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ABSTRACT

With the burgeoning of applications like Internet of Things (IoT), there is a need for

cameras which have thin-form factor and less weight, that can be integrated anywhere

and can be used for surveillance and distributed monitoring. Lensless imaging sys-

tems make such compact models realizable. However, reduction in the size and cost

of these imagers comes at the expense of their image quality due to the high degree of

multiplexing inherent in their design. This work particularly focus on FlatCam [1] , a

lensless imager consisting of a coded mask placed over a bare CMOS sensor. Existing

techniques for reconstructing FlatCam measurements suffer from several drawbacks in-

cluding lower resolution and dynamic range than lens-based cameras. In this thesis,

two methods to improve lensless reconstructions are explored. First, an end-to-end

calibration free data driven method is implemented that obtain image reconstructions

from lensless measurements that are more photorealistic than those currently available

in the literature. Second, we also look at optimising the mask specifically for image

reconstruction, making the mask more robust to noise as compared to the current mask

used.
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CHAPTER 1

INTRODUCTION

The basic mechanism of a camera, which uses a lens to focus the light from a scene and

project the image onto a photosensitive surface, was established in the 16th century.

Since then, a lens has been indispensable for cameras. Although many improvements

have been made to photosensitive materials for recording images, lenses remain an

integral part of modern imaging systems. But with the proliferation of fields like In-

ternet of Things (IoT), augmented reality etc, the roles of cameras have changed from

merely taking photographs to being inferential inputs and such emerging applications

like surveillance, drones etc impose stringent constraints on the size, weight, cost etc

which cannot be met by the current lens-based imaging systems. Presence of lenses

in cameras introduces a lot of constraints. Due to the large distance required between

the lens and the sensor to achieve focus, cameras end up being thick, with thickness in-

creasing at larger lens aperture sizes. Also, lenses required for wavelengths farther into

the infrared and ultraviolet spectra are very expensive. Furthermore, lens-based systems

require post-fabrication assembly. While a variety of devices including mobile equip-

ment and robots have transformed themselves into thinner and more compact models,

due to these limitations of lenses,there has been a limit to incorporating cameras into

such thinner and more compact devices.

All the above mentioned problems can be solved by eliminating the lenses. A lensless

camera is a digital camera that can take photos and video images without using any

lens. It uses a mask or a permeable film, instead of a lens, to project images of the pho-

tographic subjects and reproduces pictures and images through digital processing. Re-

cent advancements in sensor technologies and computational imaging techniques have

resulted in the emergence of lensless imaging systems. These imaging systems differ

from the conventional imaging system in the sense that they encode the incoming light

to the sensor (instead of directly focusing it). A reconstruction algorithm is then re-

quired to decode the scene from the measurements. Lensless imaging systems provide

numerous benefits over lens-based cameras. First, lensless imaging systems eliminate

the need for a lens, which is the major contributor towards the size and weight of the



Figure 1.1: Lens-Based Cameras

camera. In addition, a lensless design permits a broader class of sensor geometries, al-

lowing sensors to have more unconventional shapes (e.g. spherical or cylindrical) or to

be physically flexible [36]. Moreover, lensless cameras can be produced with traditional

semiconductor fabrication technology and therefore exploit all its scaling advantages,

yielding low-cost, high-performance cameras [2]. Earlier instances of using lensless

coded aperture imaging systems for X-ray and gamma ray [6; 9; 3; 8; 4] are proofs that

lensless imagers have better wavelength scaling as well.

However, the absence of a focusing element and the requirement of a reconstruction al-

gorithm in lensless cameras result in two major challenges. First, lensless design results

in an ill-conditioned system, yielding imperfect reconstructions. Second, poor design of

the mask or reconstruction algorithm may greatly amplify noise in the images. There-

fore, lensless cameras need efficient algorithms to overcome these challenges.

In this thesis, my aim is to improve the quality of reconstructions for Flatcam lens-

less imaging system, which consists of a coded mask placed over a bare sensor. Two

approaches have been implemented in getting quality reconstructions from FlatCam

measurements: First by developing a calibration-free reconstruction algorithm by us-

ing deep networks and second by optimising the mask of the camera specifically for

reconstruction. The first part on end-to-end approach is a joint work with PhD scholar

Salman S Khan [12]. My main contribution to this work is a calibration-free approach

for the reconstruction. Other ablation studies are also done.
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CHAPTER 2

Lensless Imaging and FlatCam

2.1 Lensless Imaging

In the absence of a lens, a sensor would simply record the average light intensity from

the entire scene. Lensless imaging systems dispense with a lens by using other optical

elements to manipulate the incoming light. The sensor records the intensity of the ma-

nipulated light, which may not appear as a focused image. However, when the system

is designed correctly, the image can be recovered from the sensor measurements with

the help of a computational algorithm as shown in figure 2.1.

2.2 Related Works

Pinhole Cameras: The very first cameras built centuries before the invention of lenses

and photography were lensless. Pinhole Cameras, also known as camera obscura, of-

fered simple architecture for lensless imaging that consists of a single aperture in front

of a sensor. But these tiny pinholes drastically reduced the light reaching the sensors

resulting in very noisy images. In fact, lenses were introduced to the light throughput,

thus improving the quality of the images.

Coded Aperture Cameras: These cameras replace the tiny aperture of the pinhole cam-

eras with a mask containing multiple apertures, thereby increasing the light efficiency.

Figure 2.1: Lensless Imaging Architecture



Coded apertures were originally invented for the wavelengths of light that are not easily

amenable to lens-based imaging. In a general coded aperture system, sensor measure-

ments represent a superposition of the images formed behind each pinhole.

In contrast to a single-pinhole camera, the sensor measurements of a coded aperture

camera do not resemble an image of the scene. Rather, each light source in the scene

casts a unique shadow of the mask onto the sensor, encoding information about loca-

tions and intensities. We can represent the relationship between the scene and the sensor

measurement as a linear system that depends on the pattern and placement of the mask.

Inverting this system using an appropriate computational algorithm will recover an im-

age of the scene.

Existing coded aperture cameras have following limitations. First, in these cameras, the

masks are placed significantly far away from the sensor, thus increasing the form factor.

Second, the masks employed have transparent features only in the central region, thus

reducing the light throughput.

Zone Plates: A zone plate uses diffraction to focus light and form an image. It consists

of concentric transparent and opaque rings. Light hitting a zone plate diffracts around

the opaque regions and interferes constructively at the focal point. One advantage of

zone plates is their large transparent area, which provides better light efficency.

Ultra-miniature lensless imaging with diffraction gratings: Recently, miniature cam-

eras with integrated diffraction gratings and CMOS image sensors have been developed

[27]. These cameras have been successfully demonstrated on tasks such as motion es-

timation and face detection. While these cameras are indeed ultra-miniature in total

volume (100 Îijm sensorwidth by 200 Îijm thickness), they retain the large thicknes-to-

width ratio (TWR) of conventional lens-based cameras. Because of the small sensor

size, they suffer from reduced light collection ability.

Lensless Imaging with Fresnel zone aperture: Recently, Hitachi Ltd. proposed a lens-

less camera consisting of an image sensor and a Fresnel zone aperture (FZA). Point

sources making up the subjects to be captured, cast overlapping shadows of the FZA

on the sensor, which result in overlapping straight moirÃl’ fringes due to multiplication

of another virtual FZA in the computer. The fringes generate a captured image by two-

dimensional fast Fourier transform. But the design of these cameras are fairly complex.
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2.3 FlatCam

FlatCam is a lensless imaging system developed by Asif et al.[1] that consists of an

amplitude mask placed above the CMOS sensor. It has extremely thin form factor

as the mask is placed very close to the sensor. As the mask is made up of multiple

apertures/pinholes, the resultant measurement recorded at the sensor is a superposition

of the images formed due to each pinhole. In the design of FlatCam, we assume the

sensor and the mask are planar and parallel to each other. separated by a distance d. For

the sake of simplicity, we also assume that the mask used is binary: that is it contains

transparent features that transmit light and opaque features that block it. Size of the

transparent/opaque features is denoted by ∆ and also assumption is made that the mask

covers the entire sensor array.

Consider the one-dimensional (1-D) coded aperture system depicted in Fig.2.2, in which

a single coded mask is placed at distance d from the sensor plane. We assume that the

FOV of each sensor pixel is limited by a chief ray angle (CRA) θCRA, which implies that

every pixel receives light only from the angular directions that lie within ±θCRA with

respect to its surface normal. Therefore, light rays entering any pixel are modulated by

the mask pattern of length w = 2dtanθCRA. As we increase (or decrease) the mask-

to-sensor distance, d, the width of the mask pattern,w, also increases (or decreases).

Assuming that the scene is far from the camera, the mask patterns for neighboring

pixels shift by the same amount as the pixel width. If we assume that the mask features

and the sensor pixels have the same width, ∆, then the mask patterns for neighboring

pixels shift by exactly one mask element. If we fix d ≈ N ∆
2
tanθCRA, then exactly N

mask features lie within the FOV of each pixel. If the mask is designed by repeating a

pattern of N features, then the linear system that maps the light distribution in the scene

to sensor measurements can be represented as a circulant system.

2.4 FlatCam : Mathematical Model

We characterize image formation using the geometric optics model. While this ap-

proach largely ignores diffraction, the resulting model is useful for the design and anal-

ysis of well-conditioned imaging architectures. Furthermore, the calibration procedure

that we detail in subsequent sections can account for unmodeled diffraction effects.
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Figure 2.2: On left : A FlatCam prototype, On right:An illustration of a coded aperture
system with a mask placed d units away from the sensor plane [1]

For the simplicity of notation, we assume a simplified 2-D world imaged by a one-

dimensional (1-D) mask and sensor. The extension to a 3-D world imaged by a 2-D

mask and sensor is straightforward except where stated otherwise. For a suitably de-

fined scene irradiance vector X , the scene-to-sensor mapping can be described as,

Y = ΦX + E. (2.1)

where Φ is the measurement matrix, Y the image and E the measurement. This model

can be interpreted in two different ways. First, each sensor measures a weighted, linear

combination of light from multiple scene locations, and each row in Φ encodes the

weights for the respective sensor. For a scene at infinity, the weights for two different

sensor pixels simply differ by a translation of the mask pattern. As a consequence, the

matrix Φ has a Toeplitz structure. Second, every light source in the scene casts a shadow

of the mask on the sensor. Thus, the image formed on the sensor is a superposition of

shifted and scaled versions of the mask. The shift and the scaling of the mask pattern

encodes the angle and distance of the light source onto the sensor. These properties

are invaluable in the design of masks that provide near-optimal recovery under noise.

Given the image formation model, our tasks are to formulate an inversion algorithm that

recovers the scene X from the sensed image Y and design mask patterns that achieve

optimal recovery performance.

But for a megapixel scene and sensor, the Φ contains elements of order 1012. This

increases computational complexity. In FlatCam system, to reduce the complexity of

Φ, we use a separable mask pattern. If the mask pattern is separable (i.e., an outer

6



product of two 1-D patterns), then the imaging system can be rewritten as

Y = ΦLXΦT
R + E. (2.2)

where ΦL ,ΦR denote matrices that correspond to 1-D convolution along the rows and

columns of the scene, respectively, X is an N× N matrix containing the scene radiance,

Y in an M ×M matrix containing the sensor measurements, and E denotes the sensor

noise and any model mismatch. For a megapixel scene and a megapixel sensor, the

calibration matrices have only 106 elements each, as opposed to 1012 elements in Φ.

Here the calibration matrices have toeplitz structure.

2.5 Mask Pattern

Figure 2.3: MLS mask

The design of mask patterns play an important role in the reconstruction. An ideal

pattern should have well conditioned scene to sensor transfer functions, while maximis-

ing the light throughput. While designing mask for FlatCam, all these have been taken

into consideration. Also for reducing computational complexity, separable mask has

been designed. This means that it is an outer product of 2 1D vectors. In [1] , it is

shown that mask generated using MLS pattern gives better results compared to other

patterns like URA, MURA etc. The mls mask is shown in the figure 2.3.
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2.6 Image Reconstruction: Current Methods

If both ΦL and ΦR are well-conditioned, then we can estimate X by solving a simple

least-squares problem,

X̂LS = argmin
X

∥∥Y − ΦLXΦT
R

∥∥2

2
, (2.3)

which gives a closed form solution

X̂LS = Φ+
LY Φ+

R, (2.4)

where Φ+
L and Φ+

R are pseudo inverses of the calibration matrices.

If the matrices are not well conditioned or are under-determined (e.g., when we have

fewer measurements M than the desired dimensionality of the scene N), some of the

singular values are either very small or equal to zero. In these cases, where XLS suffers

from noise amplification., a regularizer term can be added to the least squares optimiza-

tion.

X̂LS = argmin
X

∥∥Y − ΦLXΦT
R

∥∥2

2
+ λR(X), (2.5)

where R(X) is the regularizer term and λ controls the trade-off between fidelity and

regularization. In case of Tikhonov regularization, where R(X) = ||X||22 a closed form

solution can be obtained,

X̂ = VL[(ΣT
LU

T
L Y URΣR)./(σLσ

T
R + λ11T )]V T

R , (2.6)

where ΦL = ULΣLV
T
L and ΦR = URΣRV

T
R .

In many cases, exploiting the sparse or low-dimensional structure of the unknown image

significantly enhances reconstruction performance. Natural images and videos exhibit

a host of geometric properties, including sparse gradients and sparse coefficients in cer-

tain transform domains. Wavelet sparse models and total variation (TV) are widely used

regularization methods for natural images. By enforcing these geometric properties, we

can suppress noise amplification as well as obtain unique solutions. A pertinent exam-

ple for image reconstruction is the sparse gradient model, which can be represented in

8



the form of the following TV minimization problem:

X̂LS = argmin
X

∥∥Y − ΦLXΦT
R

∥∥2

2
+ λ||X||TV , (2.7)

The term ||X||TV denotes the TV of the image X given by the sum of magnitudes of

the image gradients. Given the scene X as a 2-D image, i.e., X(u, v), we can define

Gu = DuX and Gv = DvX as the spatial gradients of the image along the horizontal

and vertical directions, respectively. The total variation of the image is then defined as

||X||TV =
∑
u,v

√
Gu(u, v)2 +Gv(u, v)2 (2.8)

Minimizing the TV as in equation 2.8 produces images with sparse gradients. The op-

timization problem equation 2.8 is convex and can be efficiently solved using a variety

of methods.
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CHAPTER 3

End-to-end network for FlatCam reconstruction

3.1 Issues with current reconstruction methods

Reconstruction using current methods results in blurry outputs with vignetting effects.

Also, the efficacy of these methods depends on hand crafted priors. Moreover, these

methods are very sensitive to noise and results in highly noisy images. Also , if there is

any really bright object (like a highly reflective object or a lamp) in the scene, the light

from the object can dominate the pixel intensities and result in severe reconstruction

artifacts on the dimmer objects. These methods also require calibration which is error

prone and even slight mismatch can cause huge degradations in reconstructions. Hence,

there is a need for a novel architecture that deals with all these issues.

3.2 Naive Approach

The Tikhonov solution of (2.6) is extremely fast to compute as shown in [1]. A naive

way to obtain higher quality reconstruction from FlatCam measurements would be to

obtain the Tikhonov regularized reconstruction and then use an image restoration frame-

work to refine the reconstruction. To implement this, we pass the Tikhonov regularized

reconstruction through a perceptual enhancement block (described in section 3.3.1). We

use the same loss that is defined in section 3.3.3.

But using network over Tikhonov based reconstructions does not help much as the re-

finement network would not be able to get back any details lost in the Tikhonov based

Figure 3.1: Architecture of naive approach



reconstructions. Moreover, all those issues mentioned in section 3.1 will be applicable

here also.

3.3 End-to-end network for FlatCam reconstruction

Figure 3.2: Overall architecture of the proposed system.

To address the difficulties in accurate FlatCam reconstruction, we take a data-driven

approach at recovering the true scene from the highly multiplexed measurements. Fol-

lowing the success of Generative Adversarial Nets [10], our proposed network has two

main components: a generator network that learns to output a visually meaningful re-

construction from the measurement and a discriminator network that tries to distinguish

this reconstruction from real images. Both the networks are finally trained in an adver-

sarial setup. Figure 3.2 shows the generalized block diagram for our method.

3.3.1 Generator architecture

Our generator network has two basic stages: the trainable inversion stage maps the

FlatCam measurements into a space of intermediate reconstructions, and the perceptual

enhancement stage refines this mapping into a semantically meaningful image.

12



Trainable inversion stage

In the first stage, we use two layers of trainable left and right matrix multiplications on

the two-dimensional sensor measurments followed by a non-linearity. Figure 3.2 gives a

diagrammatic overview of this stage. For the non-linearity, we use the leaky ReLU[16].

The dimension of the weight matrices depends on the dimension of the measurement

and the scene dimension we want to recover.

It is important to initialize the weight matrices of this stage properly, so that the network

does not get stuck in local minima. One way to do is to initialize our weight matrices

(W1 and W2) with the adjoint of the calibration matrices. These calibration matrices are

approximations of ΦL and ΦR in (2.2) physically obtained by the method described in

[1]. This mode of initialization leads to faster convergence while training.

Calibration-Free Approach

Calibration of FlatCam require careful alignment with display monitor [1], which can be

a time consuming and inconvenient process especially for large volumes of FlatCams.

Even a small error in calibration can lead to severe degradation in the performance of the

reconstruction algorithm. To overcome the problems involved in calibration, we also

propose a calibration-free approach by initializing the weight matrices with carefully

designed pseudo-random matrices.

Initializing with any pseudo-random of appropriate size does not yield successful

reconstruction. To carefully design the random initialization, we make the following

two observations regarding the FlatCam forward model: the calibration matrices have

a ‘toeplitz-like’ structure and the slope of constant entries in the ‘toeplitz-like’ struc-

ture can be approximately determined using the FlatCam geometry, in particular the

distance between the mask and the sensor and the pixel pitch. As the FlatCam’s geom-

etry is known apriori, we can construct the pseudo-random ‘toeplitz-like’ matrices with

appropriate slope, and size, thereby making our approach calibration free. The weight

matrices (W1 and W2) are initialized with the adjoint of such constructed random ma-

trices. We observed that the training time increased slightly for this initialization in

comparison to transpose initialization.

In our experiments, we found that the products of the learned matrices W1 and W2

13



Figure 3.3: Product of the left weight matrix from the trainable inversion stage for with
the calibration matrix (W1 × ΦL) before and after training. The top row
shows the initial product at the beginning of training while the bottom row
shows it after training the network. a) Random initialization. b) Transpose
initialization.

with the forward model calibration matrices ΦL and ΦR closely resemble an identity

matrices, implying that this stage has tried to invert the FlatCam forward model. This

is shown in figure 3.3.

Perceptual enhancement stage

Once we obtain the output of the trainable inversion stage, which is of same dimension

as that of the natural image, we use a fully convolutional network to map it into the

natural image space. Owing to its large scale success in image-to-image translation

problems and its multi-resolution structure, we choose a U-Net [23] to map the inter-

mediate reconstruction to the final perceptually enhanced image. We keep the kernel

size fixed at 3×3 while the number of filters is gradually increased from 128 to 1024 in

the encoder and then reduced back to 128 in the decoder. In the end, we map the signal

back to 3 RGB channels.

3.3.2 Discriminator architecture

The trainable inversion and the perceptual enhancement stage form the generator of our

architecture. We then use a discriminator framework to classify our generator’s output

as real or fake. We find that using a a discriminator network improves the perceptual

14



quality of our reconstruction. We use 4 layers of 2-strided convolution followed by

batch normalization and the swish activation function [21] in our discriminator.

3.3.3 Loss function

We use a weighted combination of signal distortion and perceptual losses. The losses

used for our model are given below:

Mean squared error: We use MSE to measure the distortion between the ground

truth and the estimated output. Given the ground truth image Itrue and the estimated

image Iest, this is given as:

LMSE = ‖Itrue − Iest‖2
2 . (3.1)

Perceptual loss: To measure the semantic difference between the estimated output

and the ground truth, we use the perceptual loss introduced in [11]. We use a pre-trained

VGG-16 [25] model for our perceptual loss. We extract feature maps between the

second convolution (after activation) and second max pool layers, and between the third

convolution (after activation) and the fourth max pool layers. We call these activations

φ22 and φ43, respectively. This loss is given as,

Lpercept = ‖φ22(Itrue)− φ22(Iest)‖2
2 + ‖φ43(Itrue)− φ43(Iest)‖2

2 . (3.2)

Adversarial loss: Adversarial loss [10; 14] was added to further bring the distribu-

tion of the reconstructed output close to those of the real images. Given a discriminator

D, this loss is given as,

Ladv = −log(D(Iest)). (3.3)

Total loss: Our total loss is a weighted combination of the three losses and is given

as,

L = λ1LMSE + λ2Lpercept + λ3Ladv. (3.4)

where, λ1, λ2 and λ3 are weights assigned to each loss.
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CHAPTER 4

Amplitude Mask Optimisation

Figure 4.1: Architecture for Amplitude Mask Optimisation

Optimizing the parameters of optical elements and point spread function engineer-

ing are well-known techniques in the computational optics. Optimized optical system

parameters have proven useful for extended depth of field [7], motion [22] and defocus

deblurring [30], 4D light field imaging [17], super-resolved localization microscopy[19],

and full-color imaging with diffractive optics[20]. Previously-proposed optimization

approaches of optical elements are mainly based on heuristic cost functions applied to

the PSFs, which may be a feasible approach for image deconvolution but it remains un-

clear how the PSF of a camera affects higher-level computer vision tasks such as image

classification; second, although image processing is applied to the recorded images to

remove residual aberrations or perform some inference tasks, the post-processing algo-

rithm is usually independent of the optics design and fails to provide significant insights

to guide it. In [26] , a novel perspective of joint optimization of a single diffractive or

refractive element with a deconvolution post-processing step is proposed.

4.1 Mask Design

The design of a mask for a lensless imager plays an important role in the quality of

images that the camera system can produce. An ideal mask should provide a well con-

ditioned scene-to-sensor transfer function, while providing required light throuhput. In



FlatCam, three major factors were considered for mask design.

Light Throughput: Placing an amplitude-modulating mask very close to (and com-

pletely covering) the sensor results in a light collection efficiency that is a fraction of

the fundamental light collection limit of the sensor. Having as many open features

possible, should increase the light throughput. But according to [1], it is seen that in-

creasing open features beyond 50% deteriorates the conditioning of the mask and MLS

pattern outperforms other random patterns.

As described above, while it is true that the light collection ability of our FlatCam de-

sign is one-half of the maximum achievable with a particular sensor, the main advantage

of the FlatCam design is that it allows us to use much larger sensor arrays for a given

device thickness constraint, thereby significantly increasing the light collection capabil-

ities of devices under thickness constraints.

Computational Complexity: To reduce the computational complexity, FlatCam uses

separable mask pattern. This means we consider mask pattern to be an outer product of

two 1D vectors. In [1], MLS pattern of length 511 is used for generating the mask.

Numerical Conditioning: The mask pattern should be chosen to make the multiplexing

matrices ΦL and ΦR as numerically stable as possible, which ensures a stable recovery

of the image X from the sensor measurements Y . Such ΦL and ΦR should have low

condition numbers, i.e., a flat singular value spectrum. However, because of the in-

evitable non-idealities in our implementation, such as the limited sensor CRA and the

larger than optimal sensor-mask distance due to the hot mirror, the actual ΦL and ΦR we

obtain using a separable M-sequence based mask do not achieve a perfectly flat spectral

profile.

4.2 Proposed Framework

Theoretically, MLS mask is an ideal mask. But due to the presence of sensor noise and

other non-idealities of the implementation, practically, the reconstructions from MLS

mask are not very good. They are blurry as well as have lot of vignetting effects. So, a

practically implementable and more robust mask can be implemented if we consider the

presence of sensor noise as well. This is the idea behind optimizing mask specifically

for reconstructions.

In this approach, we try to optimise the mask specifically for reconstruction purpose.
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Here we assume the separability condition so that mask obtained is computationally

efficient. This means that the mask will be an outer product of two vectors and the rank

of the mask will be one.

The proposed framework is an end-to-end differentiable pipeline architecture.

Forward Pass

In each forward pass, the PSF p of the current optical element is simulated using the

FlatCam model explained in section 2.4. PSF is nothing but the shadow cast by the

mask on the sensor. Therefore, in case of amplitude mask, the PSF is ideally the am-

plitude mask itself. The simulated PSF is then convolved with a batch of images, and

noise is added to account for sensor read noise. Then, the scene is reconstructed using

weiner deconvolution.

Weiner deconvolution is a method in which a weiner filter is applied before the decon-

volution step in order to reduce the effect of additive white gaussian noise. It works

in frequency domain, attempting to minimize the impact of deconvolved noise at fre-

quencies which have a poor signal-to-noise ratio. It attenuates frequencies dependent

on their signal-to-noise ratio. The operation of weiner deconvolution can be represented

as:

X̂ = F−1

{
p̄∗c

| p̄∗c |
2 + γ

F{Y }
}

(4.1)

where p̄c is the optical transfer function, Y the measurement and γ is the parameter.

Finally, a differentiable loss L, mean squared error with respect to the ground-truth

image, is defined on the reconstructed images.

LMSE = ‖Itrue − Iest‖2
2 . (4.2)

Backward Pass

In the backward pass, the error is backpropagated all the way back to the PSF simula-

tion,and finally, to the 1D vectors itself, whose outer product gives the amplitude mask.

Here we also try to optimise the weiner parameter γ as well.
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Mask with Rank > 1

The above mentioned architecture uses the idea of separable mask whose rank will be

always one. In order to explore whether increasing the rank of mask will improve the

reconstructions, we try to optimize mask for rank 10 as well. So, instead of assuming

mask is an outer product of 2 random vectors, we assume that mask is an outer product

of two matrices of dimension 511 × 10 and 10 × 511. This can be considered as outer

product between 10 1D vectors with ten other 1D vector, thus maintaining the rank to

be ten. We try to optimize these 20 vectors in order to get an optimised rank 10 mask.
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CHAPTER 5

Experiments and Results

5.1 Dataset

Display capture setup

Collecting a large scale dataset of lensless measurements along with their aligned ground

truth is a challenging task. To overcome this challenge, the first setup we use to capture

real images is the display capture setup. In this setup, we place a monitor in front of the

FlatCam and capture the images displayed on it. For the ground truth, we randomly se-

lected 10 images from each of the ImageNet [24] classes and created a dataset of 10000

images. Out of this, we kept 9900 images from 990 classes for training and the rest 10

classes or 100 images for testing. We call these measurements display captures.

Direct capture setup

It is important to visually evaluate the performance of our reconstruction network on

a direct real world setup. For collecting data for this setup, we place objects in front

of FlatCam and directly capture the measurement. For this setup we do not have a

corresponding ground truth. We call these measurements direct captures.

5.2 Implementation details

The FlatCam prototype used is Point Grey Flea3 camera with 1.3MP e2v EV76C560

CMOS sensor with a pixel size of 5.3 µm. All the ground truth images were resized

to 256 × 256 as the FlatCam is calibrated to produce 256 × 256 output images. This

ensures that there is no misalignment among the input and ground truth pairs.

In case of end to end reconstruction, we directly used the Bayer measurements of 4

channels (R,Gr,Gb,B) as our input to the network and convert them into 3 channel RGB



Figure 5.1: Reconstruction of display captured measurements using various approach.
Proposed-R is the calibration free approach while Proposed-T is the trans-
pose initialization.

within the network. FlatCam measurements of dimension 500 × 620 × 4 in batches

of 4 were used as inputs for training. A smaller batch size was used due to memory

constraints. We set λ1 as 1, λ2 to be 1.2 and λ3 to be 0.6. For random initialization,

we trained it for 60K iterations. The Adam [13] optimizer was used for all models.

We started with a learning rate of 0.0001 and gradually reduced it by half every 5000

iterations. We train the discriminator and the generator alternatively as is done for con-

ventional GANs [10]. We use PyTorch [18] to implement our model.

In case of amplitude mask optimisation, data were simulated using the calibration ma-

trices. We trained for around 10K iteration with a constant learning rate of 0.0001. SGD

optimizer with momentum 0.5 was used for all models.

5.3 End to end network: Experiments & Results

We present a comparison of the performance of our method with that of other tech-

niques.
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Figure 5.2: Reconstruction of direct captured measurements using various approach.

Method PSNR (in dB) SSIM Perceptual score
Tikhonov 10.95 0.33 2.25
TVAL3 11.81 0.36 3.38
Naive 18.90 0.62 5.72

Proposed-R 19.06 0.62 5.86
Proposed-T 19.62 0.64 6.48

Ground Truth - 1 8.04

Table 5.1: PSNR, SSIM and perceptual score comparison for display captured measure-
ments.

Figure 5.1 shows the comparison of our approach with the traditional and naive

approach on some of the display captured images. In all figures and tables, Proposed-R

refers to the model using random initialization and Proposed-T refers to the model using

transpose initialization as explained in section 3.3.1. Inset images in figure 5.1 show the

preservation of finer details in our approach. Figure 5.2 shows the comparison of our

approach for direct captured measurements. Table 5.1 shows the quantitative evaluation

of our approach. We use PSNR, SSIM and the no-reference image quality metric of Ma

[15] for signal distortion and perception evaluation.

5.3.1 Resolving Dynamic Range Issues

For a highly multiplexed lensless imager like FlatCam, every pixel receives light from

every point in the scene. Hence, if there is any really bright object (like a highly re-

flective object or a lamp) in the scene, the light from the object can dominate the pixel
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intensities and result in severe reconstruction artifacts on the dimmer objects. Figure

5.3 show that, using our proposed reconstruction algorithm, the artifacts are minimized

resulting in a higher quality reconstruction of the scene.

5.3.2 Ablation Studies

Here, we try a super-resolution network (RCAN) and a denoising network (DnCNN) in

place of U-Net in the perceptual enhancement layer.

RCAN[29]: Residual Channel Attention Network is the state of the art for super-

resolution. We use the model with 5 residual groups and 10 residual blocks.

DnCNN[28]: Denosing convolutional neural network is a popular widely used de-

noising network. Different from the existing discriminative denoising models which

usually train a specific model for additive white Gaussian noise (AWGN) at a certain

noise level, our DnCNN model is able to handle Gaussian denoising with unknown

noise level (i.e., blind Gaussian denoising). In this work, we used a 19-layered model

of the popular denoiser network DnCNN for comparison. The result comparisons are

given in figure 5.4.

Figure 5.3: Dynamic range issues. Arrows indicate the position of LED.
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Figure 5.4: Comparison with RCAN and DnCNN in perceptual enhancement layer

5.4 Amplitude Mask Optimization

Figure 5.5: Comparison of various masks along with their reconstructions

Here we present a comparison with mask 02 and MLS mask. In all cases, we assume

the distance between sensor and mask to be negligible. Our FlatCam prototype consists

of a Point Grey Flea3 camera with 1.3 MP e2v EV76C560 CMOS sensor with a pixel
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size of 5.3 µm and each element in mask is assumed to be 20 µm wide. We use SGD

optimizer with momentum 0.5 for this model.

5.4.1 Mask 02

We generated this mask according to the specifications given in [5]. We used the fol-

lowing 31-element pattern: 1110001011100100001111111111111, where 1 and 0 cor-

respond to transparent and opaque mask features, respectively. We generated a 2-D

separable mask by computing the outer product of the 31-element pattern with itself

and appending additional zeros at the boundaries.

5.4.2 MLS Mask

We created the MLS mask using a 511- element M-sequence that consists of±1 entries.

We computed the outer product to the pattern with itself and replaced every 1 entry with

a 0 to obtain the mask.

5.4.3 Optimised Mask

Here, we use vectors of length 511 to initialise the mask. For rank 1 mask, we use two

vectors of length while for rank 10 mask, we use two matrices of dimension 511 × 10

and 10 × 511. Since each mask element corresponds to four pixels in the sensor, we

upscale the mask accordingly and then crop the required region which is used as the

final mask, which is of size 500× 620.

5.4.4 Comparison with existing masks

From the figure 5.5, it is clear that the optimised masks are more robust to noise as

compared to the MLS mask and the 02 mask. When reconstructed using the weiner

deconvolution with same parameters, it is seen that reconstructions are much better in

the case of trained masks. Rank 1 mask performs better as compared to the rank 10

mask for the same number of iterations, since the latter has more number of parameters

as compared to that of the former.
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Method PSNR (in dB) Light Throughput
MLS Mask 18.68 0.501

Rank 1 22.40 0.508
Rank 10 21.20 0.507

Table 5.2: PSNR and Light Throughput comparison.

We also compared the light throughput of the mask as well as PSNR of the recon-

structed images. Here, we can see that PSNR for the Rank 1 mask is almost 4 dB

greater than that of MLS mask. Rank 10 mask gives the second best PNSR as well as

light throughput as shown in the table 5.2.
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CHAPTER 6

Conclusion and Future Works

The lensless imaging approach promises to challenge the traditional barriers of size,

weight, cost, and performance in a broad range of applications spanning consumer,

medical, scientific imaging, machine vision, and remote sensing. But standard opti-

mization based methods currently used for reconstruction yield outputs that suffer from

low resolution, low dynamic range and high noise sensitivity. In this work, two differ-

ent approaches to improve the reconstructions are implemented. Using both mask op-

timization and end to end reconstruction approach, it is shown that the reconstructions

can improved drastically from existing methods and the images can be made photo-

realistic. Further research can be done in getting image reconstructions with mega-pixel

resolution using efficient computational algorithms and intelligent mask design. Also,

similar approaches can be implemented for phase mask based FlatCam as well. With

these emerging applications, the future of lensless imaging indeed looks bright.
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