
1

AUTOMATION OF RANDOM TELEGRAPH NOISE AND

FLICKER NOISE CHARACTERIZATION SETUP

 A Project Report

 submitted by

 SAPTAK ACHARJEE

 in partial fulfilment of the requirements

 for the award of the degree of

 MASTER OF TECHNOLOGY

 DEPARTMENT OF ELECTRICAL ENGINEERING

 INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

 MAY 2019

2

 THESIS CERTIFICATE

This is to certify that the thesis titled Automation of Random Telegraph Noise and Flicker

Noise Characterization Setup, submitted by Saptak Acharjee, to the Indian Institute of

Technology, Madras, for the award of the degree of Master of Technology, is a bona fide

record of the research work carried out by him under my supervision. The contents of this

thesis, in full or in parts, have not been submitted to any other Institute or University for the

award of any degree or diploma.

Dr. Deleep R Nair

Research Guide

Associate Professor

Dept. of Electrical Engineering

IIT-Madras, 600 036

Place: Chennai

Date: May 2019

3

 ACKNOWLEDGEMENT

The present project work is submitted in fulfilment of the requirements for the degree of

Master of Technology of Indian Institute of Technology, Madras (IITM). I express my deepest

gratitude to my supervisor Dr. Deleep R Nair of Indian Institute of Technology, Madras for

his inestimable support, encouragement, profound knowledge, largely helpful conversations

and also for providing me a systematic way for the completion of my project works. I am also

extremely grateful to the Pavan Ch, PhD student of IITM, for his continuous help and support

throughout the project. Last but not the least, this work would not have been possible without

support of my fellow lab mates, especially Vivek Oza, MS Student, IITM.

Saptak Acharjee

MTech Student

Dept. of Electrical Engineering

IIT-Madras, 600 036

Place: Chennai

Date: May 2019

4

ABSTRACT

MOS devices in the nanometer regime suffer from major reliability issues due to high electric

field phenomenon and process variability. Threshold voltage shift and mobility degradation

are the results from these reliability mechanisms. Such intrinsic device parameter fluctuation

affects the device performance which results unexpected behaviour of MOS transistors in IC

chips. RTN (Random Telegraph Noise) and Flicker noise measurements are two methods in

low frequency domain to test device reliability for different dimensions of MOS devices. To

study RTN and flicker noise properly in MOS devices, a large number of measurement

results (number of measured points in the range of lakhs) are needed for each of the MOS

device in different gate and drain voltages with different drain current sampling times and

same thing needs to repeat for all devices in a wafer. The results of this whole process come

with such a huge volume of measured output data that it becomes very tedious cumbersome

and time consuming to handle it manually. Therefore, instead of manually handling, RTN and

flicker noise measurement instruments can be remotely interfaced in a desktop computer and

automated its control using various programming software. This project work is mainly based

on the developing codes for various programs to automate the RTN and flicker noise

measurement instruments in the way that all measurements, data acquisition and analyse of

these data become easy, efficient and very low time consuming. Here automation of

instruments has been done using Visual C++ (for RTN measurement) and LabView (for

flicker noise measurement) programming software.

5

CONTENTS

Chapter 1 Introduction 9

Chapter 2 Measurement Instruments and Automation Setup 15

 2.1 RTN Measurement Instruments and Setup 16

 2.1.1 Waveform Generator/Fast Measurement Unit (WGFMU) 17

 2.1.1.1 WGFMU Instrument library functions 19

2.1.1.2 WGFMU available parameter values 21

2.1.1.3 WGFMU Program Execution Flow 23

 2.2 Flicker Noise Measurement Instruments and Setup 24

 2.2.1 B2962A: Low noise power source 25

 2.2.2 SR570 : Low noise current preamplifier 27

 2.2.3 SR780 : Dynamic Signal Analyzer 30

Chapter 3 Programming for RTN Measurement 33

 3.1 Software arrangement before programming 34

 3.2 Visual C++ programming for I-V and Sampling measurements 36

 3.3 Visual C++ programming outputs 54

Chapter 4 Programming for Flicker Noise Measurement 57

 4.1 Software arrangement before programming 58

 4.2 B2962A LabView programming 59

 4.3 SR570 LabView programming 60

 4.4 SR780 LabView programming 61

 4.5 LabView programming outputs 64

Chapter 5 Discussion, Challenges and Conclusion 70

References 75

6

LIST OF TABLES

2-1-1 WGFMU Output voltage values 18

2-1-1-1 WGFMU Instrument Library Functions 19

2-1-1-2 Parameter values for the specified WGFMU functions 21

2-1-1-3 WGFMU program execution flow 23

2-2-1-2 B2962A instrument command list 26

2-2-2-2 SR570 instrument command list 28

2-2-3-2 SR780 instrument command list 31

7

LIST OF FIGURES

1-1-1 Noise power spectral density of an arbitrary MOS transistor 11

1-1-2 Example of a bump present in LFN spectrum 11

1-2-1 Illustration of the RTN given by the impact of a single defect in the oxide 12

1-2-2 Illustration of the RTN spectrum in log-log domain 12

2-1 RTN measurement setup 16

2-1-1 Simplified B1500A WGFMU Schematic 18

2-2 Flicker Noise measurement setup and instruments 24

3-3-1 Id vs Vg graph at Vd = 0.05V using WGFMU 54

3-3-2 Id vs Vd graph for three different values of Vg using WGFMU 54

3-3-3 Fixed bias Id sampling measurement with sampling interval = 10 µs 55

3-3-4 Fixed bias Id sampling measurement with sampling interval = 1 ms 55

3-3-5 Vg sampling graph for fixed bias with sampling interval = 10 µs 55

3-3-6 Vd sampling graph for fixed bias with sampling interval = 10 µs 55

3-3-7 Pulsed bias Id sampling measurement with sampling interval = 5 µs 56

3-3-8 Pulsed bias Id sampling measurement with sampling interval = 50 µs 56

3-3-9 Gate bias sampling graph with sampling interval = 5 µs 56

3-3-10 Vd sampling graph for pulsed bias with sampling interval = 5 µs 56

4-2-1 B2962A LabView program block diagram 58

4-3-1 SR570 LabView program block diagram 60

4-4-1 SR780 LabView program block diagram 62

4-4-1-1Serial Communication cluster 63

4-5-1 Sinusoidal signal in time domain with 400 FFT lines 64

4-5-2 Sinusoidal signal in time domain with 800 FFT lines 64

4-5-3 Sinusoidal signal FFT with 400 FFT lines 65

4-5-4 Sinusoidal signal FFT with 800 FFT lines 65

4-5-5 Sinusoidal signal PSD 66

4-5-6 Square wave signal in time domain 66

4-5-7 Square wave signal FFT 67

4-5-8 Square wave signal PSD 67

4-5-9 Triangular wave signal in time domain 68

4-5-10 Triangular wave signal FFT 68

4-5-11 Triangular wave signal PSD 69

8

ABBREVIATIONS

LFN Low Frequency Noise

RTN Random Telegraph Noise

WGFMU Waveform Generator/Fast Measurement Unit

SMU Source/Monitor Unit

RSU Remote-sense and Switching Unit

ALWG Arbitrary Linear Waveform Generation

PG Pulse Generation

VCO Voltage-Controlled Oscillator

SRAM Static Random Access Memory

MOS Metal-Oxide Semiconductor

CMOS Complementary Metal-Oxide Semiconductor

FFT Fast Fourier Transform

PSD Power Spectral Density

VC++ Visual C++

IDE Integrated development Environment

DUT Device Under Test

9

Chapter 1

Introduction

 1.1 Low Frequency Noise (LFN) 10

 1.2 Random Telegraph Noise (RTN) 12

 1.3 Thesis Overview 14

10

Due to aggressive down scaling in device dimensions for improving speed and functionality,

MOS devices in the nanometer regime suffer from major reliability issues due to high electric

field phenomenon and process variability. These reliability mechanisms cause the MOS

transistor parameter drifts, namely threshold voltage shift and mobility degradation. Process

variations were originally considered in die-to-die variations. For nanoscale transistors, intra

die variations are posing the major design challenge as technology node scales. The intrinsic

device parameter fluctuations that result from high electric field phenomenon and process

uncertainties have substantially affected the device characteristic and degraded its

performance. Performance degradation of MOS transistors results unexpected behaviour in

IC chips [1, 3]. So it becomes very important to test MOS devices reliability in this

nanometer scaling for both single and multiple charge perturbation in the gate oxide. Many

methods exist to test device reliability. Low Frequency Noise (LFN) [1, 2] measurements are

one of those methods. Noise spectrum of large and small dimension MOS devices show

different behaviour in low frequency domain. In low frequency, noise spectrum of large area

devices show exact 1/f behaviour which is called Flicker Noise [2] but small area devices

show completely different behaviour from flicker noise spectrum. The low frequency noise

behaviour of small area devices is commonly referred to as Random Telegraph Noise (RTN)

[2 to 4].

1.1 Low Frequency Noise (LFN)

Low Frequency Noise (LFN) is a serious performance limiter in mixed signal CMOS circuits

such as RF mixers, voltage-controlled oscillators (VCOs), and time-to-digital A/D converters.

An important design subject for IC designers is how to minimize the noise contribution in the

circuit. So accurate and timely LFN models for semiconductor devices are needed. However,

performing meaningful LFN measurements for model verification is always a rather difficult

task. Because of an extremely low level of the current fluctuations that have to be measured,

great care must be taken to keep the background noise (BN) of the measurement system as

low as possible. A lot of effort has been devoted to developing a measurement system

characterized by a sufficiently low level [1].

Mainly, there are three different behaviours of the noise in the low frequency domain

of MOS devices. The power spectrum density (PSD) plot of Figure 1-1-1 shows two of these

behaviours. At higher frequencies, the figure shows the white noise and at lower frequencies,

it shows the flicker noise. The flicker noise is characterized by a 1/f or pink spectrum

behaviour. Therefore, it is commonly named as 1/f noise or pink noise. In contrast, the white

11

noise is characterized by its frequency independent behaviour [2]. In the large devices 1/f in

noise spectrum is noticed nicely due to the capture and release large number of carriers from

the channel to the device defects or traps.

 Figure 1-1-1: The noise power spectral density of Figure 1-1-2: Example of a bump present in the

 an arbitrary MOS transistor [2] LFN spectrum [2]

Therefore, flicker noise of a MOS device can be measured and studied directly from the PSD

vs. frequency graph.

In addition to the flicker and white noise, it is also very common to see bumps on the

noise spectra, as shown in Figure 1-1-2. These bumps are the result of the prominence of the

effect of individual defects in the device. This effect adds Lorentzian-like spectrum to the

already existing noise PSD. This low frequency noise behaviour is commonly referred to as

Random Telegraph Noise (RTN) and it is often found on smaller devices due to the capture

and release very few numbers of carriers (one or two) from the channel to the device defects

or traps.

For flicker noise measurement, B2962A (Low noise power source) [9, 10], SR570

(low noise current pre amplifier) [11] and SR780 (Spectrum analyser) [12] instruments are

used. B2962A is interfaced to the computer through USB A to USB B cable and other two

instruments are interfaced using RS232 to USB serial converter. NI LabView programming,

which is a laboratory virtual instrumentation electronic workbench, has been used to

automate the control of these instruments. The reasons of using LabView instead of Visual

C++ programming for flicker noise measurement automation is that LabView is a GUI

programming software where plotting of output directly coming from the instrument and

saving of measured data are done simultaneously and also no need to remember large number

of command lists of all instruments (three instruments) of flicker noise measurement setup.

Different type of controls of different instruments in flicker noise measurement setup like

selection of voltage output channel, voltage level with its range, current compliance range,

input offset current, input offset bias, different gain mode of amplifier, filter type selection,

output display selection of instrument, change of output plot scale, resolution of FFT

12

measurements are done using a single LabView front panel control. Also different

measurements like time domain, FFT and PSD have been done with appropriate units by

controlling the front panel of the LabView program.

1.2 Random Telegraph Noise (RTN)

Random telegraph noise (RTN) represents one of the most important reliability issues for

modern deca-nanometer MOS technologies, attracting many research efforts devoted to the

understanding of its statistical features. In particular, the statistical distribution of the RTN

amplitude has been widely investigated, due to its importance in determining the RTN impact

on the operation of digital devices, such as Flash memories and SRAM cells [3, 4].

RTN is characterized by the fluctuation of the drain current between two fixed levels

with stochastic low- and high-level times, resembling a random telegraph signal (RTS), as

shown in Figure A-2-1.These fluctuations are mainly caused by a defect in the gate dielectric

or at the dielectric-silicon interface. These defects, or traps, are known to capture and release

carriers very few numbers of carriers (one or two) from the channel. Therefore, the two

current levels, between which the current fluctuates, represent the state of the trap (empty or

occupied). In the case of an acceptor like trap (negatively charged when occupied by a carrier

and neutral when not occupied) the current of an n-channel device decreases when the trap

captures a carrier and returns to its highest level when the carrier is released back to the

channel [2].

In the frequency domain, the RTN associated with a single trap is represented by a

Lorentzian function. In the log-log domain, as shown in Figure A-2-2, the Lorentzian is

characterized by a plateau region and by a 1/f 2 region [2].

Figure 1-2-1: Illustration of the RTS given by the Figure 1-2-2: Illustration of RTN spectrum in

 impact of a single defect in the oxide [2] log-log domain [2]

13

The power spectrum density (PSD) of the random telegraph noise, given by a single defect, is

calculated as

 𝑆𝐼𝑑(𝑓) =
4𝛥𝐼𝑑

2

(τ̅c+τ̅e)[(
1

τ̅c
+

1

τ̅e
)

2
+(2𝜋𝑓)2]

 (1.2)

Where τ̅c and τ̅e are the mean of the emissions and capture times respectively, and 𝐼𝑑
2 is the

amplitude of the drain current fluctuation.

As discussed in previous two sections, to study RTN and flicker noise properly

sampling measurement needs to be done for sufficiently long period of time to establish the

probability distribution function of the switching times for each of the MOS device in

different gate and drain voltages with different drain current sampling times or FFT

resolution and same thing needs to repeat for all devices in a wafer. Also to look into the

process variability same number of measured output result comes from each of different

devices in a wafer. Even it needs to be done for different wafers also. So, the results of this

whole process comes with such a huge volume of measured output data (number of

measured points in the range of lakhs) that it becomes very tedious, cumbersome and very

time consuming to handle these manually. Therefore, instead of manually handling RTN and

flicker measurement instruments, these are remotely interfaced in a desktop computer and

automated the control of these instruments using various programming software. In this

project work Visual C++ and LabView programming software are used to automate RTN and

flicker noise measurement instruments respectively. As a result of this automation of

instruments, RTN and flicker noise measurement, measured data acquisition and analyse

these data become easier, efficient and very low time consuming.

For RTN measurement, Keysight’s B1500 Semiconductor device analyser [5]

integrated with B1530A waveform generator/fast measurement unit (WGFMU) [6, 7] is used.

The B1500A is remotely interfaced to a desktop PC through GPIB cable. Microsoft Visual

C++ programming has been used to automate RTN measurement. Programming for both IV

and sampling measurements, WGFMU measurement module of B1500 instrument is used.

Drain current sampling measurements using WGFMU module have been done for both fixed

DC and pulsed biases. Sampling measurement programs are made for single sampling

interval. But these programs can be extended for getting multiple sampling interval

measurement outputs in a single program run. All the possible extension of these RTN

measurement programs to do measurements more quickly and efficiently are discussed in

discussion section of this report.

14

1.3 Thesis Overview

 The details of RTN and flicker noise with its measurement techniques and related functions

or commands that can be used to control the measurement instruments remotely are pretty

long and an extensive literature. There are many research articles on LFN (RTN and flicker

noise) measurement in different ways but there are very few papers which have done the

RTN and flicker noise measurement instruments automation using Visual C/C++ and

LabView programs. I wish to cover in this short review of all instrument setup, measurement

modules, necessary functions or commands which are used to control the instruments through

a PC. In chapter 1 background and introduction of this work are illustrated. Measurement

instruments and automation setups are explained in chapter 2. All necessary hardware

arrangements for RTN measurement using B1500 instrument like automated measurement

setup, modules and different operation modes for developing Microsoft Visual Studio C++

code to automate RTN measurement are discussed in section 2.1. In sub sections 2.1.1.1 and

2.1.1.2 WGFMU instrument library functions and available parameter values are discussed

respectively. All necessary hardware arrangements for flicker measurement like automated

measurement setups, different communication cables and converter to interface instruments

to the computer are described at the section 2.2. Remote control mode and command lists

which are used to develop LabView program in this work of the instruments B2962A, SR570

and SR780 are described in the sub sections 2.2.1, 2.2.2 and 2.2.3 respectively. In chapter 3

the details of VC++ programming for automation of both I-V and sampling measurements of

RTN measurement are described. All necessary software aspects, including library files of

WGFMU module before run the VC++ program are clearly directed in section 3.1. Sections

3.2 and 3.3 are dedicated to the all I-V and RTN measurement VC++ programming and the

outputs. In chapter 4 the details of programming codes using LabView of flicker noise

measurement instruments are described with corresponding test code demonstrations and

outputs. All necessary software and drivers to automate all flicker noise measurement

instruments before run the LabView programs are clearly directed in section 4.1. Sections

4.2, 4.3 and 4.4 are dedicated to the LabView programs with useful controls of B2962A,

SR570 and SR780 instruments respectively. LabView program outputs are shown in section

4.5. I have discussed about the program outputs and the possible extension of the programs to

do large number of measurements at a time in discussion section of chapter 5. The

challenges of this work are discussed briefly in challenges section and also I have concluded

in conclusion section with a summary and a discussion of the future direction in this field.

15

Chapter 2

Measurement Instruments

 and

Automation Setup

2.1 RTN Measurement Instruments and Setup 16

 2.1.1 Waveform Generator/Fast Measurement Unit (WGFMU) 17

 2.1.1.1 WGFMU Instrument library functions 19

 2.1.1.2 WGFMU available parameter values 21

 2.1.1.3 WGFMU Program Execution Flow 23

 2.2 Flicker Noise Measurement Instruments and Setup 24

 2.2.1 B2962A: Low noise power source 25

 2.2.1.1 Remote control mode of B2962A 25

 2.2.1.2 Command list 25

 2.2.2 SR570 : Low noise current preamplifier 27

 2.2.2.1 Remote control mode of SR570 28

 2.2.2.2 Abridge RS232 command list 28

 2.2.3 SR780 : Dynamic Signal Analyzer 30

 2.2.3.1 Remote control mode of SR780 30

2.2.3.2 Command list 31

16

2.1 RTN Measurement Instruments and Setup

Random telegraph noise (RTN) has become an increasing concern for reliability testing of

MOS devices in nano scaled technologies affecting critical circuit parameters, such as delay

and noise margin. RTN is attributed for the random capturing and emitting of individual

charge carriers in the dielectric gate defects/traps from the channel for the small area devices.

This is a characteristic of the RTN caused by the effect of individual defects, each of which

adds a Lorentzian to the noise spectrum [Appendix A.2].

B1500A Semiconductor Device Analyzer

Agilent B1500A Semiconductor Device Analyzer has been used for RTN measurement

which is the new generation one box solution for the semiconductor device DC/AC

parametric measurement and analysis application [5]. It supports several plug-in modules like

GNDU, HRSMU, MFCMU, SPGU, WGFMU. These measurement modules are supported by

the EasyEXPERT software which is the system software of the B1500A. However the

WGFMU is not supported by the EasyEXPERT Classic Test operation.

 Figure 2-1: RTN measurement setup

As shown in the setup above, WGFMU and SMU as measurement module for DC and

sampling measurements are used. Here, the emphasis only on WGFMU coding and to

automate its control for both I-V and sampling measurements. Connection to SMU is not

needed for this whole work. RSU is used to switch between the WGFMU and SMU without

A
+

 SMU

A +

 SMU

 RSU

 RSU

A

 WGFMU

V

 WGFMU GND

 WGFMU
 S

 D

 G Subs

17

having to change any cabling. In addition to that RSU is designed to be mounted on the wafer

prober close to the DUT to optimize measurement performance.

Remote control mode

The B1500A instrument can be controlled in USB or GPIB or LAN remote control mode

from an external computer. The EasyEXPERT is the GUI based measurement control and

analysis software runs on the Microsoft Windows XP Professional. In this work B1500A and

its measurement module (WGFMU) are controlled through GPIB to USB connector and

automated using Microsoft visual C++ programming software. Details of measurement

module control and programming are illustrated in next sections.

2.1.1 Waveform Generator/Fast Measurement Unit (WGFMU)

This section introduces Keysight B1530A waveform generator/fast measurement unit

(WGFMU) [6] which is a measurement module for the Keysight B1500A Semiconductor

Device Analyzer and Keysight B1531A remote-sense and switch unit (RSU). It is the first

self-contained module which is offering the combination of arbitrary linear waveform

generation (ALWG) with synchronized fast I-V measurement. It also enables accurate high-

speed IV characterization. The B1530A WGFMU provides with powerful AC and DC

waveform generation and high-speed. Since the B1530A WGFMU is a module, we can easily

add this high-speed measurement capability to our existing B1500A. This reduces the overall

cost of test if you already own a B1500A.

Different mode of operation

There are two available modes of operation in each B1530A WGFMU channel. These are

Fast IV (current and voltage measurement) mode and PG mode (pulse generator). The Fast

IV and PG modes can run independently on each available B1530A WGFMU channel. The

WGFMU has the big advantage of being able to measure currently directly, without the need

for an external resistor and the complex cabling and custom circuitry required when using the

pulse generator and oscilloscope method. The channel also can be the DC voltage source. The

simplified measurement circuit diagram is shown figure below.

18

 Fig. 2-1-1: Simplified B1530A WGFMU schematic

Fast IV mode

In Fast IV mode the WGFMU channels can create arbitrary waveforms via the ALWG

function and can measure both current and voltage. In this mode WGFMU can make current

measurements with 2nA resolution and with sampling speeds as fast as 5 ns, providing

measurement capabilities not offered by existing solutions.

PG mode

WGFMU channels can create narrower pulses with the ALWG function than they can in Fast

IV mode in PG mode and they can measure voltage. Also, in this mode the WGFMU

channels have a 50 Ω output impedance to prevent reflection-induced waveform

degradations.

Output voltage range of different operation mode

Table 2-1-1

 Table 2-1-1: WGFMU output voltage value

Operation mode Voltage output

range

Voltage Setting resolution

PG 3V fixed range -3V to +3V 96 µV

5V fixed range -5V to +5V 160 µV

Fast IV 3V fixed range -3V to +3V 96 µV

5V fixed range -5V to +5V 160 µV

-10V fixed range -10V to 0V 160 µV

+10V fixed range 0V to +10V 160 µV

DC 3V fixed range -3V to +3V 96 µV

5V fixed range -5V to +5V 160 µV

-10V fixed range -10V to 0V 160 µV

+10V fixed range 0V to +10V 160 µV

19

The WGFMU can be controlled by the programs which use the Instrument Library furnished

with the B1530A. The main emphasis of this work is to control WGFMU remotely using

visual C++ programming for drain current sampling measurements. In the next sections

WGFMU instrument library functions and parameters values which are used to automate it

using visual C++ programming are discussed.

2.1.1.1 WGFMU Instrument library functions

Function name depends on the programming environment. In this paper I'm using Microsoft

Visual C++ IDE for WGFMU codding. So for Microsoft Visual C++ .NET (or Visual Basic

.NET, Visual Basic 6.0, or VBA) it's written as: WGFMU_functionName (ex.

WGFMU_openSession)

In the table below some WGFMU instrument functions are listed. These functions

have been used for DC measurement and drain current sampling measurements in this report.

There are many other such functions also present to control WGFMU. The detailed syntax of

these functions with all function parameters is in B1530 User Guide [6].

Table 2-1-1-1

Group Function Description
Common Initialize WGFMU_openSession Opens the communication session with

the B1500A by using the WGFMU

WGFMU_closeSession Closes the communication session with

the B1500A by using the WGFMU

WGFMU_initialize Resets all WGFMU channels.
WGFMU_setTimeout Sets timeout of the present session.

Common Error and

Warning

WGFMU_getErrorSize This function returns the length of the

next error string
WGFMU_getError This function reads one error string
WGFMU_openLogFile Opens a file used to log errors and

warnings

WGFMU_closeLogFile Closes a file used to log errors and

warnings

Common Setup WGFMU_setOperationMode Sets the operation mode of the specified

WGFMU channel, Fast IV, PG, DC

operation mode
 WGFMU_setMeasureMode Sets or reads the measurement mode,

voltage or current measurement mode WGFMU_getMeasureMode
 WGFMU_setForceVoltageRange Sets the voltage output range of the

specified source channel

WGFMU_setMeasureCurrentRange Sets or reads the current measurement

range of the specified measurement

channel.
WGFMU_getMeasureCurrentRange

20

 Table 2-1-1-1: WGFMU Instrument Library Functions

Common

Measurement

WGFMU_connect Enables or disables the specified

WGFMU channel and the RSU

connected to the WGFMU WGFMU_disconnect

WGFMU Initialize WGFMU_clear Clears the instrument library’s software

setup information such as all pattern and

sequence information.

WGFMU Setup

Pattern

WGFMU_createPattern Creates a waveform pattern

WGFMU_addVector Specifies scalar data (time and voltage)

and adds it to the specified waveform

pattern or replaces the scalar previously

defined in the specified waveform

pattern with the scalar specified by this

function.

WGFMU_addVectors

WGFMU Setup Event WGFMU_setMeasureEvent Defines a measurement event which is a

sampling measurement performed by the

WGFMU channel while it outputs a

waveform pattern

WGFMU Setup

Sequence

WGFMU_addSequence Adds sequence data (pattern and count)

to the source output sequence defined in

the specified WGFMU channel WGFMU_addSequences

WGFMU Setup check

Sequence

WGFMU_getInterpolatedForceValue

Reads the voltage value applied by the

specified WGFMU channel at the

specified time

WGFMU

Measurement

WGFMU_execute Runs the sequencer of all enabled

WGFMU channels

 WGFMU_waitUntilCompleted Waits until all connected WGFMU

channels are in the ready to read data

status

WGFMU Data

retrieve Measurement

value

 WGFMU_getMeasureValueSize Reads the measurement data (time and

voltage or current) for the measurement

point defined in the sequences set to the

specified WGFMU channel
 WGFMU_getMeasureValue

WGFMU Export setup

data

 WGFMU_exportAscii Creates a setup summary report and

saves it as a csv (comma separated

values) file

DC Measurement WGFMU_dcforceVoltage Starts DC voltage output immediately by

using the specified WGFMU channel

 WGFMU_dcmeasureValue Starts a voltage or current measurement

immediately by using the specified

WGFMU channel and returns the

measurement value (voltage or current)

21

2.1.1.2 WGFMU available parameter values

Table below shows the available parameter values (constants) for the specific functions. As in

this report Microsoft Visual C++ IDE is used for WGFMU codding. These parameters are

only for Microsoft Visual C++ .NET (or Visual Basic .NET, Visual Basic 6.0, or VBA)

programming environment.

Table 2-1-1-2

WGFMU Functions Mode Description

WGFMU_setOperationMode

And

WGFMU_getOperationMode

 WGFMU_OPERATION_MODE_DC

DC mode. DC voltage

output and voltage or

current measurement

(VFVM or VFIM). The

functions of the DC

Measurement group are

available in this mode

only.

 WGFMU_OPERATION_MODE_FASTIV Fast IV mode. ALWG

voltage output and

voltage or current

measurement (VFVM or

VFIM).

 WGFMU_OPERATION_MODE_PG

PG mode. ALWG

voltage output and

voltage measurement

(VFVM). The output

voltage will be divided

by the internal 50Ω

resistor and the load

impedance. Faster than

the Fast IV mode.

WGFMU_setForceVoltageRange

 And

WGFMU_getForceVoltageRange

 WGFMU_FORCE_VOLTAGE_RANGE_AUTO

Auto range a, default

setting

 WGFMU_FORCE_VOLTAGE_RANGE_3V

 3V fixed range a

 (-3 V to +3 V)

 WGFMU_FORCE_VOLTAGE_RANGE_5V

 5V fixed range a

 (-5 V to +5 V)

WGFMU_FORCE_VOLTAGE_RANGE_10V_NEG

ATIVE

 -10V fixed range a

 (-10 V to 0 V)

22

WGFMU_FORCE_VOLTAGE_RANGE_10V_POS

ITIVE

 10V fixed range a

 (+10 V to 0 V)

WGFMU_setMeasureMode

 And

WGFMU_getMeasureMode

WGFMU_MEASURE_MODE_VOLTAGE

Voltage measurement

mode a, default Setting

.Changing the mode to

this mode does not

change the current

measurement range

setting.

WGFMU_MEASURE_MODE_CURRENT

Current measurement

mode b Changing the

mode to this mode

changes the voltage

measurement range to

the 5 V range.

WGFMU_setMeasureCurrentRange

WGFMU_getMeasureCurrentRange

 And

WGFMU_setRangeEvent

WGFMU_MEASURE_CURRENT_RANGE_1UA

 1 µA controlled range

 (±1 µA)

WGFMU_MEASURE_CURRENT_RANGE_10UA

10 µA controlled range

 (±10 µA)

WGFMU_MEASURE_CURRENT_RANGE_100U

A

100µA controlled range

 (±100 µA)

WGFMU_MEASURE_CURRENT_RANGE_1MA

1 mA controlled range

 (±1 mA)

WGFMU_MEASURE_CURRENT_RANGE_10MA

10 mA controlled range

(±10mA),default setting

WGFMU_setMeasureEvent

WGFMU_MEASURE_EVENT_DATA_AVERAGE

D

Averaging data output

mode.

Only the averaging

result data will be

returned and the number

of returned data will be

points.

 Table 2-1-1-2: Parameter values for the specified WGFMU functions

a. These are available for the Fast IV, PG, and DC operation mode.

b. These are available only for the Fast IV and DC operation mode. Not available for the PG

mode.

23

2.1.1.3 WGFMU Program Execution Flow

WGFMU control program has been executed by using the program execution flow [6] shown

in the below table.

The WGFMU online session is started by the WGFMU_openSession function and is

ended by the WGFMU_closeSession function. This means that the functions for the step 1 to

3 can be used in the offline condition which the WGFMU is not connected.

Table 2-1-1-3

Step Action Function

 Starts error and warning logging (Optional) WGFMU_openLogFile

 Clears instrument library (Optional) WGFMU_clear

1 Creates pattern data WGFMU_createPattern

WGFMU_addVector

2 Defines several events WGFMU_setMeasureEvent

3 Creates WGFMU channel output and

measurement control data

WGFMU_addSequence

WGFMU_addSequences

4 Opens session WGFMU_openSession

 Initializes WGFMU channels (Optional) WGFMU_initialize

5 Sets measurement condition WGFMU_setOperationMode

WGFMU_setMeasureMode

WGFMU_setMeasureCurrentRange

WGFMU_setMeasureVoltageRange

WGFMU_getMeasureValueSize

WGFMU_getMeasueValue

6 Enables WGFMU channels WGFMU_connect

7 Starts output and measurement WGFMU_execute

8 Disables WGFMU channels WGFMU_disconnect

9 Closes session WGFMU_closeSession

 Stops error and warning logging (Optional) WGFMU_closeLogFile

 Table 2-1-1-3: WGFMU Program execution flow

24

2.2 Flicker Noise measurement Instruments and setup

Flicker noise measurement is another reliability testing method like RTN in low frequency

domain. The flicker noise is characterized by a 1/f or a pink spectrum behaviour. Therefore, it

is commonly named as 1/f noise or pink noise. In device physics point of view the main

difference between RTN and flicker noise is that RTN is attributed due to the random

capturing and emitting of individual charge carriers in individual gate dielectric traps, but

flicker noise (1/f behaviour) is related with the large number of charge perturbation in the

gate oxide which is considered as collective behaviour of individual charge perturbation. An

important design subject for IC designers is how to minimize the noise contribution in the

circuit; thus, accurate and timely flicker noise models for semiconductor devices are needed

[2].

 In this section hardware requirement for LFN measurement is discussed. LFN

measurement setups, instruments, necessary command to control the instruments are

discussed in this section. LFN measurement setup and all necessary instruments are shown in

below block diagram.

Measurement Setup

 Figure 2-2: Flicker Noise Measurement Setup and Instruments

 B2962A can be interfaced to PC through GPIB to USB connector or USB A to USB

B connector

 SR570 can be interfaced only through RS232 (DB25) connector

 SR780 can be interfaced to PC through RS232 (DB 25) to USB connector, GPIB to

USB connector or LAN Connector

As GPIB to USB is costly, RS232 to USB connector has been used for interfacing SR780

and USB A to USB B connector has been used for interfacing B2962A instrument.

B2962A: Low

noise Power

Source

DUT SR570: Low noise

Current

preamplifier

SR780: Spectrum

Analyser

Desktop PC
USB B port

USB A port

 RS232

 (DB 25)

USB

 RS232

 (DB 25)

USB

25

2.2.1 B2962A: Low noise power source

Keysight B2962A is 6½ digit low noise power source. It supports several functions, such as

arbitrary waveform generation, pulse output, sweep output, trace buffer, math expressions,

and graph plot. Hence, B2962A can be used as a DC (constant) voltage/current source, sweep

voltage/current source, pulse generator, arbitrary waveform generator and multimeter. Device

under test (DUT) can be connected to its source/measure terminals. For the all details about

the instrument and the connection procedure of DUT refer B2962A user guide manual [9].

2.2.1.1 Remote Control mode of B2962A

B2962A supports GPIB, LAN, and USB interfaces and can be controlled in remote control

mode using these interfaces from an external computer. All three interfaces are live at power-

on. As discussed in the section 1.2.1 GPIB to USB connection is costly, this report is only

based on the automation of B2962A using USB A to USB B remote interface to a PC. We

can interface it by installing Keysight IO Libraries Suite and connecting the USB device port

located on the back of the instrument to the USB port on the computer. LabView programing

software is used to automate the instrument. If the computer is not automatically recognising

to control it, we have to follow some steps before programming which are illustrated in the

chapter 4. Sometimes it’s necessary to put the instrument’s VISA address manually during

interfacing, in that case instrument’s VISA address can be viewed from the front panel by

pressing the More function key, then the I/O > USB softkeys. Commands to control the

instrument are listed in the next section.

2.2.1.2 Command list

Table 2-2-1-2 shows the command list with syntax which are used to execute LabView

program of B2962A low noise power source instrument. For details of command list with

syntax refer the reference [10]. Following commands are listed in same sequence as LabView

program is executed.

26

Table 2-2-1-2

Type Command description

Confirming the Firmware

Revision

*IDN Instrument’s (mainframe)

identification and firmware

revision are read by this

command.

Resetting to the Initial

Settings

*RST The initial settings are applied

by this command.

Setting the Power

Frequency

:SYST:LFR Power line frequency is set by

this command.

Enabling or Disabling the

Over Voltage/Current

Protection

:OUTP:PROT

:OUTP:PROT:ON

:OUTP:PROT:OFF

Over voltage/current

protection is set by this

command. It can be on or off.

Setting the

Limit/Compliance Value

:SENS:CURR/VOLT:PROT Limit/compliance is set by

this command.

Pulse output

:SOUR:FUNC PULS Pulse output is set by this

DC output :SOUR:FUNC DC DC output is set by this

command

Setting the Source Output

Mode

:SOUR:FUNC:MODE CURR/VOLT

Source output mode is set by

this command

Applying the DC

Voltage/Current

:SOUR:FUNC:TRIG:CONT DC current/voltage is

immediately applied when we

want to apply DC

current/voltage output timing

using a trigger

Setting the Output Range :SOUR:VOLT:RANG:AUTO Output range is set and auto

range operation is enable or

disable by this command

Setting the Output Range

with lower limit

:SOUR:VOLT:RANG:AUTO:LLIM

The lower limit for the auto

range operation is set by this

command

Enabling or disabling the

Source Output

:OUTP ON/OFF Command Source output is

enabled by this command

Reading an Error Message :SYST:ERR? Error message is read one by

one by using this command.

Query for over current or

voltage protection tripped

or not

:SENS:CURR/VOLT:PROT:TRIP? Indicates the over current or

voltage protection is tripped or

not

Performing Spot

Measurement

:MEAS? Spot measurement is

performed by this command

 Table 2-2-1-2: B2962A instrument command list

27

2.2.2 SR570: Low noise current preamplifier

The SR570 is a low-noise current preamplifier, providing a voltage output proportional to the

input current. The sensitivity range of the instrument is from 1 mA/V down to 1 pA/V [11].

Specifications

The DC voltage at the input can be set as a virtual null or biased from -5V to +5V. An input

offset current from 1pA to 1 mA may also be introduced with uncelebrated offset facility.

User can choose between low noise, high bandwidth, and low drift settings, and can invert the

output relative to the input. Two configurable R-C filters are provided to selectively condition

signals in the frequency range from DC to 1 MHz.

Connectivity

The SR570 normally operates with a fully floating ground with the amplifier ground isolated

from the chassis and the AC power supply. Input blanking, output toggling and listen-only

RS-232 interface lines are provided for remote instrument control. These lines are optically

isolated to reduce signal interference. Digital noise is eliminated by shutting down the

processor clock when not executing a front-panel button press or an RS-232 command.

Battery

Internal sealed lead-acid batteries provide up to 15 hours of line-independent operation. Rear

panel banana jacks provide access to the internal regulated power supplies (or batteries) for

use as a voltage source.

RS232 Interface

The RS-232 interface allows listen-only communication with the SR570 at 9600 baud. All

functions of the instrument (except power on) can be set via the RS-232 interface. The

interface is configured as listen-only, 9600 baud DCE, 8 data bits, no parity, 2 stop bits.

TheRS-232 interface electronics are opto-isolated from the amplifier circuitry to provide

maximum noise immunity.

LED indicators

The ERROR LED on the front panel will light if the SR570 receives an unknown or

improperly worded command. The LED will remain lit until a proper command is received

28

and after getting the proper command corresponding light will lit up which indicates that the

instrument is working properly.

2.2.2.1 Remote control mode of SR570

The SR570 can be remotely interfaced only using a standard DB-25 RS-232 connector on the

rear panel and using this interface all functions of the instrument except the power button can

be controlled. The interface is configured as listen-only, 9600 baud DCE, 8 data bits, no

parity, 2 stop bits, and is optically isolated to prevent any noise or grounding problems. Data

are sent to the instrument on RS232 connector pins 2 and 3, which are shorted together. The

data flow control pins (5, 6, 8, 20) are shorted to each other. The ground pins (1 & 7) are

connected to each other but optically isolated from the amplifier circuit ground and the

chassis ground. Data in and out on the connector are tied together, echoing data back to the

sender. Hardware handshaking lines CTS, DSR, and CD are tied to DTR.

LabView programing software is used to automate the instrument through the RS232

to USB serial converter. Computer automatically recognises the instrument after installing

some necessary drivers and software before the programming which are illustrated in the

chapter 4. All RS-232 commands consist of four letter codes followed, in most cases, by an

integer value (n). Commands must end with a carriage return and line feed <CR> <LF>.

Commands to control the instrument are listed in the next section.

2.2.2.2 Abridged RS232 Command list

Table 2-2-2-2 shows the command list which are used to execute LabView program of

SR570 low noise current pre amplifier instrument. For details of commands with detailed

syntax refer the reference [11]. Following commands are listed in same sequence as LabView

program of the instrument is executed. Value of n is also given in the above table for most of

the functions and the functions which have a range of n values. Details of n values are in the

reference [11].

Table 2-2-2-2

Type Command Description
Sensitivity control commands SENS n Sets the sensitivity of the amplifier. n

ranges from 0 (1 pA/V) to 27 (1 mA/V).

SUCM n Sets the sensitivity cal mode. 0 = cal, 1 =

uncal.

29

SUCV n Sets the uncalibrated sensitivity vernier.

[0 ≤ n ≤ 100] (percent of full scale).

Input Offset Current control

commands

IOON n Turns the input offset current on (n=1) or

off (n=0).

IOLV n Sets the calibrated input offset current

level. n ranges from 0 (1 pA) to 29 (5

mA).

IOSN n Sets the input offset current sign. 0 =

neg, 1 = pos.

IOUC n Sets the input offset cal mode. 0 = cal, 1

= uncal.

IOUV n Sets the uncalibrated input offset vernier.

 [-1000 ≤ n ≤ +1000] (0 - ±100.0% of

full scale).

Filter control commands FLTT n Sets the filter type. 0=6 HP, 1=12 HP,

2=6 BP, 3=6 LP, 4=12 LP, and 5=none.

LFRQ n Sets the value of the lowpass filter 3dB

point. n ranges from 0 (0.03Hz) to 15 (1

MHz).

HFRQ n Sets the value of the highpass filter 3dB

point. n ranges from 0 (0.03Hz) to 11 (10

kHz).

Bias Voltage control

commands

BSON n Turns the bias voltage on (n=1) or off

(n=0).

BSLV n Sets the bias voltage level in the range.

 [-5000 ≤ n ≤ +5000] (-5.000 V to +5.000

V).

Other commands GNMD n Sets the gain mode of the amplifier.

0=low noise, 1=high bw, 2=low drift.

INVT n Sets the signal invert sense. 0=non-

inverted, 1=inverted.

BLNK n Blanks the front end output of the

amplifier. 0=no blank, 1=blank.

*RST Resets the amplifier to the default

settings.

 Table 2-2-2-2: SR570 instrument command list

30

2.2.3 SR780: Dynamic Signal Analyzer

The SR780 Dynamic Signal Analyzer offers high performance and low cost in a single

instrument. It offers 102.4 kHz FFTs with 90 dB dynamic range, swept-sine measurements,

ANSI standard octave analysis, waterfall displays, and transient capture for less than half the

cost of other similarly equipped analyzers [12].

Spectrum Analysis

The SR780 delivers true two-channel, 102.4kHz FFT performance. Its fast 32-bit floating-

point DSP processor gives the SR780 a 102.4kHz real-time rate with both channels selected.

Two precision 16-bit ADCs provide a 90 dB dynamic range in FFT mode. It has selectable

100 to 800 line analysis which optimizes time and frequency resolution and also with the

zooming capability in on any portion of the 102.4 kHz ranges with a frequency span down to

191 mHz. Two displays of the instrument function independently. Separate frequency spans,

starting frequencies, number of FFT lines, or averaging modes for each display can be chosen

in it. Sampling rate can also be varied. There are two sampling rates in this instrument (256

kHz or 262 kHz).

2.2.3.1 Remotely Control mode of SR780

The SR780 Network Signal Analyzer may be remotely programmed via either the RS232 or

GPIB (IEEE-488) interfaces. Any computer supporting one of these interfaces may be used to

program the SR780. Both interfaces are receiving at all times, however, the SR780 will send

responses only to the Output Interface specified in the [System] <Remote> menu. All

responses are directed to the interface selected by <Output To> in the [System] <Remote>

menu, regardless of which interface received the query. The SR780 is configured as a DCE

(transmit on pin 3, receive on pin 2) device and supports CTS/DTR hardware handshaking.

The CTS signal (pin 5) is an output indicating that the SR780 is ready, while the DTR signal

(pin 20) is an input that is used to control the SR780's data transmission. If desired, the

handshake pins may be ignored and a simple 3 wire interface (pins 2,3 and 7) may be used.

The RS232 interface Baud Rate, Word Length, and Parity must be set in the [System]

<Remote> menu. In all three places like the SR780 instrument, LabView program front

panel and in the serial port connection of PC 9600 baud rate, 8 data bits, no parity, 1 stop bits

are used for better connectivity and data transfer. To assist in programming, the SR780 has 4

interface indicators which are displayed at the top of the screen. The RS232/GPIB indicator

31

shows ‘RS232’ if the interface responses are directed to the RS232 serial port and ‘GPIB’

and the address if the interface responses are directed to the GPIB port. The common

indicator flashes ‘RS232’ when there is activity on the RS232 interface and ‘GPIB’ when

there is activity on the GPIB interface. It’s necessary to use the OUTX command at the

beginning of every program to direct the SR780 responses to the correct interface.

As discussed in the section 1.2.1, GPIB to USB connection is costly this report is only

based on the automation of SR780 using DB-25 RS232 to USB serial converter remote

interface to a PC. LabView programing software is used to automate the instrument through

the serial converter. Computer automatically recognises the instrument after installing some

necessary drivers and software before the programming which are illustrated in the chapter 3.

The terminator must be a linefeed <lf> or carriage return <cr> on RS232. Commands to

control the instrument are listed in the next section

.
2.2.3.2 Command list

Table 2-2-3-2 shows the command list which are used to execute LabView program of

SR780 Spectrum Analyzer instrument and for details of commands with detailed syntax refer

the reference [12]. Following commands are listed in same sequence as LabView program of

the instrument is executed. The detail syntax of command can be clarified from the SR780

spectrum analyser user guide [13].

Table 2-2-3-2

Type Command Description
Interface commands *RST The *RST command resets the SR780 to its default

configurations. The communications setup is not

changed.

 *IDN The *IDN ? query returns the SR780's device

identification string. This string is in the format

"Stanford_Research_Systems,SR780, s/n00001,

ver007".

System Commands OUTX The OUTX command sets (queries) the Output

Interface. A parameter selects GPIB or RS232 .

Display Setup

command

MGRP The MGRP command sets (queries) the Measurement

Group.

MEAS The MEAS command sets (queries) the Measurement.

The parameter selects the measurement from the list

specified in the next section. Only those measurements

available in the current Measurement Group are

allowed.

32

VIEW The VIEW command sets (queries) the view of display.

The parameter selects the view from the list specified

in the next section.

Source Command SRCO The SRCO command sets (queries) the Source On or

Off.

STYP The STYP command sets (queries) the Source Type.

Sine Source

Command

S1FR The S1FR command sets (queries) the Frequency of

Sine Tone 1.

S1AM The S1AM command sets (queries) the Amplitude of

Sine Tone 1.

SOFF The SOFF command sets (queries) the Offset of the

Sine Source.

S2FR The S2FR command sets (queries) the Frequency of

Sine Tone 2.

S2AM The S2AM command sets (queries) the Amplitude of

Sine Tone 2.

Noise Source

Command

NAMP The NAMP command sets (queries) the Noise

Amplitude.

NTYP The NTYP command sets (queries) the Noise Type.

NBUR The NBUR command sets (queries) the Noise Burst

Percentage.

NPER The NPER command sets (queries) the Noise Burst

Source Period.

CSRC The CSRC command sets (queries) the Source Display.

Data Transfer

Command

DSPN This command queries the length of display. A

parameter d selects Display A (0) or Display B (1).

DSPY This command command queries the data in display. A

parameter d selects Display A (0) or Display B (1).

DSPW This command queries the data in waterfall display. A

parameter d selects Display A (0) or Display B (1).

This command is not valid if display does not have

waterfall storage on.

DSPB This command returns the data in display d in binary

format. A parameter d selects Display A (0) or Display

B (1). This command is only available with the GPIB

interface.

DSWB This command returns the data in waterfall display in

binary format.

This command is only available with the GPIB

interface. A parameter d selects Display A (0) or

Display B (1). This command is not valid if display d

does not have waterfall storage on.

 Table 2-2-3-2: SR780 instrument command list

33

Chapter 3

Programming for RTN Measurement

 3.1 Software arrangement before programming 34

 3.2 Visual C++ programming for I-V and Sampling measurements 36

 3.3 Visual C++ programming outputs 54

34

3.1 Software arrangement before programming

Before starting the program, it’s necessary to install necessary instrument libraries and also

add include file & additional library path to the programming software. If we fail to do these

properly, instrument will not be detected or not be remotely interfaced using PC or if it’s

interfaced error will come during the program execution. Following are the steps to avoid

interfacing error and compiler error during program execution.

Installing B1530 Instrument Libraries

1. Install the GPIB (IEEE 488) interface to a computer to be an instrument controller.

2. Install the Keysight IO Library Suite (15.0 or later).

3. Install the programming software. In this report Visual C++ 2017 is the programming

software (Windows 10 operating system).

4. Install the Keysight B1530A WGFMU Instrument Library.

Work with Keysight Connection Expert and EasyEXPERT

1. Open Keysight Connection Expert and set the GPIB address as B1500’s GPIB if it’s

not detected automatically.

2. Leave the Start EasyEXPERT button on the B1500A’s screen display or minimize

(but terminate easy expert in the PC before run any measurement program. See

caution below).

 Caution:

It is very important to terminate the EasyEXPERT software in PC before run any

Visual C++ program written in this report. If any Visual C++ program runs

simultaneous with EasyEXPERT software in the PC, the DUT may damage.

EasyEXPERT will run only in the B1500A instrument during all measurements using

Visual C++ programming.

35

Add additional include files and library path

In this report B1500 programs are coded in Visual C++ 2017, that’s why adding additional

include file and library path is only directly relevant to Visual C++ 2017 programming

software.

1. Select console application for new project in VC++ and save the project solution file

in document folder of PC.

2. Define additional include file search path(C/C++  General):

<user path>\Agilent\B1530A\include which stores the wgfmu.h file.

 <user path>\VISA\ WinNT \include which stores the VISA related include files.

3. Additional library search path:

 <user path>\Agilent\B1530A\lib which stores the wgfmu.lib file.

 <user path>\VISA\WinNT\ktvisa\lib\msc which stores the VISA related library files

 for Microsoft Visual C++ (only for SMU programs)

4. Additional project link library:

wgfmu.lib

visa32.lib (only for SMU programs)

 <user path> indicates the folder where the software is installed.

36

3.2 Visual C++ programming for I-V and Sampling

 measurements

For correct RTN measurement of MOS devices both I-V and drain current sampling

measurements are needed. In this section VC++ program code for I-V and drain current (Id)

sampling measurements are presented. In I-V measurement Visual C++ program for both Id vs

Vg with Vd as a parameter and Id vs Vd with Vg as a parameter are developed in a single

program. Similarly, in sampling measurement Visual C++ program for dc measurement (for

getting an operating point of the DUT), drain current sampling measurement for fixed bias (in

both gate and drain terminals) and pulsed bias (in gate terminal only) are developed in a single

program. Here a NMOS DUT is used. Source terminal of the DUT is always grounded. These

programs are only for WGFMU module control automation. Details of all used WGFMU

instrument library functions and parameters in the program codes are in the sections 2.1.1.1

and 2.1.1.2.

I-V measurement program

#include "pch.h"

#include <stdio.h>

#include <stdlib.h>

#include "wgfmu.h"

#include <visa.h>

#include <iostream>

using namespace std;

// Checks the error being returned from the WGFMU

void checkError(int ret)

{

 if (ret < WGFMU_NO_ERROR) {

 throw ret;

 }

37

}

int checkError2(int ret)

{

 if (ret < WGFMU_NO_ERROR) {

 int size;

 WGFMU_getErrorSize(&size);

 char* msg = new char[size + 1];

 WGFMU_getError(msg, &size);

 fprintf(stderr, "%s", msg);

 delete[] msg;

 }

 return ret;

}

static const int VISA_ERROR_OFFSET = WGFMU_ERROR_CODE_MIN - 1;

void checkError3(int ret) //29

{

 if (ret < WGFMU_NO_ERROR && ret >= WGFMU_ERROR_CODE_MIN || ret <

VISA_ERROR_OFFSET)

 {

 throw ret;

 }

}

// Saves the file from the WGFMU

void writeResults(int channelId, const char* Output1)

{

 //use_CRT_SECURE_NO_WARNINGS;

#pragma warning (disable : 4996)

 FILE* fp = fopen(Output1, "w");

 if (fp != 0) {

 int measuredSize, totalSize;

38

 WGFMU_getMeasureValueSize(channelId, &measuredSize, &totalSize);

 for (int i = 0; i < measuredSize; i++) {

 double time, value;

WGFMU_getMeasureValue(channelId, i, &time, &value);

 fprintf(fp, "%.9lf, %.9lf\n", time, value);

 }

 fclose(fp);

 }

}

// Saves the file from the WGFMU with a row offset

void writeResults2(int channelId, int offset, int size, const char* Output2)

{

 FILE* fp = fopen(Output2, "w");

 if (fp != 0) {

 int measuredSize, totalSize;

 WGFMU_getMeasureValueSize(channelId, &measuredSize, &totalSize);

 for (int i = offset; i < offset + size; i++) {

 double time, value;

 WGFMU_getMeasureValue(channelId, i, &time, &value);

 fprintf(fp, "%.9lf, %.9lf\n", time, value);

 }

 fclose(fp);

 }

}

// Saves the file from the WGFMU with a row offset for each channel

void writeResults3(int channelId1, int channelId2, int offset, int size, const char* fileName)

{

 FILE* fp = fopen(fileName, "w");

39

 if (fp != 0) {

 int measuredSize, totalSize;

 fprintf(fp, "Vg,Vd,Id\n");

 WGFMU_getMeasureValueSize(channelId2, &measuredSize, &totalSize);

 for (int i = offset; i < offset + size; i++) {

 double time, value, voltage1, voltage2;;

 WGFMU_getMeasureValue(channelId2, i, &time, &value);

 WGFMU_getInterpolatedForceValue(channelId1, time, &voltage1);

 WGFMU_getInterpolatedForceValue(channelId2, time, &voltage2);

 fprintf(fp, "%.9lf, %.9lf,%.9lf\n", voltage1, voltage2, value);

 }

 fclose(fp);

 }

}

// Global Variables

int gateChannel = 101;

int drainChannel = 102;

int polarity = 1; //For PMOS polarity=-1

// Function for Id vs Vg measurement

void Id_vs_Vg_measurement(double vgMin, double vgMax, double vgStep, double vdMin,

double vdMax, double vdStep)

{

 double vgRiseTime = 100e-9;

 double vgStepLength = 500e-9;

 double vgStepDelay = 200e-9;

 int numberOfVgSteps = (double)((vgMax - vgMin) / vgStep) + 1;

 double vdRiseTime = 100e-9;

 double vdStepLength = (vgRiseTime + vgStepLength) * numberOfVgSteps;

 int numberOfVdSteps = (double)((vdMax - vdMin) / vdStep) + 1;

 WGFMU_openLogFile("C:Id_vs_Vg_errorlog.log");

40

 // OFFLINE

 WGFMU_clear();

 // Gate Channel Pattern and Sequence

 double vg = vgMin;

 WGFMU_createPattern("Vg", vg * polarity);

 for (int i = 0; i < numberOfVgSteps; i++) {

 vg = vgMin + vgStep * i;

 WGFMU_addVector("Vg", vgRiseTime, vg * polarity);

 WGFMU_addVector("Vg", vgStepLength, vg * polarity);

 }

 WGFMU_addSequence(gateChannel, "Vg", numberOfVdSteps);

 // Drain Channel Pattern and Sequence

 double vd = vdMin;

 WGFMU_createPattern("Vd", vd);

 for (int i = 0; i < numberOfVdSteps; i++) {

 vd = vdMin + vdStep * i;

 WGFMU_addVector("Vd", vdRiseTime, vd * polarity);

 WGFMU_addVector("Vd", vdStepLength, vd * polarity);

 WGFMU_setMeasureEvent("Vd", "Id", (vdRiseTime + vdStepLength) * i +

vgRiseTime + vgStepDelay, numberOfVgSteps, vgRiseTime +

vgStepLength, vgStepLength - vgStepDelay * 2,

WGFMU_MEASURE_EVENT_DATA_AVERAGED);

 }

 WGFMU_addSequence(drainChannel, "Vd", 1);

 WGFMU_exportAscii("C:waveform_Id_vs_Vg.csv");

// ONLINE

 WGFMU_openSession("GPIB0::17::INSTR");

41

 WGFMU_initialize();

WGFMU_setOperationMode(gateChannel,

WGFMU_OPERATION_MODE_FASTIV);

 WGFMU_setOperationMode(drainChannel,

WGFMU_OPERATION_MODE_FASTIV);

 WGFMU_setForceVoltageRange(gateChannel,

 WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setForceVoltageRange(drainChannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setMeasureMode(drainChannel,

WGFMU_MEASURE_MODE_CURRENT);

 WGFMU_setMeasureCurrentRange(drainChannel,

WGFMU_MEASURE_CURRENT_RANGE_1MA);

 WGFMU_connect(gateChannel);

 WGFMU_connect(drainChannel);

 WGFMU_execute();

 WGFMU_waitUntilCompleted();

// Save output files

for (int i = 0; i < numberOfVdSteps; i++) {

 vd = vdMin + vdStep * i;

 char fileName[1024];

 sprintf(fileName, "C:Id-Vg@Vd=%.3fV.csv", (double)vd);

 writeResults3(gateChannel, drainChannel, numberOfVgSteps * i,

numberOfVgSteps, fileName);

 }

 cout << "Id vs Vg measurement output is sucessfully saved " << endl;

 WGFMU_initialize();

 WGFMU_closeSession();

 WGFMU_closeLogFile();

}

42

// Function for Id vs Vd measurement

void Id_vs_Vd_measurement(double vgMin, double vgMax, double vgStep, double vdMin,

double vdMax, double vdStep)

{

 double vdRiseTime = 100e-9;

 double vdStepLength = 500e-9;

 double vdStepDelay = 100e-9;

 int numberOfVdSteps = (double)((vdMax - vdMin) / vdStep) + 1;

 double vgRiseTime = 100e-9;

 double vgStepLength = (vdRiseTime + vdStepLength)*numberOfVdSteps;

 int numberOfVgSteps = (double)((vgMax - vgMin) / vgStep) + 1;

 double Idsamplinginterval = 500e-9;

 WGFMU_openLogFile("C:IVerrorlog.log");

// OFFLINE

 WGFMU_clear();

 // Gate Channel Pattern and Sequence

 double vg = vgMin;

 WGFMU_createPattern("Vg", vg * polarity);

 for (int i = 0; i < numberOfVgSteps; i++) {

 vg = vgMin + vgStep * i;

 WGFMU_addVector("Vg", vgRiseTime, vg * polarity);

 WGFMU_addVector("Vg", vgStepLength, vg * polarity);

 }

 WGFMU_addSequence(gateChannel, "Vg", 1);

 // Drain Channel Pattern and Sequence

 double vd = vdMin;

 WGFMU_createPattern("Vd", vd);

43

 for (int i = 0; i < numberOfVdSteps; i++) {

 vd = vdMin + vdStep * i;

 WGFMU_addVector("Vd", vdRiseTime, vd * polarity);

 WGFMU_addVector("Vd", vdStepLength, vd * polarity);

 WGFMU_setMeasureEvent("Vd", "Id", (vdRiseTime + vdStepLength)*i, 1,

Idsamplinginterval, vdStepLength - vdStepDelay * 2,

WGFMU_MEASURE_EVENT_DATA_AVERAGED);

 }

 WGFMU_addSequence(drainChannel, "Vd", numberOfVgSteps);

 WGFMU_exportAscii("C:Id_vs_Vd_waveform.csv");

// ONLINE

 WGFMU_openSession("GPIB0::17::INSTR");

 WGFMU_initialize();

 WGFMU_setOperationMode(gateChannel,

WGFMU_OPERATION_MODE_FASTIV);

 WGFMU_setOperationMode(drainChannel,

WGFMU_OPERATION_MODE_FASTIV);

 WGFMU_setForceVoltageRange(gateChannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setForceVoltageRange(drainChannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setMeasureMode(drainChannel,

WGFMU_MEASURE_MODE_CURRENT);

WGFMU_setMeasureCurrentRange(drainChannel,

WGFMU_MEASURE_CURRENT_RANGE_1MA);

 WGFMU_connect(gateChannel);

 WGFMU_connect(drainChannel);

 WGFMU_execute();

 WGFMU_waitUntilCompleted();

44

// Save output files

for (int i = 0; i < numberOfVgSteps; i++) {

vg = vgMin + vgStep * i;

 char fileName[1024];

 sprintf(fileName, "C:Id-Vd@Vg=%.3fV.csv", (double)vg);

 writeResults3(gateChannel, drainChannel, numberOfVdSteps * i,

numberOfVdSteps, fileName);

 }

 cout << "Id vs Vd measurement output is sucessfully saved " << endl;

 WGFMU_initialize();

 WGFMU_closeSession();

 WGFMU_closeLogFile();

}

// Starts the session with the WGFMU and begins the console application.

int main()

{

 //I-V measurement

 //Example for Id-Vg measurement function call

 //Id_vs_Vg_measurement(0,1, 0.01, 0.05, 0.05, 0.01);

 //(Minimum Vg in volt, Maximum Vg in volt, Vg step in volt, Minimum Vd in volt,

 Maximum Vd in volt, Vd step in volt)

 // Example for Id-Vd measurement function call

 //Id_vs_Vd_measurement(0.5,0.5, 0.1, 0.05,1, 0.01);

 //(Minimum Vg in volt, Maximum Vg in volt, Vg step in volt, Minimum Vd in volt,

 Maximum Vd in volt, Vd step in volt)

}

45

Sampling measurement program

include "pch.h"

#include <stdio.h>

#include <stdlib.h>

#include "wgfmu.h"

#include <visa.h>

#include <iostream>

#include <fstream>

using namespace std;

//Global variables and Constants

int gatechannel = 101;

int drainchannel = 102;

int polarity = 1; // For PMOS polarity = -1;

const char* address = "GPIB0::17::INSTR";

// Checks the error being returned from the WGFMU

void checkError(int ret)

{

 if (ret < WGFMU_NO_ERROR) {

 throw ret;

 }

}

int checkError2(int ret)

{

 if (ret < WGFMU_NO_ERROR) {

 int size;

 WGFMU_getErrorSize(&size);

46

 char* msg = new char[size + 1];

 WGFMU_getError(msg, &size);

 fprintf(stderr, "%s", msg);

 delete[] msg;

 }

 return ret;

}

static const int VISA_ERROR_OFFSET = WGFMU_ERROR_CODE_MIN - 1;

void checkError3(int ret)

{

 if (ret < WGFMU_NO_ERROR && ret >= WGFMU_ERROR_CODE_MIN || ret <

VISA_ERROR_OFFSET)

 {

 throw ret;

 }

}

// Saves the files containing results of RTN measurements

void writeResults(int channelId, const char* Output1)

{

#pragma warning (disable : 4996)

 FILE* fp = fopen(Output1, "w");

 if (fp != 0) {

 int measuredSize, totalSize;

 WGFMU_getMeasureValueSize(channelId, &measuredSize, &totalSize);

 for (int i = 0; i < measuredSize; i++) {

 double time, value;

 WGFMU_getMeasureValue(channelId, i, &time, &value);

 fprintf(fp, "%.9lf, %.9lf\n", time, value);

 }

 fclose(fp);

 }

}

47

// Saves the file from the WGFMU with a row offset

void writeResults2(int channelId1, int channelId2, int offset, int size, const char* Output2)

{

 FILE* fp = fopen(Output2, "w");

 if (fp != 0) {

 int measuredSize, totalSize;

 fprintf(fp, "Time,Vg,Vd,Id\n");

 WGFMU_getMeasureValueSize(channelId2, &measuredSize, &totalSize);

 for (int i = offset; i < offset + size; i++) {

 double time, voltage1, voltage2, value;

 WGFMU_getMeasureValue(channelId2, i, &time, &value);

 WGFMU_getInterpolatedForceValue(channelId1, time, &voltage1);

 WGFMU_getInterpolatedForceValue(channelId2, time, &voltage2);

 fprintf(fp, "%.9lf, %.9lf,%.9lf, %.9lf\n", time, voltage1, voltage2,

value);

 }

 fclose(fp);

 }

}

// Saves the file from the WGFMU with a row offset for each channel

void writeResults3(int channelId1, int channelId2, int offset, int size, const char* fileName)

{

 FILE* fp = fopen(fileName, "w");

 if (fp != 0) {

 int measuredSize, totalSize;

 WGFMU_getMeasureValueSize(channelId2, &measuredSize, &totalSize);

 for (int i = offset; i < offset + size; i++) {

 double time, value, voltage;

 WGFMU_getMeasureValue(channelId2, i, &time, &value);

 WGFMU_getInterpolatedForceValue(channelId1, time, &voltage);

 fprintf(fp, "%.9lf, %.9lf\n", voltage, value);

48

 }

 fclose(fp);

 }

}

//Function defined for DC Measurement

void DCMasurement(double gatevol, double drainvol)

{

 double mVal;

 const char* fname = "C:DC_errlog.log";

 WGFMU_openLogFile(fname);

 WGFMU_openSession(address);

 WGFMU_clear();

 WGFMU_initialize();

 WGFMU_setOperationMode(gatechannel, WGFMU_OPERATION_MODE_DC);

 WGFMU_setOperationMode(drainchannel, WGFMU_OPERATION_MODE_DC);

 WGFMU_setForceVoltageRange(gatechannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setForceVoltageRange(drainchannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setMeasureMode(drainchannel,

WGFMU_MEASURE_MODE_CURRENT);

 WGFMU_setMeasureCurrentRange(drainchannel,

WGFMU_MEASURE_CURRENT_RANGE_100UA);

 WGFMU_connect(gatechannel);

 WGFMU_connect(drainchannel);

 WGFMU_dcforceVoltage(gatechannel, gatevol*polarity);

 WGFMU_dcforceVoltage(drainchannel, drainvol*polarity);

 WGFMU_dcmeasureValue(drainchannel, &mVal);

 WGFMU_execute();

 WGFMU_waitUntilCompleted();

49

// Save output file

fstream file;

 file.open("DC Measurement.txt", ios::out);

 file << "Output Current=" << mVal << endl;

 file.close();

 cout << "DC Measurement output is sucessfully saved " << endl;

 WGFMU_closeSession();

 WGFMU_closeLogFile();

}

//Function for sampling measurement with fixed bias

void Samplingwithfixedbias(double vgInterval, double vg, int numberOfVgMeasurement, int

numberofVgSignal,

 double vdInterval, double vd, int numberOfVdMeasurement, int numberofVdSignal,

double Idinterval, int numberofIdSampling)

{

 WGFMU_openLogFile("C:Fixedbias_Samp_errlog.log");

// OFFLINE

 WGFMU_clear();

// Gate Channel Pattern and Sequence

 WGFMU_createPattern("Vg", vg * polarity);

 for (int i = 0; i < numberOfVgMeasurement; i++) {

 WGFMU_addVector("Vg", vgInterval, vg * polarity);

 }

 WGFMU_addSequence(gatechannel, "Vg", numberofVgSignal);

 // Drain Channel Pattern and Sequence

 WGFMU_createPattern("Vd", vd * polarity);

50

for (int i = 0; i < numberOfVdMeasurement; i++) {

 WGFMU_addVector("Vd", vdInterval, vd * polarity);

 }

 WGFMU_setMeasureEvent("Vd", "Id", 0, numberofIdSampling, Idinterval, 0,

WGFMU_MEASURE_EVENT_DATA_AVERAGED);

 WGFMU_addSequence(drainchannel, "Vd", numberofVdSignal);

 WGFMU_exportAscii("C:Fixedbias_samp_waveform.csv");

 // ONLINE

WGFMU_openSession(address);

 WGFMU_initialize();

 WGFMU_setOperationMode(gatechannel,

WGFMU_OPERATION_MODE_FASTIV);

 WGFMU_setOperationMode(drainchannel,

WGFMU_OPERATION_MODE_FASTIV);

 WGFMU_setForceVoltageRange(gatechannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setForceVoltageRange(drainchannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setMeasureMode(drainchannel,

WGFMU_MEASURE_MODE_CURRENT);

 WGFMU_setMeasureCurrentRange(drainchannel,

WGFMU_MEASURE_CURRENT_RANGE_100UA);

WGFMU_connect(gatechannel);

 WGFMU_connect(drainchannel);

 WGFMU_execute();

 WGFMU_waitUntilCompleted();

// Save output files

char fileName[1024];

51

 sprintf(fileName, "C:FB_samp@St=%fs,Vg=%.2fV&Vd=%.2fV.csv",

(double)Idinterval, (double)vg, (double)vd);

 writeResults2(gatechannel,drainchannel, 0, numberofIdSampling, fileName);

 cout << "Fixed bias sampling measurement output is sucessfully saved " << endl;

 WGFMU_initialize();

 WGFMU_closeSession();

 WGFMU_closeLogFile();

}

//Function for sampling measurement with pulsed bias

void Samplingwithpulsedbias(double groundbiaslength, double vgRiseTime, double

pulselength, double vgFallTime, double vg, int numberofVgSignal, double vdInterval, double

vd, int numberOfVdMeasurement, int numberofVdSignal, double Idinterval, int

numberofIdSampling)

{

 WGFMU_openLogFile("C:Pulsedbias_Samp_errlog.log");

// OFFLINE

 WGFMU_clear();

// Gate Channel Pattern and Sequence

 WGFMU_createPattern("Vg", 0);

 WGFMU_addVector("Vg", 0.00025, 0);

 WGFMU_addVector("Vg", 0.0001, vg * polarity);

 WGFMU_addVector("Vg", 0.001, vg * polarity);

 WGFMU_addVector("Vg", 0.0001, 0);

 WGFMU_addVector("Vg", 0.00025, 0);

 WGFMU_addSequence(gatechannel, "Vg", numberofVgSignal);

52

// Drain Channel Pattern and Sequence

 WGFMU_createPattern("Vd", vd * polarity);

 for (int i = 0; i < numberOfVdMeasurement; i++) {

 WGFMU_addVector("Vd", vdInterval, vd * polarity);

 }

WGFMU_setMeasureEvent("Vd", "Id", 0, numberofIdSampling, Idinterval, 0,

WGFMU_MEASURE_EVENT_DATA_AVERAGED);

 WGFMU_addSequence(drainchannel, "Vd", numberofVdSignal);

 WGFMU_exportAscii("Pulsedbias_samp_waveform.csv");

 // ONLINE

 WGFMU_openSession("GPIB0::17::INSTR");

 WGFMU_initialize();

 WGFMU_setOperationMode(gatechannel,

WGFMU_OPERATION_MODE_FASTIV);

 WGFMU_setOperationMode(drainchannel,

WGFMU_OPERATION_MODE_FASTIV);

 WGFMU_setForceVoltageRange(gatechannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setForceVoltageRange(drainchannel,

WGFMU_FORCE_VOLTAGE_RANGE_AUTO);

 WGFMU_setMeasureMode(drainchannel,

WGFMU_MEASURE_MODE_CURRENT);

 WGFMU_setMeasureCurrentRange(drainchannel,

WGFMU_MEASURE_CURRENT_RANGE_100UA);

 WGFMU_connect(gatechannel);

 WGFMU_connect(drainchannel);

 WGFMU_execute();

 WGFMU_waitUntilCompleted();

53

// Save output files

char fileName[1024];

 sprintf(fileName, "C:PB_samp@St=%fs & Vd=%.2fV.csv",

(double)Idinterval,(double)vd);

 writeResults2(gatechannel,drainchannel, 0, numberofIdSampling, fileName);

 cout << "Pulsed bias sampling measurement output is sucessfully saved " << endl;

 WGFMU_initialize();

 WGFMU_closeSession();

 WGFMU_closeLogFile();

}

// Starts the session with the WGFMU and begins the console application.

int main()

{

//Example of DC Measurement function call with

 //DCMasurement(0.05,0.05);

 //(Gate voltage in volt , drain voltage in vol)

//Example of samplimng measurent with fixed bias function call

 //Samplingwithfixedbias(0.00001, 0.5,100,1,0.00001, 0.05,100,1,0.00001,100);

 //(Vg sampling interval,Vg in volt, No. of Vg measurement, Number of Vg signal,

 Vg sampling interval,

 //Vg,No. of Vg measurement, Number of Vg signal Id sampling interval, Number of

 Id sampling)

//Example of samplimng measurent with single frequency pulsed bias function call

 //Samplingwithpulsedbias(0.00025, 0.0001, 0.001, 0.0001, 0.4,1,0.000005,

 0.05,340,1,0.000005,340);

 //(Vg ground bias duration, Vg Risetime, Vg pulse duration, Vg Fall time, Vg in

 volt, Number of Vg signal, Vd sampling interval, Vd in volt ,No. of Vd

 measurement, Number of Vd signal,Id sampling interval, Number of Id sampling)

}

54

3.3 Visual C++ programming outputs

I-V measurement outputs

Output window:

Id vs Vg or Id vs Vd measurement output is successfully saved

After plotting output data:

A. Id vs Vg B. Id vs Vd

Figure 3-3-1: Id vs Vg graph at Vd=0.05V using Figure 3-3-2: Id vs Vd graph for three different
 WGFMU values of Vg using WGFMU

Sampling measurement outputs

A. DC Measurement output:

Output window:

DC Measurement output is successfully saved

Text File:

Output Current= 0.000159414

(Here Vg=0.5V and Vd=0.05V)

55

B. Fixed bias sampling Measurement output:

Output window:

Fixed bias sampling measurement output is successfully saved

After plotting output data:

Id sampling measurement with different sampling intervals keeping Vg and Vd at some fixed

values are shown in figure 3-3-3 and figure 3-3-4:

Figure 3-3-3 : Fixed bias Id sampling measurement Figure 3-3-4: Fixed bias Id sampling measurement
 with sampling interval=10 µs with sampling interval=1 ms

Sampling of fixed Vg and Vd are shown in below figures:

 Figure 3-3-5: Vg sampling graph for fixed bias Figure 3-3-6: Vd sampling graph for fixed bias

 with sampling interval=10 µs with sampling interval=10 µs

56

C. Pulsed bias sampling Measurement output:

Output window:

Pulsed bias sampling measurement output is successfully saved

After plotting output data:

Id sampling measurement with different sampling intervals pulsed Vg and fixed Vd at some

value are shown in figure 3-3-7 and figure 3-3-8:

Figure 3-3-7 : Pulsed bias Id sampling measurement Figure 3-3-8: Pulsed bias Id sampling measurement

 with sampling interval=5µs with sampling interval =50µs

Sampling of pulsed Vg and fixed Vd are shown in below figures:

 Figure 3-3-9: Gate pulse sampling graph with Figure 3-3-10: Vd sampling graph for pulsed bias

 sampling interval=5µs with sampling interval=5µs

57

Chapter 4

Programming for Flicker Noise Measurement

 4.1 Software arrangement before programming 58

 4.2 B2962A LabView programming 59

 4.2.1 Program block description 59

 4.3 SR570 LabView programming 60

 4.3.1 Program block description 61

 4.4 SR780 LabView programming 61

 4.4.1 Program block description 62

 4.5 LabView programming outputs 64

 4.5.1 Calculation of actual time or frequency from plotted points 69

58

4.1 Software arrangement before programming

Before starting the LabView programs, it’s necessary to install necessary drivers and software

to interface instruments and run LabView programs without any issue. If we fail to do these

properly, instrument will not be detected or not be remotely interfaced using PC or if it’s

interfaced error will come during the program execution. Following are the steps to avoid

interfacing error for all the instruments.

Drivers and software

1. NI VISA driver

2. NI Serial driver

3. LabView instrument driver of all instruments that will interface using LabView

program

 (Tools Instrumentation Find instrument drivers Instrument manufacturer

name and instrument name Search Install)

Other necessary software

1. NI max (it installs with the NI VISA driver)

(Measurement and automation explorer of NI MAX is used to identify the device and

interfaces which are connected to the computer and the installed software)

2. Keysight IO library suite (optional)

3. Quick IV measurement software

(This software is necessary for B2962A instrument. If the instrument is not recognised

in Keysight IO library suite or NI MAX after connecting the instrument with the PC

through USB A to USB B connector, it is necessary to start the instrument first time by

giving appropriate values in address, model no. , channel no. and name of the

instrument and identify it. After that it is automatically recognised in Keysight

connection expert)

59

4.2 B2962A LabView programming

Only dc output voltage of B2962A instrument is required to apply low noise power at the DUT

for flicker noise measurement. LabView program is developed as per this requirement shown

in figure 4-2-1 below. Details of all commands that are used to develop B2962A LabView

program are listed in section 2.2.1.2.

Program Block diagram

 Figure 4-2-1: B2962A LabView program block diagram

4.2.1 Program description

A. First block: Establishes communication with instrument and operationally perform reset

with the initial settings. *IDN, *RST and :SYST:LANG? commands are used in this VI.

B. Second block: It enable or disable over current/voltage protection and set compliance

range. :OUTP:PROT and :SENS:CURR/VOLT:PROT: commands are used in this block.

C. Third block: It creates pulse output, dc output, set the source mode, apply dc voltage or

current, set output auto range and the range of output lower limit. SOUR:FUNC:MODE

CURR/VOLT and SOUR:VOLT:RANG:AUTO:LLIM commands are used in this VI.

60

D. Fourth block and Sixth block: These VIs enable or disable the source output and read the

error message. Error block is inside this block which reads to error message. :OUTP,

:OUTP:STAT: commands are used in these Vis.

E. Fifth block: This VI specifies the tripping of over current or voltage and returns the output.

:SENS:CURR/VOLT:PROT:TRIP?: command is used here.

G. Seventh and Eighth block: It executes the spot measurement and returns the measurement

data. :MEAS ?: command is used in this VI.

H. Ninth block: Performs error query before terminating software connection the instrument.

4.3 SR570 LabView programming

For flicker noise measurement, SR570 low noise current preamplifier’s LabView program is

developed with some specific controls as per requirements shown in figure 4-3-1. Details of all

commands that are used to develop SR570 LabView program are listed in section 2.2.2.2.

Program Block diagram

 Figure 4-3-1: SR570 labView program block diagram

61

4.3.1 Program description

A. First block: Establishes communication with instrument and operationally perform reset

with the initial settings. Here specified baud rate, flow control, parity, data bits and stop bits

are 9600, none, none, 8 and 2 respectively which should be same for the instrument, LabView

programing and the computer. *RST command is used here.

B. Second block: It configures current to voltage ratio (sensitivity) between the input and the

output. SENS, SUCM and SUCV commands are used here.

C. Third block and Ninth block: It controls current amplitude offset applied to the input

current. IOON, IOSN, IOLV, IOUC and IOUV commands are used in this VI.

D. Fourth block: It configures the filter settings. These include lowpass, highpass and

bandpass filter setting. FLTT, HFRQ and LFRQ commands are used.

E. Fifth block: Configures the offset bias voltage in the input. BSON and BSCV commands

are used in this VI.

F. Sixth block: This VI sets the gain mode of the amplifier. GNMD command is used here

G. Seventh block: Inverts the output signal. INVT command is used in this VI.

H. Eighth block: It blanks the front end output of the amplifier if enabled. BLNK command

is used here.

I. Tenth block: Performs error query before terminating software connection the instrument.

4.4 SR780 LabView programming

In flicker noise measurement, this instrument is used to collect the voltage signal which is

coming as the output of SR570 after amplification and analyse it in time domain, FFT, PSD

(power spectral density) in appropriate measurement scale, unit with collecting the

measurement data. LabView program is developed as per these requirements shown in figure

4-4-1 below. Details of all commands that are used to develop SR780 LabView program are

listed in section 2.2.3.2.

62

Program Block diagram

 Figure 4-4-1: SR570 LabView program block diagram

4.4.1 Program description

A. First block: This VI passes the addressing information in the instrument descriptor to the

Instr Open VI and returns the instrument ID. It initializes the instrument and reset it with the

default settings. It also returns the SR780's device identification string and sets (queries) the

output interface (RS232 or GPIB). Only the remote interface settings are not changed (all

stored data are lost). Here specified baud rate, flow control, parity, data bits and stop bits are

9600, none, none, 8 and 1 respectively which should be same for the instrument, LabView

programing and in the port settings of the computer.

63

 Figure 4-4-1-1: Serial communication cluster

The above cluster structures (block diagram of the initialization block) are important to specify

for any LabView program which is interfaced using serial communication in computer. OUTX

1 is to set the output interface as RS232. *IDN and *RST commands are used hare.

B. Second block: This VI configures the Measurement Group for both displays. MGRP

command is used in this VI.

C. Third block: This VI configures the FFT resolution. It is valid only when the Measurement

Group is FFT or Correlation. FLIN command is used in this block.

D. Fourth block: Configures the FFT or time domain measurement for FFT measurement

group. MEAS and VIEW commands are used in this block.

E. Fifth block: This VI configures the display units for selected display. UNIT and PSDU

commands are used in this VI.

F. Sixth block: This VI configures the source. SRCO and STYP commands are used in this

VI.

G. Seventh block: It configures the sine source. This VI is valid only when the Source type is

Sine. S1FR, S1AM, SOFF, S2FR and S2AM commands are used here.

H. Eighth block: This VI returns all the data in selected display. The returned data depends

upon the display View and Units. DSPY? command is used for RS232 communication

interface and DSPN?, DSPB? commands are used for GPIB communication interface.

I. Ninth block: This VI closes the I/O interface with the instrument.

I. Ninth block: Indicate whether an error occurred. If an error occurred, this VI returns a

description of the error and optionally displays a dialog box.

64

4.5 SR780 LabView programming outputs

A. Sinusoidal signal

Time domain: (400 FFT lines)

Y axis unit: Volt (pk to pk)

Frequency of the signal= 10.24 kHz

 Figure 4-5-1: Sinusoidal signal in time domain with 400 FFT lines

Time domain: (800 FFT lines)

Y axis unit: Volt (pk to pk)

 Figure 4-5-2: Sinusoidal signal in time domain with 800 FFT lines

65

FFT: (400 FFT lines)

Y axis unit: Volt (pk to pk)

 Figure 4-5-3: Sinusoidal signal FFT with 400 FFT lines

FFT: (800 FFT lines)

Y axis unit: Volt (pk to pk)

 Figure 4-5-4: Sinusoidal signal FFT with 800 FFT lines

66

PSD: (800 FFT lines)

Y axis unit: V2 / Hz (Vrms
2/Hz); X axis and Y axis both are in log scale.

Figure 4-5-5: Sinusoidal signal PSD

B. Square wave Signal

Time domain: (400 FFT lines)

Y axis unit: Volt (pk to pk)

Frequency of the signal= 10.24 kHz

 Figure 4-5-6: Square wave signal in time domain

67

FFT: (400 FFT lines)

Y axis unit: Volt (pk to pk)

 Figure 4-5-7: Square wave signal FFT

PSD: (800 FFT lines)

Y axis unit: V2 / Hz (Vrms
2/Hz); Only y axis is in log scale.

Figure 4-5-8: Square wave signal PSD

68

C. Triangular wave signal

Time domain: (400 FFT lines)

Y axis unit: Volt (pk to pk)

Frequency of the signal= 10.24 kHz

 Figure 4-5-9: Triangular wave signal in time domain

FFT: (400 FFT lines)

Y axis unit: Volt (pk to pk)

Figure 4-5-10: Triangular wave signal FFT

69

PSD: (400 FFT lines)

Y axis unit: V2 / Hz (Vrms
2/Hz); X axis and Y axis both are in log scale.

 Figure 4-5-11: Triangular wave signal PSD

4.5.1 Calculation of actual time or frequency from the plotted

 points

Actual time or frequency =
𝑃

L
 . 𝐼 (1)

Where,

 P= x coordinate of the measured point in LabView waveform graph.

L= Maximum x-axis scale limit in LabView waveform graph.

 (For n lines FFT its value is n. n may be equal to 100, 200, 400 or

 800)

 I= Maximum x-axis scale limit in the instrument (in Hz or kHz).

 For above plots:

 L= 400 or 800

 I= 102.4 kHz

 From the figure 4-5-3 (400 FFT lines), Sinusoidal signal FFT peak is at 40.

 So, from the equation (1), frequency (f) =
40

400
 x 102.4 kHz = 10.24 kHz (2)

 Similarly, from the figure 4-5-4, peak frequency =
80

800
 x 102.4 kHz =10.24 kHz (3)

70

Chapter 5

Discussion, Challenges and Conclusion

71

Discussion

Automation of LFN measurement in terms of RTN and flicker noise measurements, for doing

all measurements, data acquisition and analysis of data efficiently, was done. Some basic

program outputs and plots of automated RTN and flicker noise measurement setups have been

shown systemically.

For RTN measurement automation, Visual C++ program has been developed for both

I-V and sampling measurements for WGFMU measurement module. Visual C++ programs for

I-V measurement have been developed for Id (drain current) vs Vg (gate voltage) keeping

Vd(drain voltage) at 0.05V (50mV) and Id vs Vd keeping Vg in three different values (0.3V,

0.5V and 0.7V). After connecting DUT to test programs with above specified values, measured

outputs are plotted in figure 3-3-1 and 3-3-2. Both the cases gate and drain voltages are

increased with a specified voltage step and drain currents are measured with a correct sampling

interval to cover the full voltage sweep range of gate or drain voltage. Number of measurement

data can be varied by changing the step voltage of Vg or Vd. The results of I-V measurements

are used to analyse sampling measurement results properly for RTN measurement. Drain

sampling measurements are directly useful to measure RTN.

Sampling measurement programs are developed for both fixed and pulsed gate bias

voltages. Sampling interval of measured drain current and number of measurement points can

be changed in the program. Creating several (as necessary) fixed bias and pulsed bias sampling

measurement program functions (Samplingwithfixedbias() and Samplingwithpulsedbias())

with different drain current sampling intervals (output file names should be different for each

program functions) and calling these functions simultaneously in main function of the

program, it is possible to get outputs with different sampling interval running the program a

single time only. It saves lots of measurement time for different sampling intervals. Figure 3-3-

3 and 3-3-4 show the output plot of sampling measurement program with fixed gate bias

(Vg=0.3V, Vd=0.05V) and figure 3-3-7 and 3-3-8 show the output plot of sampling

measurement program with pulsed gate bias (Vg=0.4V, Vd=0.05V). Here outputs are taken

with 10 µs and 1 ms for fixed bias sampling and 5 µs and 50 µs for puled bias sampling

measurements. Any number of drain current measurement points can be given in the sampling

measurement programs. Sampling interval and number of points of Vg and Vd must be changed

in accordance with the Id sampling interval and the measurement points. Timing error will

come in the program if total sampling time of applied Vg or Vd is less than the total sampling

72

time of Id measurement. Total sampling time of Id measurement must be less than or equal to

the total sampling time of applied Vg or Vd. Log files are created to save all log errors and

warnings coming from the execution of WGFMU functions. The causes of the errors and

warnings can be found in the WGFMU user manual [6] using corresponding error codes saved

in the log file. All output files are saved in the specified location in the PC as specified in the

output file saving portion of the program code. In figure 3-3-2, Id vs Vd graphs for different Vg

are not exactly parallel (specially graph for Vg = 0.3V is nearly correct). This is due to the

defined measured current range in the program which was 1mA in our case and because of that

reason plots with higher currents came correctly with good resolution. For sampling

measurements in figure 3-3-3 and 3-3-4, noise in the current has come near 5.5 µA current at

Vg = 0.3V and Vd = 0.05V which is almost equal to the measured current from Id vs Vg graph

at the same Vg and Vd. So, the outputs data plots of RTN setup automation are justified.

For flicker noise measurement automation, LabView program has been used. Different

known signals (sine, square and triangular) are applied to the input of SR780 instrument and

time domain, FFT and PSD of the signals are studied (figure 4-5-1 to 4-5-11). The results of

this analysis come as output of the SR780 LabView program to the PC and get the plots in

LabView front panel waveform graphs. It can also be exported in Microsoft Excel workspace

where measured data points can be saved. Time domain signal, FFT and PSD of the signals

can be plotted with 100, 200,400 or 800 FFT lines frequency resolution as defined in the

instrument. Here plots are shown only for 400 and 800 FFT lines frequency resolution. For 400

FFT lines we can get 1024 time domain data points and for 800 FFT lines we can get 2048

time domain data points. Scale of x axis in LabView waveform graphs are plotted in unit less

serial numbers depending on the span and resolution of FFT. The measured time or frequency

(in x axis) can be converted into actual frequency using the formula written in section 4.5.1.

From the equation (1), figure 4-5-3 and 4-5-4, the calculated peak frequency of the FFT of the

applied Sinusoidal signal is 10.24 kHz [equations (2) and (3)] which is exactly same as the

frequency of applied signal and same thing also for the PSD of the sinusoidal signal (figure 4-

5-5). So, the outputs data plots of Flicker Noise setup automation are justified.

Challenges

In this section the key challenges of this work are described briefly. As this work includes

instruments setup, automation programming, measurement and data acquisition, challenges of

this work present in all of these sections. The challenges are discussed briefly below.

73

Programming IDE selection: Proper programming IDE was needed to select for developing

C++ automation programs of RTN measurement. Code block, Dev C++, turbo C++ are not

compatible with the WGFMU library functions. Microsoft Visual C++ was found compatible

and all programs are developed in this IDE.

Functions to open files and save data: ‘fopen’ function is used to open writable files to save

measured output data. But present IDEs show compilation error in this function due to the

safety issues and tell to use ‘fopen_s’ function instead of ‘fopen’. But ‘fopen_s’ is an obsolete

function and shows compilation error also. Similar warning was showing for ‘sprintf’ function

also which is used to write anything inside the writable opened file. ‘#pragma warning (disable

4996)’ has been used to turn off the warning related to the ‘fopen’ and ‘sprintf’ functions.

Device damage issue: This issue is observed during RTN measurement using Visual C++

programming. In this work, Visual C++ programs are developed based only on the WGFMU

measurement module of B1500 instrument. When the EasyEXPERT software which uses

SMU measurement module, runs simultaneously with the Visual C++ program (uses WGFMU

measurement module) some extra current flows through the corresponding device (DUT) due

to the certain switching of RSU and the device is damaged. This issue is solved by running

either Visual C++ program or EasyEXPERT software at a time.

Use of LabView program: Flicker Noise measurement instruments can also be automated

using C or C++ programming languages. There are three instruments (B2962A, SR570,

SR780) in the flicker noise measurement setup which are controlled remotely using lots of

commands. To find/remember useful commands from the manuals and input these in the

appropriate position of the C or C++ programs to execute the specified work are very

cumbersome and time consuming. LabView is a GUI based lab VI programming software

where all specified control of the instruments can be done without finding/remembering and

writing lots of commands several times.

Interfacing issue of SR570: After installing LabView and the instrument driver, SR570

instrument was not interfacing. This occurs due to the problem in RS232 to USB converter

cable or other software/driver issues. RS232 to USB serial converter can be tested using hyper

terminal or access port software. Access port is used to test the pins of RS232 to USB serial

converters. During loopback test if we write any text in the transmitter window of the access

port and send the data, that data will appear in the receiver window of the access port software

which shows the correctness of the RS232 to USB serial converter. RS232 to USB serial

converter showed its correctness in loopback test. The problem was solved after installing NI

VISA software which is necessary software to interface any instrument using LabView

74

through GPIB or RS232 connectors. Details of necessary software and drivers for LabView

program environment are discussed in the section 4.1.

Initialisation issue of SR780: SR780 instrument can be interfaced using GPIB or RS232 or

LAN. RS232 to USB serial converter is used in this work. We faced some initialisation issues

during the LabView program execution. This issue is occurred due to not specifying the baud

rate, flow control, parity, data bits and stop bits in the LabView program. This issue is solved

after developing the SR780 LabView program compatible for RS232 by putting serial

communication cluster in the program and specifying baud rate, flow control, parity, data bits

and stop bits same for the instrument, LabView program and in the port settings of the

computer which are discussed in the section 4.4.1.

SR780 resetting issue: Every time when LabView program of SR780 instrument is initialised

and executed, the instrument resets. Resetting of the instrument means the instrument starts

with the default settings. As SR780 is using in a flicker noise measurement setup, every time

instrument resetting during program execution may give wrong measurement result. But it was

observed after several measurements and also found in the SR780 manual, the SR780 remote

control settings don’t change after resetting the instrument, only pre-set the instrument.

Conclusion

In view of the limitation in speed and applicability of using USB A to USB B connector and

RS232 to USB serial converter an attempt has been made here to make the automation more

cost effective. Automation of RTN and Flicker Noise measurements can also be done using

only GPIB interface of all measurement instruments (except SR570 which supports only

RS232 interface) with better speed and functionality. In the same way like this work, any

measurement which delivers huge volume of measurement data output and consume huge time

to measure, can possible to interface all measurement instruments to a computer and automate

the control of those instruments using various programming software. Another measurement

module of B1500 instrument called SMU has better current measurement resolution (in pA

range) than WGFMU (in µA range). So, I-V measurement can be done using SMU with more

accuracy. SMU can be automated using Visual Basic software. All RTN and Flicker Noise

characterization setups can be automated only using LabView programming for making

instruments control much easier and users friendly. In this report pre reliability testing

automation is done using Visual C++ (for RTN measurement) and LabView (for flicker noise

measurement) programming but during post reliability testing analysis, after automation and

all measurements, results may be analysed in Matlab.

75

References

76

[1] Chengqing Wei, Yong-Zhong Xiong, and Xing Zhou, “Test structure for characterization

 of low-frequency noise in CMOS technologies”, IEEE Transactions on Instrumentation

 and Measurement, vol. 59, no. 7, p. 1860, July 2010.

[2] Maurício Banaszeski da Silva, “A Physics-Based Statistical Random Telegraph Noise

 Model”, IEEE Transactions on Electron Devices, pp. 14-21, September 2016.

[3] K. Takeuchi, T. Nagumo, K. Takeda, S. Asayama, S. Yokogawa, K. Imai and Y. Hayashi,

 “Direct Observation of RTN-induced SRAM Failure by Accelerated Testing and Its

 Application to Product Reliability Assessment” Symposium on VLSI Technology, p. 189,

 17 June 2010.

[4] Qianying Tang, and Chris H. Kim,“Characterizing the Impact of RTN on Logic and SRAM

 Operation Using a Dual Ring Oscillator Array Circuit” IEEE Journal of Solid-State

 circuits, vol. 52, no. 6, p. 1654, June 2017.

[5] Agilent B1500A Semiconductor Device Analyzer User’s Guide, 6th ed., Agilent

 Technologies, Santa Clara, CA, November 2007.

[6] Agilent B1530A Waveform Generator/Fast Measurement Unit (WGFMU) Technical

 Overview, 5th ed., Agilent Technologies, Santa Clara, CA, April 14 2008.

[7] Agilent B1530A Waveform Generator/Fast Measurement Unit User’s Guide, 5th ed.,

 Agilent Technologies, Santa Clara, CA, August 2012.

[8] Kolton T. Drake, “Biometric application of ion-conducting-based memristive devices

 in spike-timing-dependent-plasticity” pp. 47-119, August 2015

[9] Keysight Technologies B2961A/B2962A low noise power source User’s Guide, 3rd ed.,

 Agilent Technologies, Santa Clara, CA, May 3rd 2016.

[10] Keysight Technologies B2961A/B2962A low noise power source Programming Guide,

 4th ed., Agilent Technologies, Santa Clara, CA, May 4th 2016.

[11] Stanford Research System, SR570 current pre amplifier User’s Guide and Data sheet,

 Revision 1.7., SRS, Sunnyvale, CA, August 2015.

[12] Stanford Research System, SR780 spectrum analyser User’s Guide and Data sheet,

 SRS, Sunnyvale, CA, August 2015.

