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Abstract

Voice communication being the traditional and most widely used form of com-
munication by sheer number, has to be improved upon in terms of its quality and
cost. The cost optimization could be done by supporting the voice service by
transitioning to packet infrastructure. The problem with that approach is that
the jitter introduced by a node in packet infrastructure would be much higher
than that of typical jitter in legacy TDM networks(like PDH/SDH networks).
This being the genesis of the TDM over PSN problem, which predominantly
handles this through manipulation of service times in the jitter buffer.

In this thesis work, We also look into the service times in the intermediate
routers in a TDM over PSN problem to choose a statistical distribution for them
such that the output jitter is minimal. The key to such service distribution is to
identify a positive distribution such that the mean and variance are analytically
independent,i.e., should allow the user to choose mean and variance indepen-
dently. When the utilization of the corresponding queue is near to 1,then the
IDTs variance could be controlled by service variance.
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Abbreviations

TDM Time Division Multiplexing
PSN Packet Switch Network
PDH Physical Digital Hierarchy
SDH Synchronous Digital Hierarchy
IP Internet Protocol
CES Circuit Emulation Service
MEN Metro Ethernet Network
CPRI Common Public Radio Interface
RRH Remote Radio Head
TSN Time Sensitive Switch
CoE CPRI over Ethernet
IDI Inter Departure Interval
TDMoPSN TDM Over PSN
SONET Synchronous Optical Network
MPLS Multi-Protocol Lable Switching
ATM Asynchronous transfer mode
BBU Base Band Unit
PDF Probability Distribution Function
CDF Cumulative Distribution Function
M/M/1 Poisson arrival , Exponential Service rate with

single server (Kendall’s Notation)

M/G/1 Poisson arrival , General distribution Service rate
with single server

9



Chapter 1

Introduction

1.1 TDM over PSN (TDMoPSN)

Traffic smoothing in communication /computer networks is an old-age prob-
lem in which the deterministic approaches like ’leaky bucket’ algorithm is very
common. In that approach there might be packet losses if a burst occurs. Pseu-
dowire, PDH over IP or SDH over IP, CES in MEN, and the latest problem
of CPRI over Ethernet are all have one common aspect that is they all involve
TDM over PSN. In CPRI fronthaul network[1] ,stringent bandwidth, latency,
and jitter requirements play important role. Ethernet can be a cost-effective
solution to carry the CPRI traffic. The jitter management plays significant role
for CPRI over Ethernet. So we can consider there is Poisson arrival process for
incoming packets from different Remote Radio Heads(RRHs) to CPRI network.
In general, we have different data rates for different RRHs, so random packet
arrivals and different data rate produces variable delay at the transmitting side
of CPRI fronthaul network. The latencies at switches are unavoidable due to
introduced delays but manageable once the values of non-deterministic variable
delays are constant, known or predictable. For that we have to do scheduling of
arrival packets. In CPRI fronthaul networks there are Time Sensitive Network
(TSN) switches where COE mapping and scheduling of arriving packets takes
place. We proposed a statistical model in which, we are able minimize output
jitter by queue modeling. This Statistical model can be apply at TSN switches
of CPRI fronhaul network.

1.2 Queuing model for jitter minimization

In case of scheduling/ modeling queues or in our case random arriving packets,
we generally prefer M/M/1 queue which is consider as the most elementary of
queuing models. Although M/M/1 queuing model gives better modeling results
for mean queue length, mean waiting time and for output variance but it can
be possible to find new queuing model such that it will give better performance
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CHAPTER 1. INTRODUCTION 11

for all parameters in comparison with M/M/1 queue. Output jitter can be seen
as variance of Inter Departure Intervals (IDIs). So for minimizing jitter we
have to focus on minimizing IDI variance. So, while modeling any queue we
can consider two possibilities one is queue is non-empty and other is queue is
empty or arrival process is taking place continuously. So,for non empty queue
departure will follow service distribution,because arrival process is not affecting
to departure if server is serving non-empty queue. which says that if we could
able to minimize the variance of service distribution it will automatically reduce
jitter (IDI variance). So, we try to find few service distribution so that we can
control mean and variances independently such that by keeping mean constant
we must able to reduce variance. For second case where queue is not full the IDI
variance will not depend on service distribution, here in this case arrival process
will also have to consider in account. In this case we have to find a model such
that its overall output IDI variance is less than that of M/M/1 queue. We have
tried to model M/G/1 queue with different types of service distribution so that
we will able to brings out better output jitter in comparison with M/M/1.

1.3 Thesis Overview

This thesis gives a new perspective on the above problems, by exploiting the
effect of correlations in the service intervals on the IDI process. In this the-
sis we are going to discuss about how we can achieve output jitter minimum
than that of M/M/1 queuing model by introducing M/G/1 queuing model with
distribution such as Beta prime and Inverse Gaussian as a service distribution
of M/G/1 queue. In Chapter 1, we have discussed about background and in-
troduction of time sensitive networks and queuing models. In Chapter 2, we
mentioned some applications related to TDMoPSN which are most widely used
in real world. Chapter 3 Background materials, we briefly discussed about dif-
ferent type of distribution which we are going to use for modeling queues. While
in search of required distribution we almost went through 10 different types of
positive random variable distribution. We also mentioned all parameters like
mean, variance, probability distribution function and analytical independence
of their parameters briefly for each distribution in this section. In Chapter 4, we
have found out two distributions which are fitted perfectly as per our require-
ment. So, we analyze queue parameters e.g. Mean queue length, mean waiting
time, IDI variance etc. in detailed manner by considering these distributions
as a service of queuing models. We also plot graphs for both distributions to
compare parameters with M/M/1 queue.



Chapter 2

Real Time Application of
TDMoPSN

2.1 SDH Over IP Synchronous Digital
Hierarchy

Synchronous Digital Hierarchy (SDH) and Synchronous Optical Network (SONET)[3]
are refer to group of fiber optic transmission rates that can transport digital
signal with different capacity. The need to reduce network operating cost and
increase revenue were the drivers behind the introduction of SDH. The charecter-
istics of SDH , however, make it more suitable for this application, because it
offers better transmission quality , enormous routing flexibility and support the
facility such as path self healing.
In the multiplexing process, payloads are layered into lower order and higher
order virtual containers, each including a range of overhead functions for man-
agement and error monitoring. Transmission is then supported by the attach-
ment of further layers of overheads. This layering of functions in SDH, both
for traffic and management, suits the layered concept of a service based net-
work better than the transmission oriented PDH standards.To support range
of operations, SDH includes a management layer whose communications are
transported within dedicated data communication channel time slots inside the
interface rate. Managing capacity in the network involves operations such as
protection for circuit recovery, provisioning for all the allocation of capacity to
preferred routes, consolidation of traffic from unfilled bearers onto fewer bearers
in order to reduce waste of traffic capacity and the sorting of different traffic
types from mixed payloads into separate destinations for each type traffic.
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CHAPTER 2. REAL TIME APPLICATION OF TDMOPSN 13

2.2 Circuit Emulation Service(CES) over Metro
Ethernet Network

CES allows the transport of synchronous circuit such as TI/E1 over asyn-
chronous network so that it is received error-free with constant delay. The
object of this is to allow MEN[2] service providers to offer TDM services to
customers.

Fig.2.1: Circuit Emulation Service (TDM) over MEN

Hence it allows MEN service providers to extend their reach and addressable
customer base. The MEN must maintain the bit integrity, timing information
and other client-payload specific characteristics of the transported traffic with-
out causing any degradation that would exceed the requirements for the given
service.
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2.3 Pseudo Wire

Pseudowire is a mechanism for emulating various networking or telecommunica-
tions services across packet-switched networks that use Ethernet, IP, or MPLS.
Services emulated can include T1 leased line, frame relay, Ethernet, ATM, TDM,
or SONET/SDH[4].

Fig.2.2: Psuedowire on VLAN

Psuedowire provide the functions in order to emulate the behavior and char-
acteristics of the native service like Managing the signaling, timing, order, or
other aspects of the service at the boundaries of the Psuedowire. The applica-
bility of Psuedowire to a particular service depends on the sensitivity of that
service or the CE implementation , and on the ability of the adaptation layer
to mask them.The PSN carrying a Psuedowire will subject payload packets to
loss, delay, delay variation, and re-ordering. During a network transient there
may be a sustained period of impaired service.
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2.4 CPRI Over Ethernet (5G)

CPRI (Common Public Radio Interface) is a specification for wireless commu-
nication networks that defines the key criteria for interfacing transport, connec-
tivity and control communications between base-band units (BBUs) and remote
radio units (RRUs)[1]. An important feature of CPRI is its support for separa-
tion between the base frequency band and the radio frequency band. Benefits
of CPRI include, Base station manufactures can use one common protocol, The
specifications are freely made available to the public and The public can con-
tribute ideas and proposals about the CPRI specifications.

Fig.2.3: CPRI fronthaul network structure

So, in fig. 2.3 we can see SW-1, SW-2 ,SW-3 which are TSN switches.
These switches used for managing packet arrivals from different RRHs and CoE
mapping. For jitter minimization we either have to remove introduced variable
delay or try to maintain constant delay in arriving packets. We can apply
our proposed statistical model at TSN switches such that it will reduce overall
output variance to acquire minimum jitter at the output.
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2.5 Synchronous Ethernet (Sync E)

time division multiplexing (TDM) services such as T1/E1 and SONET/SDH re-
quire synchronized clocks at both the source and destination nodes. Similarly,
wireless base stations require synchronization to a common clock to ensure a
smooth call hand-off between adjacent cells. one gaining momentum is Syn-
chronous Ethernet (SyncE)[5]. SyncE uses the physical layer interface to pass
timing from node to node in the same way timing is passed in SONET/SDH
or T1/E1. This gives telecom and wireless providers confidence that networks
based on SyncE will be not only cost-effective, but also as highly reliable .



Chapter 3

Background Material

Mathematically we try to get Minimum Inter Departure Interval (IDI) Variance
by two approaches Mentioned below:-

� Find such distributions whose variance (σ2) can be controlled indepen-
dently of their mean (µ) by keeping its mean constant.

� Find M/G/1 distribution whose IDI variance is less than that of M/M/1
queue.

3.1 Positive Distributions for Statistical
modeling with first approach

The list of positive distributions, which have the property of variance could be
reduced arbitrarily small while keeping the mean constant, are given below.

3.1.1 Beta-Prime distribution:-

Beta prime distribution is identified its density function as given below

fB2 (x;α, β) =
xα−1 (1 + x)

−α−β

B (α, β)

where α > 0 and β > 0 are shape parameters and the distribution is positive
type x > 0.

3.1.1.1 Mean and variance

The mean is given by µB2 = α
β−1 and variance by σ2

B2 = α(α+β−1)

(β−2)(β−1)2 here α, β

> 0. We are interested in looking into the form of mean & variance, which
allows to see explicitly whether it is possible to change variance keeping mean
constant.
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3.1.2 Gamma Distribution and Erlang distribution

Gamma distribution is used to model in a number of real-world situations:
the size of insurance claims (in economics), rainfall (weather prediction), multi-
path fading of signal power (in wireless communication), inter-spike intervals (in
neuroscience), bacterial gene expression (biology) etc. Here, we choose Gamma
distribution for service, since it could model a real world (positive) quantity as
a positive RV whose mean could independently be decided over its variance.

3.1.2.1 Gamma Distribution PDF and CDF

The cumulative distribution function (CDF) of the standard Gamma distribu-
tion is defined by

F (x;α, β) =

� x

0

f(u;α, β) du =
γ(α, βx)

Γ(α)
(3.1)

where γ(α, βx) is the lower incomplete gamma function and α > 0, β > 0.
Its probability density function is

f(x, α, β) =
βαxα−1e−βx

Γ(α)
(3.2)

for x > 0, α, β > 0.

3.1.2.2 The mean and variance is given by

mean of gamma distribution =µX = α
β and variance = σ2

X = α
β2 .

3.1.2.3 Moments

The mean of Gamma distribution is given by µ=α
β and its variance σ2

(x,α,β)=
α
β2 .Now

for analytical independence of mean and variance could be seen by rewriting the

expression for variance as σ2
(x,α,β)=

(αβ )

β .But we know µ = α
β .Using this, rewrit-

ing the expression for variance, we get µ
β .

3.1.3 Inverse Gamma distribution

The inverse gamma distribution is a two-parameter family of continuous prob-
ability distributions on the positive real line, which is the distribution of the
reciprocal of a variable distributed according to the gamma distribution.

3.1.3.1 PDF and CDF of inverse gamma distribution

probability distribution function is f(x;α,β) = βα

Γ(α)x−α−1 exp(−βx ) ,

cumulative distribution function is F(x;α,β)=
Γ(α, βx )

Γ(α) α, β > 0.
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3.1.3.2 Mean and Variance

mean = µIG = β
α−1 here α > 1 , Variance = σ2

IG= β2

(α−1)2(α−2) here α > 2.

here analytical independence can be expressed as σ2
IG=

µ2
IG

α−2
So, by controlling α we can control variance . for higher values of α variance
will be minimum

3.1.4 Inverse Gaussian distribution

the inverse Gaussian distribution (also known as the Wald distribution) is a
two-parameter family of continuous probability distributions with support on
(0,∞). while the Gaussian describes a Brownian motion’s level at a fixed time,
the inverse Gaussian describes the distribution of the time a Brownian motion
with positive drift takes to reach a fixed positive level.

3.1.4.1 PDF and CDF of inverse Gaussian distribution

PDF f(x, λ, µ) = ( λ
2πx3 )1/2 exp(−λ(x−µ)2

2µ2x ) ,

CDF F(x, λ, µ) = Φ((λx )1/2( xµ − 1)) + exp( 2λ
µ )Φ(−(λx )1/2( xµ − 1)) here µ, λ > 0

3.1.4.2 Mean and Variance

mean = µI−gaussian = µ and variance = σ2
I−gaussian = µ3

λ

analytical independence can be seen as σ2
I−gaussian =

µ3
I−gaussian

λ

3.1.5 Log-normal distribution

The log-normal distribution is important in the description of natural phenom-
ena. This follows, because many natural growth processes are driven by the
accumulation of many small percentage changes. These become additive on a
log scale.The length of chess games tends to follow a log normal distribution.

3.1.5.1 PDF and CDF of log normal distribution

PDF f(x, µ, σ) = 1
xσ
√

2π
exp(− (ln x−µ)2

2σ2 ) ,

CDF F(x, µ, σ) = 1
2 + 1

2erf( ln x−µ√
2σ

)

Here, σ > 0, µ ε (-∞, +∞)

3.1.5.2 Mean and Variance

mean = µLog−N= exp(µ+ σ2

2 )

Variance = σ2
Log−N = [(expσ2 − 1) exp 2(µ+ σ2

2 )]
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analytical independence σ2
Log−N = (expσ2 − 1)(µLog−N )2

3.1.6 Scaled-Inverse Chi-Square distribution

the scaled distribution has an parameter τ2, which scales the distribution hor-
izontally and vertically, representing the inverse-variance of the original under-
lying process. Also, the scaled inverse chi-squared distribution is presented as
the distribution for the inverse of the mean of ν squared deviates, rather than
the inverse of their sum.

3.1.6.1 PDF and CDF of Scaled inverse chi squared distribution

PDF f(x, τ2, ν) =
(τ2 ν

2 )
ν
2 exp(− τ2ν

2x )

Γ( ν2 )∗x( ν
2

+1) ,

CDF F(x, τ2, ν) =
Γ
(
ν
2 ,
τ2ν
2x

)
Γ( ν2 )

where, ν = Number of chi-squared degree of freedom , τ2 =Scaling parameter.

3.1.6.2 Mean and Variance

mean = µSCI = ντ2

ν−2 for ν > 2

Variance σ2
SCI =2 ν2τ4

(ν−2)2(ν−4) for ν > 4

analytical independence e σ2
SCI =2

µ2
SCI

((ν−4)

All above mentioned 7 distributions possess the property of controlling its vari-
ance by keeping its mean constant which satisfy our first approach.

3.2 Distributions for statistical modeling with
second approach

In this approach we tried to find mean queue length by using Pollaczek-Khinchin
formula which was difficult task because there are two forms of P-K formula but
we mostly focused on first one which is

Q (z) = B∗(λ−λz)∗(1−z)∗(1−ρ)
[B∗(λ−λz)−z] ( Pollaczek-Khinchin formula)[6]

for mean queue length expression is Q bar = d
dz (Q(z))|z=1

here in this expression we have to find Laplace transform of given
distribution.

There is one more form of P-K formula and whose calculation is easy
to calculate mean queue length.

Q (z) = B∗(λ−λz)∗(1−z)∗(1−ρ)
[B∗(λ−λz)−z] ,

Q’(1) = ρ + λ2E[X2]
2(1−ρ) [2 nd form of P-K Formula]
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Using above formula we solve for below mentioned distribution queue
length

3.2.1 Gamma and Erlang-k Distribution

Gamma distribution follows in many real life applications like in oncology ,
neuroscience , amount of rainfall etc. for example the amount of rainfall accu-
mulated in reservoir is followed by gamma distribution. Other distribution like
Erlang (when shape parameter can takes only positive integer value) , Expo-
nential (shape parameter k=1) , Chi squared distribution are special cases of
gamma distribution. Here we explained mean Queue length of Erlang-k distri-
bution is less than M/M/1 mean queue length by using P-K formula.

E[X] = 1
µ = k

β here k → Shape parameter (kεN),β →Scale parameter ,

E[X2] = σ2
Er + µ2

Er; (µEr, σ
2
Er =Mean ,Variance of Erlang-2 distribution re-

spectively)

E[X2] = k
β2 + k2

β2 = k(k+1)
β2

By P-K Formula, for mean queue length Q bar

Q barEr = ρ+ (k+1)ρ2

2k(1−ρ) (ρ =Utilization factor ,λ =Poisson arrival rate ,µ=Erlang-

k Service rate)

For M/M/1 mean queue length Q bar can be rewritten as ρ+ ρ2

(1−ρ) < ρ+ (k+1)ρ2

2k(1−ρ)
(Q barEr,Erlang-k mean queue length )
Same expression will have for gamma also, but in case of gamma k can be any
positive real value.

3.2.2 Inverse Gaussian Distribution

We will do the same analysis for mean queue length of Inverse Gaussian distri-
bution as we did for Erlang-k distribution. It has two parameters µ(mean) and
λ(shape) . µ, λ> 0.

E[X] = 1
µInv−Gaussian

= µ here µInv−Gaussianis service rate of Inverse Gaus-

sian Distribution ,

Variance σ2
Inv−Gaissian =µ3

λ , E[X2] = σ2
Inv−Gaissian + E2[x] = µ2 + µ3

λ

Q barInv−Gaussian = ρ +
ρ2(1+µ

λ )

2(1−ρ)
From above Expression we can say that if µ> λ then
Q barInv−Gaussian > Q barM/M/1
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3.2.3 Chi-Squared Distribution

This distribution is used for hypothesis testing.It is special case of gamma dis-
tribution , which has one controlling parameter k (k ε N) called as degree of
freedom. For k=2 Chi-squared behaves as a exponential distribution.

E[X] = 1
µChi−sqr

= k , Var[X] = σ2
Chi−sqr = 2k , E[X2] = k2+2k

Q barChi−sqr = ρ +
ρ2 (k+2)

k

2(1−ρ)

λ, µChi−sqr are Poisson arrival rate, Chi-squared service rate respectively
So, for Chi-Squared distribution also we found that mean queue length is less
than that of M/M/1.

3.2.4 Rayleigh Distribution

This distribution also have many real life application like it is used in MRI
images,Human and animal nutrition linking , Wind direction analysis etc. It
has only one scale parameter σ(σ > 0).
Mean and variance is defined as E[X]= 1

µR
= σ

√
π
2 , Var[X] = 4−π

2 σ2 .

so, second moment E[X2]= E2[X] + Var[X] = σ2π
2 + 4−π

2 σ2=2σ2

Mean queue length Q-barR
Q-barR= ρ + 2ρ2

π(1−ρ)
Hence, Q barR<Q barM/M/1

3.2.5 Pareto Distribution

Pareto distribution has widely application in real world . Sizes of sand parti-
cle,Human settlement rate in cities, wealth allocation in population this are the
few applications where pareto distribution is used. In case of distribution of
income of world population, 80% of wealth is controlled by 20% population this
is also known as pareto principle.

Pareto distribution has two parameters α(Shape), xm(Scale). Both α, xmpossess
positive real value. i.e. α, xm>0.
Mean queue length analysis of Pareto,
E[X]= 1

µP
= αxm

α−1 α > 1, µP →Service rate with pareto distribution ,

Var[X]=
αx2

m

(α−1)2(α−2) α > 2 , E[X2]= E2[X] + Var[X]=
α2x2

m

(α−1)2 +
αx2

m

(α−1)2(α−2)

Q barP= ρ +
ρ2[1+ 1

α(α−2)
]

2(1−ρ)
So, for Pareto distribution also Q barP< Q barM/M/1.

3.2.6 Beta-Prime Distribution

Beta prime distribution has two controlling parameters α (Shape) ,β (Scale).
Where α, β > 0
E[X]= 1

µB−P
= α

β−1 ,Var[X] = α
(β−2)(β−1)2 (α+ β − 1) ,

E[X2]= E2[X]+ Var[X]= α
(β−2)(β−1)2 (α+ β − 1) + ( α

β−1 )2
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Mean queue length expression for Beta prime is, Here µB−P is Beta prime service
rate.

Q barB−P=ρ +
ρ2[ 1

(β−2)
(α+β−1

α )+1]

2(1−ρ)

Now we know Expression for Q barM/M/1,

Which is Q barM/M/1 =ρ+ ρ2

1−ρ

So, by comparing Q barB−pand Q barM/M/1, Q barB−p> Q barM/M/1 only if

[ 1
(β−2) (α+β−1

α ) + 1] > 2 (In this case Coefficient of ρ2

1−ρ getting greater than

1(M/M/1)).

=⇒ 1
(β−2) (α+β−1

α ) + 1 > 2

1
(β−2) (α+β−1

α ) >1=⇒α+ β − 1 > α(β − 2) . So, from this inequality this mean

queue length expression Q barB−p> Q barM/M/1 holds.
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3.3 Parameters for jitter minimization

� Positive and negative correlations.

� Queuing theory of M/M/1 and M/G/1 queues.

� Brief Discussion about Queue Modeling.

3.3.1 Positive and Negative Correlations:

Positively Correlated :- Positive correlation is a relationship between two vari-
ables such that if one variable increases or decreases then another one will also
increase or decrease respectively.
Example 1

Xn+1 =ρXn for In = 0
Xn+1= ρ Xn + En for In= 1 here In = Random binary sequence , En=

Exponential random sequence , ρ = Probability of occurring zero .

Figure 3.1 : Positive correlation example

Example 2
In day to day life also we observe many natural examples of positive cor-

relations. one of them is relationship between rainfall and crop yield. We can
easily say that as rainfall increase (up to certain limitation), crop yield also get
increased.

we can write this relation in form of equations also,
Y= crop yield , R= rainfall amount , Y0= Crop yield even when there is no

rainfall , η =Rate of change of rainfall with respect to time.
Y = Y0 + ηR
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Figure 3.2 : Rainfall example of positive correlation

Negatively Correlated :- Negative correlation is a relationship between two vari-
ables in which one variable increases as the other decreases, and vice versa.
Example 1. We can considering example of smoking cigarettes versus life span
of person. As someone smoking more number of cigarettes his/her life span will
reduced by that proportion. So this two factors are negatively correlated.
If we wrote it in equation form then let
N = Number of cigarettes a person consumes , L= Life span of person ,
A= average life span of person , α= Rate with which life span reducing
L= A - αL

Figure 3.3 : Negative correlation example of cigarettes consumption

3.3.2 Queuing Theory basics of M/M/1 and M/G/1 queue:

3.3.2.1 M/M/1 Queue:-

The model name written in Kendall’s Notation , M/M/1 means that the system
has a Poisson arrival process, an exponential service time distribution, and one
server. Arrivals occur at rate l according to a Poisson process and move the
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process from state i to i + 1. Service times have an exponential distribution
with rate parameter m in the M/M/1 queue, where 1/m is the mean service
time. A single server serves customers one at a time from the front of the
queue, according to a first-come, first-served discipline. When the service is
complete the customer leaves the queue and the number of customers in the
system reduces by one. The buffer is of infinite size, so there is no limit on the
number of customers it can contain.

Some important Equations for M/M/1 Queue:-

λ =Arrival rate , µ =Service rate , ρ = λ
µ =Server Utilization (ρ < 1)

i. P0 =1-ρ= Probability that there are Zero number of customer
there in queue.

ii. PN = ρN (1 − ρ)= Probability that there are N number of cus-
tomer there in queue.

iii.Q = ρ
1−ρ =mean queue length (Mean number of customer in

system)

iv. Nq = ρ2

1−ρ= Mean number of customer in waiting in queue.

v. Wq = ρ
µ(1−ρ) Mean time spent by customer in queue.

3.3.2.2 M/G/1 Queue:-

An M/G/1 queue is a queue model where arrivals are Markovian (modulated
by a Poisson process), service times have a General distribution and there is a
single server. M (memory less) Poisson arrival process, intensity l. G (General)
general holding time distribution, mean S = 1/µ. This queue also has single
server, load r = lS (in a stable queue one has r < 1). In spite of this, the mean
queue length, waiting time, and sojourn time of the M/G/1 queue can be found.
The results (the Pollaczek-Khinchin formulae) will be derived in the following.

Some important Equations for M/G/1 Queue:

i. Q (z) = B∗(λ−λz)∗(1−z)∗(1−ρ)
[B∗(λ−λz)−z] ( Pollaczek-Khinchin formula)

(λ =Arrival rate ,µ =Service rate , ρ = λ
µ =Server Utilization

(ρ < 1).)

here B∗(λ−λz)=B∗(s)|s=(λ−λz)= Laplace transform of pdf of general
distribution, λ =Arrival Rate, ρ =Utilization Factor,
Q(z) = Z- transform of queue length.

ii. Q = ρ + λ2E[X2]
2∗(1−ρ) (2nd representation of P-K formula)

here E[X2] = σ2+ µ2 = 2 nd moment generation of general
distribution. , µ,σ2 =mean and variance of general distribution
respectively.

iii. Nq =ρ2(1+σ2µ2)
2(1−ρ)

iv. Wq = λE[X2]
2(1−ρ)
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By using 3rd equation mentioned in M/G/1 queue formulae we find mean queue
length by considering different distributions. for most of distributions mean
queue length is lesser than M/M/1 queue. For Beta-prime distribution mean
queue length founds to be greater than of M/M/1. which is suitable for our
model because as per 1981 paper IDI variance equation which is

IDI variance = 1
λ2 + 2

µ2− ( 1
λ −

1
µ ) Q

λ [6]

Here we can see that IDI variance and mean queue length is negatively
correlated. So we required larger queue length than M/M/1 model for lesser
variance.
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Modeling the Jitter Buffer
Queue

The dejitter buffer could be modeled as a queuing system in which service in-
tervals are in our control. In this chapter we would consider those queues in
which the service distributions (say, Y) are such that the following two require-
ments are satisfied (a) variance of IDI is less than that of variance of IATs (b)
variance of IDI of the queue M/Y/1 is < IDI variance of M/M/1 queue. We
also study the cascading of such queues to explore the output jitter (equivalent
to IDI variance) with property (a) resulting in further reduction of jitter.

4.1 M/B-P/1 Queue

M/B-P/1 queue is M/G/1 queue with poisson arrival process and Beta prime
distribution as a service rate. So specification of beta prime queue is as follows
µ = mean = α

β−1 ( here, α and β are shape and scale parameter respectively. )
α, β > 0
σ2 =Variance = α

(β−2)(β−1)2 (α+ β − 1)

here just for derivation (to simplify mathematical analysis) we will assume α =
1,β = µ+1 , λ= µ-1
E[X] = 1

µ= α
β−1 ( satisfies as per our assumption)

Q = ρ + λ2E[X2]
2∗(1−ρ)

E[X2] = σ2+ µ2 = α
(β−2)(β−1)2 (α+ β − 1) + ( α

β−1 )2

=⇒Q = ρ + λ2[
α

(β−2)(β−1)2
(α+β−1)+( α

β−1 )2

2(1−ρ) ]

By putting all values for α,β and λin terms of µ we get,

Q = ρ + λ2[
β

(β−2)(β−1)2
+( 1

β−1 )2

2(1−ρ) ]

28
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Q = ρ + λ2[
2

(β−2)(β−1)

2(1−ρ) ]

Q = ρ + λ
β−2

λ
β−1

1
1−ρ (β − 1 = µ, β − 2 = λ)

QM/B−P/1 = ρ + ρ
1−ρ

By comparing mean queue length results of M/M/1 and M/B-P/1 we can easily
say that QM/B−P/1 >QM/M/1 by amount of ρ .

4.1.1 Calculation of IDI variance for M/B-P/1

IDI variance = 1
λ2 + 2

µ2− 2 ( 1
λ −

1
µ ) Q

λ
by putting value of Q , λwe get

σ2
IDI,M/B−P/1 = (µ−2)2

(µ−1)2µ2

similarly we can calculate IDI variance for M/M/1 then we get

σ2
IDI,M/M/1= (µ−1)2+1

(µ−1)2µ2

4.1.2 we can plot IDI variance Vs mean for M/B-P/1 and
M/M/1 queues.

Figure 4.1 : M/M/1 and M/BP/1 IDI variance comparison
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4.1.3 Mean queue length of Beta prime:-

Figure 4.2 : Mean queue length comparison between M/M/1 and M/BP/1
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4.1.4 Beta prime Mean waiting time comparison:

Figure 4.3 M/M/1 and M/BP/1 mean waiting time comparison
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4.1.5 Correlation plot of Beta prime

we can explore Beta prime distribution little further and find out how its cor-
related.for that purpose we go through counts process and correlation plot.

� for 10000 points scatter plot looks like

Figure 4.6 : Scatter plot for 1000 sample

4.2 M/I-G/1 Queue

We already discuss above in section 2.2.2 that M/I-G/1 queue has higher mean
queue length than M/M/1 queue. So, by defining parameters condition lets
analyses its IDI variance as compared to M/M/1

E[X] = 1
µInv−Gaussian

= µ here µInv−Gaussianis service rate of Inverse Gaussian

Distribution , Variance σ2
Inv−Gaissian =µ3

λ for this distribution λ, µthese are two
shape and mean parameter respectively.
λ, µ>0 For calculation purpose lets assume µ = 2, λ = 1,
µInv−Gaussian= Inverse Gaussian service rate,
λ(Poisson arrival rate) =( µInv−Gaussian– r) ,Where r is any positive integer.
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4.2.1 IDI variance of M/I-G/1 queue.

IDI variance = r2

µ2λ2

So, expression for IDI variance of M/M/1 queue is (µ−r)2+r2

µ2λ2 > r2

µ2λ2 ( Expression

of IDI variance of M/I-G/1)

4.2.2 IDI variance plot of M/IG/1

Figure 4.7 : Variance plot comparison between M/M/1 And M/IG/1
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4.2.3 Mean queue length of M/IG/1

Figure 4.8 : Queue length comparison between M/M/1 and M/IG/1
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4.2.4 Mean waiting time of M/IG/1

Figure 4.9 : Waiting time comparison between M/M/1 and M/IG/1

4.3 M/Wb/1

Weibull Distribution has wide area of application in engineering like In elec-
trical engineering to represent over voltage occurring in an electrical system,In
industrial engineering to represent manufacturing and delivery times,In radar
systems to model the dispersion of the received signals level produced by some
types of clutters etc. This distribution has two parameters k and λwhich are
shape and scale parameter respectively.
Mean = λΓ(1 + 1

k ) and Variance = λ2[Γ(1 + 2
k )− Γ2(1 + 1

k )]
We will analyze M/Wb/1 queuing model for k=0.75
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4.3.1 Mean Queue length of M/Wb/1

Mean queue length for M/Wb/1 = ρ+
ρ2 Γ(1+ 2

k
)

Γ2(1+ 1
k

)

2(1−ρ) for range of 0<k<1 , QIDI,M/Wb/1 >

QIDI.M/M/1.

Fig. 4.10: Mean queue length comparison of M/Wb/1 and M/M/1
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4.3.2 IDI variance plot of M/Wb/1 and M/M/1

IDI variance of M/Wb/1 can be expressed as = 0.1668(µ−1)2+1
(µ−1)2µ2

Fig. 4.11: IDI variance comparison of M/Wb/1 and M/M/1

4.4 Output Variance Reduction

Lets consider two Queues i.e. M/M/1 and M/BP/1 both has same arrival rate
λ which is poisson, So we can say that Variance of inter arrival time for both
distribution is same.
Which is, σ2

M/M/1,IAT = σ2
M/BP/1,IAT = 1

λ2 (1)

from burke’s theorem we can say that, for M/M/1 σ2
IAT = σ2

IDI (2)

We previously already showed that σ2
IDI,M/BP/1 < σ2

IDI.M/M/1 (3)

now, for M/BP/1 queue variance ratio

R =
σ2
IAT,M/BP/1

σ2
IDI,M/BP/1

=
σ2
IDI.M/M/1

σ2
IDI,M/BP/1

> 1. From this result we can say that output

variance is reduction takes place as compared to inter arrival intervals.
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Results and Conclusion

We have seen that the IDI variance for the M/G/1 Queue with Beta Prime
and Inverse Gaussian Distribution as service Distributions found to be less than
that of M/M/1 queue. In general for most of communication application we
use M/M/1 as a queuing model for statistical modeling but where jitter plays
major role in that case we can prefer this M/G/1 model as discussed to get better
Quality of Service (QoS) in terms of delay variation and Jitter minimization.

5.1 Variance control by analytical independence
of Mean(µ) & Variance(σ2)

Distribution
Name

Parameters Mean (µ) Variance(σ2) Analytical
independence[σ2 =

f(µ)]

Beta Prime
Distribution

α, β > 0 α
β−1

α(α+β−1)

(β−2)(β−1)2
µ(α+β−1)

(β−1)2 ,

β ↑,σ2 ↓
Gamma

Distribution
α, β > 0 α

β
α
β2

µ
β ,β ↑, σ

2 ↓

Inverse Gamma
Distribution

α, β > 0 β
α−1

β2

(α−1)2(α−2)
µ2

α−2 ,

α ↑, σ2 ↓
Inverse

Gaussian
Distribution

µ, λ > 0 µ µ3

λ
µ3

λ ,λ ↑, σ2 ↓

Log Normal
Distribution

µ >
0, σε(−∞,+∞)

exp(µ+ σ2

2 ) [(expσ2 −
1) exp 2(µ+ σ2

2 )]

(expσ2 −
1)(µ)2,σ ↓
, σ2 ↓

Scaled-Inverse
Chi-Squared

ν ,τ2 > 0 ντ2

ν−2
2ν2τ4

(ν−2)2(ν−4)
2µ2

((ν−4) , ν

↑,σ2 ↓

38
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So, from above table we can observe that all mentioned distributions have
analytical independence between their respective mean and variance. There
is one controlling paraeter for each distribution which will leads to minimize
required jitter by keeping mean constant, by varying that controlling parameter
we can acquire our expected jitter.

As per designing perspective, we can design parameters of modeling distribu-
tion. Lets analyze Invesre Gamma distribution for designing CPRI standards.

mean of CPRI network is µ =1.2µs and allowed maximum jitter is σ =65ns.
So, mean of Inverse Gamma Distribution,
β
α−1 = 1

1.2 ⇒β = α−1
1.2

Variance of Inverse Gamma Distribution
σ2= β2

(α−1)2(α−2)= µ2

α−2= 1
1.22(α−2) =⇒ α− 2 = 1

1.22σ2

=⇒α− 2 = 1
1.22(0.065)2 =164.365,α = 166.365,β =137.80

5.2 Queuing Models for Jitter minimization

In section 4, we have seen that we are able to find 3 such distribution as a
servuce of M/G/1 which will give better performance than M/M/1 queue in
terms of jitter minimization.
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5.2.1 Mean Queue length

So, all analyzed distribution have larger mean queue length than M/M/1 queue.
We compare Mean queue length for all distribution, plot for queue length will
look like Fig.5.1

Fig.5.1: Mean queue length comparison of M/BP/1,M/IG/1,M/Wb/1 and
M/M/1

We seen that mean queue length of queuing models follows order M/IG/1>
M/Wb/1> M/BP/1> M/M/1
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5.2.2 IDI Variance

For IDI variance of all distribution, we found that each distribution has less IDI
variance as compared to M/M/1 model . There is restriction on Parameters of
Beta prime and Weibull Distributions for obtaining less variance. While Inverse
Gaussian Distribution will always give less variance for all parameters.Plot for
IDI variance of mentioned distributions will looks like fig. 5.2

Fig.5.2: IDI Variance comparison of M/BP/1, M/IG/1, M/Wb/1 & M/M/1

IDI variance of this distribution follow this order M/M/1>M/BP/1>M/Wb/1>
M/IG/1
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5.3 Restrictions on parameters of M/BP/1, M/Wb/1
& M/IG/1

1. Beta prime Distribution has two parameters α, β > 0.
For larger queue length and lesser Variance than M/M/1 queue α, β should
satisfy below condition,

if,α+ β − 1 > α(β − 2).

2.Weibull Distribution has two parameters λ,k > 0
it will have its mean queue length greater than M/M/1 if 0<k<1, but variance
will not be always positive for this range of k.
So, for positive variance, again k has range which is 0.72< k< 1.

3.Inverse Gaussian will give expected result for all values of its parameters.
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Chapter 6

Appendix

Appendix A.1: Derivations for different distribu-
tions

A.1.1 Mean queue length derivations:

1. Gamma and Erlang distribution:
E[X] = 1

µ = k
β here k → Shape parameter (kεN),β →Scale parameter

, E[X2] = σ2
Er + µ2

Er; (µEr, σ
2
Er =Mean ,Variance of Erlang-2 distribution

respectively)

E[X2] = k
β2 + k2

β2 = k(k+1)
β2

By P-K Formula, for mean queue length Q bar

Q barEr = ρ + λ2E[X2]
2(1−ρ) (ρ =Utilization factor ,λ =Poisson arrival rate

,µ=Erlang-k Service rate)

= ρ+
λ2 k(k+1)

β2

2(1−ρ)

= ρ+
(k+1)
k ρ2

2(1−ρ) (ρ = λ
µ ,

1
µ = k

β )

= ρ+ (k+1)ρ2

2k(1−ρ)

2. Inverse gamma Distribution:
E[X] = 1

µInv−Gaussian
= µ here µInv−Gaussianis service rate of Inverse Gaus-

sian Distribution , Variance σ2
Inv−Gaissian =µ3

λ , E[X2] = σ2
Inv−Gaissian +E2[x]

= µ2 + µ3

λ

Q barInv−Gaussian = ρ +
λ2
Inv−GaussianE[X2]

2(1−ρ)

= ρ +
λ2
Inv−Gaussian(µ2+µ3

λ )

2(1−ρ)

= ρ +
λ2
Inv−Gaussianµ

2(1+µ
λ )

2(1−ρ)

44
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= ρ +
λ2
Inv−Gaussian

1

µ2
Inv−Gaussian

(1+µ
λ )

2(1−ρ) ( 1
µInv−Gaussian

= µ )

= ρ +
ρ2(1+µ

λ )

2(1−ρ)

3. Chi-Squared Distribution:
E[X] = 1

µChi−sqr
= k , Var[X] = σ2

Chi−sqr = 2k , E[X2] = k2+2k

Q barChi−sqr = ρ + λ2E[X2]
2(1−ρ) (λ, µChi−sqr are Poisson arrival rate, Chi-

squared service rate respectively)

= ρ + λ2(k2+2k)
2(1−ρ)

= ρ + λ2k(k+2)
2(1−ρ)

= ρ +
λ2 1

µ2
Chi−sqr

(k+2)
k

2(1−ρ)

= ρ +
ρ2 (k+2)

k

2(1−ρ)

4.Rayleigh Distribution:
E[X]= 1

µR
= σ

√
π
2 , Var[X] = 4−π

2 σ2 . so, second moment E[X2]= E2[X] +

Var[X] = σ2π
2 + 4−π

2 σ2=2σ2

Mean queue length Q-barR

Q-barR= ρ + λ2E[X2]
2(1−ρ)

= ρ + λ2(2σ2)
2(1−ρ)

= ρ +
λ2(2 2

πµ2
R

)

2(1−ρ) (σ2 = 2
πµ2

R

)

= ρ +
4
π ρ

2

2(1−ρ)

= ρ + 2ρ2

π(1−ρ)

5. Pareto Distribution:
E[X]= 1

µP
= αxm

α−1 α > 1, µP →Service rate with pareto distribution ,

Var[X]=
αx2

m

(α−1)2(α−2) α > 2 , E[X2]= E2[X] + Var[X]=
α2x2

m

(α−1)2 +
αx2

m

(α−1)2(α−2)

Q barP= ρ + λ2E[X2]
2(1−ρ)

= ρ +
λ2[

α2x2
m

(α−1)2
+

αx2
m

(α−1)2(α−2)
]

2(1−ρ)

= ρ +

λ2 α2x2
m

(α−1)2
[1+

αx2
m

(α−1)2(α−2)
α2x2

m
(α−1)2

]

2(1−ρ)

= ρ +
λ2 1

µ2
P

[1+ 1
α(α−2)

]

2(1−ρ)

= ρ +
ρ2[1+ 1

α(α−2)
]

2(1−ρ)
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6. Beta prime Distribution:
E[X]= 1

µB−P
= α

β−1 ,Var[X] = α
(β−2)(β−1)2 (α + β − 1) , E[X2] = E2[X]+

Var[X]= α
(β−2)(β−1)2 (α+ β − 1) + ( α

β−1 )2

Mean queue length expression for Beta prime is, Here µB−P is Beta prime
service rate.

Q barB−P= ρ + λ2E[X2]
2(1−ρ)

= ρ +
λ2[ α

(β−2)(β−1)2
(α+β−1)+( α

β−1 )2]

2(1−ρ)

= ρ +
λ2( α

β−1 )2[ α
(β−2)(β−1)2

(α+β−1) 1
( α
β−1

)2
+1]

2(1−ρ)

= ρ +
λ2( α

β−1 )2[ 1
(β−2)

(1+ β−1
α )+1]

2(1−ρ)

= ρ +
λ2 1

µ2
B−P

[ 1
(β−2)

(α+β−1
α )+1]

2(1−ρ)

=ρ +
ρ2[ 1

(β−2)
(α+β−1

α )+1]

2(1−ρ)

A.1.2 IDI variance Derivations:

1. Exponential Distribution(M/M/1):
IDI variance for M/M/1 then we get

σ2
IDI,M/M/1 = 1

λ2 + 2
µ2− 2 ( 1

λ −
1
µ ) [

ρ
1−ρ
λ ]

σ2
IDI,M/M/1 = 1

λ2 + 2
µ2− 2 (µ−λλµ ) [λλ ] (put ρ

1−ρ= λ , λ= µ− 1)

σ2
IDI,M/M/1 = 1

λ2 + 2
µ2− 2 ( 1

λµ )

σ2
IDI,M/M/1 = 1

λ2 + 2
µ2− 2 ( 1

µ(µ−1) )

σ2
IDI,M/M/1 = 1

λ2 + 2
µ [ 1
µ −

1
µ−1 ]

σ2
IDI,M/M/1 = 1

λ [ 1
λ −

2
µ2 ]

σ2
IDI,M/M/1= (µ2−2(µ−1))

λ2µ2

σ2
IDI,M/M/1= (µ−1)2+1

(µ−1)2µ2

2. Beta-prime distribution:
IDI variance = 1

λ2 + 2
µ2− 2 ( 1

λ −
1
µ ) Q

λ
by putting value of Q , λwe get

σ2
IDI = 1

λ2 + 2
µ2− 2 ( 1

λ −
1
µ ) [

ρ+ ρ
1−ρ
λ ]

σ2
IDI = 1

λ2 + 2
µ2− 2 ( 1

λµ )[ρ+λλ ] .......................( By simplification we get
ρ

1−ρ= λ, just put λ= µ− 1, ρ= λ
µ )

σ2
IDI = 1

λ2 + 2
µ2− 2

λµ−
2
λµ2

σ2
IDI = 1

λ2 - 2
λµ2 + 2

µ [ 1
µ −

1
µ−1 ]......................... (λ= µ− 1)

σ2
IDI = 1

λ2 - 4
λµ2

σ2
IDI = 1

λ [ 1
λ −

4
µ2 ]

σ2
IDI = 1

λ [µ
2−4(µ−1)
λµ2 ]
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σ2
IDI,M/B−P/1 = (µ−2)2

(µ−1)2µ2

3. Inverse gaussian Distribution:
IDI variance = 1

λ2 + 2
µ2− 2 ( 1

λ −
1
µ ) Q−bar

λ

= 1
λ2 + 2

µ2− 2 ( 1
λ −

1
µ )

ρ+
ρ2(1+ 2

1
)

2(1−ρ)
λ

= 1
λ2 + 2

µ2− 2 ( 1
λ −

1
µ )

ρ+ 3ρ2

2(1−ρ)
λ

= 1
λ2 + 2

µ2− 2 ( 1
λ −

1
µ )

( ρ
1−ρ+ ρ2

2(1−ρ) )

λ

= 1
λ2 + 2

µ2− 2 ( 1
λ −

1
µ )

( ρ
1−ρ )(1+ ρ

2 )

λ

= 1
λ2 + 2

µ2− 2 ( 1
λ −

1
µ )

(
λ
µ

1−λ
µ

)(1+ ρ
2 )

λ

= 1
λ2 + 2

µ2− 2 (µ−λµλ )
λ(1+ ρ

2 )

(µ−λ)λ

= 1
λ2 + 2

µ2− 2 ( 1
µλ ) (1 + ρ

2 )

= 1
λ2 + 2

µ2− 2 ( 1
µλ ) (1 + λ

2µ )

= 1
λ2 + 2λ

µ2λ− ( 2µ+λ
µ2λ )

= 1
λ2 + 2λ−2µ−λ

µ2λ

= 1
λ2 + λ−µ−µ

µ2λ

= 1
λ2 - (µ+r)

µ2λ

= µ2

µ2λ2 - (µ+r)λ
µ2λ2

= µ2−(µ+r)(µ−r)
µ2λ2

= r2

µ2λ2
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A.2 P-K 2nd Formula Derivation:

Q (z) = B∗(λ−λz)∗(1−z)∗(1−ρ)
[B∗(λ−λz)−z] ,

A(z) = B*(λ−λz) , A(1) = 1 ,A’(1) = λE[x] = ρ , A”(1) =λ2E[X2]

Q (z) = A(z)∗(1−z)∗(1−ρ)
[A(z)−z] =

∑∞
i=0aiz

i (Z- transform of queue length)

Q(1) = limz→1
(1−ρ)[(1−z)A′(z)−A(z)]

A′(z)−1 = - (1−ρ)
ρ−1 = 1 ( for simplifying

this we have used L’hospital’s rule)

So, Q(1) =A(1) =1

Q(z) [A(z)-z] = (1-ρ) (1-z) A(z) (from main expression only)

Q’(z)[A(z)-z] + Q(z)[A’(z)-1] = (1-ρ) (1-z) A’(z) - (1-ρ) A(z) (By
differentiating both sides)

Q”(z)[A(z)-z] + 2 Q’(z)[A’(z)-1] + Q(z) A”(z) = (1-ρ) (1-z) A”(z)
-2 (1-ρ) A’(z) (By double differentiating both side)

Putting z = 1 and using earlier results we get

-2 Q’(1) (1-ρ) +λ2E[X2] = (1-ρ)(−2ρ)

Q’(1) = ρ + λ2E[X2]
2(1−ρ) [2 nd form of P-K Formula


