
Design and FPGA Validation of SHAKTI SPI controller

for ADCs, Flash-Memories, and Spi-RAM

A Project Report

submitted by

KAUSTUBH GHORMADE

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

JUNE 2020

THESIS CERTIFICATE

This is to certify that the thesis titled Design and FPGA Validation of SHAKTI SPI

controller for ADCs, Flash-Memories, and Spi-RAM, submitted by KAUSTUBH

GHORMADE, to the Indian Institute of Technology, Madras, for the award of the

degree of Master Of Technology, is a bona fide record of the research work done by

him under our supervision. The contents of this thesis, in full or in parts, have not been

submitted to any other Institute or University for the award of any degree or diploma.

Dr. V. Kamakoti

Research Guide

Professor

Dept. of Physics

IIT-Madras, 600 036

Place: Chennai

Date:

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to Prof. V. Kamakoti for providing me with all the

necessary facilities for the project.

I place on record, my sincere thank you to Prof. V. Janankiraman for the continuous

encouragement.

I am also grateful to SHAKTI hardware and software team. I am extremely thank-

ful and indebted to them for sharing expertise, and sincere and valuable guidance and

encouragement extended to me.

i

ABSTRACT

In this thesis will present a serial peripheral interface (SPI) controller designed to work

with SHAKTI class of processors. The SPI interface is used to communicate with

external devices like ADC, Potentiometer, SPI Flash etc... The thesis describes the

design of SPI controller in Bluespec System Verilog (BSV). Bluespec is high level

hardware description language based on IEEE system verilog HDL. It also describes

the steps to configure and use the programmable serial peripheral controller.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES v

LIST OF FIGURES vii

1 INTRODUCTION 1

1.1 Definition of the SPI . 1

1.2 SPI main features . 2

2 DESIGN OF SPI CONTROLLER 3

2.1 Block diagram of SPI . 3

2.2 Description of spi module . 4

2.2.1 Signal description and connection scheme 4

2.2.2 Clock divider and clock logic 5

2.2.3 Shift-register and FIFO . 7

2.2.4 SPI communication control 8

2.2.5 SPI registers . 10

2.3 Modes of operation . 11

2.3.1 Polling Mode . 11

2.3.2 Interrupt Mode . 11

3 SPI REGISTERS AND CONFIGURATION 14

3.1 SPI control register 1 . 14

3.2 SPI Control Register 2 . 17

3.3 SPI Status Register . 20

3.4 SPI Data Registers . 22

3.5 Configuration of SPI Registers . 22

iii

4 SPI DRIVER AND VALIDATION 24

4.1 SPI Flash . 24

4.1.1 Flash driver . 24

4.1.2 Command Sequence taken from S2FL128L Data-sheet . . . 25

4.1.3 Flash driver Data-flow . 28

4.1.4 Result and conclusion . 30

4.2 SPI Sram . 35

4.2.1 SRAM driver . 35

4.2.2 Command Sequence taken from IS62/65WVS512 Datasheet 36

4.2.3 SRAM driver flow diagram 38

4.2.4 Simulation Result . 39

4.3 Analog to Digital Converter . 41

4.3.1 ADC driver . 42

4.3.2 ADC driver flow diagram 43

4.3.3 Result and conclusion . 44

LIST OF TABLES

2.1 SPI interrupt requests . 10

2.2 SPI register memory map . 10

3.1 SPI CR1 . 14

3.3 SPI CR2 . 17

3.5 SPI SR . 20

3.7 SPI Data register list . 22

4.1 Status Register 1 (SR1) . 25

4.2 Bits in MODE register of SRAM 35

4.3 Cofiguration bits for MCP3302 42

v

LIST OF FIGURES

2.1 Block Diagram of SPI . 3

2.2 Single master, single slave SPI implementation 4

2.3 Multiple slave SPI implementations 5

2.4 The four SPI-modes corresponding to the states of CPHA and CPOL parameters. 6

2.5 FIFO and its parameter . 7

2.6 polling mode . 12

2.7 Interrupt mode . 13

4.1 Flash pin diagram and connection scheme 24

4.2 Read ID Command sequence . 25

4.3 Write Enable Command sequence 26

4.4 Read Status Register Command sequence 26

4.5 Sector erase Command sequence 27

4.6 Page programming Command sequence 27

4.7 Read Command sequence . 28

4.8 SPI driver for Flash . 29

4.9 RDID Command with Cypress flash 30

4.10 WREN Command with Cypress flash 30

4.11 S4E Command with Cypress flash 31

4.12 RDSR Command with Cypress flash 31

4.13 PP Command with Cypress flash 31

4.14 FAST_READ Command with Cypress flash 32

4.15 RDID Command with ISSI flash 33

4.16 S4E Command with ISSI flash . 33

4.17 PP Command with ISSI flash . 33

4.18 FAST_READ Command with ISSI flash 34

4.19 Connection Scheme and pin diagram of SRAM 35

4.20 WRMR Command sequence . 36

vi

4.21 RDMR Command sequence . 36

4.22 Byte WRITE Command sequence 37

4.23 Byte READ Command sequence 37

4.24 SPI driver for SRAM . 38

4.25 WREN Command with Cypress flash 39

4.26 RDMR command . 39

4.27 Writing DATA into SRAM . 40

4.28 Reading data from SRAM . 40

4.29 Simulation Log os SRAM . 40

4.30 ADC pin diagram and connection scheme 41

4.31 Communicating sequence with ADC 42

4.32 SPI driver for ADC . 43

4.33 SPI with ADC and LM35 in mode3 44

4.34 SPI with ADC and LM35 in mode 0 44

4.35 SPI with ADC with Vin as 2.9V 45

4.36 SPI with ADC with Vin as 2.35 V 45

vii

CHAPTER 1

INTRODUCTION

The purpose of this application note is to describe the serial peripheral interface bus

controller (SPI). The SPI interface can be used to communicate with external devices

using the SPI protocol. It describes how to configure and use the programmable serial

peripheral interface.

1.1 Definition of the SPI

The Serial Peripheral Interface (SPI) protocol is asynchronous serial data standard, pri-

marily used to allow a microprocessor to communicate with other microprocessors or

ICs such as memories (like flash, serial-RAM), liquid crystal diodes (LCD), analog-to-

digital converter subsystems (ADC), etc.

The SPI is a very simple synchronous serial data, master/slave protocol based on four

lines:

• Clock Line (SCLK)

• Serial Output (MOSI)

• Serial Input (MISO)

• Slave Select (NSS)

Every SPI system consists of one master and one or more slaves, where a master initiates

the communication by asserting the NSS line. When a slave device is selected, the

master starts clocking out the data through the MOSI line to the selected slave device.

The master sends and receives one bit for every clock edge. One byte can be exchanged

in eight clock cycles. The master finishes communication by de-asserting the NSS line.

The SPI is a primitive protocol without an acknowledgement mechanism for checking

received or sent data. For safe communication, a flow control has to be implemented in

the communications protocol on s a higher level.

1.2 SPI main features

• Master or slave operation

• Full-duplex synchronous transfers on three lines

• Programmable clock polarity and phase

• Programmable data order with MSB-first or LSB-first shifting

• SPI bus busy status flag

• 8 master mode baud rate prescalers up to fCLK /2.

• Dedicated transmission and reception flags with interrupt capability

• Master mode fault, overrun flags and alarm flag for both FIFO with interrupt

capability

2

CHAPTER 2

DESIGN OF SPI CONTROLLER

2.1 Block diagram of SPI

The SPI allows synchronous, serial communication between the MCU and external

devices. Application software can manage the communication by polling the status flag

or using dedicated SPI interrupt. The main elements of SPI and their interactions are

shown in the following block diagram Figure 2.1.

Figure 2.1: Block Diagram of SPI

2.2 Description of spi module

The SPI is capable of master and receive only mode . The SPI have two embedded FIFO

for Transmit and Receive each.The size of each FIFO slice is fully user-programmable,

depending on the need. The BSV code for SPI controller can be found on here. The

E-class Shakti SOC aardonyx uses the SPI controller.

2.2.1 Signal description and connection scheme

The serial peripheral interface bus has four external lines. Four I/O pins are dedicated

to SPI communication with external devices.

• MISO: Master In / Slave Out data. In the general case, this pin is used to transmit

data in slave mode and receive data in master mode.

• MOSI: Master Out / Slave In data. In the general case, this pin is used to transmit

data in master mode and receive data in slave mode.

• SCK: Serial Clock output pin for SPI masters and input pin for SPI slaves.

• NSS: Slave select pin. Depending on the SPI and NSS settings, this pin can be

used to either:

– select an individual slave device for communication

– synchronize the data frame or

– detect a conflict between multiple masters

Figure 1 shows how the slave device is connected to the master in the single master,

single slave SPI implementation.Multiple slave SPI implementation is not supported by

the SPI without additional external hardware.

Figure 2.2: Single master, single slave SPI implementation

4

https://gitlab.com/shaktiproject/uncore/devices/-/blob/84-spi-adding-different-interrupt-fix-rules-conflict-and-updating-spi-drivers/spi/spi.bsv
https://gitlab.com/shaktiproject/cores/shakti-soc/-/tree/master/asic/e-class-aardonyx

Figure 2.3: Multiple slave SPI implementations

2.2.2 Clock divider and clock logic

The clock logic component selected the frequency of the clock with the help of clock

divider module. The polarity of the clock was selected with the help of CPOL and the

phase of the clock used the CPHA bit. The clock phase and polarity could be modified

for SPI data transfers. To be able to communicate together,the master and slaves devices

must follow the same communication format.

Clock divider/Baud rate generator

The clock frequency was changed by dividing down the clock input signal. Three bits

BR[2:0] in the SPI_CR1 register establish the value of which the bus clock is divided.

This provides the end-user ample choices for baud rate generation with divisors ranging

from 2 to 256. The baud rate generator is active only if the SPI is operating in the master

mode.

5

The frequency of communication can be calculated with the following equation:

f
SCLK

=
f
CLK

2BR[2:0]+1

Clock phase and polarity control

The clock can be set to one of the four basic configuration defined in Motorola spi

specification. Any one timing relationships may be chosen by software, using the CPOL

and CPHA bits in the SPIx_CR1 register.

• The CPOL bit sets the polarity of the clock signal during the idle state.

• The CPHA bit controls the edge on which the SCK pin captures the first data bit

transacted

Data are latched on each occurrence of this clock transition type.

Figure 2.4: The four SPI-modes corresponding to the states of CPHA and CPOL pa-

rameters.

6

2.2.3 Shift-register and FIFO

The transmit shift register controlled the shift and load operations of the SPI. It also

monitored the SPI bus and determined when a byte transfer was complete.Each direc-

tion has its own FIFO called TXFIFO and RXFIFO.

Shift-register

The SPI transmit shift register was an 8-bit loadable shift register. This shift register

was loaded from the TX FIFO, via a load signal generated by the SPI communication

control state machine. In case receiving data from slave, it transfer the data to RX FIFO

in 8 bit format.

FIFOs

These FIFOs are used in all SPI modes. Both FIFOs are 8 bit wide and the depth of

TX FIFO and RX FIFO both are user-programmable. This enables the SPI to work in

a continuous flow, and prevents overruns when the data frame size is short. Each FIFO

has an ALARM bit set when FIFO reaches 80% of total DEPTH defined by the user.

For monitoring the status of FIFO, FRLVL[1:0] and FTLVL[1:0] bits are described in

the status register.

Figure 2.5: FIFO and its parameter

7

2.2.4 SPI communication control

This is one of the main blocks in the SPI Module. It is a state machine which produces

all the control signal for SPI. The user can choose how to get the data from the memory

to the FIFO or how to put data in the memory from the FIFO. It also generate all the

status flag for communication like BSY, TXE, RXNE etc. The SPI-protocol is highly

flexible regarding the length of the data word, transmission length and transmission

periodization.

Slave select (NSS) pin management

In master mode, NSS can be used either as output or input. As an input it can prevent

multi master bus collision, and as an output it can drive a slave select signal of a single

slave. In slave mode, the NSS works as a standard “chip select” input and lets the slave

communicate with the master. Hardware or software slave select management can be

set using the SSM bit in the SPIx_CR1 register:

• Hardware NSS management (SSM = 0): The NSS pin is managed by the hard-

ware. The NSS signal is driven low as soon as the SPI is enabled in master mode,

and is kept low until the SPI is disabled.

• Software NSS management (SSM = 1): in this configuration, slave select in-

formation is driven internally by the SSI bit value in register SPIx_CR1. The

external NSS pin is free for other application uses.

Status flags

Different status flags are provided for the application to completely monitor the state of

the SPI bus:

• TXE: This bit is set when transmission TXFIFO has finished loading the data

from data register. Now, data register can be loaded again to send more data. An

interrupt can be generated if the TXE_IE bit in the SPI_CR2 register is set. The

bit is cleared automatically when the transmission is completed.

• RXNE: This bit is set when receive RXFIFO has finished sending the data to

data register. Now data register can be read. An interrupt can be generated if the

RXNE_IE bit in the SPI_CR2 register is set. The RXNE is cleared by hardware

automatically when the above conditions are no longer true.

• BSY: This flag is set and cleared by hardware. When BSY is set, it indicates that

a data transfer is in progress on the SPI (the SPI bus is busy).It can be used in

8

certain modes to detect the end of a transfer and it is also useful for preventing

write collisions in a multi-master system.

Error flags

An SPI interrupt is generated if one of the following error flags is set and interrupt is

enabled by setting the ERR_IE bit.

• Overrun flag (OVR): An overrun condition occurs when data is transferred/received

by a master or slave and the FIFO has not enough space to store this trans-

ferred/received data. Both FIFO have separate flags as TX_OVR and RX_OVR

for this error. When an overrun condition occurs, the newly received value does

not overwrite the previous one in the FIFO. The newly received value is discarded

and all data transmitted subsequently is lost.

• Mode fault (MODF): Mode fault occurs when the master device has its internal

NSS signal (NSS pin in NSS hardware mode, or SSI bit in NSS software mode)

pulled low. This automatically sets the MODF bit.

• TI mode frame format error (FRE): A TI mode frame format error is detected

when an NSS pulse occurs during an ongoing communication when the SPI is op-

erating in slave mode and configured to conform to the TI mode protocol. When

this error occurs, the FRE flag is set in the SPI_SR register.

Data frame format

The data byte is parallel-loaded into the shift register (from the internal bus) during the

first-bit transmission and then shifted out serially to the MOSI pin MSB first or LSB

first depending on the LSB FIRST bit in the SPI_CR1 register.The data frame size is

chosen by using the TOTAL_BITS_TX[7:0] and TOTAL_BITS_RX[7:0] bits. Both are

8 bit wide, so the number of bits to be transmit or receive goes up to maximum of 255

bits.

Interrupt Events

Interrupts are enabled by writing one to the proper position in the SPIx_CR2 register.

Interrupts can be generated for following events:

9

Interrupt Event Enable Control Bit Description

Transmit TXFIFO

ready to be loaded

TXE_IE TXFIFO has finished loading the

data from data register

Data received in Re-

ceive RXFIFO

RXNE_IE RXFIFO has finished sending the

data to data register

Over-run, mode

fault and Frame

format error

ERR_IE The SPI generates an error interrupt

when error flag is set.

Alarm Interrupt TX_ALARM_IE,

RX_ALARM_IE

The SPI generates an alarm inter-

rupt when the amount of data in the

FIFO reaches the alarm level.

Full interrupt TX_FIFO_FULL,

RX_FIFO_FULL

the SPI generates a full interrupt

when the FIFO is full

Empty interrupt TX_FIFO_EMPT,

RX_FIFO_EMPT

the SPI generates a empty interrupt

when the FIFO is empty

Table 2.1: SPI interrupt requests

2.2.5 SPI registers

SPI has a set of control register, status register, and various data registers. The con-

trol register one used for setting up the spi communication. The control register two

is mainly used for interrupt enable. The status register provides the various flags for

monitoring SPI. The data register is used for sending/loading data to/from FIFO. The

detailed explanation of them is in chapter 3.

Address offset Data Width Permission Description

0x00 4 bytes RW SPI Configuration Register 1

0x04 4 bytes RW SPI Configuration Register 2

0x08 4 bytes RO SPI Status Register

0x0C 4 bytes RW SPI Data Register 1

0x10 4 bytes RW SPI Data Register 2

0x14 4 bytes RW SPI Data Register 3

0x18 4 bytes RW SPI Data Register 4

0x1C 4 bytes RW SPI Data Register 5

Table 2.2: SPI register memory map

10

2.3 Modes of operation

The user can choose between active polling and interrupt mode. The main differences,

advantages, and disadvantages are:

• Polling mode: core periodically checks status of TX and RX FIFO and writes

data to TX FIFO or reads data from Rx FIFO. The main disadvantage of this

mode is core loading.

• Interrupt mode: lower core loading compared to active polling mode. The core

is not used for periodical status checks of the TX and RX FIFO, but it is used

for handling interrupt events (sending and receiving data). The number of inter-

rupts depends on the user application. Usage of FIFO alarm level interrupts can

decrease the number of requested interrupts.

Note: When data is less, the polling loop wastes less time per transfer than an inter-

rupt call overhead.

2.3.1 Polling Mode

This mode is explained with the help of figure 2.6. In polling mode, to check the status

of SPI, the core has to generate read requests to Status register, which unnecessarily stall

the core. For example, for reading the receive data from the data register, RXNE should

set. To check if RXNE is one or zero, read request has to be generated for SPIx_SR

register and keep generating until it is one.

2.3.2 Interrupt Mode

Interrupt mode is explained in figure 2.7. In this mode, instead of keep checking the

status register, we check it once the interrupt is there. By reading the SPRx_SR register,

we know due to which flag interrupt is generated, and appropriate action can be taken

to serve the interrupt. This ensures that the core generates read requests to the status

register, only when needed.

11

Start

Generate

write request

to register

All data
written

to FIFO ?

Sent data to fifo

from Register

Shift data on

MOSI pin

Receive
data ?

All data
received ?

Transfer data

to FIFO from

MISO pin

Transfer data

from FIFO

to register

Data transfer
complete ?

Generate read

request to

Data register

Finish

No

Yes

Yes

No

No

Yes

Yes

No

Figure 2.6: polling mode

12

Start

Generate write

request to

data register

Interrupt ?

Read Status
register

TXE

Interrupt

Send more
data

Rx alarm

Interrupt

Transfer data

from FIFO to

Data register

RX FIFO
empty?

RXNE

Interrupt

Generate

read req to

data register

Finish

No

Yes

Yes

No

No

Yes

Figure 2.7: Interrupt mode

13

CHAPTER 3

SPI REGISTERS AND CONFIGURATION

The peripheral registers can be accessed by words (32-bit).

3.1 SPI control register 1

Address offset: 0x00

Reset value: 0x00000000

31 - 24 23 - 16 15 14 13 12 11 10

TOTAL

BITS_RX

TOTAL

BITS_TX

BIDI

MODE

BIDI OE CRC EN CRC

NEXT

CRCL Rx ONLY

rw rw rw rw rw rw rw rw

9 8 7 6 5 - 3 2 1 0

SSM SSI LSB

FIRST

SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw

Table 3.1: SPI CR1

Bits

[31:24]

TOTAL

BITS_RX

Expected Total number of bits to be received. Receive state will

go to idle after sending this many bits. One can receive maximum

1280 bits. (Reading status register, Device ID and data, etc).

Bits

[32:16]

TOTAL

BITS_TX

Total number of bits to transmitted. After transmitting this many

bits it Transmit state will got to idle. One can send maximum

1280 bits. It include the instruction, read/write address and write

data.

Bit 15 BIDI

MODE

Bidirectional data mode enable. This bit enables half-duplex com-

munication using common single bidirectional data line.

0: 2-line unidirectional data mode selected

1: 1-line unidirectional data mode selected

Bit 14 BIDI

OE

Output enable in bidirectional mode This bit combined with the

BIDI-MODE bit selects the direction of transfer in bi-direction

mode.

0: receive-only mode (Output Disabled)

1: transmit-only mode (Output Enabled)

Bit 13 CRC Hardware CRC calculation Enable.

EN 0: CRC calculation disable

1: CRC calculation enable

Bit 12 CRC Transmit CRC Next.

NEXT 0: Next Transmit value is from Tx buffer

1: Next Transmit value is from Rx buffer

Bit 11 CRCL CRC Length bit is set and cleared by software to select the CRC

length.

Bit 10 RX

ONLY

Receive only mode enabled. This bit enables simplex commu-

nication using a single unidirectional line to receive data exclu-

sively. Keep BIDIMODE bit clear when receiving the only mode

is active. This bit is also useful in a multi slave system in which

this particular slave is not accessed, the output from the accessed

slave is not corrupted.

Bit 9 SSM Software Slave Management. When the SSM bit is set, the NSS

pin input is replaced with the value from the SSI bit.

0: Software slave management disabled

1: Software slave management enabled

15

Bit 8 SSI Internal Slave Select.This bit has an effect only when the SSM bit

is set. The value of this bit is forced onto the NSS pin and the I/O

value of the NSS pin is ignored

Bit 7 LSB Frame Format.

FIRST 0: data is transmitted/received with the MSB first

1: data is transmitted/received with the LSB first

Note This bit should not be changed when communication is ongoing

Bit 6 SPE SPI Enables

0: Peripheral disabled

1: Peripheral Enabled

Bits BR [2:0] Baud Rate Control.

[5:3] 000: fCLK/2

001: fCLK/4

010: fCLK/8

011: fCLK/16

100: fCLK/32

101: fCLK/64

110: fCLK/128

111: fCLK/256

Note This bit should not be changed when communication is ongoing

Bit 2 MSTR Master selection

0: Slave Configuration

1: Master Configuration

Note This bit should not be changed when communication is ongoing

Bit 1 CPOL Clock polarity

0: CLK is 0 when idle

16

1: CLK is 1 when idle

Note This bit should not be changed when communication is ongoing

Bit 0 CPHA Clock Phase

0: The first clock transition is the first data capture edge

1: The second clock transition is the first data capture edge

Note This bit should not be changed when communication is ongoing

3.2 SPI Control Register 2

Address offset: 0x04

Reset value: 0x00007000

16 15 14 13 12 11 10 9

RX IMM

START

RX

START

FRXTH TX FIFO

FULL

- - TX FIFO

EMPT

RX FIFO

FULL

rw rw rw rw rw rw rw rw

8 7 6 5 4 3 2 1 0

- - RX

FIFO

EMPT

ERR IE TX

ALARM

IE

RX

ALARM

IE

SSOE TXE IE RXNE

IE

rw rw rw rw rw rw rw rw rw

Table 3.3: SPI CR2

Bits

[31:17]

Reserved Must be kept at reset value

Bit 16 RX_IMMA

START

Set this bit to receive data immediately after transmission fin-

ished. This bit should be set before configuring the control reg-

ister 1.

0: Immediate Receive data disabled

1: Immediate Receive data enabled

17

Bit 15 RX

START

Set this bit to start receive data only. This is similar to

RX_ONLY bit in control register 1.

0: Receive only disabled

1: Receive only enabled

Bit 14 FRXTH FIFO reception threshold bit is used to set the threshold of the

RXFIFO that triggers an RXNE event.

0: RXNE event is generated if the FIFO level is greater than or

equal to 1/2 (16-bit)

1: RXNE event is generated if the FIFO level is greater than or

equal to 1/4 (8-bit)

BIt 13 TX FIFO Tx buffer full interrupt enable.

FULL 0: TX buffer full interrupt masked

1: TX buffer full interrupt not masked.

Bit 10 TX FIFO TX buffer empty interrupt enable.

EMPT 0: TX buffer empty interrupt masked

1: TX buffer empty interrupt not masked.

Bit 9 RX FIFO RX buffer full interrupt enable.

FULL 0: RX buffer full interrupt masked

1: RX buffer full interrupt not masked.

Bit 6 RX FIFO RX buffer empty interrupt enable.

EMPT 0: RX buffer empty interrupt masked

1: RX buffer empty interrupt not masked.

Bit 5 ERR IE Error interrupt enable bit controls the generation of interrupt

when an error condition occurs.

0: Error interrupt masked

1: Error interrupt not masked.

18

Bit 4 TX TX alarm interrupt enable

ALARM 0: TX ALARM interrupt masked.

IE 1: TX ALARM interrupt not masked.

Used to generate an interrupt request when the TX_ALARM

flag is set.

Bit 3 RX RX alarm interrupt enable

ALARM 0: RX ALARM interrupt masked.

IE 1: RX ALARM interrupt not masked.

Used to generate an interrupt request when the RX_ALARM

flag is set.

Bit 2 SSOE SS output enable

0: SS output is disabled in master mode and the SPI interface

can work in a multi-master configuration

1: SS output is enabled in master mode and when the SPI inter-

face is enabled. The SPI interface cannot work in a multi-master

environment.

Bit 1 TXE_IE Interrupt enable for TXE event.

0: TXE interrupt masked

1: TXE interrupt is not interrupt masked

Bit 0 RXNE_IE Interrupt enable for RXNE event

0: RXNE interrupt masked

1: RXNE interrupt is not interrupt masked

19

3.3 SPI Status Register

Address offset: 0x08

Reset value: 0x00000002

12-11 10 - 9 8 7 6 5 4 3 2 1 0

FT

LVL

FR

LVL

FRE BSY TX

OVR

RX

OVR

MOD

F

TX

ALRM

RX

ALRM

TXE RXNE

r r r r r r r r r r r

Table 3.5: SPI SR

Bits

[31:13]

RSVD Reserved, must be kept at reset value.

Bits

[11:12]

FTLVL

[1:0]

FIFO Transmission Level. These bits are set and cleared by hard-

ware.

00: FIFO empty

01: 1/4 FIFO

10: 1/2 FIFO

11: FIFO full

Bits FRLVL FIFO reception level.These bits are set and cleared by hardware.

[9:10] [1:0] 00: FIFO empty

01: 1/4 FIFO

10: 1/2 FIFO

11: FIFO full

Bit 8 FRE Frame format error. This flag is used for SPI in the TI slave mode.

Refer to Section 38.4.11: SPI error flags. This flag is set by hard-

ware and reset when SPIx SR is read by software.

0: No frame format error

1: A frame format error occurred

20

Bit 7 BSY The BSY flag is set and cleared by hardware (writing to this flag

has no effect). When BSY is set, it indicates that a data transfer is

in progress on the SPI (the SPI bus is busy).

0: SPI not busy

1: SPI is busy in communication or Tx buffer is not empty

Bit 6 TX OVR An overrun condition occurs when a master or slave transmits

data, and the TXFIFO does not have enough space to store this

data.

0: No overrun occurred

1: Overrun occurred

Bit 5 RX OVR An overrun condition occurs when data is received by a master or

slave and the RXFIFO has not enough space to store this received

data.

0: No overrun occurred

1: Overrun occurred

When an overrun condition occurs, the newly received value does

not overwrite the previous one in the RXFIFO. The newly re-

ceived value is discarded and all data transmitted subsequently

is lost

Bit 4 MODF Mode fault occurs when the master device has its internal NSS

signal (NSS pin in NSS hardware mode, or SSI bit in NSS soft-

ware mode) pulled low.

0: No mode fault occurred

1: Mode fault occurred

Bit 3 TX

ALARM

When TX buffer reaches certain threshold, TX ALARM bit is set.

FIFO threshold is user programmable.

0: TX buffer has not reached the alarm level

1: TX buffer reached the alarm threshold

21

Bit 3 RX

ALARM

When RX buffer reaches certain threshold, RX ALARM bit is set.

FIFO threshold is user programmable.

0: RX buffer has not reached the alarm level

1: RX buffer reached the alarm threshold

Bit 1 TXE This flag is set when transmission TXFIFO has send all the data.

Bit 0 RXNE The RXNE flag is set when RX buffer finishes transferring data

to register

3.4 SPI Data Registers

There are total five data registers. All the write request and read request are done by the

data register. When user want to send data on MOSI line, write request to these data

register must be generated. When user want read data from MISO pin, read request

must be generated to these register.

Data Registers Address offset

SPIx_DR1 0x0C

SPIx_DR2 0x10

SPIx_DR3 0x14

SPIx_DR4 0x18

SPIx_DR5 0x1C

Table 3.7: SPI Data register list

3.5 Configuration of SPI Registers

The configuration procedure is almost the same for master and slave. For specific mode

setups, follow the dedicated sections. When a standard communication is to be initial-

ized, perform these steps:

22

1. Write to the SPIx_CR1 register:

• Configure the serial clock baud rate using the BR[2:0] bits.

• Configure the CPOL and CPHA bits combination to define one of the four

relationships between the data transfer and the serial clock

• Configure the LSB_FIRST bit to define the frame format

• Configure SSM and SSI

• Configure the MSTR bit

• Select the number of bits to transmit and receive using TOTAL_BITS_TX

and TOTAL_BITS_RX.

2. Write to SPI_CR2 register:

• Select simplex or half-duplex mode by configuring RX_IMM_START and

RX_ONLY.

• For interrupt mode select the required interrupt enable.

3. Write data to DR register

• Generate write request with proper data on DR registers.

• After communication is finished, one can read data for DR register.

23

CHAPTER 4

SPI DRIVER AND VALIDATION

4.1 SPI Flash

Serial Flash which are used for validation are S2FL128L by cypress and Micron

N25Q128A. Both 3 Volt, 128Mb serial flash. Main difference between them is Micron

only support 24 bit addressing mode while Cypress flash support both 24 bit and 32

bit addressing mode. Programming the flash can take as long as four to five minutes,

which is mostly due to the lengthy erase process inherent to the memory technology.

Once written, however, FPGA configuration can be very fast—less than a second. The

other pins are in pulled high.

1

SCK

2

3

4

14

13

12

11

CS#

SO/IO1

WP/IO2

Vss

Vcc

HOLD/IO3

SI/IO0

S
2
5
F
L
1
2
8
S

S
P
I

SCLK

MISO

MOSI

NSS

e-class

SOC

Figure 4.1: Flash pin diagram and connection scheme

4.1.1 Flash driver

Status Register in Flash

Registers are small groups of memory cells used to configure how the S25FL128S mem-

ory device operates or to report the status of device operations.

Bits Field Name Function Default value

7 SRWD Status Register Write Disable 0

6 P_ERR Programming Error Occurred 0

5 E_ERR Erase Error Occurred 0

4-2 BP[2:0] Block Protection 1

1 WEL Write Enable Latch 0

0 WIP Write In Progress 0

Table 4.1: Status Register 1 (SR1)

• Write Enable Latch (WEL) SR1[1]: The WEL bit must be set to 1 to enable pro-

gram, write, or erase operations as a means to provide protection against inadver-

tent changes to memory or register values. The Write Enable (WREN) command

execution sets the Write Enable Latch to a 1 to allow any program, erase, or write

commands to execute afterwards

• Write In Progress (WIP) SR1[0]: Indicates whether the device is performing a

program, write, erase operation, or any other operation, during which a new op-

eration command will be ignored. When the bit is set to a 1 the device is busy

performing an operation.

Flash Programming Instruction Set

4.1.2 Command Sequence taken from S2FL128L Data-sheet

RDID (0x9F)

Provide read access to manufacturer identification, device identification

646

1 32 109876540 31302928

Instruction

1645

652343332 655654653

SCK

S I

SO
High Impedance

Extended Device Information

CS#

0 1 2 20 21 22 23 24 25 26 644 647

Manufacturer / Device Identification

Figure 4.2: Read ID Command sequence

25

WREN (0x06)

Sets the Write Enable Latch (WEL) bit of the Status Register. Before using Page Pro-

gram / Erase, WEL bit should be 1.

32 76540

Instruction

SCK

SI

1

CS#

Figure 4.3: Write Enable Command sequence

RDSR (0x05)

Allows the Status Register contents to be read from SO.

By monitoring the WIP bit in SR1, user can check if flash is busy or not.

1 32 109876540 14131211

Instruction

13 2 07 6 5 4

SCK

SO
High Impedance

MSb

Status Register-1 Out

SI

15 181716 22212019

13 2 07 6 5 4

MSb

Status Register-1 Out

23

7

MSb

CS#

Figure 4.4: Read Status Register Command sequence

4SE (0xDC)

Sets all bits in the addressed sector to1 or Erase the memory array from selected address.

The command is 4-byte addressable.

26

1 32 109876540 39383736

Instruction 32 Bit Address

31 2930 13 2 0

SCK

SI

MSb

CS#

Figure 4.5: Sector erase Command sequence

PP (0x12)

Write data to memory array beginning at selected address.

The address is of 4-byte.

1 32 109876540 39383736

Instruction
32-�it
A��ress

31 2930 13 2 0

4443424140 474645

13 2 07 6 5 4

Data �yte 1
4
1
2
8

13 2 07 6 5 4

Data �yte 2

5251504948 555453 6059585756 636261

13 2 07 6 5 4

Data �yte 3

4
1
3
5

4
1
3
4

4
1
3
3

4
1
3
2

4
1
3
1

4
1
3
0

4
1
2
9

Data �yte 512

SCK

SI

SCK

SI

MSb

MSbMSb

MSb

MSb

CS

CS

13 2 07 6 5 4

#

#

Figure 4.6: Page programming Command sequence

FAST_READ (0x0C)

Read data from memory array beginning at selected

address. After 1-byte instruction, 4-byte address and 1-byte of dummy data must be

given. The dummy bits should give flash enough time to prepare the data.

27

1 32 109876540 39383736

Instruction
32-�it
A��ress

31 2930 13 2 0

13 2 07 6 5 4

4443424140 474645

13 2 07 6 5 4

�ummy �yte

5251504948 555453

�ATA OUT 1 �ATA OUT 2

SCK

SI

SO

MSb

High Impe�ance
7

MSb

CS#

Figure 4.7: Read Command sequence

4.1.3 Flash driver Data-flow

Following flow chart explains the SPI driver for flash.

• SPI initialization setup the CPOL, CPHA and BR[2:0] bits in SPIx_CR1.

• Read ID, If id match go ahead with required operation else finish.

• Before Writing or Erase action, Write enable command must be given

• To check if erase or write still in progress, check WIP bit in SR of flash

• All Erase, Page Program and read are 4-byte addressable.

• If transmit only mode is selected then before sending next set of data check if SPI

is busy or not using BSY bit in SPIx_SR register.

• Read id finished when required data is received and RXNE bit is set.

• When RXNE = 1, generate read request to data register.

28

https://gitlab.com/shaktiproject/uncore/devices/-/tree/84-spi-adding-different-interrupt-fix-rules-conflict-and-updating-spi-drivers/spi/driver/cypress_flash

Start

SPI Initialization

Read Flash ID

Is ID
match

Write or
Read

Read

Address

flash_read()

Return

read data

Write

Address

Erase

Write Enable

Write
Data

flash_write()

Check WIP

Finish

Erase

Write Enable

flash_erase()

Check WIP

Erase done

Check WIP

Flash Read

Status Register

Write In
Progress (WIP) ?

Return
No

yes

Write

Read

0

1

Figure 4.8: SPI driver for Flash

29

4.1.4 Result and conclusion

The E-Class Soc with SPI Peripheral imported to Arty-35T FPGA. The SPI is tested

with CYPRESS and ISSI Flash. Arty-35T has built in 128Mb Cypress Flash.

The following waveform capture using Logic analyzer from SALEAE with ARTY-35T

internal Cypress Flash.

Reading Manufacturing and Device ID

Total 24 bits which are received are 0x012018 which implied that

• 0x01 - Manufacturer ID for Cypress

• 0x20 - Device ID MSB (Memory Interface Type)

• 0x18 - Device ID LSB (Memory Density is 128Mb)

Figure 4.9: RDID Command with Cypress flash

Write Enable before Erase/Page program

Only 8 bit instruction as 0x06 is sent.

Figure 4.10: WREN Command with Cypress flash

Erase command

32 bit address is expected after 8-bit instruction. Starting Address = 0x00B00000 all

bits set to 1.

30

Figure 4.11: S4E Command with Cypress flash

Reading Status Register

After giving Erase or Page program command, the user should read the Status Register.

If the WIP bit is set, representing an Erase/Page program is still in progress and not

completed, the user must wait before giving the next command.

Figure 4.12: RDSR Command with Cypress flash

As the SR returns the value 0x00000000, which represents the WIP bit is reset to 0.

Flash can accept the next command.

Page Program

Figure 4.13: PP Command with Cypress flash

31

After erasing, flash is ready for programming. Before giving the Page program com-

mand WEL bit should be set by using WREN command. The 32-bit address, followed

by write data, should be transmitted after 8-bit write instruction.

Four consecutive writes were performed, starting with start address as 0x00B00000.

Each PP command writes 32-bit of data into flash with an increasing address. Data

which is written into the flash - 0x41014081, 0x42014181, 0x43014281, and 0x44014381.

Reading the Flash memory array

32-bit address and 8-bits dummy bits must be transmitted. The read address is 0x00B00000.

After writing data into flash, four simultaneous reads are performed.As you can see,

after 48 bits, transmission finished and receive started. MISO pin returns the data

corresponds to a provided address. The receive data are 0x41014081, 0x42014181,

0x43014281, and 0x44014381.

Figure 4.14: FAST_READ Command with Cypress flash

ISSI Flash

The next set of waveform is captured with ISSI Flash (S25PL256D) with help of Logic

Analyzer from SALEAE.

32

Reading Manufacturing and Device ID

Total 24 bits which are received are 0x9D6019 which implied that

• 0x9D - Manufacturer ID for ISSI

• 0x6019 - Memory Type + Capacity for IS25LP256D

Figure 4.15: RDID Command with ISSI flash

Erase command

Here instead of 0xDC, ISSI used 0x21 for erase instruction.

Figure 4.16: S4E Command with ISSI flash

Page Program

Here total 16-bytes of data are written in single page program instruction. Data 0x01010101,

0x02020202, 0x03030303and 0x04040404 from address 0x00000000 are written into

SRAM.

Figure 4.17: PP Command with ISSI flash

33

Reading the Flash memory array

After writing data into flash, four simultaneous reads are performed starting from ad-

dress 0x00000000. Read data 0x01010101, 0x02020202, 0x03030303and 0x04040404

Figure 4.18: FAST_READ Command with ISSI flash

Conclusion

The SPI is working perfectly with Cypress and ISSI flash. All the operations such as

reading ID, reading a status register, erasing the memory array, page programming and

reading the memory are working correctly.

34

4.2 SPI Sram

The ISSI IS62/65WVS5128GALL/GBLL are 4Mb Fast Serial static RAMs organized

as 512K bytes by 8 bits. The device is accessed via a simple Serial Peripheral Interface

(SPI) compatible serial bus. The bus signals required are a clock input (SCK) plus

separate data in (SI) and data out (SO) lines. Access the device is controlled through a

Chip Select (CS).

1

SCK

2

3

4

14

13

12

11

CS#

SO/IO1

DNU/SIO2

VSS

VDD

HOLD/IO3

SI/IO0

I
S
6
2
/6
5
W
V
S
5
1

2
8
G
A
L
L

S
P
I

SCLK

MISO

MOSI

NSS

e-class

SOC

Figure 4.19: Connection Scheme and pin diagram of SRAM

4.2.1 SRAM driver

Operating Modes

The device has three modes of operation that are selected by setting bits 7 and 6 in the

MODE register. The modes of operation are Byte, Page and Sequential. The possible

7 6 5 4 3 2 1 0

W / R - - - - - -

MODE Reserved

W / R = writable / readable

Table 4.2: Bits in MODE register of SRAM

modes of operation are:

• 00 = Byte mode: the read/ write operations are limited to only one byte

• 10 = Page mode: the read and write operations are limited to within the addressed

page (the address is automatically incremented internally)

35

• 01 = Sequential Mode (Default Mode): Sequential operation allows the entire

array to be written to and read from. The internal address counter is automatically

incremented until reaches the end of die boundary

• 11 = Reserved and Bits 0 through 5 are reserved and should always be set to ‘0’.

SRAM Programming Instruction Set

4.2.2 Command Sequence taken from IS62/65WVS512 Datasheet

WRMR (0x01)

The Write Mode Register instruction allows the user to write to the bits in the MODE

register. This allows for setting of the Device operating mode.

7 6 5 3 24 1 0

Data to Mo�e registerInstructi�n = 01�

CS#

SCK

SI

SO �ig� Im	e
ance

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 1

13 14 15

Figure 4.20: WRMR Command sequence

RDMR (0x05)

The Read Mode Register instruction provides access to the MODE register. The MODE

register may be read at any time.

7 6 5 3 24 1 0

Data fr�m M��e register

Instructi
n � 05�

CS#

SCK

SI

SO �ig� Im�e�ance

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 1 0 1

13 14 15

Figure 4.21: RDMR Command sequence

36

WRITE (0x02)

Write data to memory array beginning at selected address. It support 3-byte addressing

mode only.

7 6 5 3 24 1 0

Data �yteInstructi�n = 02�

23

CS#

SCK

SI 2 1

SO

24-bit A��ress

�ig� Im�e�ance

22

0 1 2 3 4 5 6 7 8 9

...

29 30 31

0 0 0 0 0 0 1 0

32 33 34 35 36 37 38 39

0

Figure 4.22: Byte WRITE Command sequence

READ (0x03)

Read data from memory array beginning at selected address. After 1-byte instruction,

24-bit address and 8-bits of dummy data must be given. The dummy bits should give

sram enough time to prepare the data.

24-bit A��ress

28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

7 6

CE#

SCK

SI

5 3 2
SO

4 1

�ata Out

23

C�#

SCK

SI
3 2

SO

1 0

�ig� Im�e�ance

22 21

0 1 2 3 4 5 6 7 8 9 10 M!"e 3

M!"e 0

tV

0

Instructi#n= 03$

0 0 0 0 0 0 1 1

8 %ummy Cycles

Figure 4.23: Byte READ Command sequence

37

4.2.3 SRAM driver flow diagram

Following flow chart explains the SPI driver for SRAM.

1.

2. SPI initialization setup the CPOL, CPHA and BR[2:0] bits in SPIx_CR1.

3. Write request are generated on Data register with required data.

4. SPI start when SPIE bit is set in SPIx_CR1.

5. Select the operating mode between byte mode, page mode and sequential mode(default)

using WDMR command.

6. Generate the read request to data register when RXNE = 1 (received finish).

Start

SPI Initialization

Select oper-

ating mode

Write or
Read

Write

Address

Write
Data

sram_write()

Read

Address

sram_read()

Return

read data

Finish

Read

Write

Figure 4.24: SPI driver for SRAM

38

https://gitlab.com/shaktiproject/uncore/devices/-/tree/84-spi-adding-different-interrupt-fix-rules-conflict-and-updating-spi-drivers/spi/driver/sram

4.2.4 Simulation Result

The E-Class Soc with SPI Peripheral is simulated with help of NCVerilog. The SPI is

tested with ISSI SRAM bfm.

The following waveforms are capture using GTKwave.

Write Mode Register Instruction

The operating mode can be selected by changing 7 and 6 bit. Page mode is selected by

setting [7:6] as 2’b10.

Figure 4.25: WREN Command with Cypress flash

Read Mode Register Instruction

Total 8 bits which are received. As [7:6] bit are 10 which implied that SRAM is operat-

ing in page mode.

Figure 4.26: RDMR command

Page Write

The 24-bit address, followed by write data, should be transmitted after 8-bit instruction.

Two consecutive writes were performed, starting with start address as 0x000100. Each

Write command writes 32-bit of data into SRAM with an increasing address. Data

which is written into the SRAM - 0xAA9955AA, 0x54FEAC52.

39

Figure 4.27: Writing DATA into SRAM

Reading the SRAM memory array

24-bit address and 8-bits dummy bits must be transmitted. The read address is 0x000100.

As you can see, after 40 bits, transmission finished and receive started. MISO pin re-

turns the data corresponds to a provided address. The receive data are 0xAA9955AA

and 0X54FEAC52.

Figure 4.28: Reading data from SRAM

The simulation log is attached for reference.

Figure 4.29: Simulation Log os SRAM

Conclusion

The Read and Write is done successfully on SRAM using SPI controller.

40

4.3 Analog to Digital Converter

The ADC, which is used for SPI validation, is MCP3302. It is 13-bit A/D converter fea-

tures fully differential inputs. It is user-programmable to provide two differential input

pairs or four single-ended inputs. It has four channels. The temperature sensor (LM35)

is connected to CH0, and the potentiometer is connected to CH3 of the MCP3202.

Figure 4.30: ADC pin diagram and connection scheme

.

ADC MCP 3302

The constant voltage source of 4.6v is connected to the Vref port. This input pin pro-

vides the reference voltage for the device, which determines the maximum range of the

analog input signal and the LSB size. The LSB size is determined according to the

equation shown below.

LSBSize =
2× VREF

8192

We get LSBSize as 0.001123.

LM35 Temperature sensor

It is an integrated-circuit temperature devices with an output voltage linearly propor-

tional to the Centigrade temperature.

LM35 Transfer Function:

VOUT = 10mv
0
C × T

41

4.3.1 ADC driver

SPI Communication with MCP3302

The ADC takes 4 bit as input and return the 13 bit output on SPI lines. D2 bit is dont

care for MCP3302. The four bits can configure as shown below:

Configuration bits selection Input configuration Channel selection

Single/ D̃iff D2 D1 D0

1 X 0 0 Single ended CH0

1 X 0 1 Single ended CH1

1 X 1 0 Single ended CH2

1 X 1 1 Single ended CH3

0 X 0 0 Differential CH0=IN+, CH1=IN-

0 X 0 1 Differential CH0=IN-, CH1=IN+

0 X 1 0 Differential CH2=IN+, CH3=IN-

0 X 1 1 Differential CH2=IN-, CH3=IN+

Table 4.3: Cofiguration bits for MCP3302

MCP3302 is a 12 bit analog to digital converter. Out of received 13 bits in MSB_FIRST

format, MSB is discarded, and later 12 bits are taken as output. The output is multiplied

by LSBSize to get output voltage. The following figure is taken from the MCP3302

datasheet, which explains the spi communicating sequence with ADC. .

CS

C&K

'IN

'O()

*1*2 *0

+,-/

'01’t Care

2u44
5it 561 560 59 58 57 56 55 54 53 52 56 58 9

SGL:
;<>>

Start

?S@AFIJ

?CSK

?S(CS

M5�

Figure 4.31: Communicating sequence with ADC

42

4.3.2 ADC driver flow diagram

Following flow chart explains the SPI driver for ADC.

1. SPI initialization setup the CPOL, CPHA and BR[2:0] bits in SPIx_CR1.

2. Select the operating mode and Channel using configuration bits.

3. Write request are generated on Data register with required data.

4. SPI start when SPIE bit is set in SPIx_CR1.

5. SPI generate read request to data register when transaction is finished.

Start

SPI Initialization

Select operating

mode and

Channel

adc_read()

Read

Data from

MISO

Extract the

required bits

Finish

Figure 4.32: SPI driver for ADC

43

https://gitlab.com/shaktiproject/uncore/devices/-/tree/84-spi-adding-different-interrupt-fix-rules-conflict-and-updating-spi-drivers/spi/driver/ADC

4.3.3 Result and conclusion

Several readings were taken By varying the input voltage using a potentiometer and

temperature near the sensor.

Temperature Sensor LM35 on CH1 of MCP3302

Following reading is taken when room temperature is around 30-32 ◦ C. Using SPI in

the loop, users can continuously monitor the room temperature.

As 4’b1101 is sent to ADC, CH1 is selected and 13 bits are receive which are 0x011B.

If MSB bit is neglected we get 12 bits 0x11B (’283’). When multiplied by LSBSize =

0.001123 ,we get 0.317822, which is equivalent of 31.7 ◦ C.

Figure 4.33: SPI with ADC and LM35 in mode3

In the next set of readings, a bag of cold water is placed near a sensor to lower its

temperature.

Here the received bits in first case are 0x00E9 and second case are 0x0075. If MSB bit is

neglected we get 12 bits 0x0E9 (’233’) and 0x075 (’113’). The corresponding voltages

when multiplied by LSBSize = 0.001123 are 0.261659 V and 0.131391 V. Using LM35

linear relation between voltage and temperature, we get 26.16 ◦ C and 13.13 ◦ C.

Figure 4.34: SPI with ADC and LM35 in mode 0

Temperature is decreasing with time, and SPI is successfully able to communicate it

with core.

44

Potentiometer on CH3 of MCP3302

Following readings are taken by varying input voltage of ADC with the help of three

terminal potentiometer.

Input voltage at CH3 as 2.9V

As 4’b1111 is sent to ADC, CH3 is selected and 13 bits are receive which are 0x0A7B.

If MSB bit is neglected we get 12 bits 0xA7B (’2683’). When multiplied by LSBSize =

0.001123 , we get 3.013 V.

Figure 4.35: SPI with ADC with Vin as 2.9V

Input voltage at CH3 as 2.35 V

Here the received bits are 0x084A. If MSB bit is neglected we get 12 bits 0x84A

(’2122’). When multiplied by LSBSize = 0.001123 , we get 2.383 V.

Figure 4.36: SPI with ADC with Vin as 2.35 V

Conclusion

SPI Controller is functioning correctly with Analog to digital converter.

45

REFERENCES

[1] Reference manual for STM32F030x4/x6/x8/xC and STM32F070x6/xB advanced

ARM R©-based 32-bit MCUs

[2] MPC5121e Serial Peripheral Interface (SPI) by NXP

[3] The Cypress S25FL128S and S25FL256S datasheet

[4] The ISSI IS62/65WVS512 datasheet

[5] The TI MCP3302 datasheet

46

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Definition of the SPI
	SPI main features

	DESIGN OF SPI CONTROLLER
	Block diagram of SPI
	Description of spi module
	Signal description and connection scheme
	Clock divider and clock logic
	Shift-register and FIFO
	SPI communication control
	SPI registers

	Modes of operation
	Polling Mode
	Interrupt Mode

	SPI REGISTERS AND CONFIGURATION
	SPI control register 1
	SPI Control Register 2
	SPI Status Register
	SPI Data Registers
	Configuration of SPI Registers

	SPI DRIVER AND VALIDATION
	SPI Flash
	Flash driver
	Command Sequence taken from S2FL128L Data-sheet
	Flash driver Data-flow
	Result and conclusion

	SPI Sram
	SRAM driver
	Command Sequence taken from IS62/65WVS512 Datasheet
	SRAM driver flow diagram
	Simulation Result

	Analog to Digital Converter
	ADC driver
	ADC driver flow diagram
	Result and conclusion

