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ABSTRACT

KEYWORDS: Image denoising ; Unsupervised methods ; Deep learning.

Image denoising is a well-tackled problem in the domain of image processing. It has ap-

plications in many areas ranging from astronomical imaging, microscopy to present-day

smartphone cameras. Traditional methods for image denoising have relied on filtering

either in the spatial or a transform domain. As a result, they are fully unsupervised. The

phenomenal success of deep learning in high-level computer vision tasks has led to its

application in low-level image processing tasks, including image denoising. However,

in stark contrast to traditional methods, deep learning approaches in image processing

predominantly resort to supervised learning. A majority of methods for image denoising

are no exception to this rule and hence demand pairs of noisy and corresponding clean

images. Only recently has there been the emergence of methods such as Noise2Void,

where a deep neural network learns to denoise solely from noisy images. However,

when clean images that do not directly correspond to any of the noisy images are ac-

tually available, there is room for improvement as these clean images contain useful

information that fully unsupervised methods do not exploit. In this work, we propose a

method for image denoising in this setting. First, we use a flow-based generative model

to learn a prior from clean images. We then use it to train a denoising network with-

out the need for any clean targets. We demonstrate the efficacy of our method through

extensive experiments and comparisons.
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CHAPTER 1

INTRODUCTION

Noise corrupts virtually any image captured through a camera. The degradation due to

noise is typically captured in the equation:

YYY =XXX +NNN

where XXX is a clean image, NNN is noise and YYY is the corresponding noisy version of

XXX . The noise NNN can be signal-independent, i.e., independent of XXX (in which case it is

typically modeled as a Gaussian random variable) or signal-dependent (in this case, it

is typically modeled as a Poisson random variable).

Image denoising methods attempt to recover the clean image from its noisy counterpart.

Traditional methods such as BM3D (Dabov et al., 2007), NSCR (Dong et al., 2012),

WNNM (Gu et al., 2014) rely on the self-similarity of image patches to denoise solely

from noisy images. Methods such as Zhang et al. (2017); Zhang et al. (2017); Lefkim-

miatis (2017) that use deep learning have been proposed for image denoising. Although

they achieve state-of-the-art performance, they are all discriminative models and hence

require pairs of noisy images and their corresponding clean images.

Recently, deep learning methods like Noise2Noise (Lehtinen et al., 2018) and Noise2Void

(Krull et al., 2019) have been proposed that use statistical properties of noisy image

patches to eliminate noise. While these methods do not need any clean images, in sit-

uations where they are available, they cannot utilize the valuable information available

in the clean images.

Another important class of methods are prior based. Priors are crucial for obtaining

a reasonable answer out of all the possible solutions for an ill-posed problem such

as image denoising. With handcrafted priors, these methods can be used when clean

images are not available. However, these priors have been criticized as they are often

chosen for their computational or analytical convenience rather than accuracy. Deep

learning has allowed for constructing more accurate priors. Deep image prior (Ulyanov



et al., 2018) claims that the architecture of a convolutional neural network alone can act

as a prior for natural images. Though the results are good, it is surprising as there is no

mathematical justification for why this prior works. Going further, Chen et al. (2018)

have used a GAN (Goodfellow et al., 2014) to explicitly construct a prior for realistic

noise which they use for denoising.

In this thesis, we propose an approach for denoising using another class of generative

models, called flow-based generative models (Dinh et al., 2014, 2016). These models

learn an invertible transformation from a complex distribution like images to a simple

one like the Gaussian distribution. Unlike GANs, flow-based models can explicitly and

accurately capture the likelihood function of clean images. As a consequence, they

are excellent candidates for learning a realistic prior which is essential for superior

denoising performance. Also, they do not suffer from the unstable training dynamics

that GANs are notorious for.

Figure 1.1 shows a sample result from our method. We train a flow-model on clean

images alone while a different network is trained to denoise using only the likelihood

specified by the flow-based model. As a result, our method can be used even when there

is no pairing between noisy and clean images.

Ground truth Noisy input Our output

Figure 1.1: Sample result from our method. Observe that the fine details in the tree are
restored without any noticeable blur even when the noise level in the input
is high (σ = 35). Image taken from BSD68 (Roth and Black, 2009)

The remainder of this thesis is organized as follows: chapter 2 provides a summary of

prior, related work on image denoising; chapter 3 contains the requisite background for

our method; in chapter 4, we describe our method in detail and justify it; finally, in

chapter 5, we show and discuss experimental results from our method.
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CHAPTER 2

RELATED WORK

2.1 Traditional methods

2.1.1 Non-local means (NLM)

Non-local means filtering (Buades et al., 2011) exploits the zero-mean nature of noise

in images. In this method, denoising is achieved by averaging out similar pixels in

the noisy image. More concretely, given a noisy image YYY , the denoised image X̂̂X̂X is

estimated as follows:

X̂̂X̂X(i) =
∑

j∈N(i)

w(i, j)YYY (j) (2.1)

where N(i) is a neighborhood surrounding the pixel i and the weights w(i, j) are chosen

such that 0 ≤ w(i, j) ≤ 1 and
∑

j w(i, j) = 1. The most common choice for w(i, j) is

the following:

w(i, j) =
1

W (i)
e−

∥n(i)−n(j)∥
k2

Here, n(i), n(j) are patches around pixels i and j respectively. The hyperparameter k

controls how sensitive the weights are with respect to the differences in pixel intensities

and W (i) is a normalizing constant.

The summation in Equation 2.1 is only over a neighborhood rather than the whole image

for purely computational reasons. The size of this neighborhood depends on the noise.

For effective denoising, a larger neighborhood is required for higher noise levels. A

sample output from NLM is shown in Figure 2.1.



Figure 2.1: A sample result from NLM denoising. The image on the left is the original
image. The one in the middle is a noisy image (σ = 15) and the image on
the right is the denoised image. Image taken from Buades et al. (2011).

2.1.2 Block-matching and 3D filtering (BM3D)

Block-matching and 3D filtering (Dabov et al., 2007) is a very effective denoising ap-

proach that has stood the test of time in terms of denoising performance and is still

widely used. Broadly speaking, the BM3D algorithm proceeds as follows:

1. Process the input image to extract reference blocks from the image.

2. Find blocks that are similar to each reference block and stack all these blocks
together into a 3D array. This step is called grouping and each such array is
called a group.

3. For each group, perform collaborative filtering and use the filtered blocks (from
potentially several groups) to estimate the denoised image.

To get into the details, BM3D uses the Block-Matching (BM) scheme to find similar

blocks. BM is very effective for motion estimation and is extensively used in video

compression (such as MPEG 1, 2, 4 and H.26x) which justifies its usage here.

BM3D actually repeats the above procedure twice. In the first stage, a custom 3D

transform is used. In the second stage, both the blocks from the original noisy image

and from the basic estimate from the first stage are filtered together using the Wiener

filter. In both stages, there can be multiple estimates for a single pixel, each estimate

arising from a different group. These estimates are combined using weighted averaging.

A sample output from BM3D is shown in Figure 2.2.
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Figure 2.2: A sample result from BM3D. The image on the left is the noisy image (σ =
25) and the one on the right is the denoised image. Image taken from Dabov
et al. (2007).

2.2 Deep learning based methods

2.2.1 Denoising convolutional neural network (DnCNN)

While using a deep neural network to denoise images was not a novel idea at that time,

Zhang et al. (2017) were one of the first to carefully consider all the aspects of designing

and training a DNN in the context of image denoising.

The authors of this paper based their network architecture on the VGG network (Si-

monyan and Zisserman, 2015) with some modifications. Specifically, they removed

all the pooling layers and chose the depth of the network such that effective size of

the receptive field of the network is large enough for denoising. They also used batch

normalization to improve training speed and residual learning to improve denoising

performance.

Previous works on denoising with deep learning trained different models for different

noise levels. During test time, they estimated and denoised with the model that was

specifically trained for that noise level. Zhang et al. (2017) were the first to train a

single model for a wide range of noise levels. This improved both the training and

testing times drastically. A sample output from DnCNN is shown in Figure 2.3

Perhaps the biggest drawback of this work was that, like the majority of discriminative

5



Figure 2.3: A sample result from DnCNN. The image on the left is the original image.
The one in the middle is a noisy image (σ = 35) and the image on the right
is the denoised image. Image taken from Zhang et al. (2017).

models, DnCNN also requires pairs of noisy and clean images. There are applications

such as in astronomy and medical imaging where such a requirement cannot be met.

This motivated the development of self-supervised/unsupervised models for image de-

noising some of which are summarized next.

2.2.2 Noise2Noise (N2N)

Noise2Noise (Lehtinen et al., 2018) made significant progress in terms of relaxing the

data requirements for image denoising using deep learning. Instead of needing pairs of

noisy and corresponding clean images, N2N only needs pairs of noisy images each with

different instances of noise.

It is well known that for the following optimization problem:

argmin
X̂

EX [(X − X̂)2]

the solution is simply the expectation of X .

X̂ = EX [X]

The key idea in this work was to realize that, when training with an MSE loss, it is

not necessary to supply clean images as targets to a DNN. As long as the expectation

of the targets matches the expectation of the clean images, the network should learn to

denoise. Whether the noise is Gaussian or Poisson, its mean is always zero. So, as long

as the noise in an image is additive, its expectation value is, trivially, the clean image

6



corresponding to it.

Lehtinen et al. (2018) exploit this fact to train a CNN with a noisy image as input and

a different noisy version of the same image as output. Note that it is very important for

the target to be a different noisy version, as otherwise the network will simply learn an

identity mapping. A sample output from N2N is shown in Figure 2.4.

Figure 2.4: A sample result from N2N. The image on the left is the original image. The
one in the middle is a noisy image (σ = 25) and the image on the right is
the denoised image. Image taken from Lehtinen et al. (2018).

2.2.3 Noise2Void (N2V)

In Noise2Void, Krull et al. (2019) go one step further and remove the need for a pair of

images all together. Their algorithm learns to denoise just from singular noisy images,

which are used as both inputs and targets while training a DNN.

Training is done patch-wise and the intensity of the center pixel of each input patch is

replaced with the intensity of a randomly chosen nearby pixel. This effectively erases

the information in the center pixel and prevents the network from learning a trivial

identity mapping. Loss is also calculated only for the pixels whose intensity has been

replaced. So now, during training, the same image can be used as both the input and the

target. To summarize, the network learns to denoise a pixel using just the surrounding

pixels. A sample output from N2V is shown in Figure 2.5.

As feeding and entire patch only to calculate loss on a single (center) pixel is very

inefficient, the authors used a stratified sampling scheme that replaces the intensities

7



Figure 2.5: A sample result from N2V. The image on the left is the original image. The
one in the middle is a noisy image and the image on the right is the denoised
image. Image taken from the supplementary material of Krull et al. (2019).

of several randomly chosen pixels in a single patch. The scheme ensures that these

pixels are not clustered together and hence the neighborhood of each of these pixels is

undisturbed in the original noisy image.

8



CHAPTER 3

BACKGROUND

3.1 Flow-based generative models

Flow-based generative models (Dinh et al., 2014, 2016) learn the bijective transfor-

mation from a high-dimensional, complicated random variable XXX to a latent random

variable ZZZ. Typically, XXX represents images in a dataset while ZZZ is assumed to be a

standard normal random vector.

ZZZ ∼ N (000, III) (3.1)

XXX = h(ZZZ) (3.2)

To learn the transformation h, the following unbiased estimate of the negative log-

likelihood of XXX is minimized:

1

N

N∑
i=1

− logP (xixixi) (3.3)

Here, xixixi are samples from the dataset. Using the standard rules of random variable

transformation, logP (XXX) can be written as

logP (XXX) = logP (ZZZ)− log

∣∣∣∣dhdxxx
∣∣∣∣ (3.4)

where
∣∣dh
dxxx

∣∣ is the determinant of the Jacobian of h. This term can be further decomposed

when h is a composition of several other functions as is typical in a deep neural network.

XXX = Z0Z0Z0
h1−→ Z1Z1Z1

h2−→ Z2Z2Z2 . . .
hn−→ ZnZnZn = ZZZ (3.5)

logP (XXX) = logP (ZZZ)−
n∑

i=1

log

∣∣∣∣ dZiZiZi

dZi−1Zi−1Zi−1

∣∣∣∣ (3.6)

To make the computation of the right hand side of (3.6) tractable, flow-based models

restrict the class of transformations to those for which the Jacobian is a triangular (or



even a diagonal) matrix. We now describe various transformations that satisfy this

criterion.

3.1.1 Additive coupling layer

Additive coupling layer (Dinh et al., 2014) is characterized by the following transfor-

mation:

yp1yp1yp1 = xp1xp1xp1 (3.7)

yp2yp2yp2 = xp2xp2xp2 +m(xp1xp1xp1) (3.8)

where xxx,yyy are the inputs and outputs of the layer respectively; p1, p2 is a partition of

the features along the channel dimension and m is an arbitrary transformation. For this

layer, it is easy to see that the Jacobian is

 Ip1Ip1Ip1 0

dm(xp1
xp1xp1 )

dxp1
xp1xp1

Ip2Ip2Ip2

 (3.9)

where Ip1Ip1Ip1 , Ip2Ip2Ip2 are identity matrices that are of the same size as the partitions p1, p2.

Conveniently, the determinant of the matrix in (3.9) is simply 1 and hence it is ideal for

use in a flow-based model.

3.1.2 Actnorm layer

In a regular network, batch normalization layers help stabilize training. However, they

cannot be directly used in a flow-based model as their Jacobian is not trivial. Actnorm

(short for activation normalization) layer is a modified version of batchnorm and it

behaves as follows:

yyy = sssxxx+ bbb (3.10)

where xxx,yyy are the inputs and outputs of the layer respectively. Both sss, bbb are vectors

whose dimension is the number of channels in xxx (or equivalently, yyy).

10



The parameters sss, bbb are initialized such that yyy has zero mean and unit standard deviation.

Note that the determinant of the Jacobian for the actnorm layer is simply the product of

elements in sss:

∏
i

sisisi (3.11)

3.1.3 Invertible 1 x 1 convolution

A convolution layer in general is not invertible. However, if the kernel size is set to 1

and the number of input and output channels is the same, then it is possible to invert the

convolution. Care must however be taken that the convolution matrix is not singular.

In practice, this matrix is initialized to a random invertible matrix and it is observed

that it typically does not become singular during the course of training the model. The

Jacobian for this layer is just the matrix itself

3.1.4 Affine coupling layer

Affine coupling layer is an extension to an additive coupling layer that acts as follows:

(sss, bbb) = m(xp2xp2xp2) (3.12)

yp1yp1yp1 = sssxp1xp1xp1 + bbb (3.13)

yp2yp2yp2 = xp2xp2xp2 (3.14)

where xxx,yyy are the inputs and outputs of the layer respectively; p1, p2 is a partition of

the features along the channel dimension and m is an arbitrary transformation that is

implemented as a shallow convolutional neural network.

3.1.5 Squeeze layer

Squeeze layer is exactly the same as pixel shuffle layer (Shi et al., 2016). It is simply

redistribution of pixels from spatial dimension to the channel dimension. Trivially, the

determinant of Jacobian for this transformation is 1.

11



One step of flow Overall architecture

Figure 3.1: Illustration of the architecture used for learning a prior. Image taken
Kingma and Dhariwal (2018).

Unlike in Dinh et al. (2014, 2016); Kingma and Dhariwal (2018), we do not require

invertible transformations as there is no need for sampling when we are only learning a

prior. Nevertheless, in our work we use the layers and formulation of flow-based models

proposed in Kingma and Dhariwal (2018). An illustration of the final architecture is

shown in Figure 3.1. We use K = 32, L = 3 in our work.

12



CHAPTER 4

OUR METHOD

Figure 4.1: An illustration of our method. In the first stage, we train a flow-based model
to learn a prior distribution on clean images. Next, we use this prior along
with weak supervision (see subsection 3.2) to train a denoising network.

In this chapter we describe our two-stage approach (illustrated in Figure 4.1) to using

the log-likelihood in (3.6) as a prior for image denoising.

4.1 Stage 1: Training the Flow model

First, we train a flow-based model based on clean images to learn a transformation from

clean images to the standard multivariate Gaussian random variable. Due to structure

of the flow-based model as described in (3.1) and the tractable probability density of

a Gaussian random variable, we can evaluate (3.6) for any given image and obtain the

likelihood that the image is clean.



Concretely, we train a flow-based model h to minimize the following objective:

− logP (XXX) = − logP (ZZZ) +
n∑

i=1

log

∣∣∣∣ dZiZiZi

dZi−1Zi−1Zi−1

∣∣∣∣ (4.1)

=
1

2
∥ZZZ∥22 +

n∑
i=1

log

∣∣∣∣ dZiZiZi

dZi−1Zi−1Zi−1

∣∣∣∣+ C (4.2)

where C is a constant that normalizes the Gaussian distribution. It has no bearing on the

training and hence can be eliminated. Note that once the training in Stage 1 is complete,

h is fixed during Stage 2.

4.2 Stage 2: Training the Denoiser

Given a noisy image YYY , the posterior distribution for the corresponding clean image XXX

is

P (XXX | YYY ) =
P (YYY |XXX)P (XXX)

P (YYY )
(4.3)

To obtain the maximum a posteriori (MAP) estimate of the clean image, the denomina-

tor can be ignored and the numerator or equivalently its log value is maximized.

argmax
XXX

logP (XXX | YYY ) = argmax
XXX

logP (YYY |XXX) + logP (XXX) (4.4)

Assuming additive white Gaussian noise, logP (YYY |XXX) is simply the negative of the

squared error between YYY andXXX . Using the flow model h trained in Stage 1, we can also

compute the prior log-likelihood of XXX .

Based on (4.4), we can formulate a loss function (note the change of signs as by con-

vention, we want to minimize this loss) for the denoiser d as follows:

(YYY −XXX)2 − λ logP (XXX) (4.5)

where λ is a hyperparameter that controls the relative importance of the conditional

and the prior probability distributions. To be mathematically precise, λ depends on the

noise level in the image.

To facilitate the use of a single λ for a range of noise levels, we modify the first term

in (4.5) to instead measure the squared error between blurred versions of XXX and YYY .

14



Intuitively speaking, we are training d to copy only the low frequency information from

the input YYY while adding details that make the output XXX to look more clean. The flow

model h dictates what details are added to YYY .

The final form of the loss function we use for the denoiser d is

(B(YYY )−B(XXX))2 − λ logP (XXX) (4.6)

Here B is a local mean filter, the size of which is chosen to be 3 × 3, as that gave the

best performance on the validation set.
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CHAPTER 5

EXPERIMENTS

5.1 Training Details

We use the validation set of MS COCO (Lin et al., 2014) for our training. Of the 41K

images it contains, we use a subset of 20K images as our clean image dataset. We add

Gaussian noise to another subset of 20K images to form our noisy image dataset. As we

want our method to be agnostic to noise level, for each image, the standard deviation of

the added noise is chosen uniformly in the interval [0, 50]. We set aside the remaining

1K images for validation to tune the hyperparameters λ and the size of the local mean

filter.

5.1.1 Stage 1

We use the architecture described in Kingma and Dhariwal (2018) for the flow-based

model. We feed patches of size 32 from images in the clean dataset as input to this

model. Using the loss in (4.2), we train for 100 epochs using the Adam optimizer

(Kingma and Ba, 2014) with learning rate = 1× 10−3, β1 = 0.9, β2 = 0.999.

5.1.2 Stage 2

We use the ResNet He et al. (2016) for our denoiser. Because the flow-based model

only accepts fixed size inputs and the ResNet does not change input size, we use input

patches of size 32. In this stage, however, they are extracted from noisy images. Using

(4.6), we train only the denoiser, for 100 epochs using the Adam optimizer with the

same parameter settings as in stage 1. Based on our experiments on the validation set,

we choose λ = 1.5× 10−6 and local mean filter of size 3× 3.



Ground truth Noisy input BM3D

Noise2Void Deep image prior Ours

Figure 5.1: Qualitative results. Here, we show the ground truth, the noisy input (Gaus-
sian noise, σ = 25) and the denoised outputs from BM3D Dabov et al.
(2007), Noise2Void Krull et al. (2019), Deep image prior Ulyanov et al.
(2018) and finally, our method. None of these methods need supervision.

5.2 Results

Following Dabov et al. (2007); Krull et al. (2019), we evaluate our method on the

BSD68 dataset (Roth and Black, 2009) for different noise levels and compare it with

BM3D (Dabov et al., 2007), Noise2Void (Krull et al., 2019), Deep image prior (Ulyanov

et al., 2018). All comparisons are made using either results reported in the respective

papers or those obtained from running the code that the authors have generously shared.

Table 5.1 shows the average PSNR values of different methods for images from BSD68.

Although PSNR is not an accurate metric for perceptual quality, our method performs
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Ground truth Noisy input BM3D

Noise2Void Deep image prior Ours

Figure 5.2: More qualitative results. Here, we show the ground truth, the noisy input
(Gaussian noise, σ = 25) and the denoised outputs from BM3D Dabov et al.
(2007), Noise2Void Krull et al. (2019), Deep image prior Ulyanov et al.
(2018) and finally, our method. None of these methods need supervision.

competitively with Noise2Void and is better than Deep image prior.

Figure 5.1, Figure 5.2 and Figure 5.3 show qualitative comparison of our results with

other methods. Our method is able to remove noise effectively without blurring any

textures, details or sharp edges (this is obvious in the sky in the first set of images).

Deep image prior produces outputs that still have visible noise. Noise2Void, although

better than Deep image prior, fails in some cases. An example of this is the blades

of grass in the third set of images where the output from Noise2Void is noticeably

desaturated.
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Ground truth Noisy input BM3D

Noise2Void Deep image prior Ours

Figure 5.3: Even more qualitative results. Here, we show the ground truth, the noisy in-
put (Gaussian noise, σ = 25) and the denoised outputs from BM3D Dabov
et al. (2007), Noise2Void Krull et al. (2019), Deep image prior Ulyanov
et al. (2018) and finally, our method. None of these methods need supervi-
sion.

Method BM3D N2V DIP Ours
σ = 15 33.14 28.92 27.58 29.10
σ = 25 30.22 27.68 26.6 28.61
σ = 35 28.25 26.51 25.97 26.2

Table 5.1: Quantitative results. We show PSNR (dB) of various unsupervised denois-
ing methods, namely, BM3D Dabov et al. (2007), Noise2Void Krull et al.
(2019), Deep image prior Ulyanov et al. (2018) and our method.
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CHAPTER 6

CONCLUSION

We have proposed the use of flow-based model as a mathematically justifiable and re-

alistic prior for image denoising. We have conducted qualitative and quantitative ex-

periments on the BSD68 (Roth and Black, 2009) dataset that reveals the competitive

performance of our method.

Motivated by our success, we conjecture that using a flow-based model prior should be

effective for solving other image restoration tasks such as image deblurring and super-

resolution in an unsupervised fashion.
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