
Analysis of Thermal Super Resolution and

Thermal-RGB Stereo Matching Algorithms

A Project Report

submitted by

JYOTHIS C G

in partial fulfilment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

MAY 2019





THESIS CERTIFICATE

This is to certify that the thesis titled Analysis of Thermal Super Resolution and

Thermal-RGB Stereo Matching Algorithms, submitted by Jyothis C G, to the Indian

Institute of Technology, Madras, for the award of the degree of Master of Technology,

is a bona fide record of the research work done by him under our supervision. The

contents of this thesis, in full or in parts, have not been submitted to any other Institute

or University for the award of any degree or diploma.

Dr. Kaushik Mitra
Research Guide
Assistant Professor
Dept. of Electrical Engineering
IIT-Madras, 600 036

Place: Chennai

Date: 9th May 2019





ACKNOWLEDGEMENTS

I would like to start by thanking my project guide Dr. Kaushik Mitra for guiding and

supporting me through the entire duration of my Mtech project. His inputs have been

invaluable to the completion of this project. Secondly I would like to thank research

scholar Honey Gupta who helped me in solving some of the technical difficulties I

faced during my project. I would also like to extend my thanks to my Faculty advisor

and HoD Prof. Devendra Jalihal who offered his advice during my entire M.Tech. Last

but not the least I would also like to thank my family and friends who offered their

advice and support during this project. Finally special thanks to God Almighty for

being with me during every single step.

i





ABSTRACT

With the thermal cameras becoming more affordable there is an increase in the number

of potential use cases such as pedestrian detection, visual odometry, leakage detection

etc. But these commercial cameras suffer from low resolution, poor signal-to-noise ra-

tio and halo effects. Hence there is a need to use software techniques to improve the

quality of thermal camera output. This thesis examines the effectiveness of state-of-

the-art RGB SR techniques on thermal image SR resolution. We also try to propose a

method to estimate the disparity map from thermal and RGB stereo images. Such a dis-

parity map can be potentially used for all-day vision since the presene of thermal image

allows operation in challenging environments such as fog, rain and varying illumination

conditions.
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CHAPTER 1

Introduction

Accurate and high quality thermal images are of utmost importance in several applica-

tions such as pedestrian detection, surveilance, military , fire detection, gas detection

etc. These applications cannot utlise the conventional RGB camera as they cannot be

used in challenging conditions such as in the presence of smoke or fog and in dark envi-

ronments. Thermal cameras can overcome these problems as they capture the infrared

radiation emitted by the object as compared to the RGB camera which captures the

light reflected off an object. Thermal cameras are manufactured to capture temperature

information either in the mid-wavelength region ( 3 - 8 µm) or in the long-wavelength

region (8 - 15 µm).

Although thermal imaging has all these advantages the detector arrays used are re-

ally increase the manufacturing cost and thereby the cost of the camera. This severely

limits the use of high quality thermal camera to specific use cases such as military etc.

Commercially available cameras which are low cost compared to the higher end ones

suffer from low signal-to-noise ratios, halo effects etc. Hence the images from these

low cost detectors cannot be supplied directly as input to the other algorithms. One

possible solution is to use software based solutions to improve the resolution of these

low resolution images. With the advent of deep learning, several solutions have been

proposed which needs only a single image to achieve the same result.

Most of the works on thermal image super resolution uses the same architecture

as the RGB super resolution techniques. But the amount of literature in the field of

thermal imaging is smaller compared to that of RGB SR. In this study we will try to

use the state-of-the-art RGB SR algorithms for thermal image SR and to determine the

optimal training domain. We also examine the efectiveness of this algorithm to improve

the output of low cost thermal detectors such as FLIR AX8.

Thermal images also proved to be important in estimating disparity maps and in

3D reconstruction of environments with varying illumination and night time. Although

ordinary stereo matching algorithms are robust enough to give good results in most



conditions it cannot be used in the special cases mentioned above. Most of the stereo

matching algorithms consider a rectified pair of images as input. But cross-modal stereo

matching is difficult due to the different appearance of the objects in the two cases and

the low mutual information between them. This eliminates the possibility of using

patch by patch matching to estimate disparity and restricts the methods to those based

on feature based matching. Here we will try to use deep learning based approaches to

estimate disparity between rectified thermal and RGB images and how the RGB based

stereo matching techniques can be adapted to this particular problem.

The organization of the thesis is as follows. The second chapter gives a brief

overview on the infrared sensor. It also explains the operation differences between the

low and high cost thermal detectors. Third chapter explains the need for thermal image

super resolution and some of the earlier works in this field. It also gives a overview on

the current state-of-the-art SR method and its architecture. Fourth chapter explains the

need for cross-modal stereo matching and some of the methods which have been pro-

posed to perform Thermal-RGB stereo matching. Fifth chapter shows the experimental

results obtained and sixth chapter lists the conclusions which are drawn on the basis of

the results.
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CHAPTER 2

Thermal Imaging

2.1 Infrared Sensors: Theory

A thermographic camera (also called an infrared camera or thermal imaging camera or

infrared thermography) is a device that forms a heat zone image using infrared radia-

tion. These cameras can capture wavelengths as long as 14 µm. There use is called

thermography.

Although IR radiations are invisible to the human eye, IR cameras are able to detect

them. Their operation differs from a digital camera operating on VS in that the classical

Charge Coupled Device (CCD) is replaced by a Focal Plane Array (FPA), which is

made of materials and alloys sensitive to IR wavelengths.

Figure 2.1: Simplified block diagram of Thermal camera

The main components of a thermal camera are shown in Fig 2.1 and it consists of

a lens which focuses the incoming radiation onto the detector, an electronic element

which converts the opto-electronic signals into images and a software part that inter-

faces between the came and the user.



According to the working principle the FPA can be classified into the following two

categories: (i) photon detectors and (ii) thermal detectors. The former class corresponds

to detectors in which radiation absorption happens through interaction with photons.

The changed electrical distribution of the material gives rise to electrical signals. These

electrical variations are used to estimate the amount of incident optical power.

These detectors require cryogenic cooling. Hence semi-conductor based infrared

sensors are heavy, expensive and inconvenient for applications like ADAS.

In thermal detectors the incident radiation causes a change in the temperature or

other physical property of the semiconductor material. This variation is used to generate

an electrical output proportional to the incident radiation. A typical low cost thermal

detector can make use of bolometer which can convert the incoming photon flux into

heat thereby changing the electric resistance of the detector element. Currently thermal

detectors are available for commercial use as opposed to photon detectors which are

restricted to military applications.

These thermal detectors do not require cooling. Despite these advantages photon

detectors were popularly believed to be have more speed and higher wavelength selec-

tivity as compared to the thermal counterparts. Advances in the micro miniaturization

in the 90’s allowed arrays of bolometers or thermal detectors. This compensated for

the moderate sensitivity and low frame rate of the thermal detectors. Large arrays also

offered high quality imagery and better response time and eventually the manufacturing

cost also dropped.

Spectral band Spectral wavelength (µm)
Visible 0.4 - 0.7

Near Infrared (NIR) 0.78 - 1.0
Short-Wave Infrared (SIR) 1 - 3
Mid-Wave Infrared (MIR) 3 - 5

Long-Wave Infrared (LWIR) 8 - 12

Table 2.1: General spectral bands based on atmospheric transmission and sensor tech-
nology
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2.2 Applications

This sections give an overview about some of the major application areas of thermog-

raphy.

• Inspections of Mechanical Components:
Infrared cameras can safely inspect mechanical systems from various industries
to detect issues before they become major problems. Some of these include:

– Finding air leaks and clogged condenser tubes in refrigeration systems

– Locate and identify overheating bearings, excessive oil temperatures in pumps,
compressors, fans, and blowers

• Aerospace Industry:
Aerospace sets the greatest demands on Infrared camera systems due to the high
safety and material requirements presented. Aerospace firms can use thermog-
raphy to test active heat flows on new composite materials to ensure the next
generation of lighter, more fuel-efficient aircraft remain as safe as today’s mod-
els.

• Electronics and Electrical Industry:
Not only does it prevent humans from having direct contact with these systems
and circuits, testing and detection can be conducted without interrupting the flow
of power. Manufacturing industries can also benefit from electrical thermography
to monitor possible overheating, keep a close eye on tank levels, process line
inspections, and even assess the condition of circuit boards.

2.3 Thermal Cameras

Two thermal cameras were used for collecting the data used in this project. This section

gives a brief explanation about these cameras:

• FLIR E95:
E95 cameras offer superior sensitivity and a true 42° field of view in a user-
friendly, handheld platform. These cameras can detect even subtle indications of
building deficiencies and moisture intrusion.
Specifications:

– Focal length: 17 mm

– IR Resolution: 464 x 348 pixels

– Spectral Range: 7.5 - 14 µm

5



• FLIR AX8:
FLIR AX8 is a thermal sensor with imaging capabilities. Combining thermal
and visual cameras in a small, affordable package, the AX8 provides continu-
ous temperature monitoring and alarming for of critical electrical and mechanical
equipment.
Specifications:

– IR Resolution: 80x60 pixels

– Spectral range: 7.5 - 13 µm

– Thermal Sensitivity: < 0.10°C @ +30 ° C (+86 °F) / 100 mK

– Object Temperature Range: -10°C to 150 °C

(a) FLIR AX8 (b) FLIR E95

Figure 2.2: FLIR Thermal cameras
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CHAPTER 3

Single Image Thermal Super resolution

3.1 Need for Thermal Super resolution

All objects emit IR radiation depending on their temperature and emissivity. Since

thermal cameras are designed to capture these IR radiations if offers serious advantages

over visible cameras in difficult environments such as rain, smoke and fog.

Still IR cameras have its own set of disadvantages. Some of these are listed below:

• Climate, air currents and the presence of other radiation sources can produce a
confusing picture

• High quality thermal cameras are expensive due to the high cost of the sensor
element.

• Detector arrays are expensive and its difficult to manufacture in large sizes. Hence
the low cost detectors produce images with pixel spacing significantly lower than
the underlying image resolution.

To summarise the thermal cameras available for commercial purposes suffers from

low signal-to-noise ratios, blurring and halo effects. This severely limits their applica-

bility in practical situations.

One possible solution to overcome the resolution problems posed by the low cost

thermal detector is to super resolve the images prior to processing. These methods are

significantly cheaper than the high resolution cameras. Furthermore the existing LR

techniques can be used.



3.2 Related works

Single image super-resolution algorithms focuses on generating a high resolution image

from a single low resolution image. These algorithms can be broadly classified into

3 major categories (i) interpolation based (ii) reconstruction based and (iii) learning

based methods.The interpolation based technique is the simplest of the three but it fails

to produce a good quality output and the details are often vague. The reconstruction

based method utilises prior information and several existing degradation models such as

down-sampling, motion blurring and optical distortion to reconstruct the high resolution

image. The third method which focuses on learning based techniques utilises a large

data-set of low quality - high quality image pairs to achieve super resolution.

With the advent of deep learning there have significant improvements in the field

of single image super resolution. Convolutional Neural networks based networks [[3],

[4], [9], [12]] have achieved significant improvements over single image super resolu-

tion techniques. Don et al. [3] proposed one of the earliest works named as SRCNN

which used a 3 layer CNN to achieve SR. Later Kim et al. increased the depth of the

network to 20 with VDSR [9] which showed considerable over SRCNN. This showed

that the network depth is an important factor in visual recognition tasks. Ledig et al.

[10] introduced ResNet [6] to construct a deeper network with perceptual losses [8]

and generative adversarial network (GAN) [5] for photo-realistic SR. Later Lim et al.

[12] built a very wide network EDSR and a very deep one MDSR by using simplified

residual blocks. The performance improvements of EDSR and MDSR indicates that the

depth of the network is an important factor in single image SR tasks.

However the amount of literature in the field of single image thermal super reso-

lution have been fairly sparse. Choi et al. [2] proposed one of the earliest works in

thermal super resolution. The paper used a simple CNN network with bicubic inter-

polated version of the LR image as input. It consisted of 3 convolutional layers with

spatial padding to preserve the resolution of the image. His work was followed by Lee

et al. [11] in 2017 which proposed a Res-Net based architecture to achieve the result.

The network is composed of multiple layers for feature extraction and matching fol-

lowed by a single layer for reconstruction. Compared to the previous works the focus

of the network was on predicting the high frequency details in the form of residuals.

This was based on the idea that the low frequency information in the LR and GT HR
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image was highly correlated thereby eliminating the need for computing low frequency

information. The paper also performed a performed a comparison to determine the best

training domain. Comparsions were done between thermal infrared, NIR and the four

RGB domains namely gray, lightness, intensity and brightness. Based on their analysis

brightness domain was observed to give better results.

Most of these papers were trained on publicly available pedestrain datasets like

KAIST which severly affected the generalisation capability of the networks. One pos-

sible solution to this problem was the idea of transfer learning. Sun et al. [15] in 2018

used the idea of transfer learning to achieve better results. The network is initially

trained on a large database of natural RGB images and then fine-tuned by a relatively

smaller dataset of thermal images which was found to yield better outputs. Moreover it

eliminated the need for upscaling the LR image prior to giving it as input by the use of

deconvolutional layers thereby bringing the computational cost as well.

To summarise the super resolution algorithms which have developed for RGB im-

ages can be used without much modification to thermal images. The current state-of-the

art algorithm in RGB single image super resolution was proposed by Zhang et al. [19]

in 2018 which will be explained in more detail in the next section.

3.3 Image Super-Resolution Using Very Deep Residual

Channel Attention Networks: A Brief Overview

This section gives a brief overview about the super resolution technique proposed by

Zhang et al. in [19]. Although this method is intended for use with RGB images as

input recent works in thermal SR literature indicates that the RGB SR algorithms can

be extended to thermal SR without any modification in the architecture.

Most recent CNN-based methods deals treat channel-wise features with the same

importance which limits the flexibility of the network to deal with different features. For

instance the low frequency information can be directly bypassed to the output without

any loss of optimality thereby saving precious computational time. Also depth of the

network is an important factor in the case of SR. But as the depth increases it becomes

more difficult to train and with diminishing returns only. This method overcomes the

9



above problems with the following major contributions:

• A residual in residual structure which helps to train very deep networks. The
presence of long and short skip connection allows the network to bypass low
frequency information.

• Channel attention mechanism to rescale features taking into consideration the
interdependence between features

The Residual Channel Attention Network (RCAN) consists of four parts: shallow

feature extraction layer, residual-in-residual deep feature extraction layer, upscale mod-

ule and reconstruction part.

Figure 3.1: RCAN Architecture

Figure 3.2: Residual Channel Attention Block

Given a training set {I iLR, H i
LR}Ni=1 which containsN LR inputs and their HR coun-

terparts. The objective is to minimise the L1 loss function between the RCAN recon-

struction and the ground truth.

L(Θ) =
1

N

N∑
i=1

||HRCAN(I iLR)− I iHR||1

where Θ denotes the parameter set of the network.
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CHAPTER 4

Thermal - RGB Stereo Matching

4.1 Motivation

Recent works in the field of robotics, material classification and pedestrian detection

have shown that multiple modalities can perform much better than single sensor based

systems. Moreover there has been an increase in the number of commercial thermal

cameras (FLIR One Pro which can be used with a smartphone) which offer cheaper IR

imaging solutions at the cost of resolution and signal-to-noise ratio. In most of the cases

the thermal sensors are also coupled with an RGB camera which are of high resolution

as compared to their thermal counterparts. This Thermal - RGB images form a stereo

pair which can be used to reconstruct disparity maps as well as depths in challenging

environments such as during night-time or in the presence of fog. Hence they have wide

applications in the field of self-driving cars, fire and rescue, military etc.

This dual-stereo set up can also help overcome some of the common stereo recon-

struction failure cases such as reflections - which will be more pronounced in the case

of visible images but not in thermal images as they are sensitive only to the IR radiation

coming from the object. However thermal - rgb stereo matching is a very challenging

problem owing to the lack of texture in thermal images and the low mutual informa-

tion between the two modalities. Here we will try to leverage some of the newer deep

learning based stereo matching techniques to perform cross-modal stereo matching.

4.2 Related works

Most of the works on cross-modal stereo matching has been related to thermal images

in the near infrared region. This is less challenging as compared to thermal images

in the LWIR region. The wavelength of NIR is close enough to red colour and hence

therma images captured in the NIR range posess a high degree of correlation with the



red channel of their RGB stereo pair. Most of the exising technique make use of this

idea to achieve results. However the same cannot be extended directly to the LWIR

range since the wavelength is too large and hence the appearance of the images are

totally different.

This section will cover some of the latest works in NIR stereo matching as well as

RGB stereo matching since there were no papers in the RGB-LWIR category. Some of

the ideas from these papers will be utilised in the process to come up with an acceptable

solution for this problem.

In stereo estimation, [18] used CNN to compute the matching cost between two

image patches. They utilised a Siamese network which takes the same sized patches

from the left and right images with a few fully-connected layers to predict the matching

cost. The model was trained to minimize a binary cross-entropy loss. In similar spirit to

[18], [17] investigated different CNN based architectures for comparing image patches.

They found concatenating left and right image patches as different channels to be better.

Luo et al. in [13] proposed a deep learning architecture for stereo matching between

RGB images which utilises a Siamese network to estimate the disparity. The major

contribution of this paper was the reduced computational time obtained by replacing

the concatenation layer in the previous architectures with a dot product layer which was

used to compute the correlation between the output of the Siamese representations.

Ryu et al.in [14] defined a new image transform called ’Local Area Transform’

which was consistent even with non-linearly deformed image pairs induced by different

modality conditions. This involved transforming the image into a local domain which is

invariant under nonlinear intensity deformations such as radiometric, photometric and

spectral deformations. The method also showed improvement in cross-spectral template

matching and cross-spectral feature matching with RGB-NIR data.

Zhi et al.in [20] proposed an architecture for simulatenously transforming images

across spectral bands and to estimate disparity between RGB-NIR stereo pairs. A mate-

rial aware loss term is also introduced into the loss function to account for regions with

unreliable matching such as light sources, glass windshields and glossy surfaces.
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4.3 Proposed methods

This section explains about the three different approaches which have been adopted to

tackle the problem of Thermal-RGB stereo matching. Most of these algorithms are

in the preliminary stage and hence the outputs are not optimal. However they do ex-

hibit promise and the methods can be adapted to the specific constraints posed by the

different modalities with appropriate modification.

4.3.1 Naive approach using Siamese network

In this method a deep learning based stereo matching approached proposed in [13] is

used. This method is intended to be used with RGB stereo pairs. But in this case the

dataset is replaced by the rectified thermal-RGB stereo pairs from the CATS dataset.

The network utilises a Siamese architecture with shared weights and a dot product layer

with the two representations of the Siamese network as input.

Figure 4.1: Stereo Matching Network [18]

The network learns a probability distribution over all disparities with a smooth target

distribution. During training binary cross entropy loss is minimised. All the parameters

of the network are the same as that proposed in the paper.
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4.3.2 Preprocessing the images with Local Area Transform

This method uses the same architecture as in the previous section. The only difference

is that the image pairs are converted into a local area domain which is invariant under

non-linear intensity deformations especially photometric, spectral deformations etc.

14



The pseudo code for Local area transform given in [14] is as follows.

Algorithm Local area Transform

Input: input image I, half-window size l

Output: local area transformed image Y

Notation: integral histogram H, local histogram h

/* integral histogram computation */

for each pixel p = (x, y) do

H’(x, y)← H’(x, y - 1) + I(x, y)

end

for each pixel p = (x, y) do

H(x, y)← H(x - 1, y) + H’(x, y)

end

/* local histogram computation */

for each pixel p = (x, y) do

h(x,y)← H(x + l,y + l) + H(x - l,y - l) - H(x - l,y + l) - H(x - l,y + l)

end

/* local area computation */

Rk = I(p) - r

Rl = I(p) + r for each pixel p = (x, y) do

Y(x,y)←
∑

bε(Rk,Rl)
ω(b) x h(x,y,b)

end

Parameters r and σ control the interval of integration and the degree of Gaussian smooth-

ing of the histogram, respectively.

4.3.3 Converting the thermal image into visible spectrum

Berg et al. in [1] proposed a network for spectral transformation of thermal images into

the visible spectrum. This architecture will be used to convert the thermal image in each

Thermal-RGB stereo pair. These converted thermal images and RGB image pairs will

be used as the training data for the stereo matching method in 3.3.1

15





CHAPTER 5

Experiments and Results

This section gives a brief explanation about the different datasets used in this project

5.1 Datasets used

• KAIST Multispectral Pedestrian dataset This dataset [7] contains aligned ther-
mal and RGB image captured in both in day and light environments and is used
commonly used as a benchmark for many thermal imaging related computer vi-
sion tasks. We will be using this dataset to compare the performance of different
thermal SR algorithms.

Figure 5.1: Images from KAIST dataset

• FLIR ADAS dataset This dataset features an initial set of more than 14,000
annotated summer driving thermal images captured at day and night and their
corresponding RGB imagery for reference. FLIR ADAS was used for training
data for the thermal RCAN model which was trained from the scratch exclusively
on theral images.

Figure 5.2: Image from FLIR ADAS dataset



• High resolution thermal dataset This dataset consists of generator set images
captured using the FLIR E95 high resolution thermal camera and was used for
fine-tuning the pre-trained RCAN model.

• Color and Thermal Stereo datasaset Color and Thermal Stereo (CATS) dataset
[16] contains rectified RGB and thermal stereo pairs along with the depth infor-
mation captured using LIDAR. This dataset was used as the primary training data
for Thermal-RGB stereo matching problem.

Figure 5.3: Images from CATS dataset

5.2 Thermal Image Super resolution

5.2.1 Comparison with existing methods

Here we will be comparing the performance of RCAN pre-trained model with the algo-

rithm proposed in [2]. Since they have provided results only for x2 and x3 case we will

be restricting our attention to those cases.

x2 x2 x2 x3 x3 x3
Bicubic TEN RCAN Bicubic TEN RCAN

PSNR (dB) 42.97 44.212 46.234 39.67 40.4814 42.814

Table 5.1: Comparison of RCAN pre-trained with existing methods

5.2.2 Comparison between Thermal trained RCAN and RCAN pre-

trained model

This section explains the experiments done to determine the optimal training domain

for thermal image super resolution. The comparison was performed between RCAN

trained

18



(a) Original HR Image (b) Original image downscaled
by x4

(c) Pre-trained RCAN model
output

(d) Thermal trained RCAN out-
put

Figure 5.4: RCAN pre-trained and Thermal trained RCAN model comparison

5.2.3 Comparison between RCAN pre-trained and RCAN fine-tuned

models

This section explains the experiments done to determine the optimal training domain

for thermal image super resolution. The comparison was performed between RCAN

pre-trained and RCAN fine-tuned using gen-set images.
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(a) Original HR Image (b) Original image downscaled
by x4

(c) Pre-trained RCAN model
output

(d) RCAN fine-tuned model out-
put

Figure 5.5: RCAN pre-trained and RCAN fine-tuned model comparison: Result 1

(a) Original HR Image (b) Original image downscaled
by x4

(c) Pre-trained RCAN model
output

(d) RCAN fine-tuned model out-
put

Figure 5.6: RCAN pre-trained and RCAN fine-tuned model comparison: Result 2

The first result indicates that the fine-tuned RCAN model gives better output as

compared to pre-trained model.
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5.2.4 Results on FLIR AX8 Thermal camera

The native IR resolution of FLIR AX8 is 80x60 pixels and cannot be provided as input

to other post processing algorithms. Hence it is internally upscaled by some interpola-

tion algorithm which is not publicly available.

In this section we will compare how the RCAN pre-trained performs in compari-

son to FLIR’s proprietary algorith, Since no GT is available we will be examining the

perceptual quality rather than metrics like PSNR and SSIM in this case. The process

involves extracting the 80x60 from the 640x480 size IR output of the camera and then

super resolving using the pre-trained RCAN model.

(a) FLIR AX8 Output (640x480) (b) Raw Thermal Image (80x60) (c) Super resolved AX8

Figure 5.7: Genset image captured using FLIR AX8

(a) FLIR AX8 Output (640x480) (b) Raw Thermal Image (80x60) (c) Super resolved AX8

Figure 5.8: Image of hair dryer captured using FLIR AX8

These results indicate that the super resolved image obtained by using the pre-

trained RCAN model achieves much sharper images as compared to FLIR’s inbult SR

technique.
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5.3 Thermal - RGB Stereo Matching

5.3.1 Using Siamese network

Here we use the RGB stereo matching technique specified in [13] to estimate the dispar-

ity between the left thermal image and right color image. The results are not satisfactory

due to the difference in image modallities.

(a) Left thermal image (b) Right color image

(c) Output Disparity map (d) GT Disparity map

Figure 5.9: Disparity estimation using Siamese Network

5.3.2 Preprocessing using Local Area Transform

In this technique the image pairs are converted using Local area transform prior to

training the Siamese network.
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(a) Left thermal image (b) Right color image

(c) LATS converted thermal im-
age

(d) LATS converted color image

(e) Output Disparity map (f) GT Disparity map

Figure 5.10: Disparity estimation on LAT preprocessed image

The images in the first row are the recitified image pair taken from the Color and

Thrermal Stereo dataset. The second row corresponds to their LATS processed coun-

terparts. The bottom row shows the ground truth disparity and the estimated disparity.

LAT shows improvement in the case of RGB-NIR stereo matching problems. How-

ever the same cannot be said regarding the LWIR images. It may be due to the large

wavelength difference between NIR and LWIR.
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5.3.3 Converting thermal images to visible spectrum

In this section we have used the pre-trained model of [1] in converting the left thermal

image into the visible spectrum. The pre-trained model is trained using the aligned

thermal-RGB pairs from the KAIST dataset.

(a) Thermal image (b) Converted visible spectrum image

Figure 5.11: Conversion of thermal to visible image

There is a loss of information in the converted thermal image and it cannotbe used

for RGB stereo matching. This indicates the network trained on KAIST dataset is not a

good choice for operating on the CATS dataset.
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CHAPTER 6

Conclusion

From the experiments done it is observed that RGB super resolution algorithms can

be used to solve the low resolution problem by the commercial thermal cameras. In

most cases the optimal training domain is observed to be natural images. This may

be attributed to the unavailability of high resolution thermal datasets with sufficiently

diverse images. In cases where a high quality thermal dataset is available it maybe

more advantageous to fine-tune the pre-trained model with the thermal images. The

fine-tuned model is observed to give better results than the pre-trained model. So there

is a trade-off between the cost incurred in creating a high resolution dataset and the

improvement in results. But according to our study pre-trained would suffice in most

scenarios.

Thermal-RGB stereo matching can improve the 3D construction in challenging en-

vironments such as in the presence of fog and rain. Unfortunately none of the methods

proposed in the thesis were able to give satisfactory results. This may be due to the

large difference in modalities and low mutual information between the images. The

third method which involved converting thermal to the visible spectrum failed because

the network was trained on pedestrian data and was unable to adapt to the images in

the CATS dataset. This can be improved by creating a aligned thermal-RGB dataset

with more diverse scenes. Adding an appropriate regularization term may also help to

improve the result.





CHAPTER 7

Future work

In the case of thermal-RGB stereo matching none of the proposed methods could give

satisfactory results. This may be due to the large difference in modality. This may be

improved by including a graph-cut based regularization term in the network loss func-

tion. Also an unsupervised depth estimation which uses a combination of the left-right

consistency idea and perceptual loss is another future work. Regarding the spectral

transformation idea it is necessary to have an aligned thermal-RGB dataset which con-

tains more diverse scenes. For thermal super-resolution can be improved by fine-tuning

the pre-trained model with a larger dataset with more diverse scenes.





REFERENCES

[1] Berg, A., J. Ahlberg, and M. Felsberg, Generating visible spectrum images from
thermal infrared. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 2018.

[2] Choi, Y., N. Kim, S. Hwang, and I. S. Kweon, Thermal image enhancement
using convolutional neural network. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2016.

[3] Dong, C., C. C. Loy, K. He, and X. Tang (2016). Image super-resolution using
deep convolutional networks. IEEE transactions on pattern analysis and machine
intelligence, 38(2), 295–307.

[4] Dong, C., C. C. Loy, and X. Tang, Accelerating the super-resolution convo-
lutional neural network. In European conference on computer vision. Springer,
2016.

[5] Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, Generative adversarial nets. In Advances
in neural information processing systems. 2014.

[6] He, K., X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016.

[7] Hwang, S., J. Park, N. Kim, Y. Choi, and I. So Kweon, Multispectral pedestrian
detection: Benchmark dataset and baseline. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 2015.

[8] Johnson, J., A. Alahi, and L. Fei-Fei, Perceptual losses for real-time style transfer
and super-resolution. In European conference on computer vision. Springer, 2016.

[9] Kim, J., J. Kwon Lee, and K. Mu Lee, Accurate image super-resolution using
very deep convolutional networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016.

[10] Ledig, C., L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, et al., Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017.

[11] Lee, K., J. Lee, J. Lee, S. Hwang, and S. Lee (2017). Brightness-based convo-
lutional neural network for thermal image enhancement. IEEE Access, 5, 26867–
26879.

[12] Lim, B., S. Son, H. Kim, S. Nah, and K. Mu Lee, Enhanced deep residual net-
works for single image super-resolution. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops. 2017.

29



[13] Luo, W., A. G. Schwing, and R. Urtasun, Efficient deep learning for stereo
matching. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2016.

[14] Ryu, S., S. Kim, and K. Sohn (2017). Lat: Local area transform for cross modal
correspondence matching. Pattern Recognition, 63, 218–228.

[15] Sun, C., J. Lv, J. Li, and R. Qiu (2018). A rapid and accurate infrared image
super-resolution method based on zoom mechanism. Infrared Physics & Technol-
ogy, 88, 228–238.

[16] Treible, W., P. Saponaro, S. Sorensen, A. Kolagunda, M. O’Neal, B. Phelan,
K. Sherbondy, and C. Kambhamettu, Cats: A color and thermal stereo bench-
mark. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017.

[17] Zagoruyko, S. and N. Komodakis, Learning to compare image patches via con-
volutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015.

[18] Zbontar, J. and Y. LeCun, Computing the stereo matching cost with a convolu-
tional neural network. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015.

[19] Zhang, Y., K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, Image super-resolution
using very deep residual channel attention networks. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV). 2018.

[20] Zhi, T., B. R. Pires, M. Hebert, and S. G. Narasimhan, Deep material-aware
cross-spectral stereo matching. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2018.

30


	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Thermal Imaging
	Infrared Sensors: Theory
	Applications
	Thermal Cameras

	Single Image Thermal Super resolution
	Need for Thermal Super resolution
	Related works
	Image Super-Resolution Using Very Deep Residual Channel Attention Networks: A Brief Overview

	Thermal - RGB Stereo Matching
	Motivation
	Related works
	Proposed methods
	Naive approach using Siamese network
	Preprocessing the images with Local Area Transform
	Converting the thermal image into visible spectrum


	Experiments and Results
	Datasets used
	Thermal Image Super resolution
	Comparison with existing methods
	Comparison between Thermal trained RCAN and RCAN pre-trained model
	Comparison between RCAN pre-trained and RCAN fine-tuned models
	Results on FLIR AX8 Thermal camera

	Thermal - RGB Stereo Matching
	Using Siamese network
	Preprocessing using Local Area Transform
	Converting thermal images to visible spectrum


	Conclusion
	Future work

