
Optimal Compression of Convolutional Neural
Networks for Edge Devices

A Project Report

submitted by

ABISHEK S

in partial fulfilment of the requirements
for the award of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

May 2022

THESIS CERTIFICATE

This is to certify that the thesis entitled Optimal Compression of Convolutional

Neural Networks for Edge Devices, submitted by Abishek S (EE18B001), to the

Indian Institute of Technology, Madras, for the award of the degree of Bachelors of

Technology, is a bona fide record of the research work carried out by him under my

supervision. The contents of this thesis, in full or in parts, have not been submitted

to any other Institute or University for the award of any degree or diploma.

Dr. Avhishek Chatterjee
Research Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 27/05/2022

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Prof. Avhishek Chatterjee who

guided me throughout the course of this project. The interactions and regular

meetings I had with him taught me a lot of things within and outside this research,

kept me motivated and excited constantly, and transformed my perspective on

research as a whole. I thank him for the opportunity to work on this project which

is very relevant to the current times. I would also like to thank and acknowledge

the support of Anirudh S (EE18B073), who worked with me on this work and

contributed his ideas and observations.

I extend my sincere gratitude to IIT Madras for the quality of education and

the opportunities that I got in my four amazing years of undergraduate at this

place. The contribution of the university towards my growth as a knowledgeable

student, as a researcher, and as an individual is immeasurable.

I would like to thank my parents, sister, and my friends for their never-ending

support, encouragement, and care helped me reach where I am today that keeps

me going. Finally, my special thanks to the Almighty, who has surrounded me

with such good people and showered me with good health and wisdom.

i

ABSTRACT

KEYWORDS: Convolutional Neural Networks, Edge ML, Quantization,

Principal Component Analysis, Clustering, Pruning, Two

Nearest Neighbors, Mixed Precision Layer Design

Recently, there has been a lot of interest in deploying neural networks on mo-

biles, sensors, and other edge devices that are restrained in storage, computational

power, and energy. The main success of the neural networks in tasks such as

image classification can be attributed to their superlative performance over tra-

ditional machine learning methods. However, a major drawback of using these

deep neural networks has been their high storage and processing requirements

which most edge devices lack. Hence, there has been a constant trade-off between

model performance and its memory and computational requirements. Despite

this trade-off between accuracy and model size, several neural network model

compression techniques have been introduced to reduce the discriminating power

of this trade-off and achieve high performance along with high memory need

reduction. We provide a detailed comparative study of some of the most rele-

vant and useful methods for compressing convolutional neural networks, namely

quantization (post-training and quantization aware training), pruning, parameter

clustering, and hybrid layer precision design that show potential for insights and

improvement with a focus on reducing the memory footprint for image classifica-

tion tasks among other issues like latency and energy. We propose a pipeline to

efficiently compress CNN-based models through analyzing the intrinsic dimen-

ii

sionalities of data representations across layers that achieves high performance and

makes it less memory intensive to be suitable for deployment on limited resource

edge devices. Using the same intrinsic dimension idea, we also optimally extend

the hybrid layer precision design for memory crunch situations. The experiments

are performed using QuantNet model on binary image classification tasks from

the CIFAR-10 dataset like Cat vs Dog and Horse vs Frog. Briefly put, this work

puts forward a novel and promising approach to analyzing neural network layers

for transfer learning setup (that applies to the source domain setup as well) and

utilizing it to optimally combine different compression techniques for achieving

great performance with a significant reduction in model size.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES viii

ABBREVIATIONS viii

NOTATION ix

1 INTRODUCTION 1

2 LITERATURE REVIEW & THEORY 5

2.1 Quantization . 5

2.1.1 Mathematical Formulation 6

2.1.2 Classification . 6

2.1.3 Mixed Precision Quantization 10

2.2 Weight Clustering . 12

2.3 Pruning . 14

2.4 Intrinsic Dimension Estimation . 16

2.4.1 PCA Method for Intrinsic Dimension Estimation 16

2.4.2 TwoNN Method for Intrinsic Dimension Estimation 17

3 RESEARCH METHODS 20

3.1 Problem Statement Motivation . 20

3.2 Description of Model used for Studies - QuantNet 22

3.3 TwoNN-based Hybrid Precision Quantization 24

iv

3.3.1 Correct Scaling Factor and Gradients 26

3.3.2 TwoNN Method for Identifying Significant Layers 28

3.4 Proposed Model Pipelines . 30

4 EXPERIMENTS 33

4.1 Setup . 33

4.1.1 Dataset . 33

4.1.2 Hyperparameter Tuning . 35

4.1.3 Model Training Details . 35

4.2 Results and Findings . 36

4.2.1 Study on Conventional Quantization Approaches 36

4.2.2 Study on Mixed Precision Quantization 40

4.2.3 Study on Model Pruning and Weight Clustering 46

4.2.4 Performance of Proposed Model Pipeline 50

5 CONCLUSION AND FUTURE WORK 52

LIST OF TABLES

4.1 Summary of QuantNet model used in the experiments 33

4.2 Hyperparameter setting of QuantNET 36

4.3 Test performance and model size of QuantNet under different quan-
tization schemes on Cat vs Dog and Horse vs Frog datasets (stan-
dalone) . 37

4.4 Test performance and model size of QuantNet under different quan-
tization schemes with Cat vs Dog source domain, Horse vs Frog and
Rotated Cat vs Dog target domains (Transfer learning setup) . . . 38

4.5 Summary of the intrinsic dimension analysis on Quant-Net model
for Cat vs Dog source domain and Horse vs Frog target domain . 41

4.6 Performance summary† of TwoNN and PCA approaches on Quant-
Net model for Cat vs Dog Source Domain (SD) and Horse vs Frog
Target Domain (TD) . 44

4.7 Test performance and model size of QuantNet under different clus-
tering schemes for Cat vs Dog . 48

4.8 Test performance, number of clusters in each layer, and model size
under different clustering + QAT schemes on QuantNet model for
Cat vs Dog . 49

4.9 Test performance and model size of QuantNet under the best per-
forming compression schemes for Cat vs Dog dataset from CIFAR-10
in standalone setup . 50

vi

LIST OF FIGURES

2.1 Uniform vs Non-uniform Quantization 7

2.2 Symmetric vs Asymmetric Quantization 8

2.3 Illustration of Quantization Aware Training 9

2.4 Illustration of the working of PCA-based Hybrid-Net design which
selectively quantizes different layers independently based on their
significance denoted by higher increase in nPC from previous layer 13

2.5 Illustration of Weight Clustering 14

2.6 Illustration of Weight and Neuron Pruning 15

2.7 Illustration of ID estimation through TwoNN 18

3.1 Detailed Model Architecture of QuantNet for binary image classifi-
cation task . 23

3.2 The ID of data representations following a hunchback profile . . . 29

3.3 Illustration of identifying significant layers using TwoNN method
on QuantNet model for the CIFAR-10 dataset, with threshold∆ = 20 30

3.4 Flow diagram of the optimal model pipeline proposed for limited
resource edge devices . 32

3.5 Flow diagram of the optimal model pipeline proposed for memory-
constrained edge devices . 32

4.1 Plot showing the effect of quantizing each layer on the test accuracy 39

4.2 Principal Component Analysis on the intermediate layers of Quant-
Net for Horse vs Frog of CIFAR-10 dataset 42

4.3 Identifying significant layers using TwoNN and PCA on QuantNet
model for transfer domain in CIFAR-10 dataset, with threshold ∆ =
20 . 42

4.4 Significant layers (shaded red) identified by TwoNN (left) and PCA
(right) with threshold ∆ = 20, along with the values of the signifi-
cance criteria . 45

4.5 Variation of test accuracy with pruning 46

4.6 Variation of test accuracy with number of clusters (Nc) 47

vii

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

CNN Convolutional Neural Network

ML Machine Learning

IC Integrated Circuit

CPU Central processing unit

GPU Graphics processing unit

TPU Tensor processing unit

FLOP Floating Point Operations

DNN Deep Neural Network

NLP Natural Language Processing

QAT Quantization Aware Training

PCA Principal Component Analysis

TwoNN Two Nearest Neighbors

ID Intrinsic Dimension

CDF Cumulative Distribution Function

MAC Multiply and Accumulate Computations

NLG Natural Language Generation

viii

NOTATION

nPC Number of Principal Components
fp32 32-bit Floating Point
n Flattened dimensions of a general weight tensor
M Minibatch size
O Channel dimension of CNN output
W Width dimension of CNN output
H Height dimension of CNN output
N Number of input samples used for training

ix

CHAPTER 1

INTRODUCTION

The history of neural networks dates back to 1943 when Mcculloch and Pitts [1943]

associated logic with neural activity and proposed the first artificial computational

neuron for binary inputs. This was followed by Rosenblatt [1958] introducing the

perceptron handling real inputs and an algorithm for learning the weights. The lin-

ear nature of the earlier models and the lack of powerful computers halted progress

on deep neural networks (DNNs), and the traditional ML approaches dominated

most of the late 20th century. On the image classification front, image features

detectors, Naive Bayes, K-Means clustering, K-Nearest Neighbor, Support Vector

Machines, and Decision Trees were widely used until the first Convolutional Neu-

ral Network (CNN) architecture was proposed by Lecun et al. [1998] in the form of

LeNet-5 for handwritten character recognition in the late 20th century. The deep

CNNs have been the dominant choice for image classification tasks ever since, with

the constantly evolving processing power of computers making them more com-

putationally viable and the sophisticated architectures making predictions more

accurate.

In 1965, Gordon Moore stated empirically that the number of transistors packed

in a dense integrated circuit (IC) doubles about every two years (Moore’s law). How-

ever, electronic devices are getting increasingly smaller at an even more rapid rate

resulting in limited memory and processing power. In addition, the CPUs, GPUs,

and even the most recent TPUs that train or run inference on these models consume

a lot of energy pertaining to the huge number of FLOP operations and memory

accesses for read and write operations. The battery-powered devices still cannot

afford to run the complex neural network models due to their energy budget. As

a quantifying example, the ResNet-50 model [He et al., 2015] with 50 convolution

layers takes up over 100 MB memory and uses more than 3.8 billion floating-point

operations while processing an image [Cheng et al., 2017]. The latest smartphones

cannot run image classification with AlexNet for more than an hour [Yang et al.,

2017]. All these claims might raise a question on whether DNNs are really nec-

essary for the limited resource edge devices. The answer lies in the fact that data

collected from such sources are usually noisy, large, and heterogeneous and the

conventional ML methods fail in these settings. Hence with the advent of the

Internet of Things (IoT) devices, augmented reality, embedded systems, real-time

application devices, and distributed systems, the need for support of DNNs on

such systems becomes a pressing issue for ensuring their purpose of autonomous

intelligence.

A predominantly used approach employed on current edge devices is to trans-

mit the data collected on the edge to the centralized cloud servers, where the model

resides and runs on the input data, returning the output back to the device for fur-

ther processing or usage. There are quite a few shortcomings to this approach,

though. The first straightforward disadvantage is the latency delays that occur

twice - while communicating the data to the cloud machine and while retrieving

the output from the cloud. This does not go well with devices that run time-critical

applications like braking a car, for instance. In 2021, there were over 10 billion ac-

tive IoT devices alone, and it is estimated that by 2025, there will be around 152,200

IoT devices connecting to the Internet per minute [Jovanovic, 2022]. These deepen

2

the latency problem further by creating huge load and traffic on the cloud servers.

Secondly, there is the issue of the unreliability of the centralized cloud computing

service. Failure of the cloud service in a region might affect a large number of

devices relying on it, and even with replications on multiple regions, there is a

problem of increased latency. Finally, there is also cost associated with cloud com-

puting, and for applications involving deep learning, the clusters will be powerful

and the cost will be considerable.

Hence, the need for a decentralized approach to deploying neural networks

on edge devices after suitably compressing them is established. This needs to

happen without losing out on the primary advantage of neural networks - their

performance. Several important works in this regard have been popular since they

were ideated, like quantization [Jacob et al., 2018] [Rastegari et al., 2016], hybrid

precision layer design [Chakraborty et al., 2020], pruning [Frankle and Carbin,

2018] [Han et al., 2015], and knowledge transfer [Ahn et al., 2019], to name a few.

DNNs are known to be over-parametrized - as an example, AlexNet’s performance

is achieved at 50% of its size [Iandola et al., 2016]. The model compression methods

tap into this property of neural networks to achieve a high reduction in size with

only a marginal reduction in accuracy. While previous works focus on a single

kind of model compression technique for the entire model, we build over the idea

of hybrid precision that uses different precisions for different layers to attempt

using different techniques for different layers. The intuition is that different layers

serve a different, specific purpose in the model for a given task and need to be

treated differently. Especially when it comes to a transfer learning setup, there

exist methods that freeze some layers before fine-tuning on the target dataset and

achieve equal, if not better, performance, and probably exhibit different character-

3

istics of parameter values from other layers. Though some of the existing works

like information distillation [Ahn et al., 2019] and SqueezeNet [Iandola et al., 2016]

attempt to minimizing model architecture, we focus on what needs to happen for

a given, fixed model.

In this work, we perform a comparative study of various important model com-

pression techniques like integer quantization, floating-point quantization, quanti-

zation aware training, pruning, and weight clustering by weighing their pros and

cons. We then explore mixed precision quantization that achieves a very high size

reduction of some layers and propose a novel approach to carry out the process of

hybrid precision design to achieve better performance. Finally, we also propose a

pipeline of model compression that utilizes a combination of well-suited methods

by extending the novel criteria introduced for mixed precision.

Though this work is done through the lens of CNNs for image classification

tasks, the need for compression techniques and the methods themselves can very

much be extended to other important tasks that edge devices handle, including

Natural Language Processing (NLP), Robotics, etc.

4

CHAPTER 2

LITERATURE REVIEW & THEORY

In this chapter, we provide a background on the relevant techniques and theory

that was explored as a part of our literature survey. We looked at the need for

decentralized storage ?? and computation in the introduction that motivates our

problem statement. We now proceed to explore the various classical and important

techniques that have been used for neural network compression and conclude this

chapter with a short introduction to intrinsic dimension and two ID estimation

approaches that we focus on in this work.

2.1 Quantization

Quantization is the approach of performing some or all the computations and stor-

ing values at lower bit-widths than the conventional 32-bit floating-point (fp32)

precision. This leads to compact model representations and fast operations, achiev-

ing reduced latency and storage. Neural networks show tremendous scope for

quantization despite the high sensitivity of training and inference to the param-

eter values since they are over-parametrized. This additional degree of freedom

renders the model robust to high differences between quantized and original un-

quantized models without significant degradation in generalizability, especially

when the training process is aware of the quantization methods used.

2.1.1 Mathematical Formulation

Suppose there is a neural network with L layers and layer-wise parameters θl for

l ∈ {0, . . . ,L − 1}. The quantization function for lth layer Ql is a map from Rd
→ Sd,

where d is the flattened dimension of the parameter vector θl and S is a smaller set

of values that a value of low precision can take (though the initial domain values

are by itself only of fp32 precision, we treat them as ∈ R for simplicity). Model

quantization attempts the following:

min
Q0,...,QL−1

L−1∑
l=0

∥Ql(θl) − θl∥ =

L−1∑
l=0

min
Ql
∥Ql(θl) − θl∥

Each term in the above summation can be minimized independently since there

are no dependencies among the functions and the parameters of different layers.

This is also the basis for mixed/hybrid precision quantization (section 2.1.3).

2.1.2 Classification

There are a number of classifications used for quantization techniques, a few

relevant of which are listed below:

A. Uniform and Non-Uniform Quantization
Uniform/Affine quantization maps a given range of values x ∈ [a, b] linearly
to a set of discrete integers xq. The process of quantization can be mathemat-
ically described as:

xq = round
(x

c
− d
)

And the process of de-quantization (converting the integers xq back to the
source domain of x) as:

x̃ = c(xq + d)

(x , x̃ because of rounding-off errors)

6

If xq assumes continuous integers in [aq, bq],

c =
b − a

bq − aq
(c : scaling factor)

d =
abq − baq

b − a
(d : zero point)

Non-uniform quantization does not follow a linear map and is realized
through several techniques like clustering and logarithmic quantization.
Even the optimal quantization scheme proposed in Chatterjee and Varshney
[2017] based on functional high-rate quantization theory adopts a non-linear
approach.

Figure 2.1: Uniform vs Non-uniform Quantization

Source: Gholami et al. [2022]

This work focuses on uniform quantization methods since non-uniform ones
require more overhead storage and computation, which might not be feasible
in edge devices, and the inputs at different times to these devices need not
follow identical distributions.

B. Symmetric and Asymmetric Quantization
In symmetric quantization, the source domain of x is symmetric (i.e.) of the
form [−a, a], whereas in asymmetric quantization it is not. Within symmetric
quantization there are two types: full range symmetric quantization where
the target domain of xq is of the form [−2b−1, 2b−1

− 1] for b-bit precision us-
ing the whole range of possible signed integers vs restricted range symmetric
quantization where the domain of x is restricted to usually [−2b−1+1, 2b−1

−1]
for b-bit precision leading to target domain being symmetric and zero point
d being equal to zero (has computational benefits during multiplication op-
eration).

In our implementation of hybrid precision quantization introduced later
(refer 3.3), restricted range symmetric quantization is used to make full use
of the range available since it deals with very low precisions. The general
quantization that PyTorch and Tensorflow adopts might be symmetric or

7

Figure 2.2: Symmetric vs Asymmetric Quantization

Source: Gholami et al. [2022]

asymmetric based on the dynamic range of values in the layer/channel it
quantizes.

C. Static and Dynamic Quantization
The values to be quantized theoretically can be from a wide floating-point
range as supported by the hardware. However, the extreme values rarely
occur, and even if they occur, they are very rarely useful. Hence the source
domain of x is clipped to [a, b].

Once a model is trained and ready for inference, the weights are fixed and
have a fixed clipping range that can be determined. The biases are usually not
quantized in any implementation since the mean of the data representation’s
distribution across layers is highly sensitive to biases. The activations can,
however be quantized in two ways: static quantization decides the clipping
range for the activations by calculating the (min,max,percentile) statistics for
a representative dataset before actual inference; dynamic quantization decides
the clipping range on the fly during forward pass in inference. Static quan-
tization leads to some degradation in performance due to some sacrifice in
the authenticity of clipping range, while dynamic quantization falls behind
in latency due to large overheads though it is more accurate.

Our hybrid precision quantization implementation uses static quantization
to avoid latency increase while simultaneously not allowing performance
drops with quantization-aware training (refer D.). The built-in libraries in
PyTorch and Tensorflow have both versions.

D. Post Training Quantization and Quantization Aware Training (QAT)
Post-training quantization involves quantizing the model during or just be-
fore inference. The parameter values are discretized or reduced in precision
by choosing an appropriate scaling factor and zero-point without any modi-
fication to the network. There are two types within this: hybrid quantization,
where the weights alone are quantized, and full quantization, where both
weights and activations are quantized. QAT operates by fine-tuning the net-
work parameters in such a way that the negative effect of quantization on
model performance is minimized. The training in Tensorflow and PyTorch

8

works by introducing FakeQuant layers that simulate low precision behav-
ior in the forward pass and let the backward pass happen at full precision
(to prevent vanishing and incorrect gradients), with the gradients calculated
wrt the low precision values. Quantization aware training usually leads to
better performance in practice at the cost of higher latency in forward-pass
simulation and greater memory for storing quantized and non-quantized
parameter values while training the model alone. But during deployment,
the memory is reduced to the same level as post training quantization.

Figure 2.3: Illustration of Quantization Aware Training

Source: Gholami et al. [2022]

Our hybrid precision model uses quantization aware training to not yield
significant performance drops due to very low precisions (like binary and
2-bit precisions) and realize easier quantized representations of parameters.

Among existing research, there has also been works with a focus on backprop-

agation: Difference Target Propagation that works for discrete setting [Lee et al.,

2015] and low bit-width gradients [Zhou et al., 2016] in DoReFa-Net, to name a

few. However, this work does not delve into backpropagation since the task at

hand is to deploy a transfer learning model on the edge for inference.

9

2.1.3 Mixed Precision Quantization

The fact that each layer can be quantized independently has paved the way for

mixed/hybrid precision networks. It has been observed that the first and last layers

of a DNN are the most important layers that have to be left untouched for any

significant accuracy drop to be avoided. This observation led to the introduction

of very low precision middle layers that gave a marginal reduction in performance

with a huge reduction in size. XNOR-Net proposed by Rastegari et al. [2016] is a

major breakthrough in this regard.

Binary Quantization: XNOR-Net Design

In XNOR-Net, a layer’s weight W is approximated by a binary filter B whose

dimensions are the same as that of W (say n), multiplied by a positive scalar

scaling factor α at full precision. It also binarizes the activations but without a

scaling factor. Mathematically, the objective of the weight quantization is:

J(α,B) = ∥W − αB∥2

= α2BTB − 2αWTB +WTW

α∗,B∗ = argmin
α,B

J(α,B)

Since B ∈ {−1,+1}n, BTB = n.

J(α,B) = α2n − 2αWTB +WTW

10

Since α is a positive arbitrary constant, min J(α,B) ≡ max WTB. That together with

the constraint B ∈ {−1,+1}n implies B∗ = sign(W).

Similarly the expression for J(α,B) is differentiated wrt α to get:

α∗ =
WTB∗

n

=
WTsign(W)

n

=
∥W∥l1

n
(l1 denotes L1-norm)

All the intermediate layers except the first and final layer are set to binary

precision through the quantization aware training technique where the forward

pass is quantized, and backpropagation updates the parameters at full precision

through the lens of the quantized values in the forward pass. When the model

is deployed for inference, except for the bias and scaling factors for intermediate

layers, and parameters of first and last layers, all parameters are stored in binary

precision leading to a tremendous reduction in size. The activations are quantized

to their sign (i.e.) either of {−1,+1}.

PCA-based Hybrid-Net Design

There was a lack of a systematic way to decide which intermediate layers had

to be set to very low precisions to avoid significant performance drops and at-

tain the most optimal trade-off between space reduction and performance drop.

Chakraborty et al. [2020] proposed a mixed-precision network topology where

layers identified as significant are set to kb-bit precision (kb 1), and the remaining

intermediate layers are set to binary precision having known to be insignificant.

11

A neural network model is viewed as an iterative projection of input data to

higher-dimensional manifolds with the ultimate aim of linear separability, and

hence, a layer’s significance is identified from the relevance of its transformation

towards this objective. A layer is deemed significant if it causes a “significant”

increase in the dimensionality of the data representation compared to the layer

before it (i.e.) the change in the dimensionality of the data representation caused

by the layer is greater than a certain fixed threshold. Principal Component Analysis

(PCA) (refer 2.4.1) is used for obtaining the dimensionality of the layers’ outputs,

defined as the number of components required to explain 99% of the total variance.

If the output of a convolution layer has M×O×W×H dimensions, where M is the

size of a mini-batch, O is the number of filter maps, W and H are the width, and

height respectively, PCA is performed on the channel activations (i.e.) M ∗W ∗ H

activations of dimension O.

Quantizing the model’s intermediate layers to low precisions in accordance

with their significance minimizes the accuracy drop compared to setting all inter-

mediate layers to binary precision while also minimizing the energy and memory

footprint considerably.

2.2 Weight Clustering

Clustering is a weight sharing technique, implemented by Han et al. [2015], that at-

tempts to reduce the number of unique weight values in a model. This is achieved

by grouping the weights of each layer into a pre-determined number of clusters

(say, Nc) and then sharing the cluster’s centroid value for all the weights values

belonging to the cluster. The technique is very similar to that of model quantiza-

12

Figure 2.4: Illustration of the working of PCA-based Hybrid-Net design which
selectively quantizes different layers independently based on their sig-
nificance denoted by higher increase in nPC from previous layer

Source: Chakraborty et al. [2020]

tion in its intuition of reducing the number of unique values and, consequently,

the information that is needed to be stored. This weight sharing technique has

tremendous benefits when it comes to deployment through efficient model com-

pression for embedded devices with resource crunch. This is achieved by creating

a sparse distribution of weights that, in addition to compression benefits during

model storage, also has reduced latency with specific hardware support. How-

ever, for convolution and dense layers preceding a batch-norm layer, the benefits

offered by clustering are diminished.

13

Figure 2.5: Illustration of Weight Clustering

Source: Stoychev and Gunes [2022]

2.3 Pruning

Model pruning is another technique that attempts to achieve an “efficient” model

that is optimized in processing time and memory utilization. MIT researchers

revealed in their 2019 study, Lottery Ticket Hypothesis Frankle and Carbin [2018],

that some unnecessary or redundant connections do exist in neural networks that

could be removed without affecting the accuracy. This gave birth to the idea of

model pruning, which tries to uncover a sub-network within a dense neural net-

work that, when trained in isolation, can achieve the performance of the original

model. Model pruning also has a biological motivation - the concept of synaptic

pruning in many animals, where the axons and dendrites deteriorate and die off

between early childhood and the onset of puberty.

14

A winning ticket is a sub-network that is capable of learning. It is identified

by training the given model, zeroing out (i.e.) pruning the parameters of low-

est magnitudes, and constructing the sub-network from the remaining un-pruned

parameters. The way pruning achieves smaller memory and latency is by creat-

ing this sparse winning ticket. Frankle and Carbin [2018] show winning tickets

achieving less than 10-20% of the original feed-forward CNNs’s size on MNIST

and CIFAR-10. With sparse connections, the number of multiplication operations

comes down, and with the zeroed-out parameter values, which can be left out

while compressing and deploying the model, the size reduces.

Figure 2.6: Illustration of Weight and Neuron Pruning

Source: [LeCun et al., 1989] [Han et al., 2015]

Pruning approaches differ in a number of ways, including in their focus on

latency or memory, but we specifically use two important types in this work:

• Unstructured Pruning: In this approach, the parameter values are individu-
ally pruned by setting a proportion. The pruned values need not be arranged
in a manner that can be leveraged to achieve faster run-times using present
hardware and libraries. Since we set the individual weight values to zero in
the weight matrix, this approach is also known as weight pruning.

15

• Structured Pruning: This approach, also called by the name neuron pruning,
employs pruning parameters in groups - entire neurons in a layer, filter,
or channel. This makes the network smaller and faster. The neurons are
ranked according to L1/L2-norm of the neuron weights, and the lowest-
ranked neurons are removed.

2.4 Intrinsic Dimension Estimation

Deep neural networks for supervised image classification, including CNNs, se-

quentially transform images through the linear and non-linear layers and reduce

the representation to a linearly separable form for classification. The analysis of the

distribution and dimensionality of data representation across layers offers several

key insights to better understand the working of a DNN. The intrinsic dimension

(ID) is a fundamental property of data representations and is defined as the mini-

mum number of coordinates required to describe the vectors to satisfactory levels.

PCA is the simplest and most convenient form of linear ID estimation.

2.4.1 PCA Method for Intrinsic Dimension Estimation

Principal Component Analysis (PCA) was predominantly developed as a method

of dimensionality reduction to preserve as much information with reduced number

of explanatory variables. It is based on two equivalent mathematical formulations

that both yield the same results:

• Maximizing variance of data projected linearly onto a vector subspace

• Minimizing error when data is projected linearly onto a vector subspace

Optimizing either of the objectives tells us to pick the eigenvectors of the data’s

16

covariance matrix in decreasing order of eigenvalues for forming the reduced sub-

space to project the data. The choice of the number of eigenvectors (called principal

components) for the subspace is arrived at by plotting the curve of cumulative ex-

plained variance vs the number of principal components. The curve is expected

to rise steeply initially and then gradually saturate to 100% after a knee point. The

dimensionality is then estimated as the number of principal components required

to explain a certain threshold variance (usually > 90%), denoted as nPC.

Given the idea of using the difference in PCA across a layer as a measure of

the significance of the layer’s parameters and subsequently as a proxy to identify

layers to quantize by Chakraborty et al. [2020], there is a need to explore other

dimensionality estimation techniques that overcome the shortcomings of PCA

and perform better at this use case. This work explores a better alternative method

to estimate the ID of data representations: TwoNN.

2.4.2 TwoNN Method for Intrinsic Dimension Estimation

Two Nearest Neighbors (TwoNN) is a recently developed global intrinsic dimen-

sion estimator [Facco et al., 2017], which is estimated using the information about

merely the two nearest neighbors of every point. The ratio of nearest neighbors

statistics µi = r(2)
i /r

(1)
i for each point i is calculated where r(1)

i and r(2)
i are the dis-

tances to the nearest and second nearest points to point i respectively. Under a

weak assumption that the density is constant on the scale of distance between

each point and its second nearest neighbor, the distribution of µi’s depend on the

dimensionality of the data rather than the density. Specifically, it is derived that

µi’s follow Pareto distribution with parameter d+1 (d is the ID) on [1,∞). The Pareto

17

distribution’s CDF is given by:

FX(x) =


1 −
(

1
x

)d+1
x ≥ 1,

0 x < 0

With the knowledge about the distribution of data, the ID estimation is modeled

as an objective of maximizing the log likelihood

P(µµµ|d) = dN
N∏

i=1

µd+1
i

where µµµ = [µ1, µ2, . . . , µN].

Figure 2.7: Illustration of ID estimation through TwoNN

Source: Ansuini et al. [2019]

The minimal neighborhood size that the ID estimator relies on lowers the effect

of data inhomogeneities in the estimation process. In addition, the theoretical

setup of the estimation process and absence of usage of linear projections and

assumptions make the method robust to curved, topologically complex data and

18

non-uniform sampling of the data points. Ansuini et al. [2019] adopts the TwoNN

approach for estimating and analyzing ID as a proxy to study the generalizability

of neural networks. Their experiments also suggest that the TwoNN method is

approximately scale-invariant, unaffected by embedding dimension (hence can be

used to analyze data in any type of layer), and robust to hubs and outliers as long

as enough data points are used for the estimation process.

19

CHAPTER 3

RESEARCH METHODS

3.1 Problem Statement Motivation

Image classification refers to labeling an input image as one of the many given

pre-defined classes. It has become one of the most important tasks in digital image

analysis and computer vision. Advancements in image classification have led to

several applications like visual search, automated image organization, and facial

recognition on social media. As mentioned earlier, neural networks have over-

taken traditional machine learning methods with increasing computational power

due to superlative performance. However, their requirement of high processing

power and memory poses a hurdle to their use in edge devices. For instance, some

state-of-the-art CNN models for image classification tasks, such as GoogeLeNet

[Szegedy et al., 2014] and AlexNet [Krizhevsky, 2009a] necessitates storing more

than tens of millions of parameters and around a billion multiply and accumulate

computations (MACs) [Shafique et al., 2018]. These MAC operations account for

over 99% of the total operations in these CNNs and are the dominant source of

energy consumption and processing time, as stated by Yang et al. [2017]. Con-

sequently, the computational and energy requirements of a model scale almost

proportionally with the number of MAC operations in the worst case, discarding

data reuse. When energy is normalized in terms of energy of a MAC operation,

a relatively non-complex model like AlexNet consumes 3.97 × 109 energy. Storing

such state-of-the-art models with such magnitude of parameters all require at least

50MB memory [Crefeda Rodrigues et al., 2020]. This huge memory and energy

footprint of these models discourages the use of deep neural networks, including

CNNs, in small embedded devices and IoT sensors.

If the energy consumption of the IoT devices that behave as data collecting

interfaces and transmit data to the cloud computing systems is significantly more

than what it takes to classify images on the device hardware, it becomes more

reasonable to run the computations on the device with limited resources. Added

to that, for some real-time applications like self-driving cars, the delay that arises

due to the communication with the centralized cloud server poses a huge risk to

the safety of the passengers. The rapid scaling of such edge devices that connect

to the same centralized server also perpetuates the need for decentralized systems

and computations.

The contributions of this work are two-fold:

1. We first perform a comparative study of the classical and common existing
methods for compressing deep neural networks, with a focus on convolu-
tional neural networks for the image classification task in standalone and
transfer learning settings. Techniques like Quantization, Mixed Precision
Quantization, Weight Clustering, and Pruning are explored, and their ad-
vantages studied. We believe this will be helpful to the research community
in deciding the approach that is most appropriate for the memory, cost, and
performance considerations of the edge device.

2. We propose a novel neural network hybrid layer compression technique for
very low memory and low memory setting each that can be used to achieve
a reduction in model size without a considerable drop in performance.

21

3.2 Description of Model used for Studies - QuantNet

The convolutional neural network model for image classification tasks used through-

out the work is QuantNet, which comprises two 2D convolution layers, followed

by two fully connected dense layers, and a final output dense layer that predicts

the label class the image belongs to.

Input image of size 32 × 32 × 3 is fed into the model. The first two Conv2D

layers are both initialized using He normal initialization, have ReLU activations,

have kernel size of 3 × 3, have stride of 2, and padding set to same (in Tensorflow

terms, “same” padding results in output size of ⌈ I
S⌉ where I is the input size and

S is the stride). There is a dropout of 0.1 used after the two Conv2D layers as a

regularization measure. The first conv2D layer has 32 output channels and the

second Conv2D layer has 64 output filter maps, which capture various spatial

features from the input image. These output feature maps are then flattened and

passed to two dense layers, which further process the features to extract higher-

level features that make the data more separable for the final output layer. The

two fully connected layers are both initialized using He normal initialization, have

ReLU activations, and have output dimensions of 128 and 16, respectively. The

final output layer is again a dense layer initialized using Glorot normal initializa-

tion and with output dimensions equal to the number of target classes for the

image classification task. The activation used for the final layer depends on the

number of target classes: sigmoid function for binary classification tasks to predict

the probability of image belonging to class 1 and softmax function for multi-class

classification tasks to obtain the probability distribution for the image belonging

to each class. The output from the model is used to infer the predicted class by

22

taking an argmax of the output logits. Figure 3.1 illustrates a detailed architecture

of the QuantNet model for a binary classification task.

Figure 3.1: Detailed Model Architecture of QuantNet for binary image classifica-
tion task

A plethora of past research works has demonstrated that the traditional neural

network model compression techniques generate similar trends among models

of different sizes and architectures. Models like ResNet with different depths

of 50, 100, and 150, XNOR-Net are observed to follow alike trends by Liu et al.

[2021], which corroborates the claim. Even the work on Hybrid-Net design by

Chakraborty et al. [2020] suggest similar effects and results for different models

like ResNet-18, ResNet-20, ResNet-32, and VGG-15. These observations allow us

to focus on the analysis of different model compression algorithms on the single

QuantNet model and extrapolate the results to models of different architecture

and/or sizes.

Though the model employed by this work is a simple CNN with conv2D and

23

dense layers, the model is sophisticated enough to extract various levels of features

from the input image. The initial layers capture the general characteristics of the

dataset (like face, nose, ear) and remove features irrelevant to the final prediction.

The subsequent layers extract information that is specific to the learning task of

image classification. When it comes to a transfer learning setup, the parameters

learned on the source dataset facilitate learning on the target dataset through

the relevance of some features of the source domain to the target domain, and

the new features’ extraction requiring only a small fine-tuning of the existing

parameters. Hence, transfer learning saves a vast amount of time and computation

by converging the training faster and learning better representations of the target

domain inputs, having prior knowledge about what it did to the source domain.

3.3 TwoNN-based Hybrid Precision Quantization

We implement our own hybrid precision quantization methodology and propose

a new Hybrid-Net design that improves over the current best Hybrid-Net design

[Chakraborty et al., 2020] in terms of correct identification of significant layers.

The model layers are quantized individually with different precisions based

on their significance - first and last layers are set to full precision, insignificant

layers are set to binary precision, and the significant layers are set to a higher b-bit

precision, with the choice of b depending on the resource of the edge device and

the performance level we expect. The quantization takes place through the quanti-

zation aware training principle where the forward pass happens at the determined

mixed precisions while the backpropagation happens at full precision, wary of

24

the quantized values in the forward pass. Every quantized layer’s incoming ac-

tivations are statically clipped to [−1,+1] range and uniformly quantized within

the range to the same precision of the layer that it passes through. Using any

other range for clipping doesn’t perform as well as [−1,+1] and at times causes

the model to diverge during training. Also, there are no scaling factors used for

multiplying the quantized activations before they pass since they have to be eval-

uated dynamically during inference and cause unnecessary overheads, increasing

latency. Hence, mathematically the quantization of activation A can be described

as:

Ã =



A A is not quantized

sign(A) A is binary precision quantized

uni f orm dequantb
(
uni f orm quantb(A)

)
A is b-bit quantized

The weights are mean centered, clipped to [−1,+1] range, then quantized uni-

formly in a full range symmetric fashion, and dequantized to obtain back the

discretized steps in [−1,+1]. It is then multiplied by a scaling factor (like in XNOR-

Net) before being used for computations/forward pass.

W̃ =



W W is not quantized

α∗sign(W) W is binary precision quantized

α∗ uni f orm dequantb
(
uni f orm quantb(W)

)
W is b-bit quantized

The mean centering and clipping of weights are like additional forms of restriction

on the model that prevents skewed distributions and facilitates training conver-

gence. The symmetric full range quantization ensures that the whole range of a

25

b-bit precision is used effectively since we are dealing with very low bit precisions.

Now, let us see focus on two key components of the implementation:

3.3.1 Correct Scaling Factor and Gradients

The optimal scaling factor α∗ was obtained by minimzing the following expression

wrt α after we found B∗:

J(α,B∗) = ∥W − αB∗∥2

= α2B∗TB∗ − 2αWTB∗ +WTW

α∗ = argmin
α

J(α,B∗)

M∗ =



W W is not quantized

sign(W) W is binary precision quantized

uni f orm dequantb
(
uni f orm quantb(W)

)
W is b-bit quantized

Now since B∗ is no longer ∈ −1,+1n (taking the general case, it can have b-bit

precision), differentiating J(α,B∗) wrtα and equating to zero, we get optimal scaling

factor as:

α∗ =
WTB∗

∥B∗∥l2
(l2 denotes L2-norm)

However, this corrected scaling factor affects the convergence of training and ei-

ther converges to a local optima or takes extra epochs with properly tunes learning

rates to achieve same, if not better, performance as compared to α∗ = ∥W∥l1
n . If the

range of quantized outputs is anything other than [−1,+1], the corrected scaling

26

factor achieves better accuracy and loss. Hence, given the fact that our quantiza-

tion output’s range is [−1,+1], we stick with the optimal scaling factor derived for

the binary precision case for the higher precisions as well. Let us next look at the

gradients for the backward pass.

Let H be the cost function with which the neural network is trained. The

XNOR-Net design uses the following expression for gradients wrt the quantized

weights during the backpropagation:

∂H
∂Wi

=
∂H

∂W̃i

·
∂W̃i

∂Wi

=
∂H

∂W̃i

·
∂
(
α · sign (Wi)

)
∂Wi

=
∂H

∂W̃i

·

[
sign (Wi) ·

∂α
∂Wi

+ α ·
∂ sign (Wi)
∂Wi

]
=
∂H

∂W̃i

[
1
n
+
∂ sign (Wi)
∂Wi

· α

]

In our implementation of backpropagation, we use the following corrected

version which takes into account the dependency of the optimal scaling factor α∗

27

on other weight values:

∂H
∂Wi

=

n∑
j=1

 ∂H
∂W̃ j

·
∂W̃ j

∂Wi


=

n∑
j=1

 ∂H∂W̃ j

·

∂
(
α · sign

(
W j

))
∂Wi


=

n∑
j=1

 ∂H∂W̃ j

·

sign
(
W j

)
·
∂α
∂Wi

+
∂ sign

(
W j

)
∂Wi

· α




=

n∑
j=1

 ∂H
∂W̃ j

· sign
(
W j

)
·
∂α
∂Wi

 + ∂H
∂W̃i

·
∂ sign (Wi)
∂Wi

· α

=
∂α
∂Wi

·

n∑
j=1

 ∂H
∂W̃ j

· sign
(
W j

) + ∂H
∂W̃i

·
∂ sign (Wi)
∂Wi

· α

=
1
n
· sign (Wi) ·

n∑
j=1

 ∂H
∂W̃ j

· sign
(
W j

) + ∂H
∂W̃i

·
∂ sign (Wi)
∂Wi

· α

3.3.2 TwoNN Method for Identifying Significant Layers

The two main disadvantages of PCA in the context of analyzing data representation

in neural networks are:

1. The output from a few layers might have a sparse set of outliers than don’t
affect the final results but are caused due to noise in input and/or irrelevant
neurons in the over-parametrized neural network models.

2. The data passes through a series of linear weights and non-linear activations
that might cause the data to form curved manifolds, especially in the middle
layers (since the effect of non-linearity sets in after the activation following
the first layer and the model’s objective is to make the data linearly separable
for classification in the last layer; the objective of middle layers are not well
studied).

Hence, we propose the usage of TwoNN intrinsic dimension estimation method

(refer 2.4.2) for the purpose of identifying significant layers in a neural network

and subsequently quantizing each layer accordingly. The method is robust to non-

28

linear data manifolds and is approximately insensitive to outliers.

The study of Ansuini et al. [2019] suggests that for a general neural network, the

intrinsic dimensions of data representations across layers follow a characteristic

hunchback shape as seen in figure 3.2. The hypothesis is that the initial layers

of a neural network prune the highly correlated features irrelevant to the final

predictions (like luminescent gradients, contrast, saturation, etc.) by projecting

them onto curved manifolds with higher IDs, and the subsequent layers do the

advanced processing of making the data linearly separable at final layer for correct

predictions, which decreases the IDs.

Figure 3.2: The ID of data representations following a hunchback profile

Source: Ansuini et al. [2019]

Following this intuition, we come up with a new criteria for identifying signif-

icant layers:

|IDl − IDl−1| > ∆ =⇒ significant layer

where IDi is the intrinsic dimension of data output from layer i, and ∆ is the

significant threshold that is determined according to our needs for size reduction

trading-offwith performance.

29

Also, the TwoNN analysis is performed on the vector of dimension O ∗ W ∗ H

obtained by flattening the entire output of a convolution layer instead of following

the procedure on channel outputs of dimension O. The reason is each filter extracts

a different feature, and each pixel within a filter is needed to properly characterize

the filter and, subsequently, the data representation corresponding to a given

image at the end of this layer. The linear layer gives a flattened output; hence there

are no ambiguities there. For a standalone setup, TwoNN analysis is performed

on a mini-batch of the source dataset while for a transfer learning setup, a mini-

batch of the target dataset is used, both on the model pre-trained using the source

dataset. The application of the ID estimation method on our QuantNet model

for the CIFAR-10 dataset is shown in figure 3.3. The experiment corroborates the

intuition of the characteristic hunchback profile for our setting as well.

Figure 3.3: Illustration of identifying significant layers using TwoNN method on
QuantNet model for the CIFAR-10 dataset, with threshold ∆ = 20

3.4 Proposed Model Pipelines

Based on the results from our comparative study that we shall see in the next

chapter, we propose a model pipeline for limited memory edge devices as follows:

30

• For standalone setup: The model is trained on the dataset, and subsequently,
the significance of layers is analyzed using the TwoNN approach outlined in
section 3.3.2. On the insignificant layers, weight clustering is employed, and
on the significant layers, cluster-preserving QAT is used.

• For transfer learning setup: The model is pre-trained on the source dataset,
and the significance of layers is analyzed using the TwoNN approach by
passing a mini-batch of the target dataset on the pre-trained model. On the
insignificant layers, weight clustering is employed, and on the significant
layers, cluster-preserving QAT is used.

The choice of vanilla clustering method for the insignificant layers is due to the

presence of a systematic method to choose the number of clusters and the memory

reduction that follows. We also prefer it over very low precision quantization since

clustering creates a sparser weight distribution that incorporates the information

from original weight distribution through the centroid calculation and does not

limit to uniform steps. Cluster-preserving QAT was chosen for significant layers

because QAT preserves the desirable precision for such important parameters, and

this clustering-preserved QAT specifically achieves the best test performance with

optimized memory (refer section 4.2.3). A pictorial summary of the model pipeline

we propose in this work for transfer learning setup is shown in figure 3.5. For a

standalone setup, the target dataset will be the same as the source dataset, which

is why the pipeline is more naturally applicable to transfer learning setups.

For edge devices with extreme memory constraints, we propose a hybrid preci-

sion model design: the model is trained on the source dataset, and then its layers’

significance is analyzed using the TwoNN approach. The insignificant layers are

set to binary precision, and significant layers are set to slightly higher precision

(we choose 2-bit due to memory limitation). Finally, the model is trained on the

31

Figure 3.4: Flow diagram of the optimal model pipeline proposed for limited re-
source edge devices

source dataset again from scratch with the quantization for a standalone setup.

For a transfer learning setup, the model is fine-tuned on the target dataset with

this mixed quantization. We do not attempt introducing other techniques like clus-

tering for insignificant layers here due to the advantage of mixed layer precision

training happening in one go, but it is an idea to explore in the future.

Figure 3.5: Flow diagram of the optimal model pipeline proposed for memory-
constrained edge devices

32

CHAPTER 4

EXPERIMENTS

4.1 Setup

4.1.1 Dataset

We use the QuantNet model described thoroughly in section 3.2 for all analysis

with a binary image classification head and sigmoid activation in the output layer

(refer figure 3.1). The details of the exact parameter count of the model layers are

mentioned in table 4.1.

Table 4.1: Summary of QuantNet model used in the experiments

Layer Trainable Params

conv1 896

conv2 18,496

linear1 534,416

linear2 2,064

linear3 17

Total 545,889

All the experiements in this work are performed on the publicly available

CIFAR-10 dataset1 released by Krizhevsky [2009b]. The dataset contains 50,000

training set of images and 10,000 test set of images, all colored and of dimensions

1Link: https://www.cs.toronto.edu/ kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html

32×32×3. As the name suggests, the images in the dataset belong to the following

10 classes:

• Airplane

• Automobile

• Ship

• Truck

• Bird

• Cat

• Deer

• Dog

• Horse

• Frog

Both the training and test sets have equal representation of all 10 classes (i.e.)

the training set has 5,000 images of each class, and the test set has 1,000 images of

each class. The test set is created by randomly sampling those 1000 images of each

class from a total of 60,000 images. The images in the training set are randomly

shuffled to avoid over-fitting to some classes within the first few iterations of a

mini-batch, which might cause convergence to a local minima. Finally, all classes

are mutually exclusive in the domains they capture and the labels they represent.

We filter both the training and test sets for two different yet closely related pairs

of labels to be used for the experiments:

1. Cat vs Dog - This binary classification dataset is used for standalone ex-
periments and as the source domain on which model is pre-trained before
fine-tuning on the target domain for transfer learning setup.

2. Horse vs Frog - This binary classification dataset is used for standalone
experiments and as the target domain on which the model is fine-tuned for
transfer learning setup.

In each of the above filtered datasets, we randomly split the training dataset in

80:20 ratio to get the actual training and validation sets, respectively, to be used

for hyperparameter tuning and training of the models.

34

4.1.2 Hyperparameter Tuning

As stated before, DNNs are over-parametrized models that are sensitive to the

choice of hyperparameters used for training a model. These hyperparameters

cannot be obtained directly by training a model but rather arrived at by searching

through a limited space of values. We attempt this hyperparameter tuning to get

the values for which the baseline model achieves the best performance so that we

will be able to get distinct, accurate, and reliable from the further compression

experiments.

Though there are a number of other methods for hyperparameter search like

Grid search and Bayes search, we choose to go with Random search based on

the theoretical backings from Bergstra and Bengio [2012], which using a Gaussian

process analysis of the function from hyper-parameters to validation set perfor-

mance, divulge that only a few of the hyper-parameters really matter for most data

sets. Hence, we minimize the resources spent on tuning these hyperparameters

by adopting random search, for which the search space used is mentioned in table

4.2. Apart from those mentioned in the table, we also manually run a search on the

type of parameter initializer to use out of He Normal, Glorot Normal, Glorot Uniform,

and He Uniform. Based on this, Glorot Normal was chosen for the output layer that

uses sigmoid activation, and He Normal was chosen for all other layers.

4.1.3 Model Training Details

We use Adam optimizer for training the QuantNet for the experiments that follow,

with a constant learning rate of 0.001. The loss function used is the Binary Cross-

35

Table 4.2: Hyperparameter setting of QuantNET

Parameter Range Optimal Value
Filters (Conv Layer 1) Range: [16, 128]; Step size = 16 32
Filters (Conv Layer 2) Range: [16, 128]; Step size = 16 64

Kernel Size (Conv Layers) [3,5,7,9] 3
Dropout [0.1, 0.2, 0.3, 0.4, 0.5] 0.1

Optimization Function Adam, SGD, RMSProp Adam
Learning Rate [1e-5, 1e-4, 1e-3, 1e-2, 1e-1] 0.001

Number of epochs Range: [10, 100]; Step size = 10 100
Batch size [32, 64, 128, 256, 512] 64

Entropy Loss since the task is of binary classification. The first two convolution

layers of the model generate output channel sizes of 32 and 64, respectively. The

model is trained for 100 epochs coupled with early stopping based on test accuracy

with patience parameter 5. We restrict to using Top-1 accuracy as the metric instead

of Recall, F1-score, etc., since the dataset is balanced. All the experiments were

done on Google Colab Notebook with an NVIDIA Tesla K80 GPU.

4.2 Results and Findings

The values given in the section are the values averaged over 20 independent runs.

4.2.1 Study on Conventional Quantization Approaches

Quantization was introduced in section 2.1 as a means to reduce the precision of

parameters and corresponding activations in neural networks that originally had

high space and computational complexity. The conventional implementations of

quantization involve reducing precision from fp32 to 16-bit floating-point/integer

and 8-bit integer values. Such compressions have a number of benefits apart from

mere size reduction - integer operations consume lesser energy than FLOPs, hard-

36

ware is made less complex, the number of off-chip memory access is reduced, and

consequently, the communication cost and latency is decreased.

We first run a set of quantization methods separately on the Cat vs Dog and

Horse vs Frog datasets and evaluate the test performance for this standalone

experiment without any transfer learning. The results of this experiment are

shown in table 4.3. Note that post-training quantization does not involve training

the model again.

Table 4.3: Test performance and model size of QuantNet under different quantiza-
tion schemes on Cat vs Dog and Horse vs Frog datasets (standalone)

Set Up
Test Acc

(Cat vs Dogs)
Test Acc

(Horse vs Frogs)
Model Size

(MB)

Base Model 66.00 92.35 2.0852

Post Training -
Float 16 Quantization 64.65 91.65 1.0453

Post Training -
Dynamic Range Quantization 64.55 91.30 0.5282

Post Training -
Integer Quantization 63.70 90.25 0.5271

Post Training -
Int Quantization +
Int 16 Activation

64.80 92.05 0.5292

Quantization Aware Training 65.90 93.95 4.1784

Post Training Quantization
on QAT model 65.80 93.90 0.5278

Simple 8-bit integer post training quantization leads to the least accuracy since

it loses the most information without the model being fine-tuned to be prepared

for mitigating this information loss. With only quantization aware training (QAT),

we observe that the model size almost becomes double that of the baseline because

parameters are stored at both low and original precisions. But it also exhibits the

37

highest performance among all techniques. Hence, we run post training integer

quantization on the quantization aware trained model to achieve the best trade-

off between accuracy and model size.

Now, let us venture into the transfer learning setup, which is our primary focus

for improvements. The same experiment as above is repeated, but this time after

training on Cat vs Dog (source domain), we fine-tune on Horse vs Frog (target

domain) by transferring knowledge learned from the Cat vs Dog dataset. Post

training quantization happens at the end of the fine-tuning, and QAT runs just

after the pre-training step (during the fine-tuning).

Table 4.4: Test performance and model size of QuantNet under different quantiza-
tion schemes with Cat vs Dog source domain, Horse vs Frog and Rotated
Cat vs Dog target domains (Transfer learning setup)

Set Up
Test Acc

(SD)
Test Acc

(TD1)
Test Acc

(TD2)
Model Size

(MB)

Base Model 66.00 92.35 59.40 2.0852

Post Training -
Float 16 Quantization 64.65 90.45 58.30 1.0453

Post Training -
Dynamic Range Quantization 64.55 90.55 58.05 0.5282

Post Training -
Integer Quantization 63.70 89.70 57.80 0.5271

Post Training -
Int Quantization +
Int 16 Activation

64.80 90.45 58.15 0.5292

Quantization Aware Training 65.90 92.95 59.20 4.1784

Post Training Quantization
on QAT model 65.80 92.80 59.05 0.5278

SD: Source Domain (Cat vs Dog), TD1: Target Domain 1 (Horse vs Frog),
TD2: Target Domain 2 (Rotated Cat vs Dog)

38

From table 4.4, we observe that the quantization trends for transfer learning

setup mirror that of standalone training. In fact the results in the upcoming

sections also highlight and reflect the same. Hence, we can assume what holds

for standalone setup to hold good for the transfer learning setup and vice versa.

This observation arises because model compression techniques seem to rely on

the model mostly than the underlying dataset, as we shall see in section 4.2.2.

For the different quantization schemes, the model sizes are nearly the same as

that obtained in a standalone setting, as should be the case, and post training

quantization + QAT gives the best performance with desired size reduction here

as well.

Choice of Layers to Quantize

Let us examine figure 4.1 that demonstrates the effect of quantizing each layer

individually on the test performance.

Figure 4.1: Plot showing the effect of quantizing each layer on the test accuracy

Just was the intuition behind mixed layer precision design, we expect that each

layer has a different role to play in a CNN and, as a result, will have different effects

on the model’s performance when quantized. As observed in various literature,

39

quantizing either the first (input) or last (output) layer leads to the high drops

in accuracy and should be avoided for any mixed layer precision or hybrid layer

approach design to prevent considerable information loss right at the beginning.

Hence, we next move on to try quantizing different layers differently, especially in

extreme low precision settings, in which case, a method of quantifying each layer’s

importance through the new TwoNN approach that we introduced in section 3.3.2

becomes pertinent.

4.2.2 Study on Mixed Precision Quantization

In section 2.1.3, we looked at existing mixed precision techniques that are popu-

lar. While XNOR-Net design merely quantizes all intermediate layers to binary

precision, PCA-based Hybrid-Net design intelligently decides to quantize the in-

significant intermediate layers alone to binary precision and the significant inter-

mediate layers to a higher bit precision (most of the time 2-bit precision works

but is dependent on the difficulty of the task and model layer’s learning capacity).

However, section 3.3.2 debunks the use of PCA for identifying significant layers

and introduces the usage of TwoNN with the significance criteria incorporating an

absolute difference rather than a normal difference. Though theoretically justified,

we check the experimental validity for the same.

Before proceeding to the intended transfer learning setup, let us look at why

the layer significance identification approach that originated for standalone setup

becomes applicable to the transfer learning setup as well. We train the QuantNet

model on the source domain dataset of Cat vs Dog and then pass a minibatch of

the source or target/transfer (Horse vs Frog) dataset through the model to note

40

the IDs of the layer outputs. PCA and TwoNN* are performed on vectors across

channels of dimension O, and TwoNN on flattened tensors of dimension O ∗W ∗H.

For PCA, explaining 95% of the total variance is used as the threshold.

Table 4.5: Summary of the intrinsic dimension analysis on Quant-Net model for
Cat vs Dog source domain and Horse vs Frog target domain

Layer
ID (Source domain) ID (Target domain)

PCA TwoNN TwoNN* PCA TwoNN TwoNN*

Input 2 25.61 4.15 2 27.57 3.95

conv1 13 33.19 6.72 14 36.85 6.45

conv2 48 49.48 5.25 49 52.10 5.28

linear1 31 23.76 19.54 31 23.78 15.35

linear2 1 0.98 0.82 1 0.84 1.20

From table 4.5, We can observe that the trends of the ID of all methods are

the same for the source and target domains, and even the value of the IDs are

very close (less than the error in the measurements). This might indicate that the

source and target domain input data belong to approximately the same vector

space, which the model layers transform sequentially into nearly the same spaces

correspondingly. Such a setup is when transfer learning is usually employed,

supporting the reliability of this method when extended to the transfer learning

setup.

Also, it is clear that all three methods reflect the characteristic hunchback profile

of data representations’ dimensionalities that Ansuini et al. [2019] stated. This

supports the need for a better significance criterion that allows layers that also

cause a reduction in ID to be significant. In figure 4.2, we notice the absence of

a sharp knee point in the PCA curve of the intermediate layers, especially (layers

conv2 and linear1) that is characteristic of data in linear space, and this suggests

curved data manifolds. Both these observations strengthen the idea of using

41

Figure 4.2: Principal Component Analysis on the intermediate layers of QuantNet
for Horse vs Frog of CIFAR-10 dataset

TwoNN ID estimation and absolute difference criteria for quantifying the layer

significance.

Figure 4.3: Identifying significant layers using TwoNN and PCA on QuantNet
model for transfer domain in CIFAR-10 dataset, with threshold ∆ = 20

We now evaluate the PCA and TwoNN approaches on the target and source

42

domains. As we saw in table 4.5, the ID values and, more importantly, the trends

in the significance criteria seem to be characteristic more of the model itself for

closely-related data, and hence we focus on the analysis for the transfer learning

setup that we mainly seek to propose in this work and verify it with the source

domain numbers. Both methods only apply to the intermediate layers, with the

first and last layers always set to full precision in these very low precision settings

to avoid significant accuracy drops (as observed in 4.1 and from the very low accu-

racy in row 3 of table 4.6). From figure 4.3’s right side plot and 4.4, we observe that

the TwoNN approach chooses conv2 as the least significant and linear1 as the most

significant layer, while PCA suggests conv2 is the most significant, linear1 layer is

less significant, and linear2 is least significant. Table 4.6 shows that the model with

conv2 binarized achieves better performance than the one with linear1 binarized in

both source and target domains, as suggested by TwoNN. This result verifies the

theoretical arguments for using TwoNN.

Hybrid Layer Precision Design for Very Low Memory Setting

With the layer significance identification using the TwoNN approach working as

expected, we attempt a hybrid precision layer design on the QuantNet model, pre-

trained on the Cat vs Dog dataset, for the Horse vs Frog transfer learning setup.

Setting a threshold∆ = 20, we categorize the layers with a significance value above

it to be important and set them to a higher precision of 2 bits while binarizing the

layers with a significance value below ∆ (as in the left side of figure 4.4). We

can see the performance for the model with this configuration in the last row of

table 4.6, and as one might expect, it achieves a high empirical reduction in size

43

Table 4.6: Performance summary† of TwoNN and PCA approaches on Quant-Net
model for Cat vs Dog Source Domain (SD) and Horse vs Frog Target
Domain (TD)

Layer Precisions
Test Acc

(SD)
Test Acc

(TD)
Memory

Reduction

conv1 conv2 linear1 linear2
66.00 92.30 1x

full full full full

conv1 conv2 linear1 linear2
64.20 90.55 30.42x

full binary binary binary

conv1 conv2 linear1 linear2
62.60 89.55 1.01x

binary full full full

conv1 conv2 linear1 linear2
65.70 91.85 1.03x

full binary full full

conv1 conv2 linear1 linear2
65.00 91.35 14.4x

full full binary full

conv1 conv2 linear1 linear2
65.80 91.6 15.87x

full binary 2-bit 2-bit
† The memory reduction mentioned in an empirical calculation using the parameter count and
precisions since Tensorflow and PyTorch does not yet support memory calculations for custom

implementations

with only a marginal reduction in accuracy compared to the baseline. IN terms

of size reduction, which the very low precision methods attribute slightly more

importance to, the design achieves reduction next to XNOR-Net design (row 2 of

table 4.6 with all intermediate layers set to binary precision) but with considerably

better generalizability and accuracy.

Consequently, this hybrid layer precision design for CNNs using the novel

TwoNN approach for quantifying layer significance can be used to deploy mod-

els on extremely memory-constrained edge devices by still retaining a very high

proportion of the baseline’s performance.

44

Figure 4.4: Significant layers (shaded red) identified by TwoNN (left) and PCA
(right) with threshold ∆ = 20, along with the values of the significance
criteria

These extremely low precision settings do not usually have direct memory

gains from the hardware since a word is the fundamental unit of storage and oper-

ation on most processors and memory. Hence, the need for specialized hardware

arises, which is outside the scope of this work, and currently, there are no in-built

deployment pipelines in Tensorflow and PyTorch for the same. So what if the

edge device isn’t with that small a memory to attempt such extreme reductions?

We seek to explore methods that share the same motivation of reducing unique

parameter values and achieving better performance than the very low memory

approaches, leading us to pruning and weight clustering.

45

4.2.3 Study on Model Pruning and Weight Clustering

Model Pruning

Pruning was introduced in section 2.3 as a method that stemmed from lottery

ticket hypothesis. We employ neuron and weight pruning techniques on Quant-

Net model and summarize the results of the analysis in figure 4.5.

Figure 4.5: Variation of test accuracy with pruning

We observe that weight pruning surpasses neuron pruning throughout the

range of percentage. This might be because our model isn’t very complex or large,

which necessitates removing whole units or filters, which is supported by the fact

that the accuracy of neuron pruning rapidly falls to 50% (corresponding to a ran-

dom choice). Whereas weight pruning only individually prunes weight values,

and it works decently - we get only about a 6% reduction in accuracy with 50%

of the weights pruned. But compared to the methods we saw earlier, this might

not be enough for both memory reduction and performance preservation. Prun-

ing completely discards information by zeroing them out in the path to reducing

unique values and losses in performance to quantization techniques. So we turn

back to methods that reduce the number of unique discrete steps instead, specifi-

46

cally weight clustering since it is similar in its idea to quantization.

Weight Clustering

We employ the clustering technique on QuantNet model for Cat vs Dog dataset

from CIFAR-10 in a standalone setup. Figure 4.6 shows the results of the exper-

iment performed with varying numbers of clusters. This simple plot serves as a

systematic approach to optimally choosing the number of clusters, if necessary.

Figure 4.6: Variation of test accuracy with number of clusters (Nc)

We notice from figure 4.6 that the ideal number of clusters to use is 16. The ac-

curacy after Nc = 16 oscillates, and though there are a few higher accuracy points,

like at 32, the increase is very negligible for the cost of an extra bit. One might

argue Nc = 14 doesn’t fall behind much from 16, but both require 4 bits to represent

normally unless we use other compact forms of coding, which we don’t get into.

In table 4.7, clustering and clustering + quantization techniques are performed

on the QuantNet model. The use of the basic weight clustering technique with

Nc = 16 results in over 8x reduction in model size. The general trends here

47

Table 4.7: Test performance and model size of QuantNet under different clustering
schemes for Cat vs Dog

Set Up Test Acc Model Size
(MB)

Base Model 66.00 2.0852

Clustered (Nc = 16) 65.30 0.2562

Clustered + Post Training -
Float 16 Quantization 64.40 0.2153

Clustered + Post Training -
Dynamic Range Quantization 63.80 0.1921

Clustered + Post Training -
Integer Quantization 63.30 0.1920

Clustered + Post Training - Int Quantization +
Int 16 Activation 64.90 0.1922

Clustered + QAT model 65.75 1.6755

Clustered + Post Training Quantization
on QAT model 65.60 0.1922

reflect what was obtained for quantization techniques without clustering. In fact,

post-training quantization on QAT after clustering gives the best Accuracy per

MB value here as well. The accuracy has dropped by 0.2% with prior clustering

compared to the earlier QAT + post-training quantization numbers. The reason

could be that clustering creates a new, sparse distribution of weight values. This

distribution shift might impede the QAT from converging to the previous optimal

distribution of weights. Can we do better?

Cluster-Preserving QAT

Table 4.8 shows the number of clusters each layer’s weight values form at the end

of using a particular scheme. In the previous experiment, QAT was performed on

the clustered model, treating it as a new model without taking complete advantage

48

of the distribution shift or reduction in unique values brought about by clustering.

Row 3 of the table verifies this claim showing that the number of clusters repre-

senting the number of unique weight values is very high to the extent that the

effect of clustering is not felt at all at the end.

Table 4.8: Test performance, number of clusters in each layer, and model size under
different clustering + QAT schemes on QuantNet model for Cat vs Dog

Set Up Test Acc Number of clusters
Model Size

(MB)

Base Model 66.00 - 2.0852

Clustered (Nc = 16) 65.30 16, 16, 16, 16, 16 0.2562

Clustered (Nc = 16) +
QAT 65.75 864, 18430, 361277, 1308, 16 1.6755

Clustered (Nc = 16) +
Cluster-Preserving QAT 65.85 16, 16, 16, 16, 16 0.2394

Therefore, we perform clustering-aware QAT on the clustered model (row 4 of

table 4.8) that preserves the number of clusters per layer. By preserving the number

of unique values per layer, we have not only brought the model size to merely 0.24

MB (over 8x reduction from the base model size of 2.1MB) but also achieved the

best test performance of 65.85 on Cat vs Dog dataset, only slightly higher than

what we obtain using QAT + post-training quantization alone and TwoNN-based

hybrid layer precision. Our intuition for this slight increase over the normal

quantization aware training is that the CNN model is sort of regularized by this

restriction on the number of unique values since most neural network models

are over-parametrized. This over-parametrization is also verified by the pruning

experiment (refer section 4.2.3), where the accuracy does not fall significantly till a

pruning fraction of about 50%. Hence, we expect that this method, coupled with

our novel approach for identifying significant layers, will be an ideal pipeline for

49

general low-resource edge devices.

4.2.4 Performance of Proposed Model Pipeline

We introduced our novel model pipeline in section 3.4 based on the theoretical

background of the methods that we explored in this work and the results we

obtained during the comparative study. In this section, we mainly compare the

results of this model pipeline to the best values we obtain from our work using the

classical approaches as well as the proposed TwoNN-based hybrid layer precision

approach for limited memory settings.

Table 4.9: Test performance and model size of QuantNet under the best perform-
ing compression schemes for Cat vs Dog dataset from CIFAR-10 in stan-
dalone setup

Set Up Test Acc Model Size (MB)

Base Model 66.00 2.0852

Post Training Quantization on QAT model 65.80 0.5278

TwoNN +Mixed Precision (1-bit, 2-bit) Quantization 65.80 0.1321

Clustering + Post Training Quantization
on QAT model 65.60 0.1922

Cluster-Preserving QAT 65.85 0.2394

TwoNN + Clustering, Cluster-Preserving QAT 65.95 0.1625

From table 4.9, we clearly see that the model pipeline we proposed outper-

forms other techniques that we explore in this work. Both methods adopted for

significant and insignificant layers have a clustering part which is common, and

that helps when implementing this pipeline. It also acts as a regularization by

creating a sparser weight distribution that prevents over-fitting. The TwoNN-

based mixed precision model achieves the next best accuracy with even lesser

50

model size, justifying its application in memory-constrained systems. However,

whenever memory permits, it seems better to employ the clustering-based model

pipeline proposed for increased performance. The difference between the two

might be higher for complex models and/or difficult tasks.

51

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, we propound two novel model pipelines for two memory settings of

the edge device - TwoNN + Clustering, Cluster-Preserving QAT for limited mem-

ory and TwoNN + Mixed Precision (1-bit, 2-bit) Quantization for extremely low

memory. We compare our proposed pipelines in model size and performance to

the best results from classical and notable techniques that we discuss in this work

to validate our claim. These pipeline designs work for both a standalone and a

transfer learning setup. Apart from the trade-off between accuracy and storage

size, the proposed designs are expected to have reduced latency and acceleration

advantages with specialized hardware. The comparative study that was presented

backed the choice of such a model pipeline for CNN compression along with in-

tuitions drawn from the theoretical study. The seed of the idea was the realization

that different layers of a neural network specialize in different sub-tasks within the

framework of the main task and have to be treated differently while employing

the compression techniques.

In the course of our comparative study, we come across the shortcomings of the

existing PCA-based method for identifying significant layers for a hybrid precision

model design. Consequently, we introduce the approach of using TwoNN, which

proves to be a better metric for arriving at significant layers and forms the basis

for the model pipelines presented. We hope that this work helps the community

to analyze the layer significance of a CNN using a robust method and tap into the

advantages of using hybrid layer compression techniques.

In the future, we intend to compare and extend this hybrid layer approach to

more techniques that might not have gained popularity but show potential. Also,

we hope to explore the different methods in depth from the perspective of optimiz-

ing constraints in edge devices other than memory like latency, computations, etc.

Given the carbon footprint of training state-of-the-art models, we wish to study

the methods for optimizing online training on the edge device itself and explore

techniques for a federated learning setting. There is also the angle about the hard-

ware and the relative pros and cons of the various techniques when they actually

run on the hardware that we seek to analyze. We also wish to focus on completely

new techniques developed for specific use-cases within the world of edge devices.

Finally, we aim to formally extend this approach and study on CNNs to neural

network architectures for other important tasks like NLP, Natural Language Gen-

eration (NLG), time-series analysis, motion control, etc. Given that this work deals

with a very hot topic in deep learning research - model compression, there are a

number of follow-ups and orthogonal directions that one can venture into, and we

believe that this work will instigate many more related research.

53

REFERENCES

Ahn, S., S. X. Hu, A. C. Damianou, N. D. Lawrence, and Z. Dai (2019). Variational
information distillation for knowledge transfer. 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 9155–9163.

Ansuini, A., A. Laio, J. H. Macke, and D. Zoccolan (2019). Intrinsic dimension of data
representations in deep neural networks. arXiv preprint arXiv:1905.12784.

Bergstra, J. and Y. Bengio (2012). Random search for hyper-parameter optimization. J.
Mach. Learn. Res., 13(null), 281–305. ISSN 1532-4435.

Chakraborty, I., D. Roy, I. Garg, A. Ankit, and K. Roy (2020). Constructing energy-
efficient mixed-precision neural networks through principal component analysis for
edge intelligence. Nature Machine Intelligence, 2(1), 43–55. URL https://doi.org/10.
1038%2Fs42256-019-0134-0.

Chatterjee, A. and L. R. Varshney, Towards optimal quantization of neural networks. In
2017 IEEE International Symposium on Information Theory (ISIT). 2017.

Cheng, Y., D. Wang, P. Zhou, and T. Zhang (2017). A survey of model compression and
acceleration for deep neural networks. ArXiv, abs/1710.09282.

Crefeda Rodrigues, G. Riley, and M. Luján (2020). Energy predictive models for convo-
lutional neural networks on mobile platforms. URL http://rgdoi.net/10.13140/RG.
2.2.15224.80644.

Facco, E., M. d’Errico, A. Rodriguez, and A. Laio (2017). Estimating the intrinsic dimension
of datasets by a minimal neighborhood information. Scientific Reports, 7.

Frankle, J. and M. Carbin (2018). The lottery ticket hypothesis: Finding sparse, trainable
neural networks. URL https://arxiv.org/abs/1803.03635.

Gholami, A., S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer (2022). A survey
of quantization methods for efficient neural network inference. ArXiv, abs/2103.13630.

Han, S., H. Mao, and W. J. Dally (2015). “deep compression: Compressing deep neu-
ral networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.

He, K., X. Zhang, S. Ren, and J. Sun (2015). Deep residual learning for image recognition.
URL https://arxiv.org/abs/1512.03385.

Iandola, F. N., S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer (2016).
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5mb model
size. URL https://arxiv.org/abs/1602.07360.

Jacob, B., S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko (2018). Quantization and training of neural networks for efficient
integer-arithmetic-only inference, 2704–2713.

54

https://doi.org/10.1038%2Fs42256-019-0134-0
https://doi.org/10.1038%2Fs42256-019-0134-0
http://rgdoi.net/10.13140/RG.2.2.15224.80644
http://rgdoi.net/10.13140/RG.2.2.15224.80644
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1602.07360

Jovanovic, B. (2022). Internet of Things statistics for 2022 - Taking Things
Aparte. https://dataprot.net/statistics/iot-statistics/#:˜:text=In%202021%
2C%20there%20were%20more,in%20economic%20value%20by%202025.

Krizhevsky, A., Learning multiple layers of features from tiny images. 2009a.

Krizhevsky, A. (2009b). Learning multiple layers of features from tiny images. Technical
report.

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

LeCun, Y., J. Denker, and S. Solla, Optimal brain damage. In D. Touret-
zky (ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-
Kaufmann, 1989. URL https://proceedings.neurips.cc/paper/1989/file/

6c9882bbac1c7093bd25041881277658-Paper.pdf.

Lee, D.-H., S. Zhang, A. Fischer, and Y. Bengio, Difference target propagation. In A. Ap-
pice, P. P. Rodrigues, V. Santos Costa, C. Soares, J. Gama, and A. Jorge (eds.), Machine
Learning and Knowledge Discovery in Databases. Springer International Publishing, Cham,
2015. ISBN 978-3-319-23528-8.

Liu, S., D. S. Ha, F. Shen, and Y. Yi (2021). Efficient neural networks for edge devices.
Computers & Electrical Engineering, 92, 107121. ISSN 0045-7906. URL https://www.
sciencedirect.com/science/article/pii/S0045790621001257.

Mcculloch, W. and W. Pitts (1943). A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 127–147.

Rastegari, M., V. Ordonez, J. Redmon, and A. Farhadi, Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks. In B. Leibe, J. Matas, N. Sebe, and
M. Welling (eds.), Computer Vision – ECCV 2016. Springer International Publishing,
Cham, 2016. ISBN 978-3-319-46493-0.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65 6, 386–408.

Shafique, M., T. Theocharides, C. Bouganis, M. Hanif, F. Khalid, R. Hafiz, and S. Rehman,
An overview of next-generation architectures for machine learning: Roadmap, oppor-
tunities and challenges in the iot era. 2018.

Stoychev, S. and H. Gunes (2022). The effect of model compression on fairness in facial
expression recognition. URL https://arxiv.org/abs/2201.01709.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich (2014). Going deeper with convolutions. URL https://arxiv.org/
abs/1409.4842.

Yang, T.-J., Y.-H. Chen, and V. Sze, Designing energy-efficient convolutional neural net-
works using energy-aware pruning. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017.

Zhou, S., Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou (2016). Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. URL https:
//arxiv.org/abs/1606.06160.

55

https://dataprot.net/statistics/iot-statistics/#:~:text=In%202021%2C%20there%20were%20more,in%20economic%20value%20by%202025.
https://dataprot.net/statistics/iot-statistics/#:~:text=In%202021%2C%20there%20were%20more,in%20economic%20value%20by%202025.
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0045790621001257
https://www.sciencedirect.com/science/article/pii/S0045790621001257
https://arxiv.org/abs/2201.01709
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	NOTATION
	INTRODUCTION
	LITERATURE REVIEW & THEORY
	Quantization
	Mathematical Formulation
	Classification
	Mixed Precision Quantization

	Weight Clustering
	Pruning
	Intrinsic Dimension Estimation
	PCA Method for Intrinsic Dimension Estimation
	TwoNN Method for Intrinsic Dimension Estimation

	RESEARCH METHODS
	Problem Statement Motivation
	Description of Model used for Studies - QuantNet
	TwoNN-based Hybrid Precision Quantization
	Correct Scaling Factor and Gradients
	TwoNN Method for Identifying Significant Layers

	Proposed Model Pipelines

	EXPERIMENTS
	Setup
	Dataset
	Hyperparameter Tuning
	Model Training Details

	Results and Findings
	Study on Conventional Quantization Approaches
	Study on Mixed Precision Quantization
	Study on Model Pruning and Weight Clustering
	Performance of Proposed Model Pipeline

	CONCLUSION AND FUTURE WORK

