtained based on the algorithms discussed in the chapter 3 and chapter

4, it is evident that Gaussian and Binary are measurement matrices giving the good

performance at maximum test conditions compared to other measurement matrices used

in the project. Optimization improves their performance by reducing mutual coherence

value there by having possibility to implement at high sparsity level with less error rate.
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