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ABSTRACT

Automatic Speech Recognition(ASR) has become a useful tool in speech interfaces

that governs several man-machine interfaces. The demand for accurate, real-time ASR

systems always push the researchers to find an efficient way to implement the ASR.

The most critical part of an ASR system is acoustic scoring. Over the years several

methods have been used for acoustic scoring. This project uses the Gaussian Mixture

Model(GMM) based acoustic scoring which calculates the score based on multidimen-

sional Gaussian distributions.

This project aims at implementing a hardware accelerator for the GMM based acous-

tic scoring component of an ASR system. The implementation targets at methods to

speed up the GMM function so as to produce real-time speech recognition. The pro-

posed accelerator is implemented and tested on ZedBoard and ZCU102 boards. The

main challenge for GMM hardware implementation is the bulk data transfer from the

external memory to the hardware function. To analyze the efficient way to transfer the

data, a memory bandwidth test for the target FPGA boards is also done. Apart from op-

timizing the hardware function, this project also describes the efficient way of caching

the score which eventually reduces the total GMM evaluation time for a particular audio

wave.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Automatic Speech Recognition(ASR) is being widely used in speech interfaces that

are now used for a variety of human-machine interactions. Voice-based user interfaces

require more accurate, large vocabulary, real-time ASR.ASR is a compute-intensive

process and therefore supporting large vocabulary with appreciable accuracy comes at

a high computational cost. The challenge also involves meeting the energy constraints

in platforms such as smart-phones, tablets or wearable devices.

Cloud-based (software) implementations of speech recognition which are put into

applications in Internet-connected devices ensures real-time decoding with high accu-

racy. But the reliability of such devices to the Internet availability restricts its use in

local applications. So hardware speech recognition becomes useful when the Internet

connection is slow or for local operations that do not require Internet capabilities. Also,

the devices with limited battery capacity which cannot afford the overhead of using

cloud-based decoder can make use of hardware speech recognition.

The major compute intense part of any ASR system is the acoustic scoring. In

this project, we use Kaldi toolkit for decoding. In the proposed ASR system, the in-

put audio signal coming out from an ADC is split into frames. For each frame of

speech, the acoustic scoring computes the logarithm of likelihood, referred to as ’acous-

tic_cost’, that the frame is part of a particular phoneme, for all potential phonemes in

the language. The version of Kaldi decoder used in this project uses Gaussian Mixture

Models(GMM) for acoustic scoring. Considering both memory footprint and accuracy,

GMM based acoustic scoring is best suited for ultra-low power, low-cost devices.



1.2 Motivation

Real-time ASR decoding is computationally demanding. The computational re-

quirements often increase as researchers identify improved modeling techniques. Hard-

ware acceleration is an efficient approach to achieve high performance, high speed, and

low power ASR. Hardware accelerators are optimized functional blocks designed to of-

fload specific tasks from general purpose CPUs.Due to their optimized and dedicated

architecture these blocks can perform faster than analogous software running in CPU.

Field Programmable Gate Arrays(FPGA) are very suitable to host hardware acceler-

ators since they can perform highly optimized functions at the gate level. On Integrating

the processor and FPGA systems, the processor can be offloaded by accelerating prac-

tically anything in FPGA logic-from calculating a cyclic-redundancy-check (CRC) to

offloading the entire TCP/IP stack. When the FPGA-based accelerator produces a new

result, the data needs to be passed back to the processor as quickly as possible, so

that the processor can update the data. Transferring the data quickly and coherently is

the key to realizing this performance boost. The integration of an ARM processor and

FPGA logic with high speed, on-chip interconnect buses for performance, along with an

Accelerator Coherency Port for coherency, makes this possible in the SoC FPGA-based

systems of today.

1.3 Objective and Scope

In the proposed system, ASR transcribes an audio stream into a sequence of words.

The input audio signal, fed to the system, coming out of ADC is a 16 KHz, 16-bit

signal. The signal is split into a set of frames. Each frame is typical of 25ms (400

samples) duration and has a frameshift of 10ms. This the undergo a sequence of signal

processing and finally gives out a 40-dimensional vector called the ’feature’ vector. The

whole process of taking the input from ADC to giving out the feature vector constitutes

the front end part of ASR. The Back end of ASR is usually expressed as a Hidden

Markov model (HMM) inference problem, where the hidden variables are states within

a Markov process modeling speech production, and the observed variables are acoustic

features. Decoding an utterance is equivalent to maximum a posteriori (MAP) inference
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over the HMM, for which we use the Viterbi algorithm. Statistical models are used

to evaluate the transition probabilities between states and the observation likelihoods

over features. Over the years, people have developed and refined the ability to train

the necessary models from large corpora of transcribed audio files. This training task

can be performed offline using a computer cluster. The objective of this project is to

accelerate the decoding task to make the system run in real-time.

The project exclusively aims at speeding up the evaluation of acoustic score for

reducing the decoding time. In the thesis forward, the task of computing acoustic score

is referred to as ’GMM Log Likelihood’ computation to match with the function name

used in the working code. As a baseline, the current working code with minimum word

error rate indicates that GMM based acoustic score computation consumes around 65

percent of the total time taken for decoding the entire wave file. Apart from being

the most compute intensive part in the decoding process, the main challenge in putting

the GMM log likelihood module into hardware is the associated data transfer. The

model file used for GMM log likelihood computation contains the values of a number

of mixtures, inverse variance, mean inverse variance, etc. associated with a particular

probability distribution which is pre-computed and stored. With the current model file

used, each function call to the GMM module requires a transfer of around 2 Kilo-Bytes

of data. So the primary focus of the project is to bring up techniques to speed up the

data flow between the processor and FPGA’s programmable region.

The FPGA used for implementing the hardware function belongs to Zynq-7000

family which is based on Xilinx SoC architecture. These products integrate a feature-

rich dual-core or single-core ARM® Cortex™-A9 based processing system (PS) and

28 nm Xilinx programmable logic (PL) in a single device. A major part of the project

uses SDSoC™ Development environment for compiling the application code written

in C language into fully functional Zynq-SoC. SDSoC™ makes it easier to implement

the hardware as it combines the functions of Xilinx Vivado HLS, Vivado IP integrator,

and SDK into its environment. Vivado HLS does the generates the RTL file for the

code written in C/C++/openCV and does the synthesis. It also creates the IP for the

block which is synthesized. Vivado IP integrator part integrates the IP thus created with

the processor which in this project is a zynq processor. Xilinx SDK links the software

part of the system running on the processor with hardware part implemented in the

Programmable Logic(PL) region of the FPGA. So the SDK code regulates the data

3



transfer between Processing System(PS) and PL. By combining these three process

into a single environment SDSoC™ provides an easy way to implement systems in

hardware and this project makes good use of the same.

1.4 Organization of the thesis

The remaining chapters in this thesis are organized as follows:

Chapter 2 gives an insight into the concept and working of an ASR system from

front-end feature extraction to back-end decoding. The details about various models

used for speech recognition are also discussed briefly. The chapter also introduces the

primary equation governing the GMM based acoustic scoring.

The specifications of the target FPGA is given in chapter 3. This chapter also gives

details about the software development environment and the optimization methods that

are used for constructing the GMM code. The performance results of the memory

bandwidth test conducted to analyze the data transfer rate from external memory to

hardware function are also mentioned in this chapter.

Chapter 4 includes the actual implementation methods of the GMM function. The

chapter initially describes the architecture for the hardware function. This chapter also

explains the optimization used in the code and the improvement in latency correspond-

ing to each optimization.

Chapter 6 discuss the implementation of the hardware function using HLS and SDK

with different interfaces. This chapter also compares the efficiency of hardware imple-

mentation between SDSoC and HLS-SDK.

Chapter 6 concludes the thesis by suggesting future improvements that can be added

to this system.
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CHAPTER 2

ASR BACKGROUND

2.1 Introduction

This chapter discusses the ASR system in detail and the relevant functions used in

the C code for implementing the same. As mentioned in the previous chapter, ASR

system has 3 main sections: (1) front end feature extraction, (2) Acoustic scoring, (3)

Decoding based on Viterbi search. Figure 1.1 shows the conceptual illustration of an

ASR system. The code for ASR is a simplified version of the open source Kaldi speech

recognition tool kit. Kaldi provides an ASR system based on finite-state transducers

(using the open source OpenFst), together with detailed documentation and scripts for

building complete speech recognition systems. Kaldi is written in C++, and the core

library supports modeling of arbitrary phonetic-context sizes, acoustic modeling with

standard Gaussian mixture models as well as standard subspace Gaussian mixture mod-

els (SGMM).

Figure 2.1: Conceptual Illustration of Speech Recognizer



2.2 Probability theory of ASR

The primary goal of an ASR system is to hypothesize the most likely discrete sym-

bol sequence, out of all valid sequences in the language model(L) used, from the given

acoustic input (F). As stated above, the input is treated as a set of discrete observations,

such that:

F = f1, f2, f3, ..., ft (2.1)

where ft corresponds to feature vector representing a particular frame.

Similarly, the symbol sequence to be recognized is defined as:

W = w1, w2, w3, ..., wn (2.2)

The fundamental ASR system goal can then be expressed as:

Ŵ = argmaxP (W |F ) for W ∈ L (2.3)

This equation implies that for a given sequence W and acoustic input sequence F,the

probability P(W|F) needs to be determined.

Using Bayes’ theorem

P (W |F ) = P (F |W )P (W )/P (F ) (2.4)

P(W) is defined as the prior probability for the sequence itself which is calculated based

on the occurrence of a word sequence. So P(W) is determined by the Language model.

Since the P(F) is the same for each sentence W, P(F) = 1

Thus equation 2.3 can be simplified as

Ŵ = argmaxP (F |W )P (W ) (2.5)

The probability P(F|W) is the acoustic score.

6



2.3 Front-end feature extraction

The goal of the feature extraction step is to compute a sequence of feature vectors

to clearly represent the given input signal. The 16 KHz audio signal coming from the

ADC undergoes a series of signal processing steps to finally give out a 40-dimensional

feature vector. The feature thus created should allow an automatic system to discrimi-

nate between different through similar sounding speech sounds, they should allow for

the automatic creation of acoustic models for these sounds without the need for an ex-

cessive amount of training data, and they should exhibit statistics which are largely

invariant across speakers and speaking environment. There are many feature represen-

tations in use, but the most common is the Mel -frequency cepstral coefficient (MFCC)

feature set. The MFCC feature extraction process has many steps which are elaborated

below.

As mentioned previously, the first stage of front end feature extraction part is fram-

ing. The signal is split into frames of 25 ms duration. This constitutes 400 samples of

the input. The next framing starts after 10 ms i.e, after 160 samples which is referred to

as the frameshift. A pre-emphasis stage can be added prior to framing so as to amplify

energy in the high frequencies of the input signal and thereby allowing information in

these regions to be more recognizable. The windowing stage splits the input signal into

discrete time segments. A suitable windowing function is used to prevent edge effects.

After windowing, DFT is applied to the windowed signal. Suitable FFT algorithm is

used to speed up the feature extraction as well as using minimum hardware resource in

order to save it for the highly resource demanding back-end.

Even though the resulting spectrum of the DFT contains information in each fre-

quency, human hearing is less sensitive at frequencies above 1000 Hz. This has an

impact on the accuracy and efficiency of the ASR system. Therefore, the spectrum is

warped using a logarithmic Mel scale by passing the output of FFT block through the

Mel Filter Bank(MFP). MFP is a bank of triangular filters constructed with filters dis-

tributed equally below 1000 Hz and spaced logarithmically above 1000 Hz. The output

of filtering the DFT signal by each Mel filter is known as the Mel spectrum. A Mel

frequency can be computed using equation 2.6. Taking the logarithm of this provides

Mel spectrum coefficients. The final step in obtaining MFCC is performing a discrete

cosine transform(DCT) on the Mel spectrum co-coefficients. The output of DCT is

7



Mel-cepstral coefficients of 13th order.

mel(f) = 1125ln(1 +
f

700
) (2.6)

Figure 2.2: Block diagram of front-end

The three stages following the DCT is used to improve the feature vector so as to

increase the efficiency of ASR. The Mel-cepstral coefficients are passed on to Compute

Mean and Variance Normalisation(CMVN) stage. In this stage, the mean and variance

of the cepstral coefficients are calculated and the feature vector is updated based on

equation 2.7

feat_out[i] = (feat_in[i]−mean[i])/sqrt(var[i]) (2.7)

To derive more general features for speech recognition linear discriminant analysis

(LDA) is used. With LDA, using a hidden Markov model (HMM) states as classes have

been shown to give improved recognition performance LDA combines features in sev-

eral time frames into one reasonable size feature vector. Prior to LDA, the coefficients

coming out of CMVN block are pushed to the splicing stage. Splicing stage combines

the feature coefficients of 9 frames and gives out a 117-dimensional vector. The final

stage does an appropriate matrix multiplication to compress this 117-dimensional vec-

tor into a 40-dimensional vector. Acoustic score computation takes this feature vector

as one of its inputs along with the corresponding mixture parameters.

8



2.4 HMM-GMM scoring

Acoustic scoring is one among the two main sections in ASR back-end. In the pro-

posed ASR system, Hidden Markov Model(HMM) framework is used to construct the

decoding graph. The HMM framework requires modeling the dependencies between

variables, specifically the transition model and emission model. The transition model

incorporates information about the language, including its vocabulary and grammatical

constraints. The emission model describes how observations vary depending on the

unobserved state. In speech recognition, this is called the acoustic model. The observa-

tions in the acoustic model is the feature vector. An illustration of the HMM framework

is shown in figure 2.3. The transition model is represented as p(xt+1|xt) as it indicate the

probability of reaching a state from a particular previous state. The acoustic model is

represented as p(ft|xt) and it indicates the probability of feature vector being emitted by

a particular state.

Figure 2.3: Illustration of HMM framework for ASR system

2.4.1 Transition model:WFST

In this system, Weighted Finite-State Transducers(WFST) are used to represent the

transition from one state to another in the HMM framework. Similar to the Finite State

Machine(FSM), WFST shows the path to the next state from a current state. The path

from one state to another is called an arc. WFST arc contains information of input label,

weights, and output label. Input label is the transition id from one state to another,

weights indicate the cost associated with the arc and output label gives the phoneme

given by the transition path.

9



The transition model used in the proposed ASR system is a composition of 4 WFSTs

collectively known as H C L G FST.

• H FST contains the HMM information about the transition ids and its mapping to

context-dependent phones given by the output label of the FST arcs.

• C FST represent the context dependency. It contains information about mapping

context dependent phones to mono-phones.

• L FST is also called Lexical FST. This maps the phones to words.

• G FST is the grammar FST. This contains information related to the grammatical

correction of words.

WFST model used in our system is a speaker independent model and it has 237925

states and 580605 arcs together giving out a vocabulary of around 7000 words. The

WFST model is stored in the external memory and can be replaced with a much efficient

model in the future.

2.4.2 Emission model: GMM

This section gives the theoretical basis for the function whose hardware implemen-

tation is being focused in the project. As mentioned earlier, the acoustic likelihood gives

the likelihood of a feature being emitted by a state given the hypothesis for the state.

The acoustic likelihood in this system is calculated based GMM. GMMs used in ASR

are typically limited to diagonal covariance matrices to diagonal covariance matrices

to reduce the number of parameters. Diagonal GMMs can be efficiently evaluated in

the log domain, using a dot product for each component followed by a log-sum across

components.

p(ft|xt) =
N∑

m=1

Wm

(det(Σm))0.5(2π)D/2
× exp(−

1

2
(ft − µm)Σ

−1

m (ft − µm)
T ) (2.8)

Where N indicate the number of mixture components corresponding to a particular

probability density function(PDF) and D indicate the dimension of input feature vector

which here is 40. Σm is the diagonal co-variance matrix.

The equation 2.8 can be rearranged as:

p(ft|xt) =
N∑

m=1

Amexp(
D∑

d=1

−
1

2

(ft,d − µm,d)
2

σ2

c,k

) (2.9)
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where Am =
Wm

(det(Σm))0.5(2π)D/2
(2.10)

This can be further simplified as:

p(ft|xt) =
N∑

m=1

exp(gm

D∑

d=1

−
1

2

(ft,d − µm,d)
2

σ2

m,k

) (2.11)

where gm = Log(Am) is called gconst value of a particular mixture

To compress the parameters to be stored, we take the log of the acoustic likelihood. So

the final equation of the function which is targeted on hardware becomes:

Log(p(ft|xt)) =
N∑

m=1

gm +
D∑

d=1

[
(ft,d × µm,d)

σ2

m,k

−
f 2

t,d

2σ2

m,k

] (2.12)

The parameters gconst , weights (Wm) , inverse variance ( 1

σ2

m,k

) and mean inverse

variance(
µm,d

σ2

m,k

) corresponding to a particular mixture in a PDF is pre-computed and

stored in external memory. The GMM log likelihood function when called requires

the transfer these associated data from external memory to the PL and this makes the

GMM module most compute intensive as the function is called thousands of times for

a particular frame.

Generally, if we have ’X’ PDF distributions, an average of ’Y’ mixture components

per distribution, and feature vectors with dimension D, the total number of GMM pa-

rameters will be:

XY (1 + 2D) (2.13)

In the acoustic model used for this project, X = 1532, Y = 6,and D = 40. With single-

precision floating point values, the model has a size of 8.8 MB. Applying various test

wave files, it is found that, there are around 2000 GMM function calls on an average

per frame which requires a transfer of around 4 MB (as per equation 2.13) of data from

external memory to PL. Since the frameshift is 10 ms, the rate of GMM evaluation is

100 frames per second. This constitutes a memory bandwidth of 400 MB/s. Suitable

FPGA with proper optimization technique is used to speed up the data transfer.
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2.5 Viterbi Decoding

The decoding used in ASR is based on the Viterbi algorithm. The search has both

forward pass and backward pass. In the forward pass, we construct the possible states

depending on previous states and the acoustic model. The backward pass does the

traversing from the final state to the initial state through the most likely path and gives

out the words uttered in the particular speech. The search begins with an empty hypoth-

esis and uses the information of the from the feature vector and HMM framework to

develop a set of active hypothesis. The hypothesis is represented by the states in HMM

and contains information about the input label, output label, cost associated with the

hypothesis and the previous state. When a new hypothesis with sufficiently high likeli-

hood is found, it will be saved. As shown in figure 2.4, the forward pass has four stages:

(1),Hypothesis fetch, (2),Arc fetch, (3),GMM log likelihood evaluation, (4),Pruning.

Figure 2.4: Forward pass of Viterbi decoding

The first stage of decoding search is the hypothesis fetch. To start with the decoding

for a particular frame, the data that we have as input is the set of active hypothesis

stored after the decoding of the previous frame and the feature vector corresponding

to the current frame. The hypothesis is represented by the state id. So we fetch the

states one by one. For each state fetched, we fetch the arcs going out of the particular

state from the WFST model. This makes the second stage. For each arc, we retrieve

all the parameters which include input label, weights and output label and pass it to the

GMM log likelihood stage for the computation of the final acoustic score of the new

hypothesis.

The first three stages produce a large number of hypothesis out of which most of

them are very unlikely. Storing all the hypothesis would require much higher memory

and also increases the energy cost. In order to limit the number of hypotheses, we add

a final pruning stage to the decoding process. In the pruning stage a suitable beam of
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the score for the hypothesis is set and those hypotheses with score beyond the beam are

neglected. The remaining hypotheses are pushed into active hypothesis list which will

be fetched in the search for the next frame.

The backward pass is the trace-back function. From the most likely hypothesis after

the decoding, the trace-back function traverses through the respective parent hypothesis

until it reaches the initial hypothesis. During trace-back, the output label of arcs in the

most likely path gets stored. The sequence of output labels is then mapped to get the

appropriate words based on the model file and vocabulary. In our system, initially, the

trace-back function was run when the last frame was decoded. But in the later stage

of the project trace-back was done after a set of frames gets decoded and not waiting

for the entire decoding to complete. This was done to limit the storage and to give out

words in pace with the decoding process.

2.6 Decoding code structure

As mentioned in the previous section, the decoding process constructs a set of active

hypothesis. In the software implementation of the same, we use a structure to represent

each hypothesis and its referred as Token.

1 s t r u c t Token {

2 i n t s t a t e _ ;

3 f l o a t c o s t _ ;

4 i n t o l a b e l _ ;

5 Token * prev_ ;

6 } ;

The Decoder function used in the code is shown below:

1 i n t Decoder_Decode ( Decoder * Dec , f l o a t * f e a t u r e s )

2 {

3 Token_ClearToks ( p r e v _ t o k s ) ;

4 ( c u r _ t o k s ) . swap ( p r e v _ t o k s ) ;

5 D e c o d e r _ P r o c e s s E m i t t i n g ( Dec , f e a t u r e s ) ;

6 D e c o d e r _ P r o c e s s N o n e m i t t i n g ( Dec ) ;

7 Decoder_Prune ( Dec , c u r _ t o k s ) ;

8 r e t u r n ( c u r _ t o k s ) . s i z e ( ) ;

9 }
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In the code, cur_toks and prev_toks are used to store the list of pointers to To-

kens. prev_toks has the address of Tokens available after decoding the previous frame.

cur_toks store the address of Tokens which are newly generated. In the initial stage of

the project, both cur_toks, and prev_toks were implemented as C++ Map data structure.

Later on, these were changed to arrays for hardware implementation. The size of these

maps is limited to 10000 for reducing the memory footprint.

Decoder_ProcessEmitting(), Decoder_ProcessNonemitting() and Decoder_Prune()

are the 3 main sub-functions of decoder function. In this Decoder_ProcessEmitting()

handles the first three stages of the forward pass. It fetches Tokens from prev_toks,

gets the arc related to each Token, calls GMM log-likelihood function to compute the

acoustic score for all the arcs whose input label is non zero and push new Token into

cur_toks. Decoder_ProcessNonemitting() is similar to Decoder_ProcessEmitting() but

it fetches Token from cur_toks and it evaluates only arcs with input label zero. This

function is used to merge the states whose transition between them does not give out a

phoneme. Since Decoder_ProcessNonemitting() does not intend to give out phonemes,

it does not call the GMM log-likelihood function.

Decoder_Prune() handles the pruning stage in the Viterbi search flow. The Tokens

in cur_toks after Decoder_ProcessNonemitting() is searched and those Tokens which

are above a certain cutoff is eliminated. The cutoff is set based on the minimum cost

of all Tokens in the list plus a beam width. Beam width is adjusted based on accuracy

and memory requirement. In this project, the beam width is set to 12. The final filtered

Tokens are then stored back to cur_toks. This is then swapped to the prev_toks list for

the next decoding.
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CHAPTER 3

HARDWARE AND MEMORY BANDWIDTH

3.1 Introduction

From the theory of ASR given in the previous chapter, it is clear that the GMM log-

likelihood function is a compute-intensive function as it evaluates the acoustic score

based on equation 2.12. So to put this function in hardware turns out to be the ob-

vious option for speeding up the decoding process. This chapter discusses about the

hardware being used to implement the GMM log-likelihood function. There are several

optimization techniques that help to speed up the computation and data transfer. Both

SDSoC™and HLS has its own pragmas which bring out those optimizations. This

chapter discusses those optimization techniques which are used specifically for this

project. Apart from being compute-intensive, the major challenge in putting the GMM

log-likelihood function in hardware is the associated data transfer. To get an estimate of

the memory bandwidth required to successfully implement GMM function, a memory

bandwidth test is conducted on the target hardware. The performance result of this test

is analyzed and used as a reference for the actual function.

3.2 FPGA specifications

The target FPGA used for implementing the GMM function is ZebBoard™. Zeb-

Board™is a complete development kit whose architecture is based on Xilinx Zynq®-

7000 all programmable SoC. The board contains all the necessary interfaces and sup-

porting functions to enable a wide range of applications.Basic features of ZebBoard™

are shown in table 3.1.

The bigger goal of doing this project is to put the entire ASR decoding into hard-

ware. This will require more resources than that is available in ZedBoard. So GMM

function is also tested on ZCU102 board. ZCU102 architecture is based on Zynq Ul-

traScale+ XCZU9EG-2FFVB1156E MPSoC. ZCU102 has PS clock frequency of 1200



MHz for first grade systems. The PL section features of ZCU102 as shown in table 3.2.

Section Features Description /count

Part number XC7Z020-CLG484-1

Processor core Dual-core ARM Cortex-A9

Processing system Clock Frequency 667 MHz

On-chip memory 256 KB

512 MB DDR3

External memory 256 Mb Quad-SPI Flash

External SD card support

Clock 100 MHz oscillator

Flip-flops 106400

Programmable Logic LUTs 53200

BRAMs 140 (36 Kb blocks)

DSP slices 220

Table 3.1: Basic features of ZedBoard

Features Description /count

clock Oscillator frequency min=100 MHz max=600 MHz

Flip-flops 548160

LUTs 274080

BRAMs 912 (36 Kb blocks)

DSP slices 2520

Table 3.2: PL section features of ZCU102

Figure 3.1: (a)Zed Board and (b) ZCU102
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3.3 Optimizations in SDSoC and Vivado HLS

As mentioned in the Introduction chapter, the code for implementing in hardware

is written in C++ and SDSoC does the high-level synthesis to get the RTL code for

the hardware. Optimizations in hardware are generally made with proper construc-

tion of RTL code. Since we use HLS, the method to make necessary changes in RTL

for hardware optimization is by specifying Pragmas. Vivado HLS specifies a set of

#pragma directives that are used within the hardware function. Since we use SD-

SoC™ environment to compile and build the code, some of the HLS pragmas cannot

be compiled. These include pragmas associated with function argument interfaces. To

substitute those pragmas SDSoC has its own pragams which does the corresponding

optimization. All the HLS and SDx(referring SDSoC) pragmas and their use are under-

stood based on the reference papers (4), (5), (6), (7). Some of the pragmas which are

relevant to this project will be detailed in the next section of this chapter as well as in

the next chapter. The General approach to optimize and accelerate a hardware function

is :

• Use HLS pragmas within the hardware function to accelerate the execution.

• Use SDx pragmas to accelerate the data transfer between PS and PL.

3.4 Estimation Methodology

For a function accelerated in hardware, SDSoC allows estimation of 2 major pa-

rameters: Latency and Resource Allocation.The Estimate Performance option on

the project home page can be used to estimate the resource allocated as well as la-

tency for the execution within the hardware function. The reports generated shows the

percentage utilization of resources and latency of computational loops in the hardware

function. In certain cases, where the number of times a computational loop gets exe-

cuted in hardware is determined during run time, SDSoC cannot estimate latency and

EstimatePerformance fails to generate reports. In such cases, we can use the option

to launch the successfully built project into Vivado HLS where it shows the perfor-

mance estimation reports. Even in this case, the latency is not estimated if the loop

count is not determined during compile time but an approximate estimation of latency
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can be done using pragma HLS LOOP_TRIPCOUNT where it allows to specify

minimum, maximum and average number of times the particular computational loop is

executed.

The latency estimation reports does not show the time taken for the transfer of data

from PS to PL and vice versa. One way to estimate the data transfer time is to analyze

the data motion reports generated while building the project. Data motion reports gives

information about the interfaces associated with each function argument and the number

of Arm CPU cycles taken for the data transfer. But a more accurate way to measure the

execution time of functions is to use special SDSoC API calls that measure activity

based on the free running clock of the Arm processor. These functions can be used to

log the start and end times of a function. In this project we make use of a class defined

in sds_lib.h and having those API functions to estimate the latency. The code segment

for the same is shown below:

1 c l a s s p e r f _ c o u n t e r

2 {

3 p u b l i c :

4 u i n t 6 4 _ t t o t , cn t , c a l l s ;

5 p e r f _ c o u n t e r ( ) : t o t ( 0 ) , c n t ( 0 ) , c a l l s ( 0 ) { } ;

6 i n l i n e vo id r e s e t ( ) { t o t = c n t = c a l l s = 0 ; }

7 i n l i n e vo id s t a r t ( ) { c n t = s d s _ c l o c k _ c o u n t e r ( ) ; c a l l s ++; } ;

8 i n l i n e vo id s t o p ( ) { t o t += ( s d s _ c l o c k _ c o u n t e r ( ) − c n t ) ; } ;

9 i n l i n e u i n t 6 4 _ t a v g _ c p u _ c y c l e s ( ) { r e t u r n ( ( t o t +( c a l l s > >1) ) / c a l l s ) ; } ;

10 } ;

The function whose latency is to be estimated is placed between the start() and stop()

function calls and the sds_clock_counter() counts the number of CPU clock cycles. The

function avg_cpu_cycles() taken by the function in each call.

3.5 Memory Bandwidth test

Theoretically estimating that the data transfer in GMM log-likelihood function will

be the major bottle-neck compared to computation, a sample hardware function is built

on hardware to test the latency. The results and analysis from this section used for

optimizing the GMM log-likelihood function. Detailing about to the data movement
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and the relevant pragmas used are also discussed in this section.

A set of test wave files were used for testing the entire ASR code. In order to reduce

the decoding time, a 5-second waveform named 5 − secwave was used for testing the

GMM log-likelihood function in an isolated code. Before the final optimizations in the

actual implementation of GMM log-likelihood function, the number of function calls

to GMM function was estimated to be around 1 million for decoding 5− secwave. So

a test code reading the equivalent amount of data from PS and being called 1 million

times is implemented for memory bandwidth test. The initial test code is shown below:

1 # pragma SDS d a t a ze ro_copy ( a r 1 [ 0 : 5 0 0 ] )

2 # pragma SDS d a t a m e m _ a t t r i b u t e ( a r 1 : PHYSICAL_CONTIGUOUS)

3 vo id func_hw ( f l o a t a r 1 [ 5 0 0 ] , f l o a t * l e 1 ) {

4 f l o a t r e a d _ a r r a y 1 [ 5 0 0 ] ;

5 f o r ( i n t i =0 ; i <500; i = i ++) {

6 # pragma HLS PIPELINE

7 r e a d _ a r r a y 1 [ i ]= a r 1 [ i ] ;

8 }

9 * l e 1 = r e a d _ a r r a y 1 [ 4 9 9 ] ;

10 }

The function func_hw reads 500 words(32 bit data) from PS. The data size is fixed

in accordance with the actual GMM function data transfer. The latency estimation

results of a single call to func_hw are shown below:

Code Description CPU cycles HW cycles in ZedBoard

Function Overhead 11000 1650

Without pipelining the loop 17000 2550

Pipelining the loop 14500 2175

Table 3.3: Performance estimate for single function call of func_hw

Hardware cycles corresponding to the CPU cycles is computed by multiplying the

ratio of (PL clock frequency)/(PS clock frequency) to the CPU cycles. For ZedBoard

with PL frequency 100 MHz, the multiplicating factor is 0.15

To estimate the number of cycles taken for 32-bit transfer, the function overhead

should be subtracted from the actual number of cycles shown. The code above has
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implemented case 3 of table 3.3. The data transfer cycle estimate is as follows:

500× 4 Byte −→ (2175− 1650) cycles

4 Byte −→ 1.05 cycles

Therefore with the optimizations used in the code almost 1 word per cycle transaction

occurs from PS to PL. This is derived neglecting function overhead.

3.5.1 Function Overhead

When a C++ program executes the function call instruction, the CPU stores the

memory address of the instruction following the function call and it copies the argu-

ments of the function on the stack and finally transfers control to the specified function.

The CPU then executes the function code, stores the function return value in a pre-

defined memory location/register and returns control to the calling function. This can

become overhead if the execution time of the function is less than the switching time

from the caller function to called function. In SDSoC, if the main function is calling a

hardware function, this function overhead is observed to be more profound as it deals

with both PL and PS addresses. A function overhead estimation test was done to esti-

mate the time consumed for function overhead while calling a hardware function. The

results of the same are shown in table 3.4. It is also observed that the function overhead

Number of function calls Average CPU cycles

1 10000

100 3000

500 1000

Table 3.4: Overhead for calling function with 1 scalar argument

for the same number of function calls increase if the number of arguments increase.

Also for large number of function calls having single scalar argument, the function call

overhead is observed to saturate at around 1000 CPU cycles. Function call overhead

is also based on internal caching and related cache flushing. So to accurately estimate

overhead is challenging.
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3.5.2 Data zero_copy and Pipelining

Referring to the optimizations mentioned in section 3.3, 2 optimization methods are

implemented in the test code for memory bandwidth. SDS Data zero_copy pragma for

data transfer and HLS pipeline pragma for the loop inside the hardware function. By

default, SDSoC assigns data movers for function arguments by its own. These data

movers transfer data between PS and PL and among PL. Usually, for scalar argument,

SDSoC assigns AXI_LITE data mover. For Array arguments, there are different data

movers available based on the size of data being transferred. The list of data movers

and their features is mentioned in reference (4). As the size of the data transferred by

an array argument gets larger, the conventional data transfer which happens with an

address fetch followed by data fetch will result in large latency. All the data movers

which transfer data from PS to PL has an associated address fetched from the external

memory for each data and thus does not pose an efficient approach to transfer data in

large volume. The best solution to overcome this to use Data zero_copy data mover.

1 # pragma SDS d a t a ze ro_copy ( a r g [ 0 : SIZE ] )

2 # pragma SDS d a t a m e m _ a t t r i b u t e ( a r g : PHYSICAL_CONTIGUOUS)

Data zero_copy generates an AXI master interface through which data gets transferred

directly from external memory to PL. AXI master interface supports burst read and

writes into and from the PL to external DDR memory. While reading an array from

the DDR to PL, the AXI master sends the starting address of the array location in DDR

along with the burst information. Therefore, the address transfer happens only once and

data is transferred continuously based on the burst limit. AXI3 master interface supports

a maximum burst of 16 words and AX14 interface supports a maximum burst of 256

words. By default, the zynq processing system has AXI3 master interface. But the IP

integrator within SDSoC places the required AXI interconnect between the accelerator

hardware IP and the Zyng processor IP so as to make it work on AXI4 standards.

For data zero_copy to work, the argument passed from the main function should

have contiguous memory location in DDR. Since the conventional dynamic allocation

using malloc does not allocate contiguous memory, we use dynamic allocation using

sds_alloc defined in sds_lib.h for array declaration. Apart from allocating contiguous

memory location using sds_alloc, the SDS data mem_attribute pragma should also be

added to specify the compiler about the nature of array location.
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The data transfer is optimized using the methods discussed above. The accelerate

the execution of the loop within the hardware function HLS pipeline pragma is used.

As the name suggests, it pipelines the operation within the loop reduces the initiation

interval f by allowing the concurrent execution of operations. Initiation interval(II)

is the number of clock cycles after which new input can be processed. The ideally

for achieving maximum speed up, II targeted is 1. But depending on the complexity

of operations II increases and the code should be restructured to reduce the II. In the

test code, pipeline reduces the latency to almost half the value(neglecting overhead).

Depending on the code, there are other pragmas that can be used for optimization,

reference (6).

3.5.3 Modified test

Since the data transfer rate is shown above(1 word per cycle) is obtained neglecting

the function overhead, the actual time taken may further increase. Since the bigger goal

of this project is to push the entire ASR decoding into hardware, the actual hardware

top function being called from the main function is Decoder_decode() mentioned in

section 2.4. For the test wave 5− secwave of 5-second duration, Decoder_decode() is

being called 500 times from the main function and each top function calls GMM log-

likelihood function 2000 times(this count is before the final optimization) on an average.

Since the function overhead appears only for the top function call, the overhead for

calling GMM function is negligible. To simulate the memory bandwidth test based on

this kind of GMM function call, the actual code which reads data from external memory

is being called from another hardware function. The top hardware function is called 500

times from the main function and the function reading a large volume of data is called

2000 times from the top function to make it 1 million calls to match with actual GMM

function call. The performance results are shown in table 3.5.

From table 3.5, it can be observed that the same amount of data when reading into

a single array is taking double the time compared to when the data is read into 2 arrays

of half the size in the same loop. This optimization came as a result of pipelining. The

pipelining limits this optimization advantage up to 2 simultaneous reading as reading

into 4 arrays of one fourth the size is observed to give the same result as reading into 2

arrays.
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Number of calls to Method of Average hw cycles Time taken

inner hw function reading data(2KB) (ZedBoard) (ZedBoard)

500×2000 Read into single array 1075200 5.44 sec

of size 500 using for loop

500×2000 Read into 2 arrays 615327 3.12 sec

of size 250 using for loop

500×2000 Read into 4 arrays 615116 3.09 sec

of size 125 using for loop

500×800 Read into 2 arrays 246406 1.25 sec

of size 250 using for loop

500×800 Read into 2 arrays 477450 2.41 sec

of size 250 using memcpy

Table 3.5: Performance results of modified memory bandwidth test

1 f l o a t r e a d _ a r r a y 1 [ 5 ] [ 5 0 ] ;

2 f l o a t r e a d _ a r r a y 2 [ 5 ] [ 5 0 ] ;

3 f o r ( i n t i =0 ; i <5 ; i ++) {

4 f o r ( i n t j =0 ; j <50; j ++) {

5 # pragma HLS PIPELINE

6 r e a d _ a r r a y 1 [ i ] [ j ]= a r 1 [ i *50+ j ] ;

7 r e a d _ a r r a y 2 [ i ] [ j ]= a r 2 [ i *50+ j ] ;

8 }

9 }

Since reading 2KB data into 2 arrays prove to be the most optimized method, the above

code segment is used in the modified memory bandwidth test. The data transfer rate

calculated based on this optimization is as follows:

2000× 500× 4Byte −→ 615327 cycles

4Byte −→ 0.61 cycles

So pipelining and reading simultaneously into 2 arrays gives a data transfer rate of

around 2 words per cycle.

The last 2 observations in table 3.5 are done based on the data in accordance with the

actual GMM log likelihood calls. With efficient caching, the average GMM function

calls per frame(for the 5 − secwave test wave)can be limited to 800 instead of 2000

for a particular frame. Memory bandwidth test is also done using memcpy() function.

Since pipelining optimization cannot be applied in memcpy(), the data transfer rate is

restricted to around 1 word per cycle rather than 2.
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CHAPTER 4

IMPLEMENTATION OF ACOUSTIC SCORING

4.1 Introduction

The hardware implementation of the actual GMM log-likelihood function and as-

sociated challenges are being discussed in this chapter. The memory bandwidth test

results have put an insight into the approach that should be taken to overcome the data

transfer bottleneck. Some of the basic optimization methods within the hardware func-

tion are also discussed in this chapter and the improvement in latency achieved by ap-

plying relevant optimization is listed out. The architecture of the GMM log likelihood

computation block is described in section 4.2 and the base code is constructed based on

the specified architecture. The table below shows the transition model and the GMM

model details that are used in this project.

Data count

Number of transition-ids 11582

Number of PDF-ids 1532

Maximum number of mixtures for a PDF-id 18

Minimum number of mixtures for a PDF-id 5

Average number of mixtures for a PDF-id 6

Table 4.1: Transition model and GMM model features

4.2 GMM Log-Likelihood function architetcure

GMM log-likelihood function is constructed based on equation 2.12. The input

to module includes input feature vector and the mixture values corresponding to the

particular PDF. The mixture data includes: 1, Number of mixtures,2, Inverse Variance,

3,Mean Inverse Variance and 4, Gconsts. These mixture data are pre-computed and

stored in the model file based on equations in section 2.4.2. As mentioned in table 4.1,

the maximum number of mixtures for a particular PDF is 18. So the maximum size of



the gconsts array is 18 and inverse variance, mean inverse variance array is 18 X 40.

Since the average number of mixtures is 6, around 1 KB (6 X 40 X 4 Byte) data is being

transferred by both inverse variance and mean inverse variance fetch which constitute

a 2 KB data fetch. The architecture for implementing the GMM function is shown in

figure 4.1.

Figure 4.1: GMM Log-Likelihood function architetcure

4.2.1 GMM score caching

The main function sends in feature vector and transition-id(FST arc input label) to

the GMM log likelihood module. Since for a particular frame, different arcs can have

the same input label and the PDF associated with a particular arc input label is always

same, we do not need to compute the GMM score every time. Instead, the score is

cached if the transition-id is hit for the first time and later when the same transition-id

is hit, the value from the cache BRAM is sent back. This reduces the average GMM

evaluation time. For the test wave(5-sec wave) GMM computation without caching

occurs 3 million times whereas with caching it reduces to around 1 million. This clearly

indicates around 33% reduction in GMM evaluation time. Since the caching happens

for a particular frame, the frame number is also an input to the GMM module.

25



4.3 Implementation and Results

From the architecture shown in the previous section, a baseline C++ code which

runs with maximum speed is constructed. This code is modified in different steps to

implement it efficiently in hardware with maximum possible speed up to have real-time

speech decoding and ensure no reduction in word error rate(WER). Since there are a set

of mixtures associated with a particular PDF, each PDF is represented as a structure in

C++ and the entire 1532 PDFs were stored as an array of structs in the external DDR

memory. Entire ASR code which was initially written based on map data structure was

changed to arrays considering hardware compatibility. The table below shows the time

taken by the entire ASR code run on ZedBoard and ZCU102 Arm processor(software)

to decode 5-sec wave and the time consumed in GMM computation.

Description Time taken(ZedBoard) Time taken(ZCU102)

Entire decoding 107 sec 41 sec

GMM evaluation alone 24 sec 9 sec

Table 4.2: Decoding time for 5-sec wave in Arm software

The Arm frequency of ZCU102 is almost double the frequency as that of ZedBoard.

So it takes almost half the time taken by ZedBoard. When arrays where used, the

process of storing the best hypothesis were done by linear search and it consumes a

bigger part of the decoding time. This search mechanism is finally implemented in an

efficient using binary search tree and as a result, GMM evaluation was observed to be

the most time-consuming section with 60-65 percent of total time. So the final target of

this project is to implement GMM so as to get a computation time of around 65 percent

of total wave duration. For the test wave 5-sec wave, this time is 3.25 sec.

Initially, when the GMM function was put into hardware without any optimization,

it took around 22 minutes for an entire evaluation. In this case, SDSoC allocated default

data movers which do not do burst read and thus resulted in such large time. referring to

the optimizations mentioned in chapter 3, modifications are made in the implementation

giving out betterment in performance.
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4.3.1 Data transfer through AXI Master

From the results obtained from the memory bandwidth test, it can be inferred that

the best way to transfer a large volume of data is through the AXI master interface.

Since hardware function cannot access globally declared variables or arrays, the coding

was done such that along with feature vector and transition id, the corresponding PDF

data is also passed from the main function to the hardware function. All data was

stored in contiguous locations using sds_alloc. Even though contiguous locations were

used to store the PDF structure data, the compiler does not identify it as physically

contiguous locations. To overcome this problem, each mixture- data was stored in large

contiguous arrays and was accessed based on offsets which are determined by PDF ids.

Data zero_copy pragma is applied to each argument so that the data gets transferred

through AXI master interface and support burst read. Proper pipelining techniques are

used within the hardware function to achieve minimum II for the computational loop.

The performance results based on this optimization when the hardware is implemented

in ZedBoard is shown in table 4.3.

Performance description Results

Number of GMM function calls 3 million

Average Hardware cycles for execution 1320

Average Function overhead hardware cycles 750

Total execution time 39.6 sec

Total Function overhead time 22.5 sec

Table 4.3: Performance results for 5-sec wave after first optimization

4.3.2 Caching outside the hardware function

From table 4.3 it is clear that the major part of the execution time is being consumed

by the function overhead. From the architecture shown in the previous section, it is clear

that the GMM computation is done only around 30-35 percent of the actual number of

functions. The remaining call gets the GMM score from the cache memory. But the

overhead for calling the hardware function is same whether the final score is obtained

using computation or from the cache BRAM. So to avoid this unnecessary function

overhead that occurs when caching, we pull the caching block outside the actual hard-

ware function. In the ASR code, Decoder_ProcessEmitting() calls GMM function.

So we place the caching inside this function. So the architecture gets confined to just
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the computation block. Even at this point transition id is used to cache the GMM score.

The performance results based on this optimization is shown in table 4.4.

Performance description Results

Number of GMM function calls 1 million

Average Hardware cycles for execution 2385

Average Function overhead hardware cycles 633

Total execution time 23.85 sec

Total Function overhead time 6.33 sec

Table 4.4: Performance results for 5-sec wave after second optimization

Since each function call gets the score by actual computation, the average hardware

cycles are observed to increase. But the number of calls has now reduced to 1 million

and therefore the reduction in total execution time is justified.

4.3.3 Burst reading into BRAMs

Apart from allocating contiguous locations for the arguments(feature and mixtures)

and using Data zero_copy, the data transfer gets enhanced if the inputs are first read into

on-chip memory. Since the size of the input is more than 128 bytes, the input gets stored

in on-chip BRAMs. BRAMs are 36 Kb memory blocks and serve as the data storage

space for the hardware. As mentioned earlier, the number of 140 BRAMs in ZedBoard

which constitute around 5 MB of storage. Reading into this BRAMs is similar to the

code shown in the memory bandwidth test. Even though this method is expected to

increase the BRAM utilization and take additional loops for just reading the input data,

the actual data transfer time is found to decrease. The performance results are shown in

table 4.5.

Performance description Results

Number of GMM function calls 1 million

Average Hardware cycles for execution 1653

Average Function overhead hardware cycles 633

Total execution time 16.53 sec

Total Function overhead time 6.33 sec

Table 4.5: Performance results for 5-sec wave after third optimization

With function overhead remaining as in the previous optimization, the actual exe-

cution time is found to reduce by 6 seconds when the data is initially read into BRAMs

before using it for computation.
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4.3.4 Calling from another hardware function

Even when the caching is pulled out of actual hardware function and burst reading

method is used for data transfer, the function overhead is still found to take around

40% of total time. One way to overcome this problem is to limit the number of calls

from the main function without actually affecting the output. In ASR code, the GMM

function is called by Decoder_ProcessEmitting() which is called once per frame.

So the actual top function call is around 500 for 5-sec wave and average GMM calls

per frame are 2000. So we use this kind of coding method to isolate and test GMM

function. To make 1 million calls to the hardware function, we call a top function once

per frame from the main function and this top function calls the GMM function. Since

the number of calls from the main function is much less compared to actual GMM

calls, the effect of function overhead is negligible. Also, the caching code segment

can be put in the top hardware function so in actual ASR code, caching is done within

Decoder_ProcessEmitting(). The performance results are shown in table 4.6.

Performance description Results

Number of Top function calls 498

Average GMM calls inside top function 2000

Total execution time 11.57 sec

Total Function overhead time 10ms

Table 4.6: Performance results for 5-sec wave after fourth optimization

4.3.5 Caching using PDF-id

To further optimize the GMM evaluation time, the caching method was improved.

Initially, the GMM score caching was done based on transition ids for a particular frame.

But the actual GMM computation is done using mixture data associated with a particu-

lar PDF. From the model file, as there are only 1532 PDF ids for 11582 transition ids,

it is evident that different transition id can have the same PDF and thus for a particular

frame, different transition id which maps into the same PDF gives out the same GMM

score. So the basis for caching can be changed to checking whether the PDF id is hit.

Comparing the number of transition ids and PDF ids present in the model, it seems to

give a reduction in GMM calls and thus total evaluation time reduces. Another advan-

tage of this method is the reduction in BRAM utilization. Since the caching is done in
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top function, cache data is stored in BRAMs. Since the size of the array used for cache

data decreases from 11582 to 1532, BRAM count is observed to decrease significantly.

Performance results are shown in table 4.7.

Performance description Results

Number of Top function calls 498

Average GMM calls inside top function 800

Total execution time 4.3 sec

Total execution time(ZCU102:400 MHz) 1.8 sec

Total Function overhead time 1̃0ms

Table 4.7: Performance results for 5-sec wave after fifth optimization

4.3.6 Other Optimizations

Apart from the major optimizations discussed in previous sections, some minor op-

timizations are also used in the implementation to improve efficiency. Feature vector

caching is one among them. For a particular frame, the feature vector used for com-

putation of acoustic score is the same. Since the synthesized hardware module accepts

feature vector in every call, it reads feature data every time. This puts additional unnec-

essary data access time though it is much lesser compared to the actual data transfer. So

in order to stop this redundant read, the following code segment is used:

1 s t a t i c f l o a t f e a t u r e s _ [ 4 0 ] ;

2 s t a t i c i n t f r _ n o ;

3 i f ( f r _ n o != f rame ) {

4 f o r ( i n t _ i =0 ; i <40; i ++) {

5 # pragma HLS PIPELINE

6 f e a t u r e s _ [ i ]= f e a t u r e s [ i ] ;

7 }

8 f r _ n o = frame ;

9 }

The frame number is also passed to the hardware function which uses a local variable

to account for the change in frame number. As per the code, the input feature vector is

read only when the frame number changes, i.e, only at the start of the new frame. This

saves the time for transfer of 40 X 4-byte data in every call.
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To reduce the computation time, loop unrolling technique is used. Since the Gaus-

sian mixture values have 2-dimensional data, the computations are implemented in

nested loops. One way to optimize this is to unroll the loop to parallelize the opera-

tion rather than carrying out a single set of operation. This gives better latency but at

the cost of more resource utilization. The code segment used for the following is shown

below:

1 f o r ( i n t i =0 ; i <num_mix ; i ++) {

2 # pragma HLS l o o p _ t r i p c o u n t min=5 max=18

3 . . . . . . .

4 # pragma HLS PIPELINE

5 f o r ( i n t j =0 ; j <40; j ++) {

6 . . . . . . . . .

7 }

8 . . . . .

9 }

HLS has its own pragma for unrolling, but it is also observed that when the pipeline

pragma is used outside the inner loop, the inner loop gets unrolled completely creating

parallel blocks. As a result of loop unrolling, the computation time is observed to be

less than 50% of the time taken without unrolling. Figure 4.2 shows the hardware ac-

celeration in ZedBoard obtained using the optimization methods described in previous

sections for 5-sec wave

Figure 4.2: Hardware accelaration of GMM function for 5-sec wave
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The above timings were obtained keeping the active tokens’ count in ASR decoding

as 10000. In the later stages of the project, Binary search tree and then binary heap

techniques were used to get the best possible new tokens. Since the best tokens are

arranged to the starting of the new active tokens list, this technique allows limiting the

active tokens being processed without much degradation in WER. As the active tokens

are limited, the actual GMM hardware calls are also expected to reduce. Performance

results based on a different number of active tokens used are shown in table 4.8

Number of WER Total GMM Hw calls Per frame Time

Active Tokens evaluations after caching avg. hw cycles (sec)

8192 15.26% 2933742 401808 861020 4.28

4096 15.48% 2324695 397677 855300 4.25

2048 15.66% 1684930 370847 797490 3.97

1024 15.76% 997933 308454 662685 3.3

Table 4.8: Performance results after limiting the active tokens for 5-sec wave

Figure 4.3: Change in GMM evaluation time with reduction in active tokens

When active tokens were limited to 8192, the results were similar to that obtained

for 10000 tokens. When 4096 tokens were used, actual GMM evaluation count has

reduced by 3 lakh but the number of hardware calls after caching is almost the same

which resulted in comparable latency with 8192 tokens. The latency was found to

improve as the tokens were further limited to 2048 and 1024 tokens. With a 0.5%

reduction in WER, around 25% reduction in GMM evaluation time was obtained.
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4.4 HLS Synthesis report

Figure 4.4 shows the latency details. The minimum latency corresponds to the

GMM evaluation when the number of mixtures for the particular PDF is 5 and the

maximum corresponds to that of the maximum number of mixtures,i.e 18. As per the

reports, the computation part takes half of the hardware cycles and the remaining time

indicates data read. The actual time taken by the computation part was found to higher

than that estimated from HLS reports and it is estimated using SDK which is discussed

in the next chapter. Since the average number of mixtures in the model file is 6, the

average GMM evaluation cycles are close to the minimum latency figures shown in the

report.

Figure 4.4: Latency estimation with final optimization

Figure 4.5: Resource utilization with the final optimization
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The resource utilization for the final implementation shown in figure 4.5 shows the

actual count of BRAMs, DSPs and other resources utilized for this hardware implemen-

tation. The report shows the number of total BRAM count to be 280(18Kbits blocks)

whereas ZedBoard actually has 140(36Kbits blocks). So the number of BRAMs(memory)

actually used within the hardware is 3 and it is used by the local arrays used to store

feature vector, inverse variance and mean inverse variance data. Apart from this, each

argument to the top hardware function which is of AXI master port is allocated a

BRAM(instance). So actual BRAM count for GMM function is 7. Due to unrolling

techniques, the number of DSPs, LUTs, and FFs have increased but it eventually results

in better latency.

4.5 Conclusion

The GMM log likelihood module is successfully implemented in hardware. The

GMM function was tested in isolation from the entire ASR code and 5-sec wave was

the test wave used to test and analyze the latency. The code was compiled and built in

SDSoC.The primary target hardware was ZedBoard and the final implementation was

done in ZCU102 at 400 MHZ also. The initial implementation in ZedBoard without

any optimization technique resulted in latency of around 22 minutes. This time was

finally brought down to 3.3 using different optimization methods.
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CHAPTER 5

IMPLEMENTATION IN HLS-SDK

5.1 Introduction

The previous chapter describes the implementation of GMM function in hardware

and the methods used to get minimum latency. The C++ code was compiled and built

using SDSoC™ environment. One of the initial problems that were faced while im-

plementing the hardware was the function overhead. This problem was overcome by

calling a top hardware function once per frame from the main function and calling the

actual GMM hardware function within the top function. The flexibility to create such

kind of a system was provided by the nature of ASR decoding as it calls the entire

decoding function once per frame. In situations where the hardware function is to be

called always from the main function, the function overhead still poses the main chal-

lenge. Since SDSoC does the entire task from the high-level synthesis of the code to

develop the software for calling the hardware, there are chances that this process ignores

some optimizations which are achieved if the HLS synthesis and software development

is separately done. This stands as a motivation to test and implement the GMM hard-

ware function using Vivado HLS and Xilinx SDK. Vivado HLS synthesize the C++ code

and create the IP for the hardware function. This IP is then integrated with the Zynq

processor using Vivado block design tool and finally the software test bench which runs

on the processor and calls the hardware function is created using Xilinx SDK.

The GMM function hardware implementation is first tried using AXI_LITE inter-

faces for the arguments. In this implementation, the hardware function is directly called

from the main function and caching based on PDF id is used to match with the actual

function calls. In the later part, implementation using AXI_MASTER interface is

tried and the challenges faced are listed out.



5.2 Implementation using AXI_LITE interface

The first step in the hardware implementation of any function is the high-level syn-

thesis of the C++ code which is done here by Vivado HLS. As mentioned in previous

chapters, Vivado HLS first creates the RTL code corresponding to C++ code. In the

RTL code, the input and output to the module must be performed through a port in the

design interface and it is typically operated using a specific I/O protocol. In order to

manage these interfaces, HLS describes an interface pragma which specifies how RTL

ports are generated from the function definition during interface synthesis. More details

about interface pragma can be obtained from reference (6). Since the GMM function

puts up the need for efficient data transfer, the function arguments should be assigned

with AXI ports for high speed and performance. Choosing s_axilite mode in interface

pragma implements all input-output ports as an AXI4-Lite interface. After successful

synthesis and C/RTL co-simulation, the IP corresponding to the hardware is created and

exported in Vivado HLS. In the Export IP process, Vivado HLS produces an associated

set of C driver files to implement AXI4-Lite ports. The block is then integrated with

the processor IP in Vivado design tool. The automatic connection tool in Vivado adds

the required AXI interconnect for the ports. Also, the Address editor window specifies

the range and starting address of the address space dedicated to the hardware module.

Figure 5.1 shows the IP block design created using Vivado.

Figure 5.1: Block design using Vivado with AXI_LITE interface
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Once the block design is created, the bitstream file for the hardware is generated.

Finally, the hardware file is exported and launched in the Xilinx SDK for creating the

software part. In this process, a Hardware Description File(HDF) of the GMM function

is sent to SDK. This file contains the details of the starting address of each argument and

for array arguments, all registers are in contiguous locations. In SDK, an application

project is created which compiles and build the software part. Application projects can

be created either in standalone or Linux mode.

In Linux mode, we can map a kernel address space to a user address space. This

eliminates the overhead of copying user space information into the kernel space and

vice versa. To do this, a function is created which does an open() on the /dev/mem file

which gives access to the physical memory and then use the mmap() to map a portion

of that memory into user space, depending on the starting address obtained from Vivado

design, for the software program to be able to access. This will allow the program to

write to physical memory and control the hardware device without any overhead.

When memory mapping is done, the data to be transferred is written to these mapped

registers. After writing the data, the hardware module is started by giving a start signal.

Writing 0x01 to the memory mapped base address starts the module. Finally, when the

execution is done, the second bit of the base address is internally set high. On checking

this condition, the output data can be read back from the corresponding registers. Since

the code does its own optimizations, checking for the done signal is found to give an

error. To avoid this we use the volatile keyword as shown below:

1 # d e f i n e BASE_ADDR 0 x43c00000

2 v o l a t i l e u n s i g n e d f p t r = setup_devmem (BASE_ADDR) ;

In the code above 0x43c00000 is the base address obtained from Vivado design and

setup_devmem does the memory mapping to the volatile unsigned int variable fptr. The

latency estimation was done using the standard functions defined in time.h header file.

In this method, the time taken for writing the data into the hardware, computation and

reading the output can be separately estimated. Performance results for 5-sec wave

obtained using this implementation are shown in table 5.1.
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Total GMM evaluation time 45532 ms

Total Write time 42584 ms

Total computation time 2278 ms

Total read time 187 ms

Table 5.1: Latency report for Implementation using AXI4-Lite Interface

The above timing is obtained with data corresponding to 10000 active tokens used.

To compare the timing with SDSoC, the same code is implemented in SDSoC. Unlike

the implementations mentioned in the previous chapter, the Data zero_copy pragma is

removed for a fair comparison. Since SDSoC does not allow HLS interface pragma,

the default data mover allocated by SDSoC which uses AXI interface is used for the

arguments. The performance result for the SDSoC implementation and its comparison

with SDK implementation is shown in table 5.2.

Average hardware cycles 42005

Total GMM calls 400K

Total evaluation time 168 sec

Increase in time compared to SDK Implementation 122.5 sec

Table 5.2: Timing results in SDSoC implementation and its Comparison with SDK

From the results, it is clear that the function overhead is negligible in SDK im-

plementation. Even though the implementation method shown in the previous chapter

tackles the overhead issue for GMM function, in general, SDK implementation is ob-

served to have much-improved latency compared to SDSoC.

5.3 Challenges in AXI Master interface

The results in the previous section motivate to test and compare the latency in SDK

and SDSoC implementation for the AXI master interface. Since the memory mapping

method is not explicit as in AXI-Lite interface, the implementation of the AXI master

interface was tested on a sample code rather than testing on the actual GMM code. The

sample code includes a hardware function which reads an array from the main function

and returns a scalar output after a minor computation. AXI master interface is set for

the array argument and the output argument is set to AXI-Lite using HLS pragma. To

facilitate burst reading, the array is initially read into BRAM using memcpy(). The

implementation process is similar to that mentioned in the previous section except in
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Vivado design suite, we need to add an extra HPO slave interface at the processor IP to

run the auto connection. The IP block design is shown in figure 5.2

Figure 5.2: Block design using Vivado with AXI_MASTER interface

Since the code has both AXI Lite and Master interface, 2 separate interconnects are

generated in the auto connection. The AXI smart-connect IP connects the AXI master

port of the hardware module to the processor’s HPO slave port which directs it to the

external memory. An ILA(Integrated Logic Analyzer) IP is also added manually to

debug the system.

The main challenge faced in this implementation is to initiate the data transfer

through AXI master. When a port is defined to have the AXI master interface, its

corresponding slave is the external DDR registers. Since the data transfer is supposed

to happen directly from DDR to the hardware at much higher speed, the control signal

issued by the processor is observed to work asynchronously with the hardware. The

HDF file indicates a single register corresponding to the master port. The attempt was

made to initiate the write transaction by writing the starting address location(of the

data to be read into the hardware) into the register described in the HDF file. But no

data beats were observed in ILA. To restrict undesirable optimizations being made by

the compiler, the arguments were also declared as volatile which still failed to initiate

the write transaction. With no successful attempt(both in Linux mode and standalone

mode) to implement data transfer through AXI master using SDK, this stands as a po-

tential future work as SDK implementation results with AXI-Lite interface is observed

to be better than SDSoC implementation.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 Conclusion

A hardware accelerator for GMM log-likelihood function which computes the acous-

tic score for an ASR system is successfully implemented. The function was imple-

mented in ZedBoard and ZCU102. The hardware function was tested with an audio

wave of 5 seconds duration for different optimizing methods. The final implementation

showed around 5X improvement over the initial Arm software implementation. In Zed-

Board, the time taken for evaluation of 5-sec wave was brought down from 22 minutes

in the initial implementation to 3.3 seconds using the final optimization. This improve-

ment in latency is achieved by optimizing the data transfer, optimizing the computation

and implementing an efficient caching system.

6.2 Future Work

The improvement in latency mentioned above is with respect to the model file used.

The GMM evaluation time can also be reduced by compressing the parameters. The

mixture data can be quantized efficiently so that each transfer can send more data. This

compression of parameters comes with a compromise in the accuracy,i.e, increase in

WER. So an efficient quantization method is to be implemented. The present imple-

mentation used floating point values. This can be changed into a fixed point with prop-

erly allocating the integer and fractional bits. Further, as the implementation in HLS

and creating the software part in SDK proved to be better than using SDSoC, the pos-

sibility of data transfer through AXI master interface in SDK implementation can also

be worked out.
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