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ABSTRACT

KEYWORDS: Convolutional Neural Networks, Edge ML, Quantization,

Model Pruning, Principal Component Analysis, Clustering,

Quantization-aware training, Two Nearest Neighbours

In recent times there has been a surge in the usage of Neural network based

prediction models in Edge Devices like sensors, mobile phones etc. The improved

prediction and generalization capabilities of the neural networks is responsible for

the shift from traditional Machine learning (ML) models. A major drawback of

using sophisticated neural networks in Edge devices is their limited data processing

ability of these devices. In this work, we propose a efficient compression method

for image classification models to decrease the data processing requirements and

mitigate this liability. We show that model size and the number of computations

required for training can be minimized using our compression technique which

is inspired from existing works on quantization-aware training, weight sharing

and model pruning. We perform a thorough comparative study with some of the

major convolutional neural network (CNN) compression methods, namely post-

training quantization, quantization-aware training, model pruning, parameter

clustering, and mixed precision networks, that show potential for insights and

improvement with a focus on reducing the memory footprint. We try to combine a

subset of the above methods to optimally compress the model through analyzing

the dimensionalities of feature channels across layers. Finally, we also propose a

pipeline to efficiently compress image classification models for a transfer learning
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setup that makes it memory efficient and less time intensive to use the model for

predictions on small edge devices. We perform experiments on several binary

image classification tasks taken from the CIFAR-10 dataset (Cat vs Dog, Horse

vs Frogs etc.). In summary, our work introduces an entirely new and promising

approach to compress an image classification models using a combination of works

from different domains.
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CHAPTER 1

INTRODUCTION

The idea of neural networks dates back to as early as 1943, when Mcculloch and

Pitts [1943] tried to implement an artificial neuron that could replicate the activities

of a human brain. That was the first artificial computational neuron that was

developed and they could handle only binary inputs. Though primitive, this was a

first step towards developing intelligent machines capable of replicating complex

human behaviour. This was followed by Rosenblatt [1958] introducing the real

inputs handling perceptron model and the perceptron learning algorithm to learn

the weights for each input. A drawback of this model was it’s inability to learn

non-linearly separable functions. Due to lack of computational capabilities and the

inherent limitations of the above mentioned methods, traditional ML algorithms

were preferred over deep neural networks until late 20th century.

Researchers at Gartner [Hung]1, estimated that there will be 20 billion IoT

devices connected to the Internet by 2020 . The burgeoning of such devices has

sparked many efforts into researching the optimal device design. In recent years,

DNNs have achieved state-of-the-art performance in many domains, ranging

from computer vision, natural language processing to autonomous vehicles. By

exploiting these achievements, many industrial IoT applications such as robotics,

smart factory, and warehouse, have emerged and attracted immense popularity.

Since most edge devices are constrained in terms of processing power and

energy resources, training large amounts of data on them is not feasible most of the

1Link: https://www.gartner.com/imagesrv/books/iot/iotEbook digital.pdf

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf


time and the traditional approach has been to transmit data generated by the device

to a cloud platform for server-based processing (cloud-computing). Hence, the

deep learning models are trained in powerful on-premises or cloud server instances

and then deployed on these edge devices. Although cloud computing has been

successfully employed, it is sometimes not desirable due to concerns about latency,

connectivity, energy, privacy, and security [R. K. Naha and Ranjan; A. Kumar and

Varma, 2017]. To avoid the above issues of cloud computing and resolve the issue

with limited computation resource and storage space of an edge device, many

research works have proposed to design efficient DNNs. In the design of efficient

DNNs, considerable efforts are spent on three major areas, which are quantization

[[Mohammad Rastegari and Farhadi, 2016], [Benoit Jacob and Kalenichenko, 2018],

[Kuan Wang and Han, 2019]], pruning [[Song Han and Dally, 2015], [Yihui He

and Sun, 2017], [Hengyuan Hu and Tang, 2016]], and network architecture design

[[Xiangyu Zhang and Sun], [Andrew G Howard and Adam, 2017]].

A key observation here is that while prior approaches select a fixed subset of

weights or neurons from the model to quantize or prune, it is possible that different

subsets play vital roles in processing different inputs and different methods utilizes

them in different ways to get the best output. This motivates the idea of combining

a few of the existing works (like Quantization-aware Training (QAT), clustering,

pruning etc.) to come up with an efficient algorithm for model compression.

The objective of our work is to perform efficient model compression on Image

classification models used in transfer learning setup.

As the IoT and edge devices proliferate deeper into real-world applications,

the goal of improving the prediction capabilities of them with the help of efficient

DNNs gains prominence. While recent works in this area prescribe to modifying the
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network architecture to obtain reduced network size and improved the inference

speed using ideas like depth-wise separable convolution [Andrew G Howard

and Adam, 2017], Squeeze networks [Jie Hu, 2017] and platform-aware neural

architecture search, we opt for combining the traditional methods like quantization

and pruning to obtain and simple yet efficient compression algorithm.

In our work, we conduct a thorough comparative study among different Quan-

tization, Pruning and Clustering techniques generally used for model compression.

Then we propose a novel method to compress DNNs used for image classification

using the idea from Mixed precision network topology that incorporates different

compression techniques on the significant and insignificant portions of the network.

The main contributions of this work are summarized as follows:

• We investigate several quantization approaches such as Integer quantization,
Floating point quantization, Dynamic Range quantization and Quantization
aware Training for edge devices and identify the advantages and disadvan-
tages of these approaches.

• We compare the performances of pruning and weight clustering methods
and list advantages and disadvantages of these approaches. We also infer the
advantages of using a combination of Quantization and clustering together.

• We demonstrate the benefits of mixed precision network topology and evaluate
the various existing approaches for transforming a model into a mixed
precision network.

• We develop an efficient technique that detects a subset of significant layers,
then applies QAT to the significant layer weights and weight clustering
to the insignificant layer weights to get the best model compression and
performance.
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CHAPTER 2

RELATED WORK

In this chapter, we first describe the need for on-device computation and storage

on edge devices. Then we move on to briefly review related literature in this area

by discussing approaches that have earlier been proposed for compressing DNNs.

Further, we provide a primer on the Mixed precision network topology methods

and Intrinsic dimension identifying methods that we have used in this work.

2.1 Need for On-Device computation and storage

As previously stated, cloud computing is significantly used for processing and

storage in growing artificial intelligence industrial based IoT applications. However,

moving computation and storage to faraway cloud servers has a number of

drawbacks. Firstly, the network connections between edge devices and remote

cloud servers might be unreliable especially when edge devices are connected

wirelessly. This shortcoming could fail some applications requiring fast and

reliable network connections such as industrial robotics. Secondly, the latency of

computation is high since a significant amount of data needs to be transferred to

cloud servers, which could exhaust the network bandwidth and increases substantial

network workload. Meanwhile, long latency also degrades the application’s user

experience dramatically. Thirdly, transmitting data to remote cloud servers

might pose privacy issues since the data might contain private information. The

shortage of privacy protecting protocols significantly degrades the safety to result



in avoidance of the application. Hence, because of all these issues with cloud

computing, a fast and efficient DNN model running on edge devices is necessary.

Few major techniques used for achieving on-device computation and storage,

that we will discuss in this work are quantization, which uses a few bits to represent

each weight and activation in a DNN model. The second technique is pruning

by eliminating redundant connections and neurons in a DNN model. The third

technique is Clustering, or weight sharing, which reduces the number of unique

weight values in a model, leading to benefits for deployment. In the following

sections of this chapter, we will briefly cover each of these strategies.

2.2 Quantization techniques

Quantization, is the most commonly used technique to reduce model size and

computational complexity. This technique involves replacing floating points with

integers (or numbers of desired precision) inside the network. However, there is a

trade-off: with quantization, we can lose significant accuracy.

The argument for quantization is that while adding and multiplying two

numbers in scientific format, we can see that float arithmetic is more complicated

than integer arithmetic. In actuality, the speed of each calculation is heavily

influenced by the hardware used. A modern CPU in a desktop system, for example,

can perform float arithmetic as quickly as integer arithmetic. GPUs, on the other

hand, are better at single-precision float calculations (since this is the most prevalent

type for computer graphics). Hence, without being completely precise, it can be

said that using int8 is typically faster and lighter than float32 for computations.

The different types of precision conversions used in Quantization include (i) float32
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to int8, (ii) float32 to float16, (iii) Quantize matrix multiplications to int8, while

activations to float16.

Quantization for deep learning is the process of approximating a neural network

that uses floating-point numbers by a neural network of low-bit width numbers.

This dramatically reduces both the memory requirement and computational cost of

using neural networks. Different types of Quantizations used in practice include:

• Post-training Quantization: Train the model using float32 weights and inputs,
then quantize (modify precision) the weights (to precision of our choice as
mentioned above). Its main advantage is that it is simple to apply. The
downside is, it can result in accuracy loss.

• Quantization-aware training (QAT): Here the forward pass is quantized
and backpropagation updates the parameters at full precision through the
lens of the quantized values in the forward pass. In general, studies have
shown that when applying int8 quantization to the network, QAT has the best
performance, but it is more involved than Post-training Quantization option.

• BinaryConnect: We Quantize the network parameters using a binarizing
operation that can be either deterministic or stochastic, which maps float-
valued parameters to+1 or -1. The deterministic operation is attractive because
of how straightforward it is - simply take the sign of the float-valued parameter.
For binary networks, the sign operation minimizes the Frobenius norm of the
difference between binary-valued and float-valued parameter matrices thus
making sign operator a natural choice for the binarizing operation.

Figure 2.1: Illustration of Quantization Aware Training
Source: Gholami et al. [2022]

6



In further sections, we compare these three quantization techniques on the

CIFAR-10 dataset for binary image classification. Other commonly used Quantiza-

tion techniques for deep learning models include:

• Continuous-discrete learning: The forward pass of the neural network uses
a scheme for rounding float-precision parameters to discrete levels, and in the
backward pass, the float-precision parameters are updated using gradients
calculated during the forward pass.

• Ternary Parameter Networks: Ternary parameter networks are an alternative
to binary parameters that allow for higher accuracy, at cost of a larger model
size. In particular, the method of [Fengfu Li, 2016] defines ternarization
operation with scaling and threshold that is an effective approximation under
the assumption of a parameter distribution which is between Gaussian and
uniform.

• Quantized activations: We don’t need to stop with just the parameters of
the network being quantized, activations too are quantized to cut memory.
Quantizing the inputs to each convolutional layer of the neural network
results in a massive reduction of necessary computation. Furthermore, the
convolution can be carried out in a bitwise manner, which is much more
efficient, provided the relevant hardware acceleration is used.

Figure 2.2: Illustration of Quantizing matrix multiplications to int8 and activations
to float16
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2.3 Model Pruning

The term Pruning is inspired from agriculture, where pruning refers to the act of

cutting off unnecessary branches or stems of a plant. Similar to that, Model Pruning

is the process of removing unwanted weight connections in a network to increase

inference speed and decrease model storage size. Most commonly used pruning

method is magnitude-based pruning. In Magnitude-based weight pruning we

gradually zero out model weights during the training process to achieve model

sparsity.

In Michael Zhu [2017]’s work, there is a comparison between two distinct

methods of (i) training a large model, and performing pruning to obtain a sparse

model with a small number of nonzero parameters (large-sparse) (ii) training

a small-dense model with a size comparable to the large-sparse model. This

comparison is to determine the trade-off between model accuracy and the model

size of large-sparse vs small-dense models. It was observed that using a large-

sparse model was more beneficial than using a small-dense model with same size.

Sparse models are easier to compress, and we can skip the zeroes during inference

for latency improvements.

Pruning in general can be categorized as:

• Weight Pruning: This is an unstructured pruning approach where individual
parameters are randomly set to zero. This results in a sparse neural network,
with lower parameter count. This method saves memory but may not
necessarily improve computing performance because we end up conducting
the same number of matrix multiplications as before. Because we set specific
weights in the weight matrix to zero, this is method is known as Weight
Pruning.

• Neuron Pruning: This is a structured pruning approach where algorithms
consider parameters in groups, deleting entire neurons, filters, or channels. We
set entire columns in the weight matrix to zero, thus removing the matching

8



output neuron. This is also known as Unit/Neuron Pruning. This is done to
make use of technology and software that is specialized for dense processing.

Figure 2.3: Structured and Unstructured Pruning

2.4 Weight Clustering

The weight clustering implementation of Neural networks is based on Song Han

and Dally [2015] work. Clustering, or weight sharing, reduces the number of

unique weight values in a model, leading to benefits for deployment. Weight

clustering reduces the size of the model by replacing similar weights in a layer with

the same value. These values are found by running a clustering algorithm over the

model’s trained weights. The number of clusters to be used is obtained through

experiments.

Weight clustering has an immediate advantage in reducing model storage and

transfer size across serialization formats, as a model with shared parameters has

a much higher compression rate than one without. This is similar to a sparse

(pruned) model, except that the compression benefit is achieved through reducing

the number of unique weights, while pruning achieves it through setting weights

9



Figure 2.4: Illustration of Weight Clustering

Source: Stoychev and Gunes [2022]

below a certain threshold to zero.

2.5 Mixed Precision Quantization networks

We observed that in both, BinaryConnect algorithm from section 2.2 and the XNOR-

Net paper [Mohammad Rastegari and Farhadi, 2016] the network parameters

were converted to +1 or -1 to store them in 1 bit which gave 32x memory saving.

Inspired from the success of the binary quantization, there were several multi-bit

quantization approaches proposed. These techniques had much smaller accuracy

gap between the quantized network and the floating-point counterpart due to extra

information they hold (due to higher precision). The fact that each layer can be

10



quantized independently has paved the way for mixed precision networks.

The multi-bit quantization uses more bits to represent weights and activation

compared to the binarized quantization, but the accuracy in muti-bit setup is also

much higher than the binarized quantization setup, especially on complicated

datasets such as the ImageNet dataset. Besides the image classification task, the

multi-bit quantization approach has been extended to other tasks such as object

detection, face detection, and face attributes. Two major works in this regard are

the XNOR-Net paper [Mohammad Rastegari and Farhadi, 2016] and PCA Hybrid

paper [Chakraborty et al., 2020].

XNOR-Net Design

In XNOR-Net, a layer’s weight W is approximated by a binary filter B whose

dimensions are the same as that of W (say n), multiplied by a positive scalar scaling

factor α at full precision. The activations are also binarized, but without a scaling

factor. Mathematically, the objective of the weight quantization is:

J(α,B) = ∥W − αB∥2

α∗,B∗ = argmin
α,B

J(α,B)

Since B ∈ {−1,+1}n, BTB = n.

J(α,B) = α2BTB − 2αWTB +WTW

J(α,B) = α2n − 2αWTB +WTW

11



Since α is a positive arbitrary constant, min J(α,B) ≡ max WTB. That together with

the constraint B ∈ {−1,+1}n implies B∗ = sign(W) (Similar to the explanation given

in BinaryConnect part of section 2.2).

Similarly the expression for J(α,B) is differentiated wrt α to get:

α∗ =
WTB∗

n

=
WTsign(W)

n

α∗ =
∥W∥l1

n
(l1 denotes L1-norm)

All the intermediate layers except the first and final layer [Lee et al., 2015] are set

to binary precision through the quantization aware training (QAT) technique where

the forward pass is quantized and backpropagation updates the parameters at full

precision through the lens of the quantized values in the forward pass. When the

model is deployed for inference, except the bias and scaling factors for intermediate

layers, and parameters of first and last layers, all parameters are stored in binary

precision leading to tremendous reduction in size.

PCA-based Hybrid-Net Design

There was no systematic way to decide which intermediate layers had to be set

to very low precision to avoid significant performance drops and attain the most

optimal trade-off between space reduction and performance drop. Chakraborty

et al. [2020] proposed a mixed-precision network topology where layers identified

as significant are set to kb-bit precision (kb ≥ 2) and the remaining intermediate

layers are set to binary precision.

12



In general, a neural network model is viewed as an iterative projection of input

data to higher dimensional manifolds with the ultimate aim of linear separability,

and hence, a layer’s significance is identified from the relevance of its transformation

towards this objective. A layer is deemed significant if it causes a ”significant”

increase in the dimensionality of the data representation compared to the layer

preceding it (i.e.) the change in the dimensionality of the data representation caused

by the layer is greater than a certain fixed threshold.

In Chakraborty et al. [2020] work, Principal Component Analysis (PCA) is used

for obtaining the dimensionality of the layer’s outputs, defined as the number of

principal components (nPC) required to explain 99% of the total variance. Hence

from these works we can conclude that, Quantizing the model’s intermediate

layers to low precision in accordance with their significance decreases the accuracy

drop compared to setting all intermediate layers to binary precision, while also

minimizing the energy and memory footprint considerably.

2.6 Intrinsic Dimension Estimation

Deep neural networks for supervised image classification sequentially transform

the input images through linear and non-linear layers and reduce the representation

to a linearly separable form to make it suitable for classification. The analysis of the

distribution and dimensionality of data representation across layers offers several

key insights to better understand the working of a Deep Neural Network. The

intrinsic dimension (ID) is a fundamental property of data representations and is

defined as the minimum number of coordinates required to describe the vectors

to satisfactory levels. PCA is the simplest and most conventional form of linear

13



Figure 2.5: Illustration of the working of PCA-based Hybrid-Net design which se-
lectively quantizes each layer independently based on their significance
denoted by change in principal components from previous layers.
Source: Chakraborty et al. [2020]

ID estimation and it measures the number of Principal Components required to

explain satisfactory level of total variance.

2.6.1 PCA Method for Intrinsic Dimension Estimation

Principal component analysis (PCA) is a technique that generally transforms high-

dimensional data into lower-dimensions while retaining as much information as

possible. In other words, PCA can be defined as an orthogonal linear transformation

that modifies the data to a new coordinate system such that the greatest variance

by some scalar projection of the data comes to lie on the first coordinate (called the

first principal component), the second greatest variance on the second coordinate,

14



and so on. It’s based on the idea to minimize the error when we project the data

onto a new vector subspace.

Solving this objective to minimize the Projection error provides us with a solution

to pick the eigenvectors of the data’s covariance matrix in decreasing order of their

corresponding eigenvalues for forming the best reduced subspace to project the

data. The choice of number of eigenvectors (called principal components) for the

subspace is arrived at by plotting the curve of cumulative explained variance vs

number of principal components. The curve is expected to rise steeply initially and

then gradually saturate to 100%. A plot which displays the individual contribution

of explained variance by each Principal component (PC) is represented through

a Scree plot. The dimensionality is then estimated as the number of principal

components required to explain a certain threshold percentage of total variance

(usually > 95%), denoted as nPC.

Given the idea of using difference in dimensionalities across a layers as a measure

of significance of the layer’s parameters and subsequently as a proxy to identify

layers to quantize by Chakraborty et al. [2020], we explore other dimensionality

estimation techniques that overcome the shortcomings of PCA (not restricting

to linear subspaces) and perform better at this use case. This work explores a

better alternative method to estimate the ID of data representations: Two Nearest

Neighbours (TwoNN).

2.6.2 TwoNN Method for Intrinsic Dimension Estimation

Two Nearest Neighbors (TwoNN) is a recently developed global intrinsic dimension

estimator [Facco et al., 2017], which is estimated using the information merely from

the two nearest neighbors of every point. The ratio of nearest neighbors statistics
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µi = r(2)
i /r

(1)
i for each point i is calculated where r(1)

i and r(2)
i are the distances to the

nearest and second nearest points to point i respectively. Under a weak assumption

that the density is constant on the scale of distance between each point and its

second nearest neighbor, the distribution of µi’s depend on the dimensionality of

the data rather than the density. Specifically, it is derived that µi’s follow Pareto

distribution with parameter d + 1 (d is the ID) on [1,∞). The Pareto distribution’s

CDF is given by:

FX(x) =


1 −
(

1
x

)d+1
x ≥ 1,

0 x < 0

With the knowledge about the distribution of data, the ID estimation is modeled as

an objective of maximizing the log likelihood

P(µµµ|d) = dN
N∏

i=1

µd+1
i

where µµµ = [µ1, µ2, . . . , µN].

Figure 2.6: Illustration of ID estimation through TwoNN

Source: Ansuini et al. [2019]
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The minimal neighbourhood size that this dimensionality estimator relies on,

lowers the effect on data inhomogeneities on the estimation process. In addition,

the theoretical setup of the estimation process and absence of usage of linear

projections and assumptions make the method robust to curved, topologically

complex data and non-uniform sampling of the datapoints. Ansuini et al. [2019]

adopts the TwoNN approach for estimating and analyzing ID as a proxy to study

generalizability of neural networks. Their experiments also suggest that TwoNN

method is approximately scale invariant, unaffected by embedding dimension

(hence can be used to analyze data in any type of layer), and robust to hubs and

outliers as long as enough datapoints are used for the estimation process.
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CHAPTER 3

METHODOLOGY

3.1 Problem Statement

Various machine learning (ML) algorithms, offering different accuracy and complex-

ity, have been proposed to tackle the challenges of image classification. Despite their

exceptional performance, they require high processing power and large storage.

For example, some state-of-the-art neural network architectures, such as AlexNet

[Krizhevsky et al., 2012], GoogLeNet [Szegedy et al., 2014], and ResNet [He et al.,

2015] require over a million parameters to represent them and more than a billion

multiply and accumulate computations (MAC) [Shafique et al., 2018]. Each MAC op-

eration is generally associated with a number of memory accesses. In the worst case

scenario, where there is no data re-use, each operation requires 3 reads and 1 write

to memory. The simplest neural network from the aforementioned models requires

around 2172M memory reads and 724M memory writes. Since these operations

consume a considerable amount of processing power, the energy consumption of

these algorithms might not meet the requirements of various application scenarios.

If the energy consumed to classify a single image on the device was considerably

less than the energy consumed to transmit the image to the cloud and receive the

result, then, as one scales, it becomes advantageous to compute locally. This is

exactly what we want achieve.

The contributions of this work are two-fold. First, we perform a thorough

comparative study of the existing common and classical approaches used for DNN



compression like Quantization, Pruning, Weight clustering and also understand

the advantages of each technique. This will equip the research community with

the tools necessary to make an informed decision about the techniques to use on

their edge systems in a way that balances cost and complexity with performance.

Second, we present a novel model compression method deriving ideas from these

existing classical approaches for a transfer learning setup.

3.2 QuantNET - Model for image classification

There are many research works which has shown that the classical model com-

pression approaches follow similar trends across models with varied model sizes.

An important study in that front was published in 2021, based on a comparative

study on Efficient neural networks on Edge devices [Liu et al., 2021]. In this work,

we could observe that models like ResNet with depth of 50, 100, and 150 and

XNOR-Net followed similar trends under different compression techniques. Hence,

in our work we focus developing an optimal compression algorithm on a small

network (size similar to that of XNOR-Net) used for Image classification called as

QuantNET.

All the experiments are performed on the CIFAR-10 dataset [Krizhevsky et al.].

More details about the input dataset is provided in section 4.1.1.The image classi-

fication model designed in this work (QuantNET) consists of two convolutional

layers and two dense layers followed by an output layer. The input array of size

32*32*3 is fed into a 2D-convolutional layer with 32 filters and a kernel size of

3 using ’He normal’ kernel weight-initializer. A dropout of 0.1 is used after the

convolutional layer to avoid overfitting as the dropout layers provide some form of
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regularization. The output from this layer is then passed into another CNN layer

with 64 filters and a kernel size of 3 and the same weight intializer, this layer is

also followed by a dropout layer. CNN layers act like a feature extractors for the

upcoming layers by learning the internal representation of the input sequence. The

spatial features in the input extracted by the convolutional layers are flattened and

then passed into the fully connected Dense layers to produce a higher-order feature

representation for better separability among the different classes in the image data.

The fully connected layers are modeled as (i) first dense layer with 128 units and

(ii) second dense layer with 16 units, both with ‘relu’ activation, and ‘He normal’

weight initialization technique. The output from the two dense layers is then passed

into the output layer with units equal to the number of target classes and a ‘softmax’

activation (in case of multi-class classification) or ’sigmoid’ activation (in case of

binary classification) is used to calculate the probability of each class. The model is

trained using an Adam optimizer with a learning rate of 0.001 and cross entropy

loss function. The predicted probabilities are then passed into an ‘argmax’ function

to find the class with maximum predicted probability for the considered input.

The hyperparameters of the Quant-NET architecture are fine-tuned using random

search and Keras-Tuner and are discussed in section 4.2.1.

Figure 3.1 presents a detailed view on the architecture of the proposed Quant-

NET model. This work employs a simple CNN and Dense layers based image

classification model. This model is capable of exploiting different levels of infor-

mation from the different layers. The layers closer to the input data captures the

specific characteristics (image features like ears, nose, face etc.) of the dataset,

whereas the deeper layers of this architecture capture significant information that

are more relevant to the specified learning task, i.e., image classification. In case of

transfer learning setups, the target classifier uses the well-learned knowledge of
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parameter weights from the source domain to learn better representation to make

accurate predictions the target dataset. The importance of the information carried

by each layer of the Quant-NET is studied using a simple Quantization experiment

which is discussed in section 4.2.2

Figure 3.1: QuantNET: Model architecture

3.3 Extracting Significant layers of the network

In section 2.5, the Chakraborty et al. [2020] paper had introduced the idea of using

PCA for significant layer extraction. In this work, we implement a better method

for layer extraction based on Two Nearest Neighbours (TwoNN) which we briefly

explained in section 2.6.2 and observed TwoNN to outperform the existing PCA

based method.

In our implementation of the Hybrid-Net design, the model layers are quantized

individually with different precisions based on their significance - first and last

layers are set to full precision [Lee et al., 2015], insignificant layers are set to binary

precision, and the significant layers are set to a higher b-bit precision, with the

choice of b depending on the resource of the edge device and the performance

level we expect. The quantization takes place through Q-aware training and every
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quantized layer’s incoming activations are statically clipped to [−1,+1] range and

uniformly quantized within the range to the same precision of the layer that it

passes through. Using any other range for clipping doesn’t perform as good as

[−1,+1] and at times causes the model to diverge during training. Also, there

are no scaling factors used for multiplying the quantized activations before they

pass, since they have to be evaluated dynamically during inference and cause

unnecessary overheads, increasing latency. Hence, mathematically the quantization

of activation A can be described as:

Ã =



A A is not quantized

sign(A) A is binary precision quantized

uni f orm dequantb
(
uni f orm quantb(A)

)
A is b-bit quantized

The weights are mean centered, clipped to [−1,+1] range, then quantized

uniformly in a full range symmetric fashion, and dequantized to obtain back

the discretized steps in [−1,+1]. It is then multiplied by a scaling factor (like in

XNOR-Net) before being used for computations/forward pass.

W̃ =



W W is not quantized

α∗sign(W) W is binary precision quantized

α∗ uni f orm dequantb
(
uni f orm quantb(W)

)
W is b-bit quantized

The mean centering and clipping of weights is like an additional form of restriction

on the model that prevents skewed distributions and facilitates training convergence.

The symmetric full range quantization ensures that the whole range of a b-bit

precision is used effectively, since we are dealing with very low bit precisions.
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3.3.1 TwoNN Method for Identifying Significant Layers

We have already briefly seen about TwoNN method in section 2.6.2 and we have

also mentioned about the fact that this outperforms the existing PCA based method.

Looking at why, we can find two main disadvantages with PCA in the context

of analyzing data representation in neural networks. First, the output from few

layers might have a sparse set of outliers that does not affect the final results

but are caused due to noise in the input and due to the presence of irrelevant

neurons in over-parametrized models. Second, the data passes through a series of

linear weights and non-linear activations that might cause the data to form curved

manifolds (since the effect of non-linearity sets in after the activation following

first layer and the model’s objective is to make the data linearly separable for

classification in the last layer; the objective of middle layers are not well studied),

especially in the middle layers and TwoNN is better equipped to handle this.

Hence, we propose the use of TwoNN intrinsic dimension estimation method for

the purpose of identifying significant layers in a neural network, and subsequently

quantizing each layer accordingly. The method is robust to non-linear data

manifolds and approximately insensitive to outliers.

The study of Ansuini et al. [2019] suggests that for a general neural network, the

intrinsic dimensions of data representations across layers follow a characteristic

hunchback shape as seen in figure 3.2. The hypothesis is that the initial layers

of a neural network prune the highly correlated features irrelevant to the final

predictions (like luminescent gradients, contrast, saturation, etc.) by projecting

them onto curved manifolds with higher IDs, and the subsequent layers do the

advanced processing of making the data linearly separable at final layer for correct

predictions, which decreases the IDs.
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Figure 3.2: The ID of data representations following a hunchback profile

Source: Ansuini et al. [2019]

Following this intuition, we come up with a new criteria for identifying signifi-

cant layers:

|IDl − IDl−1| > ∆ =⇒ significant layer

where IDi is the intrinsic dimension of data output from layer i, and ∆ is the

significant threshold that is determined according to our needs for size reduction

trading-offwith performance.

Figure 3.3: (a)Illustration of Intrinsic dimensions obtained for Quant-NET on CIFAR-
10 binary classification dataset( Cats vs Dogs) (b) Thresholding of
difference in Layer Dimensions to obtain significant layers
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Also, the TwoNN analysis is performed on the vector of dimension O ∗W ∗H

obtained by flattening the entire output of a convolution layer instead of following

the procedure on channel outputs of dimension O. The reason is each filter

extracts a different featuremap and all of them together characterize the filter, and

subsequently the data representation corresponding to a given image at the end of

this layer. The Dense layers gives a flattened output, hence there are no ambiguities

there. Application of the ID estimation method on our Quant-NET model for the

CIFAR-10 dataset is shown in figure 3.3. The experiment corroborates the intuition

of the characteristic hunchback profile for our setting as well.

3.4 Model Flow

We will discuss the entire flow briefly in this section. In our work, we make use of

this TwoNN dimension estimation method to identify the significant layers from

the input network (QuantNET) for a given input dataset (CIFAR-10). In case of

transfer-learning setup, the trained QuantNET model (from the source domain) is

transferred to target domain, where we identify the significant layers with the help

of TwoNN method and target domain data. The weights of the insignificant layers

are clustered using the weight clustering technique. The significant layers from

the original model is then trained using Cluster preserving Quantization-aware

training to obtain optimal model compression with minimal drop in accuracy. The

entire algorithm is shown below as a flow-diagram in Fig:3.4.

The use of Q-aware training ensures minimal accuracy loss but increases model

size as well, hence we also provide another technique for memory sensitive settings,

in which we use the TwoNN method to identify the significant layers and a custom
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mixed precision network instead of Clustering and Q-Aware training to get both

accurate and memory precise network.

Figure 3.4: Flow diagram of the proposed optimal compression technique
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CHAPTER 4

EXPERIMENTS

4.1 Experimental Setup

4.1.1 Data

All our experiments are performed on the CIFAR-10 dataset [Krizhevsky et al.]. We

restrict our models to binary image classification tasks as the performance of our

individual model compression techniques are independent of number of classes in

the input data.

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with

6000 images per class. There are 50000 training images and 10000 test images. The

dataset is divided into five training batches and one test batch, each with 10000

images. The test batch contains exactly 1000 randomly-selected images from each

class. The training batches contain the remaining images in random order, but some

training batches may contain more images from one class than another. Between

them, the training batches contain exactly 5000 images from each class.

The 10 different classes that exists in the dataset are: airplane, automobile, bird,

cat, deer, dog, frog, horse, ship and truck. The classes are completely mutually

exclusive. There is no overlap between automobiles and trucks. A point to note

is that ’Automobile’ includes sedans, SUVs while ’Truck’ includes only big trucks

and neither includes pickup trucks.



Figure 4.1: (a) Sample Cat image from CIFAR-10 and (b) Sample Dog image from
CIFAR-10

To test our model’s performance we make use of following classification tasks:

• Cats vs Dogs: Image classification model trained to distinguish between cats
and Dogs images from the CIFAR datset.

• Horses vs Frogs: Image classification model trained to distinguish between
horses and frogs images from the CIFAR datset.

• Rotated Cats vs Dogs: Image classification model trained to distinguish
between cats and dogs when the images have bee modified random amount
of rotation, flip, zoom from the original images from the CIFAR datset.

Listing 4.1: Augmentation Snippet

data augmentation = keras . Sequent ia l ( [

preprocess ing . RandomFlip ( ' h o r i z o n t a l ' ) ,

preprocess ing . RandomRotation ( np . pi ,

f i l l m o d e = ' n e a r e s t ' ,

i n t e r p o l a t i o n = ' b i l i n e a r ' ) ,

preprocess ing . RandomZoom ( 0 . 1 ) ] )

The code used for creating the modified versions of the Cat and Dog images

from the original cifar images is mentioned above. The dataset for each experiment

is prepared by combining equal number samples from each class (balanced dataset)

for which the complete network generates the predictions.
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4.1.2 Implementation details

The first two convolutional layers in Quant-NET have a kernel size of 3 and generate

32 and 64 output feature maps respectively. The two fully connected layers have

output dimensions of 128 and 16. We use the binary cross-entropy loss function

and the Adam optimizer for training with a learning rate of 0.001. The model is

trained for 100 epochs with early stopping. All experiments were performed with a

train-validation-test split of 70-10-20 on an NVIDIA Tesla K80 GPU.

4.2 Results and Discussion

The performance of the QuantNET model on the tasks of binary image classification

on the datasets mentioned in section 4.1.1 have been discussed next. The perfor-

mances were assessed based on Top-1 Accuracy, metrics like precision and recall

were not considered as the input data was balanced (equal number of samples

from each class). The error values given in this section are the average error values

obtained after 20 iterative and independent runs.

4.2.1 Hyperparameter Tuning - QuantNET

Before we get into the results of performance of Quant-NET under different model

compression techniques, we make sure that this model is tuned to give us the best

possible performance when no compression is applied.

The hyperparameters of this QuantNET model was fine-tuned using random

search algorithm (Refer Table 4.1). As the name suggests Random Search algorithm

does a random search in the given parameter space to pick a point randomly from
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the configuration space. The intuition of how it works better is that we can explore

the hyper-parameters space more widely with Random Search (especially for the

more important variables). This will help us to find the best configuration in

fewer iterations. This work, Bergstra and Bengio [2012] shows empirically and

theoretically that randomly chosen trials are more efficient for hyper-parameter

optimization than trials on a grid and manual selection.

Table 4.1: Hyperparameter setting of QuantNET

Parameter Range Optimal Value
Filters (Conv Layer 1) Range: [16, 128]; Step size = 16 32
Filters (Conv Layer 2) Range: [16, 128]; Step size = 16 64

Kernel Size (Conv Layers) [3,5,7,9] 3
Dropout [0.1, 0.2, 0.3, 0.4, 0.5] 0.1

Optimization Function Adam, SGD, RMSProp Adam
Learning Rate [1e-5, 1e-4, 1e-3, 1e-2, 1e-1] 0.001

Number of epochs Range: [10, 100]; Step size = 10 100
Batch size [32, 64, 128, 256, 512] 64

The weight intializer parameter of all the layers except the output layer was

also tuned, but using manual search among ’He Normal’, ’Glorot Normal’, ’Glorot

Uniform’, ’He Uniform’ options and ’He Normal’ was found to be the optimal

one. In case of output layer, because the layer had sigmoid activation, prior works

suggest ’Glorot Normal’ intializers works best on layers with Sigmoid activation,

hence that was used.

It is important to understand the significance of Hyperparameter tuning of

QuanNET. We employ model compression techniques like model pruning on

QuantNET to compare the Top-1 accuracy we get on the input data, however,

if the model is not tuned to its best performing state, what these compression

techniques identify may simply be the tuned and best performing version of

untuned QuantNET, which is not what we want to find.
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4.2.2 Comparative study of Quantization techniques

The computational and space complexity of a high-performance neural network is

high, and thus it is challenging to deploy a high-performance neural network on

edge devices. A common approach to address the high computational and space

complexity is to compress neural network models using quantization techniques

which use a few bits to represent each weight and activation in a neural network.

By replacing floating-point numbers with fixed-point numbers, arithmetic opera-

tions consume much less resource and power compared to floating-point arithmetic

operations. Also, hardware complexity is reduced significantly. Moreover, the

number of off-chip memory access is decreased, which leads to immense cost

reduction in communication. The Quantization techniques that we will be using

for this comparative study are already discussed in Section 2.2.

Mathematical Formulation

Suppose there is a neural network with L layers and layer-wise parameters θl for

l ∈ {0, . . . ,L − 1}. The quantization function for lth layer Ql is a map from Rd
→ Sd,

where d is the flattened dimension of the parameter vector θl and S is a smaller set

of values that a value of low precision can take (though the initial values are by itself

only of fp32 precision, we treat them as ∈ R for simplicity). Model quantization

attempts the following:

min
Q0,...,QL−1

L−1∑
l=0

∥Ql(θl) − θl∥ =

L−1∑
l=0

min
Ql
∥Ql(θl) − θl∥

Each term in the above summation can be minimized independently since there are

no dependencies among the functions and the parameters of different layers. This
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is also the basis for mixed/hybrid precision quantization (section 2.5).

Quantization techniques used in Practice: (i) Post-training: Train the model

using float32 weights and inputs, then quantize the weights. Its main advantage

is that it is simple to apply. The downside is, it can result in accuracy loss. (ii)

Quantization-aware training: Quantize the weights during training. Here, even

the gradients are calculated for the quantized weights. This is more involved than

the other option.

The results in Table 4.2 are obtained by stand-alone training of the QuantNET

model on input CIFAR data (cats vs dogs or Horse vs frogs) using cross entropy

loss and testing the model performance after applying the Quantization technique

of our choice.

Table 4.2: Test accuracy, Size (MB) of different Quantization methods on Cat vs
Dogs and Horse vs Frogs datasets (Stand-alone)

Set Up
Test Acc

(Cat vs Dogs)
Test Acc

(Horse vs Frogs)
Model Size

(MB)

Base Model
(QuantNET) 66.00 92.35 2.0852

Post Training -
Integer Quantization 63.70 90.25 0.5271

Post Training -
Dynamic Range Quantization 64.55 91.30 0.5282

Post Training -
Float 16 Quantization 64.65 91.65 1.0453

Post Training -
Int Quantization +
Int 16 Activation

64.80 92.05 0.5292

Quantization Aware Training
(Q-aware) 65.90 93.95 4.1784

Post Training Quantization
on Q-Aware model 65.80 93.90 0.5278
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Few points we can infer from Table 4.2 is that Quantization-aware training

outperforms Post-training quantization methods but we also that the Size of

the quantization-aware training model is the largest among all the models in

comparison. As expected, the simple integer post-training qunatization resulted

in maximum drop in accuracy as it has the maximum amount of information loss,

but again it’s the smallest when compared size wise. Hence, the model with a

combination of post-training integer quantization and Q-aware training is the

most optimized with respect to Accuracy and Size of the model.

Trends in Transfer learning setup

The trends observed in table 4.2 are for stand-alone Quant-NET models. We now

perform an experiment to illustrate that the same trends hold true for a transfer-

learning set up 4.3. We train the model and Cat vs Dogs and test the model on

Horse vs Dogs or Rotated Cats vs Dogs dataset (after training and quantizing).

Observations from Table 4.3 show that the general trends observed with different

Quantization techniques for Source domain only set-up seems to be valid for the TL

set up too and hence experiments and trends observed in the coming sections for

stand-alone model equally holds good for TL setup. Note that the model trained on

cat vs Dog and then fine-tuned for Horse vs Frog performed almost at par with a

stand-alone Horse vs Frog classifier (Avg Acc drop = 0.8%). We can see that the size

of the models for the target-domain are same as that of stand-alone source domain

model, hence again Post Training Quantization on Q-Aware model provide the

best accuracy for a small model.
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Table 4.3: Test accuracy and Size of model (MB) under different Quantization
schemes with Source: Cat vs Dogs and Target: Horse vs Frogs data or
Rotated Cats vs Dogs (Transfer learning set up)

Set Up
Test Acc

(SD)
Test Acc

(TD1)
Test Acc

(TD2)
Model Size

(MB)

Base Model
(QuantNET) 66.00 92.35 59.40 2.0852

Post Training -
Integer Quantization 63.70 89.70 57.80 0.5271

Post Training -
Dynamic Range Quantization 64.55 90.55 58.05 0.5282

Post Training -
Float 16 Quantization 64.65 90.45 58.30 1.0453

Post Training -
Int Quantization +
Int 16 Activation

64.80 90.45 58.15 0.5292

Quantization Aware Training
(Q-aware) 65.90 92.95 59.20 4.1784

Post Training Quantization
on Q-Aware model 65.80 92.80 59.05 0.5278

Source Domain (SD): Cat vs Dogs, Target Domain 1 (TD1) : Horse vs Frogs,
Target Domain 2 (TD2) : Rotated Cats vs Dogs

Which layers to Quantize ?

It is fairly intuitive that different layers of the Quant-NET model play different

roles in performing our image classification tasks.We expect the CNN layers to act

like a feature extractors for the upcoming layers and the Dense layers to produce

a higher-order feature representation for better separability among the different

classes in the image data. So we postulate that quantizing different layers will have

different hit on model performance. This is the idea behind model pruning as well.

From figure 4.2 we can observe that Quantizing the first and last layers have a

dire effect on model performance and this result has been reported in many prior
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Figure 4.2: Effect of Quantizing each layer on Accuracy

works [Lee et al., 2015]. Also, as expected Quantizing Convolutional layers cause

more loss in information than quantizing a dense layer. Hence, we can conclude

that instead of quantizing or compressing all the layers uniformly we can selectively

quantize/compress certain layers to mininmize loss in accuracy, this is exactly what

we plan to do next through model pruning.

4.2.3 Comparative study of Pruning Techniques

We know that model Pruning is the process of removing unwanted weight connec-

tions in a network to increase inference speed and decrease model storage size. In

section 2.3, we briefly described the two commonly used types of pruning, namely

Weight and Neuron pruning. Here, we compare the drop is accuracy as we try to

make the model as sparse as possible.

From figure 4.3, we can observe that Weight pruning outperforms neuron

pruning for all values of k(% pruning). This can be attributed to that fact that

pruning a neuron implies we zero out all the weights that go through it, thereby

stalling the flow of information to a greater extent than setting a small portion of

random weights to zero (in this case there is still a guaranteed path of information
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Figure 4.3: Effect of Pruning on accuracy

flow in most cases).

We can also observe that we are able to set upto 50% of weights to zero with an

accuracy drop of less than 5%. From this we get the idea of using lesser number of

weights to pass on sufficient information required by the model. This is the idea of

Weight Sharing or clustering, which we will discuss in next section.

4.2.4 Effect on Model performance due to Weight clustering

From the previous two sections we have observed the advantage of selectively

quantizing certain layers and minimizing the number of unique values in the

network to efficiently decrease the size of the model without hurting the accuracy

too much. In case of clustering, we reduce the number of unique weight values in a

model by replacing similar weights in a layer with the same value.

In this section, we will perform experiments using the stand-alone Cat vs Dogs

dataset from CIFAR-10 on Quant-NET model to cluster it’s weight into 16 clusters.

We also combine the methods of Quantization and weight clustering to check if it

leads to any improvement. We also experimentally show in figure 4.4 why Nc=16

is the best number of clusters to group the weights into.
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Figure 4.4: Variation of Test accuracy with Number of clusters

From the plot we can observe that optimal value for Nc is 16. There are cases

with similar or higher accuracy for larger Nc (Eg: Nc = 30, 32), but we will be

compromising on the Model compression factor by opting for larger Nc for a very

small increase in model performance.

Table 4.4: Test accuracy and Size of model (MB) under different Clustering schemes
schemes

Set Up Test Acc Model Size
(MB)

Base Model 66.00 2.0852

Clustered ( Nc = 16) 65.30 0.2562

Clustered + Post Training -
Integer Quantization 63.30 0.1920

Clustered + Post Training -
Dynamic Range Quantization 63.80 0.1921

Clustered + Post Training -
Float 16 Quantization 64.40 0.2153

Clustered + Post Training - Int Quantization +
Int 16 Activation 64.90 0.1922

Clustered + Q-aware Training 65.75 1.6755

Clustered + Post Training Quantization
on Q-Aware model 65.60 0.1922

From Table 4.4, we can see up to 9x shrinkage in model size by using simple
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weight clustering technique with a small loss (0.7%) in accuracy. The sizes of

Clustering Quantization aware-training models are lesser than the base-model

unlike Table 4.2. General trends observed with Quantization techniques with

base-model seems to be followed with Clustered model as well. From this table as

well we can observe that Post-training Quantization on Q-aware trained model

outperforms other techniques and gives the maximum Accuracy per MB value.

We get a 12x decrease in model size from the base model for a mere drop of 0.4%

in accuracy for the Clustering + Post-training Quantization on Q-Aware trained

model.

Cluster preserving Q-Aware Training

The best method from table 4.4 can be considered as two-layered Compression with

Clustering first and Q-aware training next. Even though this gives good accuracy

and decrease in model size, usage of Q-aware training nullifies the Clusters the

weights had been put into by the clustering technique in the previous step, thereby

decreasing the overall effect. Hence, we now go ahead with Cluster preserving

Q-aware training such that the number of clusters (unique weights) per layer

remains the same even after Q-aware training.

Table 4.5: Comparative study of efficient clustering techniques

Set Up Test Acc Number of clusters
(Layerwise Unique Weights)

Model Size
(MB)

Base Model 66.00 896, 18496, 534416, 2064, 17 2.0852

Clustered ( Nc = 16) 65.30 16, 16, 16, 16, 16 0.2562

Clustered ( Nc = 16) +
Q-aware Training 65.75 864, 18430, 361277, 1308, 16 1.6755

Cluster Preserving +
Q-aware Training 65.85 16, 16, 16, 16, 16 0.2394
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From table 4.5 we can observe that using cluster preserving version for Q-aware

training helps us to reduce the model size drastically from 1.68 MB to 0.24 MB (7x

decrease) and also not compromise on accuracy. Hence we go ahead with using

a combination of cluster preserving Q-aware training for our final model. We

come up with an idea to apply Clustering to insignificant layers of Quant-NET and

Q-aware training for the remaining layers to strike an optimal balance between

size reduction and accuracy maintenance while using TwoNN method to obtain

the important layers. The idea to separate significant and insignificant layers was

inspired from the success of Mixed precision networks, which we will see in our

next section.

4.2.5 Study on Mixed Precision Quantization

In section 2.5, we looked at existing and popular mixed precision techniques like the

XNOR-Net design and PCA Hybrid. While XNOR-Net design merely quantizes all

intermediate layers to binary precision, PCA-based Hybrid-Net design intelligently

decides to quantize the insignificant intermediate layers alone to binary precision

and the significant intermediate layers to a higher bit precision. In our work we

make use of TwoNN instead of PCA and reasons for the same are listed in section

3.3.1.

Next, the table 4.6 shows why the layer significance identification approach that

for the standalone setup becomes applicable to the transfer learning setup as well.

From table 4.6, we can observe that the trends of the ID of all methods are the same

for the source and target domains, and even the value of the IDs are very close

(less than the error in the measurements). This might indicate that the source and

target domain input data belong to approximately the same vector space, which the
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Figure 4.5: Principal Component Analysis on the intermediate layers of QuantNet
for Horse vs Frogs dataset

Table 4.6: Summary of the intrinsic dimension analysis on Quant-Net model for
Cat vs Dog source domain and Horse vs Frog target domain

Layer
ID (Source domain) ID (Target domain)

PCA TwoNN TwoNN* PCA TwoNN TwoNN*

Input 2 25.61 4.15 2 27.57 3.95

conv1 13 33.19 6.72 14 36.85 6.45

conv2 48 49.48 5.25 49 52.10 5.28

linear1 31 23.76 19.54 31 23.78 15.35

linear2 1 0.98 0.82 1 0.84 1.20

model layers transform sequentially into nearly same spaces correspondingly. Such

a setup is when transfer learning is usually employed, supporting the reliability of

this method when extended to the transfer learning setup.

Also, it is clear that all three methods reflect the characteristic hunchback profile

of data representation’s dimensionalities that Ansuini et al. [2019] stated. This

supports the need for a better significance criteria that allows layers that also cause
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a reduction in ID to be significant. In figure 4.5, we notice the absence of a sharp

knee point in the PCA curve of the intermediate layers especially (layers conv2 and

linear1) that is characteristic of data in linear space and this suggests curved data

manifolds. Both these observations strengthen the idea of using TwoNN method

and absolute difference criteria for quantifying the layer significance.

Figure 4.6: Identifying significant layers using TwoNN and PCA on QuantNet
model for transfer domain in CIFAR-10 dataset, with threshold ∆ = 20

We now evaluate the PCA and TwoNN approach on the target and source

domains. As we saw in table 4.6, the ID values and more importantly the trends

in the significance criteria seem to be characteristic more of the model itself for

closely-related data, and hence we focus on the analysis for the transfer learning

setup that we mainly seek to propose in this work, and verify it with the source

domain numbers. Both methods only apply to the intermediate layers with the

first and last layers always set to full precision in these very low precision settings

to avoid significant accuracy drops (as observed by Lee et al. [2015]. From figure

4.6, we can observe that the TwoNN approach chooses conv2 as the least significant

and linear1 as the most significant layer, while PCA suggests conv2 is the most
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significant, linear1 layer is less significant, and linear2 is least significant. Table

4.7 shows that the model with conv2 binarized achieves better performance than

the one with linear1 binarized in both source and target domains, as suggested by

TwoNN. This result verifies the theoretical arguments to use TwoNN.

Table 4.7: Performance summary† of TwoNN and PCA approaches on Quant-Net
model for Cat vs Dog source domain and Horse vs Frog target domain

Layer Precisions
Test Acc
(Source

Domain)

Test Acc
(Target

Domain)

Memory
Reduction

conv1 conv2 linear1 linear2
66.00 92.30 1x

full full full full

conv1 conv2 linear1 linear2
64.20 90.55 30.42x

full binary binary binary

conv1 conv2 linear1 linear2
62.60 89.55 1.01x

binary full full full

conv1 conv2 linear1 linear2
65.60 91.85 1.03x

full binary full full

conv1 conv2 linear1 linear2
65.00 91.35 14.4x

full full binary full

conv1 conv2 linear1 linear2
65.80 91.60 15.87x

full binary 2-bit 2-bit
† Memory reduction mentioned in an empirical calculation using the parameter count and

precisions since Tensorflow and PyTorch does not yet support memory calculations for custom
implementations

Model for Memory constrained settings

As mentioned in the later parts of section 3.4 we now present a model suited

for memory constrained settings. With the layer significance identification using

TwoNN approach working as expected, we attempt a hybrid precision layer design
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Figure 4.7: Significant layers (shaded red) identified by TwoNN (left) and PCA
(right) with threshold ∆ = 20, along with the values of the significance
criteria

on the QuantNet model. Setting a threshold ∆ = 20, we categorize the layers

with significance value above it to be important and set to a higher precision of

2 bits, while binarizing the layers with significance value below ∆. We can see

the performance for the model with this configuration in the last row of table

4.7 and as one might expect, it achieves high empirical reduction in size with

only a marginal reduction in accuracy compared to the baseline. In terms of size

reduction, which the very low precision methods attribute slightly more importance

to, this design achieves reduction next to XNOR-Net design (row 2 of table 4.7

with all intermediate layers set to binary precision) but with a considerably better

generalizability and predicting capability.

4.2.6 Proposed Model vs Other best performing models

In this section we will compare the performances of our proposed compressing

technique (TwoNN + Clustering + Q-Aware training) with the best performing

models from each technique discussed so far.
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Table 4.8: Test accuracy and Size of model (MB) of best performing compression
schemes

Set Up Test Acc Model Size (MB)

Base Model 66.00 2.0852

Post Training Quantization on Q-Aware model 65.80 0.5278

Clustering + Post Training Quantization
on Q-Aware model 65.60 0.1922

Cluster Preserving Q-aware Training 65.85 0.2394

TwoNN +Mixed Precision (2bit, 1bit) Quantization 65.80 0.1321

TwoNN + Cluster Preserving + Q-Aware training 65.95 0.1625
All numbers are reported for Cat vs Dogs stand-alone setup

Table 4.8 clearly shows that our proposed model outperforms the best performing

models from each of technique discussed so far. The closest to our model is the plain

(without differentiating between the layers) Cluster preserving Q-aware training. In

general, most of these constraints on the network is observed to have a regularizing

effect aiding in improvement of better Test accuracy and model generazability.

Also, as mentioned in the previous subsection, for memory constrained setting

the TwoNN +Mixed Precision model is most suitable given it’s model size and

accuracy. We still persist with our proposed model for normal edge settings because

of the compression we are able to achieve and the accuracy we are able to maintain.

We firmly believe that this difference in accuracies will be much larger in case of

complex datasets and complex tasks.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, we present an efficient approach to compress an image classification

model in transfer learning setup. We introduce a new approach to combine the

ideas of TwoNN dimension estimation method, Weight clustering and Quantization

aware training to come up with an optimal pipeline for model compression.

We benchmark our model against the best models from all the other classical

approaches discussed in the Experiments and results section. Subsequently, we

demonstrate that our approach outperforms all these commonly used techniques

in terms of accuracy and also achieves very good model compression.

Further, we explain our observations by analysing the results we get from

various experiments and justify our choices of techniques that we choose to form

our final model. We first show how the Post training + Q-aware training model

outperformed the other Quantization techniques both in stand-alone and transfer

learning setup. We then demonstrated that different layers in play different roles

and selectively modifying certain parts of model will help in both model size

reduction and also accuracy maintenance.

Further, we perform an important comparative study among the clustering and

Clustering + Quantization techniques. We also demonstrated the advantage of

using Cluster preserving Q-Aware training due to their cascading effect on model

compressing. Then, we compare TwoNN and PCA methods for ID estimation and

conclude that TwoNN is the better alternative and helps in improving generaliz-



ability in the compressed models. Finally we also compare the performance of our

model with all the other best performing models.

In the future, we hope to extend the applicability of our approach to multi-class

image classification models as well. We also intend to extend this work to tasks

beyond classification like object detection, face detection etc. Given the surge in

the usage of edge devices in recent times and there is a strong need for a fast and

efficient Neural network model running on these devices and we wish to explore

further avenues where the learnings from this work can be applied. Further, given

that reinforcement learning is used in recent times for similar tasks we wish use

that as a comparative to benchmark as well. We also want to see how the findings

of our research might be used to design more efficient approaches for environments

with far more limited memory.
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