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ABSTRACT

KEYWORDS Vision Transformers; Graphics Processing Units; Knowledge Distillation;

Sparse Neural Networks

Vision Transformers (ViT) are artificial neural networks based on the Transformer architecture

of Natural Language Processing (NLP) fame. The success of Transformer models such as

BERT and GPT in NLP tasks has seeped into Image Processing, with Vision Transformer models

attaining state-of-the-art accuracy on classification, object detection, and segmentation tasks.

However, compared to Convolutional Neural Network (CNN) models that are typically used in

Image Processing tasks, Vision Transformers have a higher model complexity- owing to their

higher number of trainable parameters and floating-point computations (FLOPs) per forward

pass. In this project, we analyze the impact of various model optimization strategies on the ViT

architecture, for their efficient deployment on modern parallel processors such as GPUs.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

The transformer architecture [1] has demonstrated its capability on a variety of Deep Learning

tasks, pitching itself as a better alternative to convolution based architectures such as Recurrent

Neural Networks (RNNs) and Long Short-term Memory Networks (LSTMs). Transformers are

perhaps most well-known for their impact on Natural Language Processing (NLP) tasks, through

Large Language Models (LLMs) such as GPT-3 [2], GPT-4 [3], BERT [4] and PaLM [5].

A. Dosovitskiy, et. al. [6] proposed using transformers for computer vision tasks. Vision

Transformer (ViT) networks employ the encoder sub-network in a transformer model, similar to

the BERT architecture. Patches of pixels in the input image are treated as tokens by the

transformer, analogous to how words are perceived by language transformer models. ViTs beat

Convolutional Neural Networks (CNNs) on image classification, object detection and image

segmentation tasks. As per papers-with-code [7], vision transformer-based models dominate the

ImageNet classification leaderboard. The success of vision transformers has led to other works

exploring transformer models for multi-modal data inputs, as the architecture allows projecting

each mode (audio, text, image or video) into tokens and then evaluating the correlations between

tokens across modes.

At the core of the transformer architecture is the self-attention operation. This operation

computes a correlation score between all pairs of input tokens. This allows the operation to

evaluate how each token is related to every other token in the input. In the context of image

processing, this allows self-attention to evaluate the significance of features present in a token

patch with respect to all other patches the input image is broken into- enabling attention to extract

features present locally and globally in a single shot. In contrast, operations such as convolution

and transposed convolution, the workhorses of CNNs, only compute "correlation scores" with

pixels in their neighborhood, and are thus limited in their capability to extract only those features

that appear locally.



Figure 1.1: The Architecture of a Vision Transformer

1.1 VISION TRANSFORMER ARCHITECTURE

The architecture of a Vision Transformer is summarized in figure 1.1. The input image is broken

into 𝑁 patches- each patch is of a fixed size, say 16 × 16. Each patch is projected into a latent

vector space by the Patch Embedding linear projection layer. These patches then go through

repeating blocks of Multi-Headed Self-Attention (MHSA) and Multi-Layer Perceptrons (MLPs).

The attention and MLP blocks comprise the encoder portion of the network. For classification

tasks, the patches at the end of the encoder are sent to a classification head through a token

pooling layer.

Unlike convolution, self-attention is position-invariant. In order to provide information regarding

the original positions of patches in the image, a positional embedding vector is added to the

patches before sending them to the encoder layers. The positional embedding vector can be

tuned by hand, using sine and cosine functions for example, or can be learned values that are

set through gradient descent during the training step.
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Figure 1.2: Self-Attention Operation

The input to the classification head is a single token that is supposed to represent all the tokens

at the end of the encoder. A dummy token (cls) is added to the set of patches at the beginning

of the encoder and is made to interact with all the tokens from the image over the course of the

layers of the encoder. Thus, information regarding the features present in each patch of the image

would eventually get accumulated into the cls token. The token pooling function at the end of

the encoder picks the cls token and sends it across to the classification head.

1.1.1 Self-Attention Mechanism

The encoder block uses Multi-Headed Self-Attention (MHSA) layers in order to extract features in

a content-driven manner. An MHSA layer uses multiple parallel instances of self-attention that

individually extract features from the image by generating attention maps.

The operation performed by each attention head can be divided into three stages. The input

patches to the attention layer are passed through a linear projection layer (QKV-Projection) to

generate the query (𝑄), key (𝐾) and value (𝑉 ) matrices (figure 1.2). Next, the attention map (𝐴)

is generated by taking the dot-product between the query and key matrices, and computing the
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softmax of the result.

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑

)

where 𝑑 is the channel dimension of the query and key matrices

The attention map estimates correlations between patches in the query matrix with patches in the

key matrix. The softmax operation is used to convert the correlation scores to a pseudo-probability

distribution. That is, all the elements in the 𝐴matrix lie in the range [0, 1] and the sum of elements

along any row is 1. This attention map is used to compute a weighted sum of the tokens in the value

matrix, and the result is passed through a projection layer (Outro-Projection) to generate

the output of the attention layer. The Outro-Projection layer accumulates the attention-value

products (𝐴 ×𝑉 ) of all the attention heads present in the layer.

The attention map behaves like a weight matrix that gets multiplied with the input. The matrix

preceding the outro-projection layer is 𝐴 × 𝑉 = 𝐴 ×𝑊𝑉 × 𝑋 where𝑊𝑉 is the value projection

matrix, and 𝑋 is the input matrix =⇒ 𝐴 × 𝑊𝑉 behaves effectively as the weights that the

input is multiplied by. However, the values in the 𝐴 matrix are not learned, they are instead

evaluated at runtime using the query and key matrices. This content-driven nature allows for

greater versatility in the operation’s ability to extract features present in the image. The success of

vision transformers can be attributed to this versatility of the attention mechanism, and its ability

to extract long-range dependencies in a single shot.

The MLP (feed-forward network) layers appearing in the encoder perform projections on the

patches individually, using learned weights to amplify features identified in the attention maps.

This leads to the learned MLP layers working in tandem with the content-driven attention layers

on feature extraction. A two-layer linear network is used for the MLP layers in the ViT architecture.

1.1.2 ViT Model Configurations

The network architecture parameters of different ViT configurations are listed in table 1.1. These

configurations differ in the number of attention and MLP layers in the encoder block (depth), the

dimensions of the attention heads and the tokens, and the hidden dimension of the MLP network.

These configurations have widely varying FLOPs and trainable parameter counts, and accordingly
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Parameter ViT-Tiny ViT-Small ViT-Base ViT-Large
Patch Size 16 16 16 16

Depth 12 12 12 24
# Attention Heads 3 6 12 16

Attention Head
Channel Dimension 64 64 64 64

Token Outer
Dimension 192 384 768 1024

MLP Hidden
Dimension 768 1536 3072 4096

Summary
# trainable
parameters 5.790M 22.197M 86.859M 304.716M

FLOPs per
forward pass 9.36B 30.98B 110.97B 382.13B

Table 1.1: Network architecture parameters of different ViT configurations

vary on their accuracy metrics. We use the Tiny, Small and Base variants as the baseline models

for comparison in our experiments.

1.1.3 Challenges in using Vision Transformers

Compared to Convolutional Neural Networks, deploying Transformers for image processing tasks

comes with the following challenges:

1. Vision Transformers lack the inductive bias that is inherent to CNNs. Since self-attention

and MLPs are generic operations, they can learn to approximate a wide range of functions.

However, they do not come with the prior knowledge of "where to look" when it comes

to approximating functions that can appear in the image processing context. In contrast,

operations like Convolution and Pooling are restricted to focus on neighboring patches in

the image- this serves as an effective inherent bias while performing image processing.

2. It is seen that pre-training the transformer network on large datasets can make up for

the lack of inductive bias in the model [6]. It is hence common for Vision Transformer

models to be trained on larger variants of the ImageNet dataset [8], including one with over

21,000 classes. The authors of [6] also use some proprietary datasets from Google such

as JFT-300M with 300 million images [9] and JFT-3B with 3 billion images [10], leading
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to models with higher accuracy. This heavy reliance of transformer models on massive

datasets poses a serious challenge when it comes to using them. It is imperative to use

pre-trained models and adapt them for the task at hand when making modifications to the

transformer architecture, or when building transformers for downstream image-processing

tasks - training models from scratch isn’t a viable option. The weights of models pre-trained

on ImageNet-21k are made publicly available by Google Research; we use these weights

for the baseline models in our experiments.

3. Compared to CNNs, Vision Transformers have more trainable parameters. In addition to

a larger training cost, this also leads to higher memory requirements, which impacts the

compute requirements during inference. Plus, transformers have a larger FLOP count per

forward pass.

In effect, testing out modifications to the transformer architecture, and building models for

downstream tasks have longer turnaround times and higher compute requirements than when

dealing with CNNs and similar architectures.

1.2 PERFORMANCE OF VISION TRANSFORMER MODELS

Table 1.2 lists the accuracies of some vision transformer models along with their parameter

counts. This list includes model architectures proposed in the original paper [6] and a couple of

ViT variants- SWiN transformer [11] and Multi-Axis Vision transformer [12]. We see that the

dataset used for pre-training the model significantly impacts the accuracy that can be attained by

the model. Training the ViT-B/16 variant on ImageNet-1k alone leads to an accuracy of 78%

while pre-training it on the larger ImageNet-21k dataset improves the accuracy to 85%.

Pre-training ViT-B/16 on JFT-300M doesn’t seem useful as the accuracy dips to 84.15%;

however, pre-training ViT-L/16 on the dataset improves the accuracy by 2 percentage points

compared to the corresponding ImageNet-21k model.

SWiN and MaxViT are variants of the vision transformer architecture that use simpler versions of

the self-attention operation. This leads to models that are less versatile than the original
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transformer but are sufficiently complex enough to perform well on image processing tasks.

These models have fewer FLOP counts than ViTs of similar size while maintaining similar or

better accuracy metrics. The trick that these architectures employ is to reduce the complexity of

the self-attention layer and compensate for it by increasing the depth of the network (the

increased depth leads to them having more trainable parameters than ViTs).

Model
Pre-trained

Dataset
Parameter Count

Top-1 on

ImageNet-1k

ViT-Ti/16 5.790M 74.61

ViT-S/16 22.197M 82.44

ViT-B/16 86.859M 84.92

ViT-L/16

ImageNet-21k

304.716M 85.08

ViT-B/16 ImageNet-1k 86.859M 77.91

ViT-B/16 86.859M 84.15

ViT-L/16
JFT-300M

304.716M 87.12

SWiN-Ti 28.288M 80.90

SWiN-S 49.606M 83.27

SWiN-B

ImageNet-21k

87.768M 85.16

MaxViT-Ti 30.964M 84.84

MaxViT-S 68.999M 86.09

MaxViT-B

ImageNet-1k

119.615M 86.39

MaxViT-B ImageNet-21k 119.615M 87.81

Table 1.2: Accuracies of some Vision Transformer Model Variants

1.3 PROBLEM DEFINITION

Through this project, we try to find suitable Algorithm-level optimizations of the ViT architecture

for their efficient deployment on GPU-like hardware. We evaluate the efficacy of optimization
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strategies based on their impact on the model accuracy and computational cost. The optimization

strategies would be subject to the following constraints:

1. Low turnaround time: In order to fully explore the design space available to each

optimization strategy, the time and compute required to build models with the optimized

architecture must be sufficiently low. This means the optimization strategies must avoid

long training schedules to the extent possible, and maximize the reuse of pre-trained

models (that is, changes to the architecture, if any, should not require training the entire

model from scratch). Further, the experiments would be performed on smaller datasets to

expedite the process.

2. Hardware-friendly algorithms: The target hardware for our experiments are NVidia GPUs

from the Turing and Ampere architectures (the models that were readily available on Google-

Cloud during the course of the project). The optimization techniques considered here would

have to fit well onto these GPUs- this constrains the precision formats, matrix sizes, and

operation scheduling schemes that may be used.

In chapter 2, we analyze the bottlenecks in the ViT architecture and zero in on possible optimization

schemes. Chapters 3 and 4 discuss the two key optimization strategies that were tested out in

this work- building light-weight "MetaFormer" models and applying sparsity to ViTs, respectively.
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CHAPTER 2

OPTIMIZATION OPPORTUNITIES IN VISION TRANSFORMERS

2.1 BOTTLENECKS IN VIT ARCHITECTURE

The operations performed within an encoder in a vision transformer are shown in figure 2.1.

Among these, the layers marked in blue are Linear Projection operations. These layers perform

dense matrix multiplications on the input activations using learned weight matrices. The number

of float operations performed by these layers varies linearly with the input size, that is, the number

of patches the image is broken into and the dimension of each patch vector. The linear projection

layers contribute towards a significant chunk of the operations performed in the ViT encoder, and

can thus be potential bottlenecks in the model.

Figure 2.1: Layers in a ViT Encoder



(a) Layer-wise FLOP break-up of ViT-B encoder (b) Layer-wise parameter break-up of ViT-B
encoder

Figure 2.2: Layer-wise cost analysis of ViT-B encoder for input image of size 384 × 384 × 3

The attention computation block involves computing the dot product between the query (𝑄) and

key (𝐾) matrices, evaluating the softmax of the product to generate the attention map (𝐴), and

computing the attention head output (𝐴 × 𝑉 ). The dot product step has a quadratic cost with

respect to the number of patches as every patch in 𝑄 is multiplied by every patch in 𝐾. The

softmax step involves fewer FLOPs per instance compared to the other Matrix Multiplication

operations but requires the usage of the GPU’s Special Function Units (SFUs) in order to evaluate

the exp() function. This causes the computations to move away from the high throughput Tensor

Cores to the relatively lower throughput SFUs, and can hence slow the entire computation down.

2.2 LAYER-WISE COST ANALYSIS

We evaluate the number of float operations, trainable parameters, and the execution time for each

layer in the transformer’s encoder as a first step towards zeroing in on the optimization strategies.

We take the ViT-B/16 variant and use input images of size 384 × 384 × 3 for this exercise.

In figure 2.2a the theoretical split of FLOPs from each layer in the encoder is plotted. The

theoretical calculation only considered the operations arising from matrix-matrix multiplications-

the activation functions contribute significantly fewer FLOPs. First, we see that the MLP layers

make up close to 60% of the floating point computations performed in the encoder. Within the

10



(a) Latency split of ViT-B encoder

(b) Latency split of operations within Attention Block
Figure 2.3: Latency Split of operations in a ViT-B encoder
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attention block, the 𝑄 × 𝐾𝑇 and 𝐴 × 𝑉 products (labeled "Attention") contribute only around

11% of the overall FLOPs, the remaining 29% comes from the linear projection operations (𝑄𝐾𝑉

and Outro Projections). This shows that for the given input size, the attention dot product isn’t a

significant bottleneck. At larger input sizes, the share of the "Attention" operation in the FLOPs

split-up would increase due to the quadratic scaling of the computational cost of the operation.

A similar split is seen for the number of trainable parameters (figure 2.2b). Note that since the

attention operation is entirely content-driven, it does not feature in this plot.

From figure 2.3a, we see that the MLP and Multi-headed attention blocks take similar amounts

of time to complete execution. Within the self-attention block (figure 2.3b), around 80% of the

execution time is spent on the linear projection layers. The attention computation (𝑄×𝐾𝑇 , softmax

evaluation and 𝐴 ×𝑉 ) take up only 20% of the execution time. This clears up uncertainties from

the previous section regarding the bottlenecks in the network:

1. While the cost of the attention computation scales quadratically with the number of patches,

its cost in absolute terms is lower than the cost of the linear projection operations for the

input sizes of interest.

2. The effect of going away from the Tensor Cores to the SFUs to evaluate the softmax seems

to be negligible.

Thus, the primary bottlenecks in the network are the linear layers from the attention and MLP blocks.

This is unlike the transformers used for language modeling where the attention computation is

almost always the bottleneck. This is because language transformer models typically have

arbitrary input sequence lengths, often long enough for the attention computation’s quadratic cost

to become apparent. For vision transformers, the input sizes are typically fixed, and as we see

here, the quadratic cost of the attention computation does not kick in at moderate image sizes.

2.3 OPTIMIZATION OPPORTUNITIES

The attention map from an encoder layer in ViT-B/16 that is generated when an image from the

ImageNet dataset is used as an input is visualized in figure 2.4. Larger values in the attention

12



Figure 2.4: Visualization of an Attention Map Matrix 𝐴 from a ViT-B/16 model

map appear as brighter pixels in this image. Element (𝑚, 𝑛) in the attention map matrix quantifies

the correlation between the 𝑚𝑡ℎ query patch and the 𝑛𝑡ℎ key patch. A characteristic feature of

the attention map in figure 2.4 is the presence of vertical stripe-like features. These features

indicate that most query patches give high correlation scores to the same set of patches in the

key matrix. That is, a subset of patches from the input activation is considered to be important by

the self-attention mechanism and these patches are given a higher weightage in the attention

map. Interestingly, this pattern is seen in attention maps across attention heads and encoder

layers for different images from the dataset. This indicates the presence of some order in the

features learned by the transformer, which can perhaps be caught by a mechanism simpler than

self-attention.

As noted in the previous section, the focus of the optimization task must be on the linear layers in

the attention block and MLP layers. In this project, we focus on the following two optimization

strategies:

1. Replacing the attention block with a simpler mechanism that can extract features from
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image patches. This would replace the linear projection layers (𝑄𝐾𝑉 and Outro projection)

and the Attention Computation operations from the encoder (figure 2.1).

2. Inducing sparsity into the linear layers from the attention and MLP blocks. Sparsity enables

reducing the number of trainable parameters and forward pass FLOPs by ignoring elements

in the weight matrices that are 0 or have a magnitude close to 0. This usually involves a

phase of pruning where weight elements are nudged towards values with low magnitude

and then rounded off to 0. Post pruning, the weights undergo few iterations of re-training,

with the pruned elements frozen, in order to compensate for any loss in the model’s learning.

NVidia GPUs from the Ampere generation have support for structured sparsity in hardware.

We believe the linear layers in the network are suitable targets for structured sparsity.

2.4 RELATED WORKS

We look at previous works on transformer model optimization that share a similar approach as

ours. The original work on Vision Transformers was followed by multiple attempts to replace

self-attention with similar but less expensive mechanisms [11; 12; 13; 14]. I. Tolstikhin, et. al., [15]

propose replacing the attention block with an MLP token mixer, resulting in an all-MLP network

architecture. The authors of [16; 17] explore replacing attention blocks with trivially simple token

mixing operations, such as Average Pooling, Separable Convolution and Identity. This leads to a

generic transformer architecture, the "Metaformer", where an arbitrary function is used to mix

image tokens in place of self-attention. The above-mentioned works demonstrate commendable

classification accuracies with their respective attention replacement operations on the ImageNet

dataset. We explore this direction further, the experiments and their results are discussed in

chapter 3.

Inducing sparsity in the Multi-Headed Attention block has been proposed by multiple works

[18; 19; 20; 21] primarily in the context of language transformer models. Z. Li, et. al. [20] propose

to prune away attention scores below a certain threshold. The threshold is determined through a

gradient-descent search during model training, by modifying the regularization term in the loss

function. Y. Rao, et. al. [21] propose dynamic token pruning in vision transformers. Motivated
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by trends similar to the attention map in figure 2.4, the authors claim that only a small subset of

tokens in the input activation are relevant for inference. The authors train a prediction module

that samples the relevant tokens from the input and discards the rest. Applying this sampling

scheme hierarchically, the work demonstrates pruning of image tokens by up to 66%, resulting in

a FLOPs reduction of 31-37%.

In this project, we target the sparse Tensor Cores on NVidia Ampere GPUs that support 2:4

structured sparsity. We induce sparsity into the linear layers from the Multi-Headed Attention and

MLP blocks. These experiments are orthogonal to the dynamic token pruning idea proposed

in [21]; hence, we believe the reduction in computational costs of the two methods would be

additive.

Using reduced floating-point precision formats for models has been another direction that is

pursued in transformer model optimization. In particular, the FP8 formats launched by NVidia on

their Hopper generation of GPUs [22] (the successor to the Ampere generation) have garnered

interest. This is a future direction of interest that could not be pursued in this project due to the

unavailability of the Hopper generation GPUs.
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CHAPTER 3

METAFORMER EXPERIMENTS ON VIT

This set of experiments deals with reducing the computational complexity of the Multi-Headed

Self-Attention layers in a Vision Transformer, by replacing them with simpler operations.

The self-attention operation in a layer of the transformer encoder learns function mappings between

latent feature spaces of the image. The versatility of the operation enables it to generalize a wide

variety of common DNN operations that accumulate information across patches of an image, such

as Conv2D and average pooling [23]. While this versatility of self-attention makes it a suitable

operation in generic architectures like Transformers, it may be sufficient to use a simpler operation

in its place when focusing on specific tasks. Thus, a viable model optimization strategy would be

to replace self-attention layers in the transformer with appropriate token-mixing functions, that

can attain an accuracy comparable to the original transformer at a lower computational cost.

Figure 3.1: Anatomy of a MetaFormer Encoder

Yu, et. al. [16; 17] demonstrate commendable accuracy of "Metaformer" models where

self-attention layers of a ViT are replaced by trivially simpler operations such as Average Pooling

and Identity, on the ImageNet-1k dataset. The authors claim that the macro-architecture of the



transformer (skip-connections, token-mixing module, MLP layers and choice of activation

functions) is more critical to the accuracy than self-attention.

The basic unit of a Metaformer encoder architecture comprises of a token mixer function

followed by an MLP layer. Multiple identical basic units stacked together forms a monolithic token

mixer stage, and multiple token mixer stages stacked together forms an arbitrary Metaformer

encoder (figure 3.1). For instance, a ViT encoder can be thought of as a Metaformer with a single

monolithic token mixer stage of depth 12, with multi-headed self-attention being the token mixer

function. In an arbitrary MetaFormer, each monolithic stage can employ different token mixer

functions and use different values for hyperparameters such as the patchsize, token embedding

length, MLP hidden dimension, etc.

Here, we leverage the idea of MetaFormers and devise a framework to generate simpler

Transformer models from a pre-trained attention-based Vision Transformer. The details of our

approach are discussed in the following sections.

3.1 PLUG-AND-REPLACE METAFORMERS

The authors of [16; 17] train metaformer models from scratch and rely on pre-training on large

datasets such as Imagenet-21k for attaining high classification accuracy. In contrast, we replace

a few layers of a pre-trained Vision Transformer with custom token mixer stages, train these new

layers on the dataset of interest (much smaller than datasets like ImageNet-21k), and reuse the

remaining layers from the pre-trained network. This allows us to analyze the significance of the

different layers of a ViT and the ability of different token-mixing functions to replace self-attention,

at a lower cost of training.

Figure 3.2 highlights the approach followed for replacing layers in a ViT. The transformer is broken

into 𝐿 stages, with each stage 𝑖 comprising of 𝑑𝑖 (stage depth) self-attention + MLP layers. The

parameters 𝐿 and {𝑑𝑖} are left as hyperparameters to be tuned during model training. The ViT

variants tested (tiny, small and base) have a total depth of 12 layers.

A metaformer configuration is generated by replacing a stage from the pre-trained ViT with a

custom stage from a bag of token-mixer contenders. The parameters of the custom token mixer
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Figure 3.2: Replacing stages in a Vision Transformer with operations from a bag of token
mixers

stage are set as trainable, while the weights of all remaining stages are frozen to that of the

pre-trained network. The cost of training a metaformer is now limited to the parameters of the

custom token mixer stage, which is considerably lower than training the entire model. Further, the

low number of trainable parameters in the metaformer configuration and the inherent inductive

biases of the simpler token mixer functions in the replaced stage allow training to be performed on

the dataset of interest without pre-training on a massive dataset. Hence, the cost of generating

metaformer variants from a pre-trained vision transformer model is considerably lower than training

the metaformer from scratch.

We also explore using knowledge distillation to speed up model training, by using the pre-trained

ViT as a teacher model and the metaformer as a student. Through distillation, we aim to train

the student model to better mimic the features of the pre-trained teacher model. Details on the

distillation methodology and their results are discussed in sections 3.4 and 3.5 respectively.

This work differs from other works that propose replacing self-attention, such as [17; 14; 11; 12]

in the following ways:
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Number of Classes 10

Image Size (320, 320, 3)
resized to (384, 384, 3)

Dataset Size 346 MB
# Training Images 9025 (69.7%)

# Validation Images 3929 (30.3%)

Table 3.1: Summary of the ImageWoof dataset

• We develop a framework for generating hybrid metaformers composed of multiple token

mixer operations, including self-attention.

• We leverage information learned by self-attention through pre-training on large datasets in

two ways.

– First, we train only those layers where attention is replaced, using pre-trained weights

for all other layers.

– Second, we employ knowledge distillation to hand-hold token mixer functions to mimic

the pre-trained self-attention layer.

• The training experiments are conducted on the smaller ImageWoof dataset, and have

smaller training time and lower training hardware requirements than the other works.

3.2 IMAGEWOOF DATASET AND BASELINE RESULTS

We conduct the model optimization experiments on the ImageWoof dataset [24] (table 3.1). This

dataset is a subset of ImageNet-1k containing 10 classes of dog breeds. Since this dataset is

considerably smaller than the ImageNet-1k dataset, the efficacy of various model optimization

strategies can be evaluated with a shorter turnaround time. Next, since the dataset is derived

from ImageNet, it is reasonable to assume that the accuracy trends observed with this dataset

would extend to ImageNet as well. Finally, the classes of images in the ImageWoof dataset are

correlated (dog breeds), making the classification objective task somewhat difficult. This is in

contrast to other ImageNet subsets such as ImageNette [24], which are largely composed of

uncorrelated classes.
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3.2.1 Classification Accuracy on ImageWoof

We compare Vision Transformer variants against CNNs on the ImageWoof validation dataset.

ImageNet pre-trained variants of ViT (tiny, small, base), EfficientNet (B0, B3, B5, B7) [25] and

VGG (-16, -19) [26] architectures are used, with modifications made to the final layers of the

models to adapt to ImageWoof. The transformer models are modified by replacing the original

MLP classification head with a 1-layer deep MLP block (with 10 output classes). Similarly, the

output of the last convolutional layer in the CNN models is flattened and passed to a dense layer

to generate the output logits.

Figure 3.3: Comparison of ViT and CNN models: (a) FLOPs vs accuracy, (b) Number of
parameters vs accuracy

The FLOPs vs accuracy and parameters vs accuracy trends for the models tested are plotted

in figure 3.3. Models that feature at the top-left in the two plots attain a good trade-off between

accuracy and model complexity. Comparing the families of architectures tested here, we see

that ViTs do better at this trade-off when compared to VGG models, but are beaten by the

EfficientNet models. However, it is worth noting that the ViT uses a generic architecture with

21



scope for complexity reduction unlike EfficientNet, whose architecture has been tuned over a

Neural Architecture Search to attain an optimal accuracy-complexity trade-off [25].

The goal of the following experiments is to evaluate the amount of room that is available for the ViT

architecture on the accuracy-complexity landscape. We hypothesize that substantial reductions in

FLOPs and parameters can be made without hurting the accuracy. This hypothesis is supported

by the observations made in section 2.3.

3.3 TOKEN MIXER STAGE ARCHITECTURE

The functions in the bag of token mixer contenders (figure 3.2) come from two classes. Functions

in the first class are variants of the attention mechanism and are operations that were proposed

to enhance or maintain the accuracy of self-attention with a reduced computational cost. This

class includes the following functions: focal modulation [14], shifted and windowed attention

(SWiN transformers [11]), and block and grid attention (MaxViT [12]). Functions in the second

class are relatively simpler operations such as separable convolution, average pooling, and

identity operation [17]. These provide a baseline for the accuracy that can be attained using the

MetaFormer architecture.

The encoder architecture used in the original works that propose these functions is slightly different

from that of the Vision Transformer. The associated transformer models are not monolithic, instead,

they are composed of multiple stages with each stage operating at a different patch size resolution.

Further, the operations are performed only on patches from the image, additional tokens like

the cls token are not used. Finally, since these functions involve a spatially local operation, the

input to the operations is a 2D grid of patches. This is unlike the Vision Transformer where the

image patches are flattened into a 1D sequence and input to the encoder. The architecture of the

custom token mixer stages used in this study mirrors that of the parent models from these works.

The skeletal architecture of a generic token mixer stage is shown in figure 3.4a. The 1D sequence

of tokens output by the previous MHSA stage (stage 𝑖 − 1) includes the cls token and 𝐻𝑊 image

tokens. The image tokens are reshaped to a 2D grid and passed on to the token mixer function

and MLP layers. The output 2D grid from the last MLP layer in the stage is reshaped back to a

22



1D sequence and then concatenated with the cls token. Note that the layers in the stage do not

operate on the cls token, hence this architecture relies on the following MHSA stage (stage 𝑖 + 1)

to accumulate features in the image tokens in the stage into the cls token.

(a) Layers in a Token Mixer Stage

(b) Modified Token Mixer Stage with Patch-Embed and cls Mixer layers
Figure 3.4: Architecture of a generic Token Mixer Stage used in the MetaFormer experiments

Figure 3.4b depicts a modified architecture for the stage with the following additional layers

(marked in yellow):

• Patch Embed: The 2D grid of patches is passed through a unit-strided 4 × 4 convolutional

layer before the token mixer function operates on it. This allows for some local accumulation
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of information across the tokens, potentially aiding the token mixer function.

• cls Mixer: The cls mixer layer uses linear layers to update the cls token with a weighted

sum of the old cls token and the output image tokens of the token mixer stage. For the

experiments, we used two Dense layers for the mixer layer- a depth-wise accumulator layer

that first computes a weighted sum of every token along each channel, and a channel-wise

accumulator that updates the cls token with a weighted sum of the elements from the

depth-wise accumulator output. Note that the cls Mixer updates only the cls token, the

image patches preserve the value from the token mixer stage output.

3.3.1 Token Mixer Functions

The functions used in the bag of contenders are briefly described here:

Focal Modulation

A generic feature encoding operation on a feature map X ∈ R𝐻×𝑊×𝐶 can be thought of as

performing an interaction operation T on every token x𝑖 ∈ R𝐶 in the feature map over its

neighbouring tokens, and aggregating them using an operation M. For instance, in self-attention,

the interaction operation T is performed by the attention computation between the query and key

tokens, and the aggregation operation M is performed by the multiplication of the attention map

with the value tokens.

Focal Modulation [14] differs from self-attention in that it first performs context aggregation (M)

on the input tokens through a depth-wise convolution, and then computes the interaction (T )

with a query matrix using an element-wise dot-product. Performing an early aggregation helps

reduce the computational cost of the interaction operation when compared to self-attention. The

computational cost of the interaction operation is linear in the number of tokens here, unlike

self-attention where the cost is quadratic in the number of tokens. This distinction, however, does

not affect the accuracy of the model- Focal Modulation networks in fact manage to perform better

than vanilla ViTs. Figure 3.5a highlights the operations in a focal modulation layer. Some other

ideas used in the architecture, such as hierarchical contextualization and gated aggregation, can

be found in the original paper [14].
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(a) Focal Modulation Architecture (b) Different variants of attention: Windowed & Shifted
Windowed (SWiN), and Grid Attention (MaxViT)

Figure 3.5: Token Mixer Functions that approximate self-attention with a lower
computational cost

Shifted Window Attention

One way to limit the computational complexity of self-attention from scaling quadratically with

the number of tokens is to restrict the attention computation to windows of patches in the image.

For a fixed window size, the number of windows in an image scale linearly with the image size,

while the cost of attention within a window is a constant factor. Thus, the overall cost of such an

operation is linear in the number of tokens.

A drawback of the windowed attention operation is that it can no longer accumulate global

information in a single shot, which is one of the unique selling points of self-attention. The SWiN

architecture [11] addresses this issue by shifting the windows every alternate layer within a stage.

This allows for some inter-window information accumulation across layers. The authors of [11]

demonstrate an improved accuracy on the ImageNet dataset over the original ViT models with

the SWiN architecture (table 1.2). Figure 3.5b illustrates the windowing and shifting schemes

used by the windowed and shifted-window MHSA operations.

In our experiments, we use window MHSA with a window of size 4 × 4 patches and shift the

windows by 2× 2 patches every alternate layer in the stage. In addition, we add a relative position
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bias vector to each patch in the window, as suggested by the original paper.

Block and Grid Attention

The block and grid attention mixer is inspired by the architecture used in Multi-Axis Vision

Transformers [12]. This token mixer stage follows an approach similar to the SWiN stage,

alternating between two variants of attention that accumulate local and global information

respectively. Local information is accumulated using Windowed MHSA (the block attention

operation), while grid attention is used to gather global information. In the latter operation, the

attention scores are calculated amongst patches placed regular strides apart in the image. An

example of grid attention for a window size of 4 × 4 using a stride of 2 patches is shown in figure

3.5b. The cost of grid attention too scales only linearly with the number of tokens, as the cost of

attention within a window is fixed for a given window size.

Separable Convolution

This stage is composed of an input projection layer, a separable convolution layer and an output

projection layer. We use a kernel size of 7 × 7 for the separable convolution, and upsample the

feature map dimensions by a factor of 2 in the input projection layer. A separable convolution is

used due to its lower parameter and FLOP count, compared to a standard convolution operation.

Average Pooling

In this stage, a 2D average pooling layer with a filter size of 3 × 3 and a stride of 1 is used.

This allows for some local inter-token information accumulation in the token mixing stage, but

its representation power is severely limited compared to other mixer operations used in the

experiment.

Identity Operation

Forming the baseline of the experiment is the identity operation, where the token mixer layer is

replaced by an identity layer. The only operations performed on the tokens are layer normalization

and the projections by the MLP layers. Since the MLP projections are performed on each token

individually, this stage does not perform any inter-token information accumulation.
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3.4 KNOWLEDGE DISTILLATION

Knowledge distillation [27] is a model optimization technique that is used to train and build student

models with reduced complexity (parameter count and MAC operations), from larger pre-trained

teacher models. The key idea employed here is to use the output features of the pre-trained

teacher network as soft labels to train the student network, so that the student learns to mimic

the teacher network. The student model is trained with the objective to perform well on two

metrics: teacher-student fidelity and student generalization. The former metric quantifies how

well the student model mimics the teacher’s features and is evaluated using a distillation loss

function, while the latter measures the classification accuracy of the student model on the final

validation/test dataset.

3.4.1 Distillation Hypothesis for MetaFormers

An MHSA layer in a transformer encoder learns a function mapping 𝑓𝑀𝐻𝑆𝐴 : R𝐻𝑊+1×𝐶 ↦→

R𝐻𝑊+1×𝐶 that encodes features from an input latent feature space of patches to another output

feature space. We hypothesise that a token mixer operation from the bag of contenders can be

trained to mimic the function learned by MHSA through knowledge distillation, and hence be used

to replace MHSA layers in the ViT network. We base the hypothesis on the following assumptions:

1. For most layers in a transformer, there exists some arbitrary operation 𝜏∗ that is considerably

simpler than MHSA (fewer parameters and MAC operations), and learns a mapping 𝑓𝜏∗

between the input and output latent feature spaces of the layer that is at least good as

𝑓𝑀𝐻𝑆𝐴 on the dataset of interest. The goal of this experiment hence becomes to find the

operations 𝜏 from the bag of token mixers that fit the criteria of 𝜏∗.

2. A function 𝑓𝜏 is a good approximation of 𝑓𝑀𝐻𝑆𝐴 if it achieves a low distillation loss on the

dataset of interest. That is, if the outputs of a student layer are similar to the outputs of a

teacher layer across a training dataset, the functions learned by the two layers are similar.

3. Reducing the distillation loss between a student and teacher results in better classification

accuracy of the student model on the dataset of interest. Note that this assumption is trivially

true if the student attains a distillation loss of 0 (student accuracy = teacher accuracy), but
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it’s not obvious if the assumption holds for non-zero distillation losses.

Once the suitable set of operations from the bag of token mixers are found, different configurations

of metaformer models can be constructed based on where they stand on the model accuracy

versus complexity trade-off. Leveraging knowledge distillation to build metaformer models has

the following potential benefits:

• Although the distillation is performed on a smaller dataset (ImageWoof), the student layer

learns to mimic a teacher layer that was pre-trained on a larger dataset. Hence it is possible

that the student layer learns features that would have not been learned had the training

solely relied on the smaller dataset.

• If the size of the distillation dataset required to effectively train the student through knowledge

distillation is smaller than when training from scratch, this technique can give rise to

significant savings on the training time of metaformer models.

3.4.2 Design Choices

There are four broad design choices in incorporating knowledge distillation into the metaformer

training framework. These are: (i) the granularity at which the layers are replaced and distilled,

(ii) the features that are picked to match through distillation, (iii) the loss function used to quantify

teacher-student fidelity and student generalization, and (iv) the dataset and data augmentation

strategies employed during student model training. We try out multiple options for each of these

design choices, as discussed below.

Layer Replacement Granularity

The layer replacement may be carried out at the level of a basic unit layer in the encoder

replacing each attention layer with an alternative token mixer operation (figure 3.6). This

approach can lead to more diverse metaformer configurations, with each layer (basic unit) of the

encoder employing a different token mixer operation. The objective of distillation would now be to

get each basic unit layer in the metaformer to mimic the corresponding layer in the ViT.
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Figure 3.6: Choices for granularity at which feature distillation may be performed

The second choice is to replace layers at the granularity of a stage, where an arbitrary number

of layers make up a stage. All the layers within the stage (attention and MLP) are replaced with

untrained token mixer and MLP layers. This approach allows for more flexibility in the distillation

process as the objective here is to get the output of the token mixer stage to match the output of

the stage being replaced- the individual basic units within the token mixer stage are not forced to

mimic the corresponding unit in the ViT. The depths of the outgoing MHSA stage and the incoming

token mixer stage are hyperparameters to be tuned during training.

The first approach succeeds only if each token mixer replacement attains a high fidelity score

with the corresponding attention layer. If each layer were to deviate slightly from the attention’s

outputs, there could be a compounding effect resulting in a drastically different prediction at the

network’s output.

Further, the cost of the accompanying operations in the token mixer stage (patch reshape, concat,

patch embed and cls mixer) is amortized when replacing layers at the level of a stage. Hence,

we proceed with the second choice in our experiments.

Feature Matching

Training the student network to mimic the teacher can be enforced in multiple ways. The first,

most obvious, way is to drive the output logits of the two networks to be similar. In this case, the

distillation framework tries to minimize an error metric between the output logits of the teacher
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and student networks, using the softmax of the logits of the teacher as soft labels [27]. In our

experiments, we found it difficult to tune the interior layers of the network (layers 0-8 in the 12-layer

ViT), when matching the output logits. We reckon this is because the loss landscape w.r.t. the

trainable parameters is not smooth, making the output logits less tractable from the layers being

trained. An update to the weights in the direction of the gradient may take it far away that the

updated point now corresponds to a loss value drastically different from the previous value. In

fact, on multiple occasions during the experiments, the distillation loss was driven to inf and

NaN values. This issue may be circumvented by using a smaller learning rate or by setting all the

layers that follow the token mixer stage to also be trainable, but both these steps would increase

the training time substantially.

An alternative way to get the student model to mimic the teacher is by matching the intermediate

features of the network [28; 29]. The output features of a token mixer stage are trained to resemble

the features of a corresponding stage in the ViT. Since the layers that follow the token mixer stage

in the student are common to both networks, matching intermediate features would invariably

cause the output logits of the networks to be similar. We use this approach in our experiments.

However, the output feature maps of token mixer stages are much larger than the output logits,

having a shape of (𝐻𝑊 + 1, 𝐶) (upwards of 100,000 elements per image) as opposed to the

(numClasses) elements in the output logits. Having to match large feature maps could cause

the distillation optimizer to progress slowly. The feature matching task may be simplified by

performing a reduction operation on the distillation feature map, bringing down its size. We

conduct some feature-matching experiments with the distillation feature reduced down to a shape

of (𝐻𝑊 + 1, 1) by taking the mean of the features along the channel dimension. This dimension

reduction scheme, however, comes with a loss of information on the features being matched,

making the feature distillation task less direct.

Distillation Loss Functions

A distillation loss function maps the teacher and student feature maps to a scalar value, that can

be intuitively interpreted to quantify a measure of distance between the two feature maps. It is

desired to have a loss function that closely obeys assumption #3 of the hypothesis- attaining a
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lower distillation loss should translate to better generalization, i.e. higher classification accuracy

on the ground truth labels. Additionally the landscape of the loss w.r.t. the trainable parameters

must be ’well-behaved’, avoiding extremely large or extremely low gradients- this ensures that the

distillation loss progresses consistently over multiple epochs.

If the student and teacher feature maps have different dimensions due to the custom token

mixer stage using a different patch size or patch dimension size, a linear projection is applied

on the student feature map before evaluating the loss. We try the following loss functions in our

experiments:

• Mean Squared Error: The distance of the student distillation feature map x𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ∈

R(𝐻𝑊+1)×𝐶 from the teacher feature map x𝑡𝑒𝑎𝑐ℎ𝑒𝑟 ∈ R(𝐻𝑊+1)×𝐶 is calculated as:

L2
𝑑𝑖𝑠𝑡,𝑀𝑆𝐸 =

1
(𝐻𝑊 + 1) · 𝐶

𝐻𝑊+1∑︁
𝑖=0

𝐶∑︁
𝑗=0

(x𝑡𝑒𝑎𝑐ℎ𝑒𝑟 [𝑖, 𝑗] − x𝑠𝑡𝑢𝑑𝑒𝑛𝑡 [𝑖, 𝑗])2

• Cross Entropy: This loss function measures how close the probability distributions

represented by the feature maps are. The feature maps are first flattened to a vector and

converted to a pseudo probability distribution by computing the softmax of the vector.

The cross-entropy of the student distribution p𝑠𝑡𝑢𝑑𝑒𝑛𝑡 w.r.t. the teacher distribution p𝑡𝑒𝑎𝑐ℎ𝑒𝑟

is calculated as:

L𝑑𝑖𝑠𝑡,𝐶𝐸 = −
(𝐻𝑊+1)·𝐶∑︁

𝑖=0
p𝑡𝑒𝑎𝑐ℎ𝑒𝑟 log(p𝑠𝑡𝑢𝑑𝑒𝑛𝑡)

• Maximum Mean Discrepancy: The mean square error between the feature vectors

computes the Euclidean distance between the points represented by the two vectors in the

vector space. Attaining an MSE value of 𝜖 ensures that the student feature vector is inside

a hypersphere of radius 𝜖 centered at the teacher feature vector. However, not all points

within the sphere may correspond to points with good classification accuracy on the ground

truth labels, making it difficult to enforce assumption #3 of the hypothesis with the MSE

loss. This is more pronounced if the classification accuracy inherently depends on some

patterns amongst elements in the feature vectors that are not captured by the MSE loss.

One possible way to address this is by projecting the feature vectors up to a higher
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dimensional space and computing the distance in the projected space. The distance

metric in the higher dimensional space can possibly capture more patterns in the feature

vectors, possibly improving the synergy between the distillation loss and the classification

objective on the ground truth.

Maximum Mean Discrepancy (MMD) loss [29; 30] is a generalization of the MSE loss that

employs the kernel trick to evaluate the inner product of two vectors in a higher

dimensional space without explicitly projecting the vectors to the higher dimensional space.

For a given kernel function 𝑘 : R(𝐻𝑊+1)×𝐶 ↦→ R, there exists a higher dimensional vector

space V = R𝑉 where the kernel output 𝑘 (f𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , f𝑠𝑡𝑢𝑑𝑒𝑛𝑡), for

f𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , f𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ∈ R(𝐻𝑊+1)×𝐶 is equal to the inner product of the projected vectors

f′
𝑡𝑒𝑎𝑐ℎ𝑒𝑟

, f′
𝑠𝑡𝑢𝑑𝑒𝑛𝑡

in V [31]. The MMD loss for a given kernel function 𝑘 (f𝑡𝑒𝑎𝑐ℎ𝑒𝑟 , f𝑠𝑡𝑢𝑑𝑒𝑛𝑡) is

defined as:

L2
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The following kernel functions were tested in our experiments:

1. Linear Kernel: 𝑘 (x, y) = x𝑇y; using this kernel in the above expression is equivalent

to the MSE loss.

2. Polynomial Kernel: 𝑘 (x, y) = (x𝑇y + 𝑐)𝑑 ; the inner product is computed in a feature

space over polynomials of the original features. By inspecting the binomial expansion

of this kernel function, it is evident that the loss captures correlations in the cross

terms of the feature vectors (f𝑖𝑡 · f
𝑗
𝑠 for 𝑖 ≠ 𝑗 )- this is expected to aid in a better distance

metric.

3. Gaussian Kernel: 𝑘 (x, y) = exp(− 1
2𝜎2 ( | |x − y| |22)); the inner product computed by

this kernel function can be inspected by evaluating the Taylor series expansion of the

expression- the ’higher-dimensional’ space that the inner product is computed in is in
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fact infinite dimensional.

Classification Loss: In addition to the distillation loss between the teacher and student feature

maps, we add a classification loss between the output logits of the student metaformer model

and the ground truth labels. The classification loss term can help drive the metaformer model

towards points in the loss landscape with a higher generalization on the data, if the distillation

loss fails at satisfying the assumptions of our hypothesis. We used the categorical cross entropy

function to evaluate the loss between the metaformer output logits (post a softmax operation)

and the ImageWoof data labels.

Distillation Dataset

The distillation experiments are primarily conducted on the ImageWoof dataset, training the

metaformer model to mimic the ViT outputs for inputs from the dataset. Another approach would

be to perform knowledge distillation on datasets different from the one of interest, and then fine

tune the metaformer model on the dataset of interest, after the token mixer stages learn to mimic

self-attention sufficiently well.

• Random Dataset: The outputs of the teacher and student models are matched on a

generated dataset of random images. Attaining low training and validation distillation losses

on a random dataset is indicative of the token mixer stage indeed learning to mimic the

self-attention operation, enabling the token mixer operation to replace attention in multiple

datasets. An added benefit of using a generated dataset is that we are no longer limited by

the size of the classification dataset, generating as many images as required for achieving

a low distillation loss (possibly online, resulting in savings on storage). However, a low

distillation loss on random images need not extend to the dataset of interest, and can lead

to heavier dependence on model fine-tuning post distillation. We conduct a few distillation

experiments with randomly generated datasets.

• Ensemble of Multiple Datasets: Another approach is to use a mixture of real-world

datasets for distillation. This provides more samples and diversity in the data used for
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training, and hence may fare better than performing distillation on the dataset of interest

alone [32]. We did not try this approach in our experiments due to the costs involved (higher

training time and storage requirements), but this is a future direction that can be pursued.

Additionally, we also evaluate the impact of data augmentation on training the metaformer model.

In the experiments, we use MixUp data augmentation [33], where synthetic images are generated

from the dataset by computing a weighted sum of two images sampled at random from the dataset.

In addition to improved generalization from mixing patterns from different images into a single

image, augmentation also allows for increasing the samples used for training.

3.4.3 Training Methodology

Figure 3.7 summarizes the training methodology used in the experiments. The pre-trained vision

transformer is cloned, and a self-attention stage in the clone replaced with a custom token mixer

stage, to create the metaformer model. The metaformer model is then trained on the ImageWoof

dataset using a linear combination (determined by hyperparameter 𝛼) of the distillation loss L𝑑𝑖𝑠𝑡

between the stage outputs, and the classification loss L𝑐𝑙 𝑓 w.r.t. the ground truth labels. Since

the custom token mixer stage may not always be a perfect drop-in replacement of the MHSA

stage (L𝑑𝑖𝑠𝑡 > 0), we also set the MHSA layer that immediately follows the token mixer stage as

trainable. This allows the MHSA layer to recover any loss of feature information arising from the

custom token mixer stage.

3.5 PERFORMANCE OF METAFORMER MODELS

3.5.1 Comparison of Token Mixers and Distillation Loss Functions

We study how the token mixer operation used to replace self-attention affects the accuracy of

MetaFormer models. The attention layers at the transformer’s beginning, middle, and end are

replaced in separate experiments; this helps us identify the layers of the transformer that are

critical for accuracy, and those that are most suited for replacement. The loss function used for

training is a combination of the classification and distillation losses- we use an 𝛼 value of 0.35.

For this experiment, we use the Mean Squared Error between the means of the student and
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Figure 3.7: MetaFormer Knowledge Distillation Training Methodology

teacher feature maps, computed along the channel dimension, as the distillation loss.

The accuracies of MetaFormer models generated by replacing attention blocks at the beginning

of the network are plotted in figure 3.8. The x-axis corresponds to different model configurations,

the labels describe the attention layers of the transformer that were replaced, and the token

mixer operation employed. For example, "Focal_2_6" implies that attention layers 2-6 and the

accompanying MLP layers in the ViT were replaced by a Focal Modulation stage. The accuracy

of the parent ViT model is marked by the horizontal line in the figure.

It is quite apparent that replacing the initial attention layers in the network adversely impacts the

model’s accuracy, with all the configurations tested showing a drop in accuracy of around 15%.

Figure 3.9 plots the accuracies of the MetaFormer models when attention layers towards the end

of the network are replaced. Note that the last self-attention layer in the network is left untouched,

as it may help recover features that may have been missed by the token mixer layers prior to it.

We observe that the MetaFormer models fare better here, with most configurations attaining the

same accuracy, if not a slightly higher accuracy, than the baseline parent model.
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Figure 3.8: Accuracy of MetaFormer Models when Attention Layers at the beginning are
replaced

Figure 3.9: Accuracy of MetaFormer Models when Attention Layers at the end are replaced

The trends from the two plots suggest that the initial attention layers of the network focus on

accumulating both local and global feature information from the image, while the later layers focus

more on feature information present locally. This explains why replacing attention with token

mixers that predominantly focus on extracting local information results in poor accuracy when the

initial layers are replaced, but works well when replacing the later layers.
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Figure 3.10: Accuracy of MetaFormer Models when Attention Layers 6-11 are replaced

Finally, figure 3.10 plots the accuracies of MetaFormer models when layers 6-11 in the network

are replaced. These models too attain accuracies in the vicinity of the parent model, and promise

higher savings in compute cost over those listed in figure 3.9.

It is also worth noting that in all three cases, there isn’t a substantial diversity amongst different

token mixer operations in terms of the accuracy attained. In fact, the "MetaFormer baseline"

accuracy provided by the Identity Former configuration is quite high, hitting around 73% when it

is used to replace layers at the beginning, and upwards of 85% when it replaces layers towards

the end of the network.

Next, we compare different distillation loss functions. Here, we consider replacing layers 6-11

of the parent ViT with Focal Modulation, SWiN, or untrained Self-Attention layers. We vary the

loss function used and the features to be matched while training the corresponding MetaFormer

models. Comparing the results of the experiment for Focal Modulation and SWiN with that of the

untrained Self-Attention MetaFormer allows us to identify differences in the behaviour of the token

mixer contenders and self-attention, if any, during model training.

The distillation loss functions used here are Cross Entropy, Mean Squared Error (MSE), and

Maximum Mean Discrepancy (MMD) losses, computed on the flattened feature vector. We also

conduct experiments with MSE loss computed on the reduced mean of the feature vector (labelled
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Figure 3.11: Accuracies of MetaFormer Models when trained using different Knowledge
Distillation Loss Functions

as ’MeanMSE’ in the fig. 3.11). The MMD loss uses a polynomial kernel of degree 4. The results

of the experiment are depicted in figure 3.11.

The results in the above plot highlight three interesting trends:

1. Using Cross Entropy and MMD loss functions for distillation leads to higher accuracies of

the MetaFormer model when compared with the MSE loss function. This could be due to the

fact that the two loss functions use more sophisticated mappings from the teacher-student

feature vector space to scalar loss values, while MSE computes the Euclidean distance

between the two vectors.

2. Evaluating the MSE loss on the reduced mean feature vector ("MeanMSE") leads to a

higher accuracy than evaluating it on the entire flattened vector. This is seen despite the

obvious loss in feature information that arises from the reduction operation. However,

performing the reduction on the feature vectors simplifies the MSE minimization task, which

means that it is more likely for the loss to get driven toward the minimum when the loss is
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calculated on the reduced feature vectors. Further, if the elements along the channel axis

are correlated, the loss in feature information upon performing the reduction operation may

not be drastic, allowing the model to hit higher accuracy values.

3. A similar trend is observed when the attention layers are replaced with untrained self-

attention layers. This shows that the trends observed are related to the loss functions and

the distillation methodology used, and are not heavily reliant on the token mixer operation

of choice. Plus, as is evident from the plot, the Self-Attention MetaFormer models (marked

in orange in fig. 3.11) are unable to attain the accuracy of the parent ViT, despite having an

identical architecture. Thus, the distillation-based training methodology used here dwarfs

in comparison to pre-training the layers on large datasets.

3.5.2 How Effective is Knowledge Distillation?

The MetaFormer models are trained with a dual objective of reducing the classification loss on

the ground truth labels and the distillation loss on the features from the parent ViT model. It is

imperative to evaluate the role of each of these loss objectives in arriving at the final MetaFormer

model. To do so, we devise an experiment wherein we train models separately with only one

of the two loss functions. The accuracies of the models trained with the three loss objective

schemes (classification only, distillation only, classification + distillation losses) are compared to

gain insights into the roles of the loss functions.

Figures 3.12a and 3.12b depict the results of this experiment for different token mixer operations.

In these figures, we plot the top-1 accuracy attained by the model along with the training and

validation distillation loss values. While training with a classification loss alone, the corresponding

distillation loss is monitored for the sake of comparison. The trends from this experiment are

summarized below:

1. Training with a classification loss allows the MetaFormer model to attain the same accuracy

as when trained on classification + distillation losses, but the validation distillation loss

is substantially higher. This implies that the MetaFormer model can achieve a decent

accuracy without mimicking the parent ViT model.
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(a) Replace with Focal Modulation and Pooling Operations (layers replaced marked in blue)

(b) Replace with untrained Self-Attention and SWiN Operations (layers replaced marked in blue)
Figure 3.12: Comparison of Model Accuracy and Distillation Loss when trained with and

without the Knowledge Distillation Loss Objective
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2. Training on the distillation loss alone leads to MetaFormer models with poor accuracy

(≈ 10%, which is equivalent to uniformly random guessing). However, the models have a

low distillation loss with respect to the parent ViT’s features. This indicates that the model

learns to reduce the distance between its features and the parent ViT without effectively

learning to mimic the parent ViT.

Figure 3.13: Evolution of Classification, Distillation Losses and Accuracy with the number
of epochs when trained with a Classification Objective alone

The evolution of the classification and distillation loss values, and the model accuracy with the

number of epochs during a training run are plotted in figures 3.13, 3.14 and 3.15. Figure 3.13

depicts the progression of the losses and accuracies for a Focal Modulation MetaFormer trained

solely on the classification loss (replacing layers 2-6; final accuracy ≈ 73%). We see that the
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corresponding model suffers overfitting (validation accuracy and classification loss stagnates while

training accuracy and classification loss improve consistently), without making any improvements

on the distillation loss front.

Next, in figure 3.14, we see that when trained with both loss functions, the distillation loss takes

a smaller value from the first epoch and improves consistently. Further, there is no evidence of

overfitting on the distillation loss as the values are quite similar when evaluated on the training

and validation sets.

Figure 3.14: Evolution of Classification, Distillation Losses and Accuracy with the number
of epochs when trained with both Classification and Distillation Objectives

Finally, the evaluation of losses and accuracies when trained with a distillation loss alone is plotted

in figure 3.15. Here, we see constant improvements in the distillation loss (sans overfitting),

without any meaningful impact on the classification loss or accuracy.
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Figure 3.15: Evolution of Classification, Distillation Losses and Accuracy with the number
of epochs when trained with a Distillation Objective alone

The above results lead us to the following insights:

1. The improvement in accuracies of the MetaFormer models are driven entirely by the

classification loss between the output logits and the ground truth. The results in figure

3.12 prove that MetaFormer models can attain decent accuracy even if their intermediate

features are drastically different from that of the parent ViT for the same input image. We

believe this is because the intermediate features belong to a huge vector space- it is likely

that multiple unrelated points in this vector space correspond to features that result in good

accuracy.

2. Bringing a knowledge distillation loss into the training mix helps bring the intermediate
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features of the MetaFormer model and the parent ViT closer but isn’t sufficient for the

model to mimic the parent. We see that the distillation loss does not go all the way to 0,

regardless of the number of epochs the model is trained. This stagnation in the distillation

loss indicates that there is always a finite non-zero distance between the teacher and

student, which is significant enough to hurt student-teacher fidelity.

3. The results in figure 3.12 show that models using the same token mixer operation can end

up with high accuracy and high distillation loss, high accuracy and low distillation loss, or low

accuracy and low distillation loss depending on the loss functions used. This highlights the

lack of correlation between the classification and distillation losses, which seems to be the

Achilles’ heel of this training methodology. One of the core hypotheses of the Knowledge

Distillation hypothesis (section 3.4.1) is that reducing the distillation loss would invariably

lead to models with higher classification accuracy. However, this does not appear to be

true so long as the distillation loss assumes finite non-zero values.

3.5.3 Self-distillation using random dataset

In this set of experiments, we attempt to transfer the parameters of a layer to an untrained copy

of itself using knowledge distillation. We spawn two copies of a layer, assign one the role of

a teacher and another the role of a student, and train the student using a distillation loss on a

dataset generated randomly. We conduct this experiment on Self-Attention layers and small

Dense networks, and compare the distillation loss attained at the end of 30 epochs for both

sub-networks. The training and validation losses, in the log scale, are plotted in figure 3.16.

We see that the distillation loss attained by the Dense networks are orders of magnitude lower than

that attained by the Self-Attention operation. This is seen despite some of the dense networks

tested having more trainable parameters than the self-attention student model (table 3.2). This

suggests that the nature of the operation being trained also impacts the effectiveness of the

distillation scheme. That is, since the class of functions that can be approximated by dense

networks is limited in comparison to those that can be approximated by self-attention, owing to

the versatility of the attention mechanism, the distillation task is possibly simpler. Thus, while

the number of trainable parameters may function as a suitable proxy of the complexity of the
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distillation task when comparing two networks employing the same set of functions, it may not

extend when comparing networks employing different functions.

Model
# params

(1000s)

# params

(w.r.t. Attention)

Self Attention 148.224 1

Dense-1L-192 37.056 0.25

Dense-5L-192 185.28 1.25

Dense-5L-768 2067.648 13.95

Table 3.2: Number of parameters of networks tested in Self-Distillation Experiments

Figure 3.16: Self-Distillation: Distil from a subnetwork to an untrained copy of itself

So far, the student models were initialized with a random set of weights that were uncorrelated

with the teacher’s weights. In the following experiment, we evaluate if initializing the student with

weights that are correlated with the teacher’s trained weights simplifies the distillation process.

Given weights 𝜃𝑟𝑎𝑛𝑑 that are uncorrelated with the teacher’s weights 𝜃𝑇 , we pick the weights

corresponding to a point on the line connecting the two sets of points and assign it to the student
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(a) Self-Distillation on Attention: initialize student with teacher’s weights + random noise

(b) Self-Distillation on Conv2D: initialize student with teacher’s weights + random noise
Figure 3.17: Initialize Student’s Weights to aid the Self-Distillation process; the proximity

of student’s initial weights to the teacher’s is controlled by 𝛼
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model [34]. Thus, the student’s weights 𝜃𝑆 equals (1 − 𝛼) · 𝜃𝑟𝑎𝑛𝑑 + 𝛼 · 𝜃𝑇 for 𝛼 ∈ [0, 1]. The

value of 𝛼 is used to vary the proximity of the student’s weights to the teacher’s weights. An 𝛼

value of 1 corresponds to initializing the student model with the trained weights of the teacher,

while a value of 0 corresponds to initializing the student with random uncorrelated weights.

In figure 3.17, we compare the distillation losses of Attention and Conv2D student networks

when trained through self-distillation, with the weight initialization scheme mentioned above. As

expected, for both networks, initializing the student with the teacher’s weights (𝛼 = 100%) results

in a distillation loss of 0 (across all epochs). Reducing the 𝛼 value causes the distillation loss to

increase accordingly. However, it is worth noting that the distillation loss of the Conv2D student

model is significantly lower than the attention model. This is in accordance with the result from fig.

3.16- performing distillation on "simpler" (less versatile) networks is perhaps easier than on more

versatile networks.

Can student attention layers trained through self-distillation replace the teacher layers in the

parent ViT model? We pick attention layer #6 of the parent ViT as the teacher layer, initialize

the student’s weights as a mix of the teacher’s weights and random weights, and substitute the

student in the teacher’s place in the parent ViT post-distillation. The distillation loss and the ViT

accuracy on substitution for different values of 𝛼 is plotted in figure 3.18.

When the student is initialized far away from the teacher’s weights (𝛼 < 25%), the model optimizer

struggles to reduce the loss between the teacher and the student. Consequently, the accuracy

upon substituting the student layer into the ViT is low. However, when the student is initialized

closer to the teacher’s weights, the student is able to more or less match the accuracy of the

parent ViT upon substitution. Further, we see some correlation between the distillation loss and

the final model accuracy in this figure, unlike the trend in figure 3.12. The additional context

provided by correlating the student’s initial weights with the teacher’s trained weights possibly

helps provide some coupling between the distillation loss and the classification accuracy- the

weight initialization perhaps incentivizes the model optimizer to reduce the distillation loss along

a path that results in better classification accuracy. Unfortunately, since the weight initialization

experiment can be carried out only when the teacher and the student networks are the same,
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Figure 3.18: Self-Distillation: Loss values for varying 𝛼 (scatter plot) and Model Accuracy
upon substituting the student layer back into the parent ViT

we could not train other MetaFormer models using this technique, and thus could not validate if

initializing MetaFormers with weights correlated to the parent transformer is an antidote to the

pitfalls of the distillation methodology.

3.5.4 Tweaking the Token Mixer Stage Architecture

The token mixer stage architecture described in section 3.3 includes two optional layers that were

proposed to aid the token mixer operations in the stage. The first layer, clsMixer, is a Dense

layer that is devised to accumulate some information from the image tokens to the classifier (cls)

token, without altering the image tokens. This layer, if used, is appended at the end of the token

mixer stage. The second layer that was proposed is a patch-embed layer. This is a Conv2D

layer added at the beginning of %the stage and is aimed at aiding the token mixer layers by

accumulating some features between neighboring patches in the input image.

Figure 3.19 plots the accuracy of some MetaFormer models with and without a clsMixer layer

in the stage. We see that when the replaced token mixer stage is followed by an attention layer

from the original ViT, using a clsMixer is detrimental to the model’s accuracy. This suggests
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Figure 3.19: Comparing the accuracies of MetaFormer models with and without a clsMixer
layer at the end of the Token Mixer Stage

that the attention layer that follows the token mixer stage is better at accumulating information

from the image tokens to the cls token than the clsMixer. Using a clsMixer may cause some

of the information in the cls token from the previous layers to get corrupted, leading to a drop in

accuracy.

The configuration "Focal_8_12" corresponds to replacing layers 8-12 of the ViT with a Focal

Modulation stage. Since the last attention layer is removed in this configuration, the features

from the image tokens are not accumulated into the cls token, when no clsMixer is used.

Naturally, this causes this model to have a poor accuracy, as the classification head uses the

cls token to produce the output logits. Adding a clsMixer in the configuration allows for some

information accumulation into the cls token pushing the accuracy to 79%. Thus, in the absence

of an attention layer, the clsMixer can be used to do a decent job of gathering information from

the image tokens. However, attention does a better job than a Dense layer at this, and hence it

makes sense to have at least one attention layer following a Token Mixer stage.
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Figure 3.20: Comparing the accuracies of MetaFormer models with and without a
patch-embed layer at the beginning of the Token Mixer Stage

Figure 3.21: Enhancing MetaFormer accuracies using MixUp Data Augmentation and
Dropout Regularization- using AugReg leads to a 1-2% improvement in
accuracy
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(a) Accuracies of MetaFormer models picked for comparison

(b) Theoretical FLOPs per inference pass for the MetaFormer models relative to parent ViT

(c) Measured Latency on Tesla-T4 GPU for the MetaFormer models relative to the parent ViT
Figure 3.22: Accuracy, FLOPs and Latency of MetaFormer models relative to parent ViT-Tiny
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In figure 3.20, we compare the accuracies of models with and without a patch-embed layer.

We see that using a patch-embed layer enhances the accuracy by around 1-2%. This is as

expected, since the convolution operation in the patch-embed layer accumulates features from

neighbouring patches, aiding the token mixer operations in the stage.

Finally, we evaluate the impact of using data augmentation and regularization in the training

process. We use mixup data augmentation and dropout regularization, as suggested in [35].

Using augmentation and regularization (augreg), leads to an increase in accuracy by 1-2%, as

is evident from figure 3.21. This is in line with the trends observed for Vision Transformers in

general.

3.5.5 Complexity-Accuracy Trade-off

In this subsection, we analyze how the MetaFormer models fare on reducing the model

complexity. We evaluate the theoretical FLOPs per inference pass for the models, and measure

their average latency over 100 inference passes. The inference tests are conducted on an NVidia

Tesla-T4 Tensor Core GPU (Turing Architecture) [36] using the XLA compiler [37].

Figure 3.22 depicts how some MetaFormer models built on the ViT-Tiny parent model fare on the

accuracy, FLOPs and latency trade-off. The theoretical FLOPs plotted in fig. 3.22b are relative to

the FLOPs of the ViT-Tiny model. The Pooling and Identity Former variants manage to reduce

the FLOPs to 0.7× of the parent model, while limiting the accuracy drop to 3%.

The measured latency of the models are plotted in figure 3.22c. The numbers reported here are

mostly consistent with the numbers for theoretical FLOPs. A reduction in FLOPs to around 0.9×

of the parent for "Focal-Ti|2-6" and "Pool-Ti|2-4" variants lead to a speedup of around 1.1×

(≈ 1
0.9 ). Similarly, the "Pool-Ti|6-11" and "Iden-Ti|6-11" variants see a speedup upwards of 1.4×

(≈ 1
0.7 ).

Figure 3.23 visualizes where MetaFormer models sit on the Accuracy-FLOPs trade-off landscape.

The parent ViT models (Tiny, Small and Base variants) are marked in blue, and their MetaFormer

clones are marked in green. We see that while the Tiny MetaFormer models manage to match

the accuracy of ViT-Tiny, the larger MetaFormers struggle to match their parent models.
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Figure 3.23: Accuracy v/s FLOPs for MetaFormer Models and their parent ViTs

3.6 CONCLUSION

The goal of this set of experiments was to build lightweight MetaFormer models from pre-trained

Vision Transformers. The model training methodology was devised with the aim of distilling the

parent transformer’s learning (from its pre-training phase) into the MetaFormer clones without

having to train each MetaFormer on a massive dataset. There were three key components in this

training methodology:

• Train only the layers replaced- use weights trained through pre-training for all the remaining

layers.

• Train the new layers in the MetaFormer on a classification loss objective- train the layers

such that the model gets most of its output predictions correct.

• Distillation objective- train the new layers such that its output features resemble the output

features of the attention layers that were replaced.
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From the results, we see that the distillation objective failed in achieving its intended role. That

is, while the optimizer did reduce the gap between the feature maps of the MetaFormer and the

parent ViT, as defined by the distillation loss, the MetaFormer model failed to resemble the parent

ViT. Thus, the optimizer was unable to transfer the parent ViT’s learnings from its pre-training

phase to the MetaFormer.

The improvements in accuracy made by the MetaFormer models were due to the classification

loss objective. Interestingly, these experiments show that MetaFormers employing untrained

token mixer layers can be made to achieve an accuracy of around 85%-90% on a dataset such

as ImageWoof without resorting to pre-training on larger datasets. Standard training techniques

employed while training transformers such as data augmentation and regularization, help improve

the accuracy of the models further without overfitting on the training dataset. Plus, the distillation

loss behaved like a regularization term, since it was included as an additive term in the loss

function, restricting the models from overfitting.

The accuracy results for the "Small" and "Base" variants of MetaForfmers in figure 3.23 highlight

the limit of this training methodology. The MetaFormer models are unable to attain an accuracy

beyond 90% despite the parent ViTs scoring north of 93% and 96% respectively. This indicates

that further improvements in accuracy cannot be got without performing pre-training on larger

datasets. Although the token mixer stages of the MetaFormers do not use attention layers, the

MLP layers in the stage start off with a poor inductive bias and would benefit from pre-training.

3.6.1 Why did Knowledge Distillation fail?

Now that we understand the role played by the classification objective and its gaps in building

MetaFormer models, we move on to understand why Knowledge Distillation failed in its objective.

First, we see that the optimization task at hand in the distillation objective is more difficult than

the optimization task for classification [34]. L. Beyer, et. al., [32] suggest training models over a

large number of epochs (of the order of 1000s) in order to circumvent this issue and attain low

distillation losses. This however would lead to long training schedules, hurting the prospects of

building MetaFormer models quickly at a low cost.

The knowledge distillation hypothesis was based on three assumptions. To recap, these were:
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1. Attention layers in a ViT can be replaced by some simpler token mixing operations without

a considerable drop in accuracy. This assumption is validated by the fact that some

MetaFormer models outperform the parent transformer in accuracy.

2. Attaining a low distillation loss on the dataset implies the student and teacher models

approximate similar functions. We see that the distillation loss between the student and

teacher models is consistent post-training, regardless of the input images or the dataset

it was trained on. In this sense the functions approximated by the two models are similar.

However, the distillation loss isn’t low enough for the student model to be considered as a

functional replica of the teacher model.

3. Reducing the distillation loss between the student and teacher models invariably leads

to higher classification accuracy on the dataset. This isn’t true, since we see in figure

3.12 examples of models with low distillation loss and low classification accuracy, and

high distillation loss and high classification accuracy. The underlying reason behind this

is that the classification and distillation losses were uncoupled. The feature matching is

performed in a vector space with a large dimension, and attaining a distillation MSE loss

of 𝜖 here implies the student model is at a point on a sphere of radius 𝜖 that is centered

at the teacher model. Now, all the points on this sphere need not correspond to good

classification accuracies on the dataset. The trick here is to communicate to the model

optimizer to tread along a path that improved classification accuracy while reducing the

distance between the two models. One way to achieve this would have been to devise the

two loss functions such that they were correlated. This is an open problem for us at the

moment and is a possible direction to pursue in the future.
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CHAPTER 4

SPARSITY EXPERIMENTS ON LINEAR LAYERS

As observed in section 2.2, a significant chunk of a Vision Transformer’s complexity comes from

the dense linear projection and MLP layers. These dense layers are often over-parameterized

mappings from one latent feature space to another within the transformer. During model training,

it helps to have such over-parameterized function mappings as constituent layers since it aids in

making the architecture more versatile. However, once trained, these layers can be skimmed

down, by removing redundant parameters, to just the required amount of sophistication.

The dense layers within a ViT are likely to be sparse due to their nature to be over-parameterized.

This means that a substantial number of weights within each layer are zero or have an absolute

value very close to 0. This presents an opportunity to skip the computations with the 0 elements

in the weights. In addition to reducing the number of FLOPs required for a forward pass, this also

leads to fewer memory accesses since the 0 elements in the weight matrices are not required to

be fetched.

A trained network is sparsified through a series of steps. First, the layers undergo pruning. In this

step, the elements in the weights that are 0 or close to 0 are rounded off to 0, and the remaining

non-zero elements are left as is. Then, the layers go through a few iterations of re-training.

During this step, the zeroed-out weights are frozen at 0 while the non-zero elements are set to

be trainable. This re-training step is required to recover any degradation in the layer’s learning

arising from pruning. Following this, the weight matrices are compressed to a sparse format that

stores the non-zero elements along with some metadata indices. The metadata indices contain

information about the locations of the non-zero elements; these are used during inference for

selecting the input elements that are multiplied with the non-zero elements.

Naturally occurring sparsity patterns in the weights tend to be irregular. Irregular sparsity patterns

are challenging to speed up since they are not cache or SIMD-execution friendly. In contrast,

if the sparsity pattern is regular and known ahead of time, it is easier to achieve a speed-up in



Figure 4.1: Illustration of pruning data to the 2:4 sparse format

computations by making modifications to the hardware unit and/or by writing code that optimizes

cache latency and hardware utilization. In this chapter, our focus is on the 2:4 sparsity pattern

that is supported by the latest generations of NVidia GPUs, starting with the Ampere architecture

[38; 39].

4.1 2:4 STRUCTURED SPARSITY

The 2:4 structured sparsity pattern constrains 2 elements out of every 4 contiguous elements in a

row to be 0. This ensures that the matrix is locally sparse while maintaining 50% sparsity globally.

This simplifies the sparse storage format for the weights. The metadata indices now have to only

store the index of the non-zero elements within the block of 4 elements in the row, which requires

only 2 bits per non-zero element in the block. An example of a matrix pruned to the 2:4 sparsity

pattern is shown in figure 4.1. Further, ensuring the matrix is locally sparse allows the hardware

unit to speed up Sparse Matrix Multiplication with minimal hardware overhead.

The NVidia Ampere GPU architecture has a Tensor Core block in every streaming multiprocessor

(SM) for accelerated Matrix-Matrix Multiplication (GEMM) operations. Tensor Cores are systolic

array based hardware accelerators that are designed to handle dense matrices. In the Ampere

architecture (and subsequent GPU architectures), the Tensor Cores are modified to additionally

handle 2:4 sparse weight matrices. The non-zero data elements from the weight matrices are

propagated to the Tensor Core, while the input activations are routed through a multiplexer (figure
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Figure 4.2: Modifications made to Tensor Core Hardware for supporting 2:4 sparse weights

4.2). The metadata indices of the weights are used as select bits of the multiplexer to pick the

elements from the input matrix that are multiplied with the non-zero weight elements. The 50%

sparsity in the weights allows the GPU to populate the Tensor Cores with input activations that are

2× larger than the inputs supported for Dense-Dense matrix multiplications. Hence, 2:4 sparsity

enables a theoretical speedup of 2× without making major overhauls to the Tensor Core hardware.

The peak FLOPS rates of Ampere GPUs with and without 2:4 sparsity enabled is reported in

table 4.1.

GPU
Tensor Core
Peak FLOPS

(FP16)

Sparse Tensor Core
Peak FLOPS

(FP16; 2:4 sparse)
A10 125 TFLOPS 250 TFLOPS
A30 165 TFLOPS 330 TFLOPS
A40 150 TFLOPS 300 TFLOPS
A100 312 TFLOPS 624 TFLOPS

Table 4.1: Peak Tensor Core FLOPS rates of NVidia Ampere GPUs
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4.1.1 Software Support for 2:4 Sparsity

Software libraries for pruning trained Neural Network models to 2:4 sparse format, and re-training

them post-pruning are available in PyTorch [40] and TensorFlow. These libraries follow a process

flow similar to the one described at the beginning of this chapter. These libraries additionally

perform column permutations, if necessary, before pruning in order to distribute the low-magnitude

elements along the rows. This reduces the chance of relatively larger values from being pruned

away due to them being the smallest within a block of 4 elements in the row [41]. Published

works from NVidia [39; 41] have demonstrated that pruning Convolution and Dense layers in

Neural Networks to 2:4 sparsity does not significantly hurt the model accuracy; some models also

outperform the original model post-sparsification as the exercise helps them generalize the data

better.

During inference, the sparsity feature of the Tensor Cores can be enabled using NVidia’s TensorRT

compiler [42]. The compiler handles converting the sparse weights to the 2:4 format, and invoking

appropriate CUDA kernels for performing sparse GEMM computations on the Tensor Cores.

4.2 ANALYSIS OF LAYERS IN THE VISION TRANSFORMER

The peak speedup that can be got from enabling 2:4 sparsity on the Ampere Tensor Cores is

2×, over the dense compute mode. Under what circumstances is a model likely to achieve this

speedup? And, which layers in the transformer should be sparsified for optimizing the speedup-

accuracy trade-off? Layers that are unlikely to provide a speedup post-sparsification are skipped

to minimize the degradation in accuracy. We analyze the dense layers in the transformer using

the roofline model [43].

4.2.1 Roofline Model

The roofline model is a simple and intuitive performance model that relates the compute

performance to DRAM bandwidth. This model can be used to estimate when programs are likely

to hit the peak FLOPS rates of a processor. While it does not account for cache latency and

bandwidth, and synchronization costs for parallel processors, it provides bounds to a first-order
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Figure 4.3: Roofline Model Plot for Ampere A10 GPU

for the maximum FLOPS rates that can be achieved.

The roofline model plots the maximum attainable FLOPS rate versus the operational intensity of

a program. The operational intensity is defined as the number of compute operations (typically

FLOPs) that are performed for every byte of data accessed from RAM. Data accesses from

DRAM are limited by the DRAM bandwidth and often becomes the bottleneck of programs with

low operational intensity. Thus, such programs operate in the Memory Bound regime, where the

peak FLOPS rate that can be achieved is linearly dependent on the operational intensity. For a

processor with a DRAM bandwidth 𝐵𝑊 , the maximum FLOPS rate achieved by a program with

an operational intensity 𝑥 is 𝐵𝑊 × 𝑥. At high enough operational intensities, however, the

execution is limited by the peak FLOPS rate of the processor. Such programs, operating in the

compute-bound regime, perform enough operations for every byte accessed that the DRAM

latency is effectively hidden. The knee point of this plot is the point where the program is both

compute and memory bound. This occurs when the operational intensity 𝑥 =
𝐹𝐿𝑂𝑃𝑆𝑝𝑒𝑎𝑘

𝐵𝑊
. The

roofline model for the Ampere A10 GPU’s specifications is plotted in figure 4.3.
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4.2.2 When to prune a layer?

The speedup of 2:4 sparse models comes from the fact that the Tensor Cores can now be packed

with input activations that are 2× larger than when performing dense computations. The Tensor

Cores need only perform half the number of operations as the original model to complete the

matrix multiplication task for a given input activation matrix. Thus, when operating at the peak

FLOPS rate, the Tensor Cores complete computations with a given input matrix at twice the

speed when operating on sparse weights, effectively attaining a 2× speedup in the FLOPS rate

over the dense compute mode. However, this speedup is attained only when the sparse model

operates in the compute-bound regime. If the sparse model falls in the memory-bound regime,

the maximum attainable FLOPS rate is lower than the peak FLOPS rate and is dictated by the

memory bandwidth and the operational intensity of the program.

For a linear layer, let 𝐼𝐵 and 𝑊𝐵 be the number of bytes occupied by the input activation and

(dense) weight matrices. The number of DRAM accesses required is approximately equal to

𝐼𝐵 +𝑊𝐵, assuming a word once accessed from DRAM is available in the cache throughout its

lifetime in the program. Let the number of floating point operations to perform a forward pass be

𝐹. Then, to a first-order approximation, the operational intensity for a dense implementation of

the linear layer is:

𝑂𝑝𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝐹

𝐼𝐵 +𝑊𝐵

= 𝑂𝐼𝑑𝑒𝑛𝑠𝑒

Pruning the linear layer to the 2:4 sparse format leads to the following changes. The number of float

operations required reduces to 𝐹
2 and the number of DRAM accesses required is approximately

𝑊𝐵

2 + 𝑊𝐵

8 (the number of bytes occupied by the metadata indices is one-fourth the number of

bytes occupied by the non-zero elements since each index uses 2 bits). The input activations are

streamed to the Tensor Cores, and the entire matrix is fetched from the DRAM- the multiplexing

step happens right at the tensor core. Therefore, the number of DRAM accesses for fetching the

input activations remains the same at 𝐼𝐵. The operational intensity of the sparse implementation

of the linear layer is thus:

𝑂𝑝𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =

𝐹
2

𝐼𝐵 + 𝑊𝐵

2 + 𝑊𝐵

8
= 𝑂𝐼𝑠𝑝𝑎𝑟𝑠𝑒
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Dense Model
Regime

Sparse Model
Regime

FLOPS rate of Sparse
Model (rel. Dense) Theoretical Speedup

Memory-Bound Memory-Bound 0.5× 1×
Compute-Bound Memory-Bound ∈ (0.5, 1)× ∈ (1, 2)×
Compute-Bound Compute-Bound 1× 2×

Table 4.2: Theoretical Speedup of Sparse Model w.r.t Dense Model based on the region of
operation

Typically, 𝐼𝐵 >> 𝑊𝐵 since the input activations have multiple channels that share the same set of

weights. This means that

𝑂𝐼𝑠𝑝𝑎𝑟𝑠𝑒 ≈
𝐹
2
𝐼𝐵

≈ 𝑂𝐼𝑑𝑒𝑛𝑠𝑒

2

Due to the monotonous non-decreasing nature of the roofline plot, the above equation mandates

that the FLOPS rate attained by the sparse model is less than or equal to the FLOPS rate of the

dense model. The FLOPS rates are equal only if both the models operate in the compute-bound

regime.

Table 4.2 summarizes the theoretical speedup of the sparse model with respect to the dense

model for different operating regions of the models. Since the operational intensity of the sparse

model is approximately half that of the dense model, the FLOPS rate attained by the sparse

model in this condition is half of that of the dense model. This leads to a speedup of 1× as the

number of operations performed by the sparse model is also half that of the dense model. When

the dense model is compute-bound and the sparse model is memory-bound, the relative FLOPS

rate of the sparse model lies in the range (0.5, 1), resulting in a speedup in the range (1, 2).

Finally, when both models are compute-bound, they operate at the peak FLOPS rate, and the

sparse model attains a speedup of 2. It is worth noting, however, that even when both models are

compute-bound it is difficult to attain the theoretical speedup of 2× due to all the second-order

cache and synchronization delays ignored by this model.

4.2.3 Region of Operation of Linear Layers in a ViT

We estimate the number of FLOPs and memory accesses in bytes per forward pass for linear

layers in a vision transformer, and compare the theoretical operational intensity against the

bandwidth and peak FLOPS rate metrics of the Ampere A10 GPU. Within a layer in the encoder,
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Model
Variant Layer Dense Implementation

Regime
Sparse Implementation

Regime
MLP-Dense0 compute compute
MLP-Dense1 memory memory
Attn-InProject compute compute

Attn-OutProject memory memory
Tiny-16

Outro-MLP memory memory
MLP-Dense0 compute compute
MLP-Dense1 compute memory
Attn-InProject compute compute

Attn-OutProject compute memory
Small-16

Outro-MLP memory memory
MLP-Dense0 compute compute
MLP-Dense1 compute compute
Attn-InProject compute compute

Attn-OutProject compute compute
Base-16

Outro-MLP memory memory

Table 4.3: Operating Regimes of Linear Layers in different Vision Transformers, on an
Ampere A10 GPU

the attention block contains a qkv-projection layer ("Attn-InProject") and an output projection layer

("Attn-OutProject"). The MLP block consists of two dense layers, ("MLP-Dense0" and "MLP-

Dense1"). All the layers in the encoder are identical with regard to the number of parameters and

float operations; hence we can expect the impact of pruning on the throughput to be independent

of the layer where it is performed. Table 4.3 lists the regimes of operation for these layers in the

tiny, small and base variants of a ViT. The outro-MLP in the classifier head of the network is also

considered in this analysis, however, this layer turns out to have too small an operational intensity

for all variants of the transformer and hence is not suitable for pruning.

For the tiny variant, we see that the "MLP-Dense0" and "Attn-InProject" layers are compute-bound

under both implementation scenarios. In contrast, the "MLP-Dense1" and "Attn-OutProject" layers

are memory-bound for both dense and sparse implementations, implying that pruning would not

lead to a speedup for these layers. This difference arises from the fact that the input activations

to the former set of layers ("MLP-Dense0" and "Attn-InProject") are smaller than that for the

latter set of layers. As the variants get larger (small and base), the number of float operations

performed grow faster than the size of the input activations. Therefore, the "MLP-Dense1" and

"Attn-OutProject" layers move towards the compute-bound regime as the variants get larger.
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4.3 ACCURACY RESULTS

Figure 4.4 compares some sparse ViT model configurations against their corresponding parent

models on accuracy, theoretical FLOPs and number of trainable parameters. In general we

see that the ViT linear layers are fairly immune towards 2:4 sparsity pruning. For instance, the

ViT-Tiny variant maintains an accuracy of 89% (a drop of < 1%) despite pruning linear layers in

the last 8 encoder layers (config. "Ti|4-11"). Similarly, the "S|7-11" configuration preserves the

accuracy of the ViT-Small variant while using sparse linear projections in the last 5 layers of the

encoder network (fig. 4.4a). The "Ti|8-11" configuration prunes layers 8-11 in the transformer and

manages to outperform the parent model- this is in line with the trends reported by NVidia in their

whitepapers [39; 41]. Pruning layers to 2:4 sparsity help reduce overfitting in over-parameterized

networks, which can lead to the models learning better generalization in the process. However, as

was observed in the experiments from the previous chapter, preserving the accuracies of larger

ViT models is challenging. The sparse configurations corresponding to the base variant perform

rather poorly compared to the parent model- pruning just the last encoder layer alone leads to

an accuracy drop > 1%. We reckon this can be addressed by re-training the sparse models on

larger datasets and by using more sophisticated data augmentation techniques.

The reduction in theoretical FLOPs per forward pass, relative to the respective parent models, is

plotted in figure 4.4b. "Ti|4-11" and "S|7-11" position themselves as the best-performing models

as they reduce the FLOPs by around 20% while preserving the accuracy. The reduction in the

number of trainable parameters is plotted in figure 4.4c.

4.4 CONCLUSION

Applying 2:4 sparsity to the linear projection layers of the transformer targets to bring down the

number of float operations required for a forward pass in order to reduce the computational cost

of the model. The results suggest that this optimization method is quite effective at preserving the

accuracy of the model. In fact, some of the sparse model configurations outperform the original

model due to better generalization by the model post-pruning.

Sparsity, however, is not free lunch- it results in a speedup only under certain conditions where the
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(a) Accuracies of ViT Models with 2:4 sparse linear layers

(b) Reduction in FLOPs of ViT Models with 2:4 sparse linear layers

(c) Reduction in #params of ViT Models with 2:4 sparse linear layers
Figure 4.4: Accuracy Results of 2:4 sparse ViT models
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compute units are populated with sufficient workload. We analyze which layers of the transformer

are best suited for a speedup upon sparsification by using the roofline performance model.

Finally, this is an optimization technique that is orthogonal to the experiments in chapter 3. While

the metaformer models replaced the attention operation with simpler token mixers, sparsity

can be applied to all linear projection and convolutional layers in the network. In metaformer

models, sparsity may be applied to layers within the token mixer, in addition to the MLP layers.

Thus, sparsity can be thought of as a second step of optimization that can be applied on top of

model architecture or function-level modifications. This also indicates that applying sparsity on

metaformer models would lead to additive reductions in model complexity, which would invariably

also lead to additive degradations in accuracy.
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