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ABSTRACT

KEYWORDS: Linear Classifier, Noisy Computation

We investigate the impact of hardware noise and quantization errors on the

accuracy of inference using linear classifiers, motivated by the growing interest

in machine learning on nanoscale edge devices. Our tests utilising well-accepted

models for hardware noise and defects on synthetic and actual data sets reveal

that they have a considerable impact on accuracy. An easily implementable tech-

nique for reducing those impacts is presented by integrating concepts from linear

classification, convex analysis, and concentration of measure. This basic method

greatly improves performance in both synthetic and actual data sets, according to

tests.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Statement

Machine learning is projected to infect every edge device connected to the next

high-speed 5G networks. Many of these devices will be used for life-saving appli-

cations such as health monitoring, elderly and child care, and industrial sensing.

As a result, precise execution of machine learning algorithms on these edge devices

is critical. Edge devices, on the other hand, must be inexpensive, quick, energy

efficient, and tiny in order to meet the needs of the intended applications. As a re-

sult, nanoscale CMOS and beyond-CMOS technologies were a perfect fit for these

devices. However, they are frequently boisterous. Quantization errors also affect

the computations on these devices, as their memories are severely constrained

to ensure tiny form factors. This raises the question: Can reliable learning and

inference be done on the noisy and error prone hardware of edge devices? This

forms the basis for our motivation.

One might ask the question why we are interested in linear classifiers. The

main reason behind asking this question is that linear classifiers are the simplest

and the most prevalent non-neural classifiers. Hence, they are the most suitable

candidates for deployment on edge devices. Moreover, the last layer of many

high performing neural classifiers, which is also one of the most sensitive layers,

is essentially a linear unit. Hence, exploring the linear classifiers only of practical



interest, it is also likely to boost our understanding of the aforementioned broader

question.
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CHAPTER 2

Approach

2.1 Noise Models

A unit vector w ∈ Rd and b ∈ R define a binary linear classifier for d-dimensional

data. Using sign(wTx− b), this classifier determines the label of a data point x ∈ Rd.

The dot product is the most important computational step in a linear inference.

There are numerous implementations of dot products in upcoming nanoscale

technologies. However, the hardware noise that those dot product circuits experi-

ence can be divided into two types: additive noise and random gate failures

Additive noise: The output of the dot product circuit in this case is wTx + Z,

where Z is a zero mean random variable. The variance of Z, or the energy of the

noise, is proportional to the dot product dimension. The thermal noise of the dot

product circuit is known to be well-modeled by Gaussian distributed Z.

Random gate failures: Gate failures are typical in low-energy nanoscale tech-

nology. One or more components of the dot product may not be captured in the

final output due to short circuits and other faults, or the signs of those compo-

nents may be flipped. This means that instead of wTx , the dot product circuit’s

final output would be
∑d

i=1 wi xi Yi, with {Yi} being either {0, 1} or {±1} valued i.i.d.

Bernoulli random variables.



2.2 Intuition

In this part, we use ideas from linear classifier characteristics, convex optimization,

and probability theory to develop an understandable error mitigation technique.

2.2.1 Affine transformation of the data space

Consider the case where, in the absence of hardware noise, perfect linear classi-

fication is attainable, i.e. the dataset is linearly separable . Two hypotheses with

convex and non-overlapping supports are used to characterise the underlying gen-

erative model for this data set . In this situation, the hyper-plane that is equidistant

from the supports is the best linear classifier (i.e., the one with the highest margin

). This hyper-plane is also perpendicular to the line connecting the two nearest

points of the corresponding supports. The data space can be affinely modified

(in particular, orthonormal transformation and translation) in such a way that the

best classifier is sign(ūTx̃), here, ū = 1
√

d
1, where 1 all 1 vector, and x̃ is a modified

data point. Furthermore, at the origin, the line connecting the two closest points of

the corresponding supports (in converted space) intersects the classifier. So, from

now on, we’ll concentrate on the case where the best classifier is sign(ūTx), data x

originates from one of the two convex support sets distributions, and those two

support sets are closest to each other near the origin.

2.2.2 Identifying vulnerable data points

It is obvious from the previous observations that in the presence of hardware

noise, the data points closest to the origin are the ones most likely to be categorised

incorrectly. Furthermore, because ū is symmetric, there are no components with
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large absolute values near the origin. As a result, the components that contribute

favourably (or negatively) to the dot product of a data point near the origin are

likely to be well spread out and have similar contributions in terms of magnitude

in the (noiseless) dot product. Let us assume that a data point x near zero has total

positive and negative contributions in the (noiseless) dot product of Sx
+ and Sx

−
,

respectively, and that Sx
+ > Sx

−
. Consider dividing the data point’s d components

into k groups of size d
k each at random, provided k divides d. Because of the

symmetry of the splitting and the fact that the components contribute roughly

equally to the dot product, each group should have more positive (Sx
+/k) than

negative (Sx
−
/k) contributions to the noiseless dot product. This implies that when

Sx
+ > Sx

−
, the sign of the (partial) dot product in each group is more likely to be

positive. Similarly, one could argue that the sign of the dot product in each group

is more likely to be negative when Sx
+ < Sx

−
.

2.2.3 Group-wise noisy dot products and their signs

Consider the noisy dot product, which captures hardware noise and quantization

mistakes under additive noise. The sign of a group’s (noisy) dot product can differ

from that of the noiseless case in the presence of noise. Because when Sx
+ > Sx

−
, the

noiseless dot product of a group is more likely to be positive, let that probability

be 1
2 + α for some α ∈ (0, 1

2 ). Assume that the probability of noise flipping the sign

of a group’s dot product is δ. When Sx
+ > Sx

−
, the likelihood of a group’s noisy dot

product being positive is given by

(
1
2
+ α)(1 − δ) + (

1
2
− α)δ =

1
2
+ α(1 − 2δ)

5



As a result, for δ < 1
2 , α > 0 and sufficiently big k, when Sx

+ > Sx
−
, the likelihood of a

group’s (noisy) dot product being positive is no less than 1
2 +ϵ+, where 1

2 +ϵ+ grows

with 1
2 + ϵ+. Similarly, for δ < 1

2 , when Sx
+ < Sx

−
, the chance of a group’s (noisy) dot

product being negative is no less than 1
2 + ϵ− for some ϵ− > 0. It may be claimed

that δ < 1
2 is the sole instance of interest for error mitigation. Consider the situation

where a group’s noiseless dot product has the same sign as the overall noiseless dot

product. In this scenario, the probability that the sign of a group-wise dot product

is flipped by noise is strictly smaller than 1
2 for any symmetric noise distribution

such as Gaussian and uniform. Because a group’s noiseless dot product is more

valuable,On average, the probability of flip, i.e.,δ, is strictly smaller than 1
2 and has

the same sign as the overall noiseless dot product. The case where group-wise

dot products are sent across a completely random binary symmetric channel is

referred to as δ = 1
2 in information theory. Theoretically, error mitigation for the

route is impossible.

2.2.4 Fusing the group-wise signs

When |Sx
+ − Sx

−
| is constrained away from 0 owing to measure concentration, the

difference between the number of positive and negative group-wise (noisy) dot

products is ≥ ϵ+k − c
√

k (≤ −ϵ−k + c
√

k), with high probability, for some c > 0. As

a result, the final label for x can be determined simply by counting the difference

between the number of positive and negative dot products in each group. In

practise, however, ϵ+ (ϵ−) are not known before hand. Consider the worst-case

scenario: when the likelihood of a group’s (noisy) dot product being positive or

negative is 1
2 , i.e., ϵ+ = ϵ− = 0. Even in this instance, the difference in the number

of groups with positive and negative (noisy) dot products by concentration of

6



measure lies between −c
√

k and c
√

k with high probability, for some c > 0. In

reality, where ϵ+ (ϵ−) are unknown before hand, a decision can be taken with high

confidence whenever the absolute value of the difference between the number of

groups with positive and negative (noisy) dot products is ≫
√

k. This leads to

a natural error mitigation strategy which we refer to as DIVIDE, DECIDE AND

FUSE strategy, and in short, DDF.

2.3 Error Mitigation Strategy

DIVIDE, DECIDE, AND FUSE: Using a random number generator, divide the

d components of the classifier vector w into k groups of size d kd
k each. (If k

does not divide d, use zero padding to increase dimension.) Let’s call those

parts w(1),w(2), . . . ,w(k). Let x(1), x(2), . . . , x(k) be the vectors corresponding to the

components for any data point x. For some C > 0, declare the label for x to be

positive if
∑k

j=1 sign
(
w( j)T x( j)

)
> C
√

k and negative if
∑k

j=1 sign
(
w( j)T x( j)

)
< −C

√
k. In

other circumstances, choose at random. This method was created with additive

noise in mind, such as thermal noise and quantization mistakes. However, because

random gate failures are symmetric across groups, the impact on each group’s dot

product is expected to be zero. DIVIDE, DECIDE, AND FUSE, on the surface,

appears to alleviate mistakes caused by random gate failures. The following code

snippet shows our implementation of the strategy with normal noise.

def test_perceptron_noise(X, Y, w, std,first,second)

i = 0

acc_error = 0

acc_total_sum = 0

7



total = 0

val = 0

for row in X:

total_val=0

for j in range(first):

for k in range(second):

total_val += (w[0][second*j+k]*row[(second*j)+k])

noise = np.random.normal(0,std/first,1)

total_val += noise[0]

if (total_val >= 0):

accum+= 1

if (total_val < 0):

accum-=1

total_val = 0

if (accum > int((first**0.5)+1)):

pred = 1

elif (accum < -int((first**(0.5)+1))):

pred = -1

else:

result = np.random.binomial(1,0.5)

if result == 1:

pred = 1

else:

pred = -1

accum = 0

if (pred != Y[i]):

8



acc_error += 1

acc_total_sum += 1

i+= 1

return (acc_total_sum-acc_error)/acc_total_sum

9



CHAPTER 3

Data Generation

We use three synthetic data sets, namely, symmetric separable data set, rotated sep-

arable data set, and asymmetric separable data set. The first data set is generated

by sampling from two distributions: uniformly random from two nonoverlapping

spheres centered respectively at +1 and −1, where 1 is the d-dimensional all 1

vector.

3.1 Skew

The distribution is skewed if one tail is longer than the other. Because they lack

symmetry, these distributions are sometimes referred to as asymmetric or asym-

metrical. Symmetry describes how one half of a distribution mirrors the other half.

The normal distribution, for example, is a symmetric distribution with no skew.

The tails are interchangeable. The skewed data set is generated by picking points

from two skewed d dimensional distributions with non-overlapping supports and

their modes are at ±1.



3.2 Rotation

For the simplest case of rotation in a two-dimensional plane, the rotated vector is

related to the initial vector by

 x′

y′

 =
 cos a − sin a

sin a cos a


 x

y


for a right-hand rotation through the angle a. The generator of this rotation is

represented by the matrix

 0 1

1 0

 . The square of this matrix is the negative of the

identity matrix, its cube is its own negative, and the full exponentiation is

exp

a
 0 −1

1 0


 =
 1 0

0 1

 + a

 0 −1

1 0

 − a2

2!

 1 0

0 1

 − a3

3!

 0 −1

1 0

 + · · ·
= cos a

 1 0

0 1

 + sin a

 0 −1

1 0


exp

a
 0 −1

1 0


 =
 cos a − sin a

sin a cos a


leading to the rotation matrix given above. The generator of the rotation can be

written as an outer product of the two unit vectors along the x-axis and the y-axis,

 0 −1

1 0

 =
 0

1


(

1 0
)
−

 1

0


(

0 1
)
= ŷx̂T

− x̂ŷT

where the transposed vector on the right of each term is multiplied leftward onto

each component of the vector to produce matrices that are added together. Because

the previous definitions of generators in terms of outer products are written in

11



vector notation, they may be used to explain rotation in any hyperplane formed

by two n-dimensional vectors right away. Given two orthogonal unit vectors n1

and n2, which means

nT
1 n1 = 1; nT

1 n2 = nT
2 n1 = 0 nT

2 n2 = 1

the generator of rotations in the hyperplane spanned by the two vectors is

Ln1n2 = n2nT
1 − n1nT

2

Forming powers of thin generator,

L2
n1n2
= −
(
n1nT

1 + n2nT
2

)
L3

n1n3
= −
(
n2nT

1 − n1nT
2

)
the n dimensional rotation matrix is simply

exp
{
aLn1n2

}
= I +

(
n2nT

1 − n1nT
2

)
sin a +

(
n1nT

1 + n2nT
2

)
(cos a − 1)

The extra negative sign from the neighbouring outer product accounts for the

difference in sign in the last term when compared to Rodrigues’ rotation formula.

This nxn matrix can now be used to obtain the final value of an n-dimensional

vector after rotation in the hyperplane given.

Here is a code snippet that generates skewed data after randomly sampling

from Muller data.

import random

import numpy as np

12



import math

def skew_norm_pdf(x,e=0,w=1,a=0):

t = (x-e) / w

return 2.0 * w * stats.norm.pdf(t) * stats.norm.cdf(a*t)

def func(radius,dim):

train_data = []

train_labels = []

test_data = []

test_labels = []

temp_labels = []

temp_data = []

num_points = 1000

for i in range (num_points):

#Muller’s method: randomly sampling from d-ball

location = 0.0

scale = 1.0

temp_arr = np.random.rand(dim)

data_arr = skew_norm_pdf(temp_arr,location,scale,-3)

norm = np.sum(data_arr**2)**(0.5)

r = random.random()**(1.0/dim)

data_point = r*data_arr/norm

data_elem = []

#positive or negative point with prob 0.5

13



prob = 0.5

rand_label = np.random.binomial(1,prob)

#centre for positive ball is (1,1,..)

#centre for negative ball is (-1,-1,..)

for x in data_point:

if (rand_label == 1):

x = (x*radius) + 1

else:

x = (x*radius) - 1

rand_label = -1

data_elem.append(x)

temp_labels.append(rand_label)

temp_data.append(data_elem)

train_num_points = 700

#Training data

for k in range(train_num_points):

train_data.append(temp_data[k])

train_labels.append(temp_labels[k])

#Testing data

for j in range(k,num_points,1):

test_data.append(temp_data[j])

test_labels.append(temp_labels[j])

14



return (train_data,train_labels,test_data,test_labels)
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CHAPTER 4

Evaluation

This section assesses the effectiveness of the suggested DIVIDE, DECIDE, AND

FUSE strategy (DDF). We investigate the accuracy of final classification for several

noise models at various strengths. The accuracy of a perceptron supplemented

with DDF is demonstrated in Figures 6.1 for data dimensions 30 and 100, respec-

tively. The tuples in the picture legends relate to different groupings of data vector

components. The tuple’s first number relates to k, whereas the second number cor-

responds to d
k . When compared to plain perceptron inference (referred to as ”raw”

in the figure), there is a considerable boost in test accuracy. Because uniform noise

is the best model for quantization errors, we repeat the preceding experiments

with uniform noise and present the comparisions in Fig 6.2. We also show how

the raw perceptron works on the various datasets as in Fig 6.2. The major finding

is the same as before: the DDF technique improves accuracy significantly. We in-

troduced DDF by emulating the maximum margin classifier for linearly separable

data sets. So it’s only natural to wonder if DDF can help noisy linear classifiers

perform better on data sets that aren’t linearly separable. We employ DDF for

naive Bayes’ classifier in the face of hardware noise to find a solution to this query.

We compare the performance of naive Bayes when reinforced with DDF to plain

(raw) naive Bayes in Fig 6.3. The figures imply that DDF can help linear classifiers

perform better on data sets that aren’t linearly separable. We also present the tables

which include the corresponding data for the dimensions other than the ones men-

tioned above.Table 6.5 shows Noise vs Radius (Variance) results on rotated data



of dimension 40. Table 6.6 shows Noise vs Radius (Variance) results on rotated

data of dimension 40 split into 4 and 10. Table 6.7 shows the same but the split

is now 8 and 5. The following tables after the previous ones give the data for 50

dimension and their corresponding splits. The next set of tables are generated on

the asymmetric dataset.
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CHAPTER 5

Future Work

The primary lessons from this research are twofold: hardware noise has a large

negative impact on classification, and simple implementable solutions based on

the classifier’s structure and data distribution can reduce this. Though the earliest

findings appear promising, the investigation is far from finished. Our research

presents several new questions that need to be investigated further. To begin, we

ignored the affine transformation and randomly split the classifier vector w into k

equal sized groups for energy, storage, and computing restrictions of edge devices.

Prior to the change, the classifier vector w is unlikely to be symmetric. As a result,

a weighted split of w, which accounts for component asymmetry, is expected to

perform better, particularly at high SNR. Identification of the best asymmetric split

method, selection of the best k, and comprehensive testing of various techniques

on real data sets are all critical. Second, designing a provably accurate yet simple to

implement error mitigation technique is a mathematical quest of practical interest.

Even if the argument is only valid for a limited set of data distributions and

noise models, it is still a good exercise because the research is likely to reveal

more information about the problem. It’s also interesting seeing if the structural

ideas from the noisy classification problem can be merged with the coding schemes

from to come up with a basic but deterministic system. Finally, because many state-

of-the-art classifiers are based on deep neural networks, efficient error mitigation

for noisy nanoscale neural networks is important.



CHAPTER 6

Graphs and tables

Figure 6.1: Perceptron (with DDF) with Gaussian Noise on symmetric and asym-
metric data sets.
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Figure 6.2: Perceptron (with DDF) with Binary Noise on symmetric and asymmet-
ric data sets.



Figure 6.3: Perceptron (with DDF) with Binary noise on symmetric and asymmetric
data sets.

Figure 6.4: Perceptron on symmetric, asymmetric, rotated datasets with Gaussian
noise.
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Figure 6.5: Table showing Noise vs Radius (Variance) results on rotated data of
dimension 40.

Figure 6.6: Table showing Noise vs Radius (Variance) results on rotated data of
dimension 40 split into 4 and 10.
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Figure 6.7: Table showing Noise vs Radius (Variance) results on rotated data of
dimension 40 split into 8 and 5.

Figure 6.8: Table showing Noise vs Radius (Variance) results on rotated data of
dimension 50 split into 2 and 25.
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Figure 6.9: Table showing Noise vs Radius (Variance) results on rotated data of
dimension 50 split into 10 and 5.

Figure 6.10: Table showing Noise vs Radius (Variance) results on asymmetrical
data of dimension 40.
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Figure 6.11: Table showing Noise vs Radius (Variance) results on asymmetrical
data of dimension 40 split into 4 and 10.

Figure 6.12: Table showing Noise vs Radius (Variance) results on asymmetrical
data of dimension 40 split into 8 and 5.

24



Figure 6.13: Table showing Noise vs Radius (Variance) results on asymmetrical
data of dimension 50 split into 2 and 25.

Figure 6.14: Table showing Noise vs Radius (Variance) results on asymmetrical
data of dimension 50 split into 10 and 5.
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