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ABSTRACT

There is no doubt regarding the advantages of SiC MOSFET over Si IGBTs. SiC MOS-
FETs can switch at high frequencies leading to compact power converters with very
high power density. Faster switching results into overshoot and oscillations in the device
voltage and current.This overshoot and oscillations deteriorate the EMI performance of
the power converter, which requires large mitigation and control circuits for high volt-
age converters. So, in order to make smaller, compatible and efficient converter, high
voltage rating devices are preferred. Since higher voltages SiC MOSFETs are at early
stage of development and are not yet commercialised. Stacking the individual semi-
conductor devices is an effective way of reaching higher voltages. Due to restriction
in availability of medium voltage SiC devices, stacking the individual semiconductor
devices in series can be the possible solution towards taking advantages of the superior
properties of SiC MOSFETs at higher voltages. With this topology, size and efficiency
of the converters will improve significantly as compared to Si based high voltage con-
verters.

In this thesis, the main issues and challenges of operating SiC power devices in se-
ries will be explored and common mitigation techniques will be discussed. In the
topology, with passive external gate drives, two series connected SiC MOSFETs are
synchronously driven. The v-i characteristics and switching characteristics were also
studied. To Balance the dynamic or transient voltages, RC based Snubber circuits were
introduced. Effect of external gate Resistance on transients voltage balance were also
studied. Simulation for the same has been done in Pspice. Designed Passive gate drivers
and Proposed voltage deviation mitigation circuits were tested in a Double Pulse (DP)
test set-up with new SiC MOSFETs.

The device Drain voltage and current sensing circuits were also made and tested in
hardware set-up and compared with actual voltage and simulated waveforms. Results
for the same is also presented in work. Studies on mitigating the measurement error

introduced in probes were also done and results were taken for the same.
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CHAPTER 1

INTRODUCTION

In laast ten years, WBG materials have been widely adopted in many power electronic
devices. They have significant advantages over traditional Si device due to larger band
gap and breakdown field. With the WBG material property, it is expected that WBG
device will provide even higher breakdown voltage while maintaining the same size
and on resistance in comparison to Si devices. This will significantly shrink the size
of power devices and reduce the power loss resulting in higher efficiency of the con-
verter. The new generation SiC MOSFETs comes with kelvin source, i.e, device has 4
terminals. These kelvin source and gate terminal will ensure the reduction in parasitic
inductances in the gate loop of the device. The new SiC MOSFET has much lower
on resistance, higher voltage-blocking capability, lower switching loss, lower gate ring-
ing and higher temperature operation capability than both the Si MOSFET and the Si
insulated gate bipolar transistor (IGBT). This makes SiC MOSFETSs a promising alter-
natives for Si power devices for high voltage applications. It is also interesting to note
that switching time of a SiC MOSFET has been shrunken at least five times compared
to a Si IGBT of similar rating. It allows SiC MOSFET based converter to operate at
switching frequency more than 20 kHz with good efficiency figures.

Despite of huge development in WBG materials, maximum voltage rating of commer-
cially available SiC devices till now are 1.7 KV. Stacking the semiconductor devices
in series/parallel combination would be better solution for compact, efficient high volt-
age power converters. Although parallel connection of MOSFET has been studied and
used, series connection of multiple lower voltage device will increase the overall block-
ing voltage of SiC devices. The series connection is much more challenging due to
static and dynamic voltage sharing. However key obstacles to the benefits of SiICFETs
are high frequency oscillations and overshoot in the device voltage and current. This
ringing and overshoot are caused by the L-C network formed between parasitic induc-
tances contributed by the bus bar, PCB layout and device capacitances. These undesired
oscillations in voltage and current generate stress in device at every switching instant.

They also degrades EMI performance and efficiency of switching device and converter.



So it is necessary to provide voltage balancing circuits and controller to ensure the safe
operation of device.

In this scenario, exploiting the benefits of SIC MOSFETSs without sacrificing its switch-
ing speed (typically 50 to 60 ns) is a challenge. One of the solutions to this is active
control of gate signal. A pulse shift delay logic and gate resistance based passive gate

driving technique for a SiC MOSFET is designed.

1.1 Literature Review

Many studies on switching characteristics of SiC Devices, and effect of parasitics, com-
mon mode injection on driving SiC Devices have already been carried out. Several
studies on these cases in series connection is still going on.

High voltage power converters need high voltage rated semiconductors. But we know
the advantages of Silicon carbide semiconductors compared to Silicon semiconductors.
Even though SiC MOSFETs development started long back in 1990’s, availability of
High voltage SiC MOSFETs are still unknown. [1-2]Some high voltage, low current
SiC devices are available in research laboratories. They have the potential to signifi-
cantly impact the system performance, size, weight, high-temperature reliability, and
cost of next-generation energy conversion and transmission systems. Experimentally,
these developed devices exhibits low switching losses at higher voltages when com-
pared to commercially available 6.5kV Si MOSFET.

Literature [3-4] deals with the zero voltage switching (ZVS) characteristics of SiC N-
IGBTs to reduce the dv/dt at switching pole along with reduction in the switching losses
and increase in the switching frequency limits with external snubber capacitor. Experi-
mental study proves that turn on and turn off dv/dt with external snubber reduced very
much compared to without snubber.

A new topology power module with series and parallel connection of low voltage SiC
MOSFET’s has been reported in [5]. It uses a single gate driver which has capacitive
coupling circuit to both devices gate terminal ensuring equal voltages at gate-source
terminal. This results in an undesired sequential turn on/off process, i.e., device closer
to gate driver will respond or commute first and furthest one in series connection will
commute last. there fore the switching losses in devices will be unequal.

Literature [6] is continuation of reference [5] which also talks about speeding capacitors

2



in gate driver to reduce switching delays between devices, it does not improve the turn
off process compared to turn on.

Active Voltage control(AVC) technique is introduced in [7] to ensure the dynamic and
static voltage balancing of series connected IGBTs. Mismatched tail currents results in
the device with the lower tail current charge supporting a higher voltage and incurring
a higher switching loss. AVC is not effective in the tail current region since the device
is no longer in the active region.

Article [8] deals with experimental study on RCD based snubber circuit and its effect
on device loss. Inductance were added to make resonance and to avoid the effect of
transformers in load side. Different drain side techniques or circuits were discussed in
[10]-[12].

In series connection of IGBTs[13], the gate control circuits ensure better voltage bal-
ancing compared to active clamping and passive snubbers in terms of switching losses
and commutation time. The number of IGBTs in a series string was optimized in terms
of power losses. Significant power savings can be achieved by using lower rated IGBTs
at higher frequencies and higher rated IGBTs at low frequencies.

Literature [14] proves gate resistance has little effect on switching loss and it is im-
portant to select snubber capacitor appropriately ensuring that both switching loss and
voltage inequality minimizes or should be compromised.

Miller current injection to gate driving side is proposed in [15], which slow downs top
device. BJT based miller circuit is used, this circuit needs to be tuned appropriately for
achieving desired results, which is cumbersome.

Article[16] discuss about Gate driver design for device with fast switching rates con-
sidering the switching noise and common mode problems. dv/dt and di/dt based Pro-
tections circuits were designed.

A closed loop active delay control method with silicon delay line IC for series con-
nected SiC MOSFET is proposed in [17].

Effect of common mode current in SIC MOSFETSs were discussed in [18]. It proposes a
predictive model to estimate these common mode currents. Furthermore,common mode

current effect is studied by adding the common mode choke in AGD.



1.2 Organisation of Thesis

The Thesis is organised as follows:
Chapter 2 discuss the problems associated with SiC MOSFET implementation and so-

lution to mitigate those problems.

Chapter 3 discusses the performance of various mitigation techniques to reduce the
voltage deviation seen during series connection. The developed Passive gate driver(PGD)
is tested in the Double Pulse(DP) test setup. Proposed sensing techniques were also

tested in Simulation and results for the same are presented.

Chapter 4 briefs about hardware implementation and problems faced in hardware

setup.

Chapter 5 reports the results obtained from simulation and hardware implemen-
tation of double pulse test setup. Reason for difference in sensed voltage and actual

voltage were also discussed in this section.

Chapter 6 summarizes the thesis.



CHAPTER 2

CHALLENGES OF IMPLEMENTING SIC MOSFETS

2.1 Introduction

The SiC MOSFETs possess a variety of benefits compared to Si-IGBT’s that make
them ideal for applications which operates at high voltages, temperatures, and switch-
ing frequencies. However, many challenges present themselves due to circuit and device
parasitic elements, and variations in the operating characteristics of the device. Even
though there are some parasitic capacitance in PCB due to positioning of components,
signal trace and ground trace. Parasitic inductances present in the converter layout are
contributed by device packaging, board layout and ESL of DC bus capacitor. These
parasitic inductances/ loop inductances form L-C networks with device capacitances
during every switching transients. These L-C network can cause overshoots and ring-
ing in the device characteristics at every switching instants These responses generate
voltage and current stress in the device, cause additional switching loss and degrade
electromagnetic interference(EMI) performance of power converters. An IGBT based
two level converter layout contains parasitic inductance in range of 300nH[19-20]. Due
to its slower switching speed, IGBTs doesn’t show considerable amount of voltage and
current overshoot for this value of parasitic inductances. Whereas due to faster switch-
ing speed of SiC MOSFETs, device performance deteriotes considerably for this range
of parasitic inductances. The typical switching duration of SiCFET is 20-30ns for a
applied gate voltage (V,,) of +20/-5V with gate resistance of 2.5(2. Typical range of
dv/dt, di/dt slewrates that SiC MOSFET experiences, is around 10 to 15kV/us and 1 to
1.5kA/us respectively. These slewrates are almost four times higher than that of a Si
IGBTs. So it is necessary to analyze the effect of parasitic inductances on switching
performance of SiC MOSFETs in order to design an efficient and feasible high voltage
converter.

There have been studies to explain these switching dynamics by mathematical modeling

for a Silicon MOSFET[21]-[27]. This gives many possible solutions, and some of those



solutions plays important role in describing the switching dynamics of silicon carbide

devices in the presence of parasitic or loop inductances.

2.2 Crosstalk and Self Turn-on

Silicon carbide devices are known for their ability to switch at very fast speeds with high
dv/dt and di/dt, resulting in smaller switching power losses and the ability to operate
at higher frequencies. Unfortunately, there are some unintentional effects that manifest
themselves when these devices switch at high dv/dt rates. One side-effect of high dv/dt
is crosstalk, meaning the interaction between complementary devices in a phase-leg,
when the switching transient of one device causes the unintentional turning-on of the
opposite device. This effect is referred to as false-turn-on, implying that the event oc-
curred due to circuit parasitics and not as a result of a faulty control signal.

The main result of a false-turn-on is that both devices will be conducting at the same
time, allowing high current to flow and a short-circuit to occur. Even if the short-circuit
does not result in a catastrophic event, there are still reliability concerns due to high
thermal losses. Additionally, the likelihood of a false-turn-on is greater with higher
temperature because the threshold voltage has a negative temperature coefficient, mak-
ing it easier to turn on the device. The shoot-through current also has a positive tem-
perature coefficient, resulting in higher stress on the device at higher temperatures[30].
The potential for failure is greater for SiC devices compared to Si IGBTs because the
SiC MOSFET has a lower short circuit withstand time (SCWT).

False turn-on can be caused by the interaction with a complementary device or by a
device’s own high-speed transient and interaction with the Czp. Therefore, in both
cases, The miller Capacitance, Cp, serves the main pathway for current to flow to the
gate(uncontrollable variable). Some of the other variables affecting the possibility of a
false turn on are the threshold voltage, V;;, internal gate resistance I ;,; and packaging
inductances at the gate and source, L and Lg respectively, in the path of gate current.
In Series connection, crosstalk between two devices can occur during either the turn on
or turn off transition of either device in a half-bridge due to the rapidly changing voltage
and current sharing at the midpoint. Consider the two devices in a phase leg as shown in
F1G.2.1, during the turn on of the lower device, a negative slope dv/dt transition occurs

across the Cip of the upper device. This dv/dt results in current that flow through gate
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(a) Lower device turns on. (b) Lower device turns off.

Figure 2.1: Crosstalk of two devices in a phase leg

of upper device, causing a voltage drop across the gate resistance as well as the gate
loop inductance, which increase the voltage, Vi;s. If this voltage exceeds the threshold,
the device will turn on. Similarly, during turning off of lower device, there is a positive
slope dv/dt that causes current through Cp of the upper device in the opposite direc-
tion, as shown in Fig.2.1(b). This current flows through the R, Ls and Lg; causing a
negative voltage that further pulls-down the device.

One commonly adopted solution is the use of a negative bias, -5 V, to hold the device
in the off-state and cancel any positive voltage spikes. However, the magnitude of the
voltage spikes may be large enough to still reach the threshold voltage, especially at
higher temperatures when the threshold voltage is lower. The magnitude of the voltage
spikes will be affected by the impedance in the gate loop. Thus, it is necessary to make
the impedance as small as possible, which is achieved by changing the gate resistor. A
higher R¢ is typically used to reduce dv/dt, thus there is a tradeoff between the size
of the resistor and the amount of impedance in the path. Another accepted solution is
Active Miller Clamp and use of bipolar drive with -5V, seperate turn on and turn off

paths.

2.3 Parasitic Inductance

Another critical challenge in the implementation of SiC devices are the parasitic induc-

tances in the device and circuit. The package of the SiC device, whether discrete or in
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Figure 2.2: Parasitic components in and around SiC device

a power module, and the circuit board layout affect the amount of parasitic inductances
present in certain regions of the circuit. Each of these inductances can be lumped into
the critical areas of the circuit. The interactions of di/dt during the turn-on and turn-off
transitions result in ringing, voltage overshoot, or reduced driving speed.

The parasitic inductances can be split into three categories: the common source in-
ductance(CSI), the gate loop inductance(GLI), and the switched current commutation
loop inductance(SCCLI). The Common source inductance includes the inductance at
the source inside the package of the SiC MOSFET, the PCB source trace inductance.
The Gate loop inductance are enclosed by the gate drive current path, Presence of kelvin
terminal eliminates the presence of source inductance in gate loop. Finally, the SCCLI
includes the connections between the upper and lower devices in a phase-leg configu-
ration, and results in the main voltage and current ringing of the power loop. in series
connection, this inductance will be rised by n times as if n number of device is added in
series.

The drain inductance acts as a turn on snubber for the MOSFET by limiting the di/dt of
the drain current and reducing the Vpg across the device (L%), thus reducing turn on
losses. However, at turn off, the voltage induced across the inductor is added to Vpg,
producing an overshoot and increases the turn-off switching losses. When the device is
subjected to these voltage overshoots at every switching cycle, the stress over time may
decrease the life of the device.

Presence of kelvin terminal eliminates the effect of source lead inductances in gate loop,

which improves the switching times compared to previous version of CREE SiC device.



When three terminal SiC devices are used, gate loop includes source lead inductance
which also depends on length of return path, which reduces the injected gate current(z,)
and slows down the charging rate of C},,. Slow charging of C;, increases the switching

time.

2.4 Protection

SiC MOSFETs can operate very efficiently at high temperatures, and can actually
switch faster as temperature increases. The speed at which they switch, however, also
affects how fast they will reach a damaging level of current during short circuit event.
The ability to prevent, protect such an event is a critical part of the gate driver design.
Short circuits will not only cause damage to device over time, but can cause catastrophic
failure of the device. Since the short circuit withstand time of device is much smaller
than Si device, gate driver has to able to detect a short circuit event faster than the gate
driver for a silicon device. Additionally, because SiC devices can switch so fast, the ac-
tion of turning off device when a SC is detected must be handled carefully so that a very
large voltage spike is not caused due to the high di/dt. And these excessive overshoot
can result in fast degradation of the device.

Typically, a short circuit event is detected using desaturation method, or DESAT pro-

Figure 2.3: Photograph of failed SiC MOSFET

tection, which is used to determine when the device moves from saturation region to
the active region. The transition from saturation to active is not clear for SiC device

compared to Si device. The DESAT method can still be utilized for a SiC MOSFET,



but the design must be more precise than that of a si device, or else false detections and
unnecessary shutdown can occur. The DESAT method utilizes the on-resistance and
the maximum current rating of the device to determine a normal on-voltage across the
device. Usually a high-voltage desaturation diode in series with a zener diode is used to
block the current signal to the DESAT pin of a gate driver IC until the reference voltage
is surpassed, and DESAT is triggered. This means Vpg is being monitored at all times.
Other than the difficulty in detecting the transition, this method also has the downfall of
having to connect sensing circuitry to the high-voltage Vpg of the MOSFET. The isola-
tion barrier needs to be sufficient to protect the control circuitry and the delay between
the sensed signal and the controller’s response needs to be very short. Additionally, the
actual reference voltage for the DESAT protection should be adjustable based on the
operating condition, such that a short circuit is not falsely detected.

The speed of the detection must be very fast. When utilizing an IC gate driver with DE-
SAT detection, the propagation delays and detection times from the datasheet should
be considered. The propagation delay, which applies to both turn-on and turn-off, will
indicate how fast the driver will respond to a control signal telling it to turn-off the de-
vice. This is added to the time it takes for the control circuitry to detect the fault, which
may also be given in the IC’s datasheet if it has DESAT protection as a functionality.
Additionally, the physical location of the gate driver will affect the speed at which it
detects the fault because parasitic inductance increases with length of traces, and thus
increases the propagation delay between the device and the driver.

Another aspect of the DESAT design is what action the gate driver takes to shut down
the device in a controlled manner. If the device is turned off as usual, the current will
fall at a very fast di/dt transition, causing large voltage overshoot due to parasitic induc-
tances. Thus, the device should be shut down slowly to avoid over-voltages. This can
be achieved through the use of large gate resistors in turn off path to decrease the gate

current during the transition.
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CHAPTER 3

DYNAMIC VOLTAGE BALANCING IN SERIES
CONNECTION

The commercial purpose medium and high voltage SiC devices are under development.
Some high-voltage low-current SiC devices (10 kV to 15 kV, 10A to 20A) are available
but only in research laboratories [1-2]. They are in limited number due to the low
current handling capability in addition to the known issues associated with high dv/dt
and requirements of custom design of inductive interfacing components (to reduce the
coupling capacitive currents) [3-4]. This makes Si device dominant in medium and high
voltage applications. Therefore, to explore the capability of SiC MOSFETsSs in medium
and high voltage applications, the series connection of 1kV/35A SiC MOSFET (third
generation CREE device) has been investigated. Stacking of multiple devices in series
has following design constraints:

e Unequal static voltage sharing of series connected devices due to mismatch in
device leakage currents.

e Unequal dynamic voltage sharing due to mismatch in device parameters and mis-
matches in the total delay time.

e Parasitic inductance(due to PCB packaging, board inductance) forms L-C net-
works with device capacitor and causes oscillations and overshoot in device volt-
age and device current, resulting stress in device and addition switching loss.

Considering the above constraints, several basic mitigation circuits were designed
and will be explained in upcoming sections. To begin the proper study of new four
terminal devices,isolated passive gate driving(PGD) technique were chosen. Reference
[5] uses single gate driver to turn on and turn off the devices in series, which results
in undesired switching processes due to delays and other factors like gate capacitances
and loop parasitic inductances. When switching happens, device closer to gate driver
will commute first, furthest one will commute last depending on transmission length.
This switching delay will reduce the switching frequency capability due to effective

dead band requirement [6]. Therefore, multiple gate drivers were designed and drives



each devices at the same time (same length of optical cables were used for gate pulse
transmission). This method contributes to the gate signal control and provides more

flexibility for the gate-side control and device protection in high-power application.

Substantial study have been done to analyze the causes of the uneven voltage shar-
ing, and various techniques have also been proposed to improve the voltage sharing
among devices. These techniques can be divided into two categories, namely the drain-
source side techniques and the gate-side techniques [7]-[9]. Drain-source side technique
category has three different types, namely, the passive snubber circuits, resonant snub-
ber circuits, and clamping circuits.[10]-[12] Gate side control category includes active

control circuits and synchronous control circuit.

3.1 Passive Snubber Circuit

The use of a passive snubber is a widely used technique in series operation of power
devices. RC based snubber circuit is one of those drain-source side techniques for miti-
gating inequality in voltage sharing[13]. A resistor-capacitor (RC) or resistor-capacitor-
diode (RCD) circuit is used in parallel with the series element for transient sharing.
Passive snubbers are simple to implement; they reduce the switching losses and can be
used in robust applications. The use of large snubber capacitors minimizes the voltage
unbalance but also increases both snubber power loss and commutation time of the de-
vice. Therefore, snubber capacitors are designed with an objective of eliminating the
voltage transient and ringing caused by providing an alternate path for the current to
flow through circuit’s intrinsic leakage inductance. Proposed snubber circuit consist of
series connected resistance and capacitances paralleled with balancing resistance, R}, as
shown in Fig. 3.1.

Fig. 3.2 shows the deviations in device voltages when connected in series without any
voltage balancing circuits.To reduce the static voltage sharing inequality, a balancing
resistance of few hundred kilo ohms were chosen. One can choose higher value of bal-
ancing resistance as long as its sufficiently larger than the leakage current of the SiC
MOSFET. But, on the other hand higher value of balancing resistance leads to higher

time constant and therefore it will take more time to settle in static condition, If this
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Figure 3.1: Passive snubber circuit

time constant is greater than the switching frequency.

A A flr
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Figure 3.2: Individual device voltage in series connection without snubber circuit

The value of snubber capacitor has been selected at least 5-10 times the devices
output capacitance as starting value to nullify the mismatch in the device output capac-
itances[14]. The snubber capacitance could reduce the unbalance in dynamic voltage
sharing between the devices and the rate of rise of drain-source voltage across series
connected devices. During turn-off, Vpg will be nearly equal between the devices as
the snubber capacitance is much larger than device’s output capacitance. It also makes
the turn-off process in the devices partially zero-voltage switching and hence reducing
the turn off losses in the process. The starting value of resistance (R s,upper) 1S selected
such that the time constant of snubber is low enough to discharge capacitor during ON

time.
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Values of snubber capacitance and resistance are selected in such a way that total
switching losses in the device and difference in dynamic voltage sharing is minimised.
Simulation for the same has been done considering the worst case delays. For Different

R and C values Ltspice simulation result is shown below.

case: 1 | Snubber | snubber | DC Bus | Switching | Max. Switch- | voltage
Capaci- | resis- Voltage frequency ing Loss | Deviation
tance(nF) tance V) (kHz) across a single | (V)

(m€?) device (W)

1 10 400 1500 10 78.85 259

il 10 400 1500 50 394.27 259

iii 10 400 1500 100 788.54 259

Table 3.1: Simulation result for R = 0.4m¢2 and C= 10nF

1.0K¥ BRIRER _INOTBNTTY

! U SOV NS S S

07Ky

0.3Kv— :

PN N (NSNS, (SN WUR. SO—

o K";Jus S Nlllps 1 sim 2ps 25'1'5 3l];|.ls 15 I!]ips lSi[.ls Siljis

Figure 3.3: Ltspice simulation result for R =0.4m{2 and C= 10nF
Scale; Voltage: 0.1kV/div, time: Sus/div

Figure 3.3 shows the simulation result for RC connected series circuit. Voltage devi-
ation for this case is 259V. Device that get commutated first will share maximum voltage
for duration until the next device commutated. The simulation were done considering
the worst case delay of 50ns. Therefore, as aforementioned device 1 (represented as
blue line) get turned on first and then device 2 (represented as green line) get turned on
after 50ns. Switching loss at different frequencies were calculated and is tabulated in
Table 3.1.

Figure 3.4 shows the simulation result for RC connected series circuit. Voltage devi-

ation for this case is 142V. As mentioned above, for same delay in second gate driver
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case: 2 | Snubber | snubber | DC Bus | Switching | Max. Switch- | voltage
Capaci- | resis- Voltage | frequency ing Loss | Deviation
tance(nF) tance V) (kHz) across a single | (V)
(mQQ) device (W)
i 22 180 1500 10 151.92 142
it 22 180 1500 50 759.61 142
iii 22 180 1500 100 1519.23 142
Table 3.2: Simulation result for R = 0.18m¢2 and C= 22nF
lsuu‘: VINDT1.ND12) . Iwuma,nm 9) .
BV i pe—e
O e VOO JNUNIIN. WD | (ONSONY. (SR SRR NUROUN. IS
FLT1T8 NSEENRRNS RSSO SN N A — -
K111 B ---------------
T I T S e W
wuv- ----------------------------------------------------------------
oA I W SUNNON. | SUN ST S
17 (O I — .
0% T . 1 1 r .' T .' T
Opis Bjis 10ps 150s 20ps 25s I0ps 35y A0jis 45ps 50jis

Figure 3.4: Ltspice simulation result for R =0.18m¢2 and C= 22nF
Scale; Voltage: 0.1kV/div, time: Sus/div

device 1 (represented as blue line) get turned on first and then device 2 (represented as

green line) get turned ON. Switching loss at different frequencies were calculated and

is tabulated in Table 3.2.

Similarly, for the 33nF and 56nF capacitors, simulation studies were done.(Refer

case: 3 | Snubber | snubber | DC Bus | Switching | Max. Switch- | voltage
Capaci- | resis- Voltage | frequency | ing Loss | Deviation
tance(nF) tance V) (kHz) across a single | (V)
(m€?) device (W)
i 33 120 1500 10 216 102
il 33 120 1500 50 1079.9 102
iii 33 120 1500 100 2159.78 102

Table 3.3: Simulation result for R = 0.12m{2 and C= 33nF

Fig.3.5 and Fig.3.6.) Switching Loss for both were calculated and tabulated in 7a-

ble 3.3 and Table 3.4.
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Figure 3.5: Ltspice simulation result for R =0.12m¢2 and C= 33nF
Scale; Voltage: 0.09kV/div, time: Sus/div
The maximum peak overshoot voltage in case 3 is 857V and deviation is 102V.
case: 4 | Snubber | snubber | DC Bus | Switching | Max. Switch- | voltage
Capaci- | resis- Voltage | frequency | ing Loss | Deviation
tance(nF) tance V) (kHz) across a single | (V)
(m?) device (W)
i 56 71 1500 10 350.38 64
il 56 71 1500 50 1751.91 64
iii 56 71 1500 100 3503.80 64

Table 3.4: Simulation result for R = 0.07m{2 and C= 56nF

The maximum overshoot in case 4 is 824V. and deviation is 64V.
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Figure 3.6: Ltspice simulation result for R =0.071m{2 and C= 56nF
Scale; Voltage: 0.08kV/div, time: Sus/div

From simulation studies, reduction in deviation can be seen as capacitance increases

but it also increases the switching loss of individual device for a given switching fre-
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quency. Therefore, it is desired to select the appropriate R and C values for required
switching frequency and voltage levels. At lower value of gate resistances, there is no
substantial change in switching loss per device with snubber and without snubber case

for same DC bus voltage[14].

3.2 Gate-Side Voltage Balancing Technique

A common characteristic of the gate side techniques is to correct the voltage imbalance
of the series-connected semiconductor device by adjusting its gate voltage. However,
regardless of the quantity of devices connected in series, all techniques require a corre-
sponding number of isolated gate driving signal for each series connected device. Since
gate voltage will be fixed in passive gate driving technique, transient voltage can be

balanced by adjusting the rate in rise of gate voltage either by changing gate resistance

dVas
dt

of any one of driver or by introducing the delay in the pulse so that of all gate

driver matches well.

3.2.1 Pulse Delay Shift Logic

It is very important to note the Gate voltage level as if Gate voltage to any of the device
connected in series is not equal, then gate charging to corresponding device also differs
which also causes deviations in device voltages. Another reason for cause of deviation
is time delay in switching actions. This will also cause difference in gate charge in
devices in series connection. Gate pulse given to the gate driver can be varied using
Delay logic circuit. Intention of providing this circuit is to study the device performance
under mismatch conditions by changing the turn on or turn off propagation delay times
of individual switching devices.

By analysing the actual waveform and the required output waveform as shown in Fig:
3.7, digital data can be extracted and tabulated (7Table: 3.5) to define the equation and
identify the number of logic gates required to implement this idealogy. The Sum of

Product combination for above mentioned karnaugh map is

Y;’equi’/‘edpulse = Fx (G + R) (31)
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Rising Ecdge
Delayed

Falling Edge

Delayed

Delayed Pulse

Figure 3.7: introducing delay in actual pulse

Actual Rising Falling Output or
Gate Pulse | Edge Edge Required
Delayed Delayed Delayed
Pulse Pulse Pulse
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
I ! | 0 0 |
! 1 1 1 |

Table 3.5: Design of Pulse delay shift logic
*practically falling edge delay cannot be low when there is actual pulse coming in, so
this row is not considered while designing k-map.

RF RF RF R.F
G 0 1 1 0
G 0 0 1 0

Table 3.6: Karnaugh map for required Pulse

From the Egn:3.1 number of logic gate required to implement delay circuit is three, i.e.,
combination of NOT, OR and AND gate.Refer Fig: 3.8.

To create the delay in Rising and falling edge as desired, RC- Diode combination is
chosen and this combination output is compared with certain reference to give required
delay at rising edge or falling edge. Fig: 3.9 shows the mentioned circuit having RC-

Diode and comparator followed by digital logic circuit. TLV3502 is used as comparator,
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Figure 3.8: simplified delay introducing circuit

which has pretty good CMRR and slew rate.

Figure 3.9: implemented delay circuit

Simulation for the above circuit is done and verified with hardware result.
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Figure 3.10: Simulation result for pulse delay circuit. Scale; Voltage: 0.5V/div, time:
10ns/div
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3.2.2 Gate Resistance Control

Another method of dynamic voltage balancing is adjusting the rate of rise of gate
voltage of any one device so that it reaches desired voltage at the same time as other
device reaches its voltage level. Even though devices from same company and of same
rating is believed to have same internal capacitance and resistance value. But it has
some difference in terms of intrinsic characteristics i.e., gate to drain capacitance, Cgp
and gate to source capacitance, Cgg.

b time

Figure 3.11: Different Gate voltages of two series connected devices

Difference in gate voltage dv/dt shown in Fig.3.11 will also give deviation in drain
voltages. Assuming that there is some delay At introduced as shown in Fig.3.12 even
though gate side dv/dt are same, which cause certain deviation in drain voltage, AV pg.

. |1 ) SO— / :_.

At . time )

Figure 3.12: Gate voltages of two series connected devices with A t delay in driving

circuit
AVpg = d(?;)& sty — dVdZSQ %ty (3.2)
AVpg = d(Z?SI = % % (tr — At) (3.3)
AVpg = t,1 * [d(gﬁﬂ - d‘g;”] + At % (3.4)
%ﬁ’;ﬁ = rl.[% — 1] + At (3.5)
A AVos dVps1/dt 36

T dVpsa/dt Tl'[dVDSQ/dt —1
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for dynamic voltage to be balanced, A Vpg = 0 then,

At = ty.(1 — GERUEN(3.7)

we also know that,

dVpg Iq
== 3.8
dt Cep (3.8)
where
Vas
I = —/ 39
¢ = R (3.9)
then Egn.3.8 becomes,
dV; Vi
DS _ GS (3.10)
dt Rg.CGD
substituting Eqn.3.10. in Egn.3.6.
Vas/Ra1-Capi
At =1t,1.(1— 3.11)
- Vas/Ra2-Cape
Assuming that Gate voltage, Vg is same for all devices, then At becomes,
Rei.Cap
At =t,q.(1 - —/—"=— (3.12)
0 ReaCons

Selecting appropriate gate resistance R and Rgo, both delay in rise time, fall time and

deviation in Drain-Source voltage can be reduced or brought to zero.

Vin /

time

Figure 3.13: Gate voltages of two series connected devices when gate resistance of one
device is changed
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Simulation for above idealogy is done in Ltspice for different cases.
Case 1: Equal gate resistance for two devices connected in series assuming no delay in

driving section.

V(NO15,NO1 8)

V(NO09,NO1

Devicel
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Current
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Figure 3.14: Simulation waveform for Case 1: R=1002, At=0ns.
30V/div, current: SA/div, time: 3us/div
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Figure 3.15: Second Pulse waveform for Case 2. Scale; voltage(a,c,d): 30V/div, volt-
age(b): 40V/div, current(a,b): SA/div, current(c,d): 4A/div, time(a,b):

0.3us/div, time(c): 80ns/div, time(d): 100ns/div

Red colour plot in simulation represents device current and Green and blue colour wave-

form represents top and bottom device voltages respectively.
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Case 2: Equal gate resistance for two devices connected in series assuming worst case
delay of 50ns.

V(N009,N011) V(N015,N018) Ix(Ua:d)
600V 1 ~40A
Device:1 ! ! ! ! !
Device2 : : : : : : : :
sa0v-| Current ; ; ; ; ; : : : | s6a
asov- i i i i i : : : M a2
az0v— ; ; ; ; ; ; ; } ; ; }’ 28A
ssov-| : : : : : : : : : 2an
300V —20A
240V —16A
180v-] Fiza
120V H H ; H H H H H 7 [ 8A
Gov-{ t t t t t t t i t ] i - an
: : : : : H H : i on
i -an
ous aps ous ous 12ps 15ps 18ps 21us 2aps 27ps 30ps

Figure 3.16: Simulation waveform for Case 2: R=100f2, At=50ns. Scale; voltage:
60V/div, current: 4A/div, time: 3us/div
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Figure 3.17: First and second Pulse waveform for Case 2. Scale; voltage: 60V/div, cur-
rent: 4A/div, time(a): 0.3us/div, time(b): 0.2us/div, time(c d): 0.1us/div
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Case 3: Different gate resistance for two devices connected in series assuming worst
case delay of 50ns, R,=10012 , R2=57.5¢).
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1k | ‘\\
|
I i
Il )
)} : n
(c) 2nd Turn off (d) 2nd turn on

Figure 3.18: Double Pulse waveform for Case 3. Scale; voltage(a): 40V/div, current(a):
4A/div, time(a): 0.2us/div, voltage(b): 30V/div, current(b): 3A/div,
time(b): 0.3us/div, voltage(c, d): 40V/div, current(c,d): 4A/div, time(c):

0.2us/div, time(d): 0.1us/div

Case 4: Different gate resistance for two devices connected in series assuming worst
case delay of 50ns, R,=68(), Ry=27¢).

V(NO15,N018)

-an

12ps

Figure 3.19: Simulation waveform for Case 4: R;=68(), Ry=27¢), At=50ns. Scale;
voltage: 50V/div, current: 4A/div, time: 3us/div

24



I —
i _—
] JW“ |
(a) 1st Turn off (b) 1st Turn on
—/-—‘\H o e — ﬂl\
| ===
” i
|
I Il
| /|
i :
J JW : N :

(c) 2nd Turn off (d) 2nd turn on

Figure 3.20: Double Pulse waveform for Case 4. Scale; voltage(a): 50V/div, cur-
rent(a,c): 4A/div, time(a): 0.2us/div, voltage(b): 30V/div, current(b):
3A/div, time(b): 0.6us/div, voltage(c,d):50V/div, current(d): SA/div,
time(c): 0.2us/div, time(d): 0.1us/div

3.3 Sensing of Device parameters

Sensing of device voltage is the very important for active gate control of series connec-
tion of SiC MOSFET’s. To Design active gate driver with FPGA or DSP control on
board, it is necessary to sense or capture entire transient region of voltage and current
for perfect design of closed loop feedback control.

3.3.1 Drain Voltage Sensing

i

RI R? R3 R4 R Vout
Vs actuat spp—ann—an—anmy, A -
-1 -V

s

Figure 3.21: Voltage sensing circuit
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For series connection application, individual device voltage can go upto 70-80 % of
rated voltage. Device might detoriate or fail if transient voltage rises beyond rated
voltage for few nanoseconds.

O Aol = otam Solam ETo = o e Toam Ao T A O

Figure 3.22: Simulation result for Voltage sensing; scale x-axis: 10us/div, Vpg:
0.1V/div

To feed the actual voltage shape to digital controller, voltage level should be scaled
down to signal level, £ 5V. The switching of SiC MOSFET happens within few
nanoseconds and thus Vpg exhibits a very high dv/dt for very short interval of
time (high frequency component).Therefore to track/capture exact voltage, resistor
bridge connected with high CMRR, Slew rate differential Opamp, AD8045 were
selected.(Refer Fig.3.21).

.
E T ST ETN . ST - Ta B0 T e T . Erm e ET T ETE T TR BT S ETR T

Figure 3.23: Voltage sensing simulation waveform, zoomed version ; scale x-axis:
0.7us/div, Vpg: 0.1V/div

Problems associated with this circuit will be discussed in Chapter 5. Simulation for the
following circuit were done in Ltspice software and result turns out to be matching with
actual voltage. Refer Fig.3.22 and Fig.3.23.
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3.3.2 Drain current Sensing

o AE 5L MOFET \.‘W’l\.— .
g - n
+ \ f B ;
i %TI > ?‘sla*v _l' .__,‘.. T, T
_"\'\'r'.'l" v .,L F vb' ‘]LJ | J -'f'.'.' 2
s

{a) Realizing the proposed method using an CTA (T1 OPASAD) {b) Modifiad CTA integrator to compensate regative offet

Figure 3.24: widebandgap integrator

This section proposes a Kelvin voltage based drain current sensing method. Though,
Kelvin voltage based current sensing method is common in IGBT application, but its
application for SiC MOSFETs is rarely reported. The Kelvin voltage (vy is the voltage
that appears across the kelvin terminal and actual source of a SiIC MOSFET due to small
parasitic inductance contributed by device packaging. The magnitude of Kelvin voltage
is given by Eq.3.13.

di
up(t) = Lp.d—td

Current sensing circuitry has been designed by monitoring voltage across the parasitic
inductance (additional inductance of 10nH has been added), i.e., Kelvin voltage. The
switching of SiC MOSFET happens within few nano seconds and thus /p exhibits a
very high di/dt for very short interval of time (high frequency component).

(3.13)

Vinoz3)

390mv- ' 1 1 1 | | wenipe | Y

380mY-— | | | | | | | | | soa

330mv—] t t t t t t t t - ToA

J00mv— | | i | | | | | L apa

2TOmV— 1 1 1 t t t t t - S04

240mv— t t t t t t t t - 4pa

Taom 1 1 H 1 1 | | | 204
150mY = — T T of t t 104
120mv—{ { { { { | | | T

somv— | | | | | | 1 1 SET-TY

33, 5un 34,008 34, 5n 3800 35,50 38,0 385w FT . a7 5em 38,00 36,5 39,0

Figure 3.25: current sensing simulation; scale; x-axis: 0.5us/div, Ip = 10A/div, Vout =
30mV/div
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Figure 3.26: current sensing simulation; scale; x-axis: 70ns/div, /p = 10A/div, Vout =
30mV/div

Whereas, the di/dt during the steady state conduction is much lower than that during
the switching interval as it is primarily governed by the load inductance (low frequency
component). To reconstruct the drain current id from the kelvin voltage a wideband in-
tegrator is required. A wideband high CMRR Operational Transconductance Amplifier
(OTA) based integrator is used which replicates current /. However, due to the faster
switching of the SiC device, higher slew rate operational amplifier is required and
higher bandwidth is required to faithfully replicate the overshoots and oscillation in
drain current. Therefore, commercially available OTA; Texas instruments’ OPA860 and
Analog Device’s AD8045C opamp is used for this application. From the Datasheets of
OPAS860 and AD804S5 it is observed that it has a flat frequency response upto 100MHz
and hence both can integrate wideband signals therefore both the ICs were chosen for
this application.

In the case of OTA, base of OTA transistor is ground so that current 7,= 0, and
i = .. So, emitter current, ¢, is basically current through R; connected to kelvin
source terminal. Integral of 7. results in in a voltage proportional to /;. A capacitor
('t can be used to integrate the collector current, 7. and thus produce a voltage v,
proportional to the drain current. However placing capacitor alone for integration
creates a DC offset problem at output of integrator as low frequency signals can
saturate OPamp IC’s. To overcome this, a resistor [2; is placed across C'y. (Fig.3.24.)
to ensure proper DC biasing of the integrator circuitry. Selection of Ry and Cy has
done in such a way that entire device current can be reproduced by the wideband
integrator. simulation results for same have been shown in Fig.3.25 and Fig.3.26.
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CHAPTER 4

HARDWARE ORGANISATION

This chapter deals with design and development of proposed gate driver, isolated power

supply for the CGD, double pulse test setup.

" /"_' . |_| Banitter
- <
— / - Canabber
g
~ <Rs

= o
E__J@ EW R,

I3

— 88—

(a) circuit diagram (b) Printed circuit diagram

Figure 4.1: Double Pulse Test setup

SiC MOSFET is tested in a double pulse test setup as shown in Fig.4.1. PCB of test
bed is made up of two layer flame retardant(FR4) material with a thickness of 3mm.
Board can accomodate four SiC devices, two gate drivers with power supply and load
inductor. The DC bus is sandwiched to have minimum parasitic/loop inductance in the
layout, as one can see in the Fig.4.1(b) the components are placed in a straight line on
top and bottom of board so that only one loop is formed in whole board, this in turn
reduces the loop incuctances. A 20.5 uF polypropylene film capacitors combinations
are connected across the DC bus(in DP board) to nullify the effect of layout parasitic in-
ductances. Also a set of four, 16 uF metalized polypropylene capacitors are connected
across DC bus to nullify effect due to paraasitic inductances. Metalized polypropylene

capacitors are selected due to its very low equivalent series inductance(ESL).



The Device Under Test (DUT) for the DP test was a third generation SiC MOSFET
module from CREE (Refer. Fig.4.2). This SiC MOSFET has four terminals, kelvin
voltage is additional fourth terminal added among other three terminals. The key pa-

rameters of the device are presented in Table.4.1.

Drain
(Pin 1, TAB)

Source Source
E! ; ; 40 [(Pin 3) [(Pin 2)
(a) photograph of device (b) Pin diagram

Figure 4.2: CREE SiC MOSFET

Parameters | Value |
Part No C3MO0065100K

V bSmaz 1000V

IDcontinuous 35A

R DSon 65m¢?

Ciss 660pF

Coss 6OpF

Crss 4PF

VGS(th) 2.1V

Raint 4.7

Table 4.1: SiC MOSFET Details

The DPT setup is designed handle pulsed current upto 300A. Therefore, a load inductor

which can with stand 300A without saturating is required.

SOdmm

@ 2(0em
0.0

Figure 4.3: 200pH Air core inductor

A 200pH air core inductor was designed as shown in Fig.4.3. The designed inductor
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consists of single layer winding which reduces the effect of stray capacitcances thereby

improving the performance of inductor.

4.1 Passive Gate Driver

Passive Gate Driver incorporate all sensing and mitigation circuitry mentioned in chap-
ter 3. To Drive the fast switching SiC MOSFETsS, gate driving IC designed by Texas
Instruments, ISO5852Q were chosen. For SiC MOSFETs, the driving voltage are +15V
in the ON state and -2.5V in the OFF state.

Optical isolation

Voltage 3 C m‘i“(l?nt
sensing L S?FES{FIIQ
circuit circuit

Figure 4.4: Top view of Gate Driver

The gate driver IC ISO5852 has advanced feature like Desat protection, soft turn off,
undervoltage protection, minimum common mode transient immunity (100V/ns) etc.
It has high isolation surge withstand voltage, 12800 V,,;,. This could help in reduction
of the overall size of gate driver section. Fig.4.4 shows the designed gate driver PCB.
sensing and other circuitry sections are marked in Figure. PCB is designed in such a
way that it ensures smaller size board with 2.7mm thickness and four layer FR4 mate-

rial.

An isolated power supply consisting of high isolation voltage rating is specifically de-
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(a) Top view (b) Bottom View

Figure 4.5: Power Supply

signed for the gate driver. This supply Is designed such that it can with stand large
dv/dt and isolation voltage requirements. In this design, power supply of the gate driver
is isolated using galvanic isolation of transformer as shown in Fig.4.5. Isolated power
supply boards are mounted at the back of the gate driver board (yellow coloure border
shown in Fig.4.4) generating +15 /-2.5V gate supplies. +5 /-5V supplies are for power-
ing up sensing ICs. Since, the gate driver supply and signal input supply are separate;
the overall system has two grounds excluding the driver isolation side. This separation

will provide two paths for common mode current to flow through ground potential.

ORI 1)
I 2| s 6 7 8 9 1lo 1:

gl "n MADE IN IND{A; 3‘ 4
A

Optica
P3 TP4 TPZ GND
- @ -

Figure 4.6: Optical Interface Card

To mitigate gate pulse signal contamination due to common mode noise, gate signal is
transmitted using an optical interface card, which completely isolates the gate drivers
from control board. Fig.4.6 shows the optical interface card used for transmitting the
PWM to gate driver via optical cables. Optical interface card consists of pull up circuit
for fault reciever and level shifter circuit for PWM Transmission.

The individual components of the setup are assembled together to perform the DPT. The

entire DPT setup is shown in Fig.4.7. The DC bus voltage to the DPT setup is adjusted
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by using an autotransformer as shown in Fig.4.7.

Optical Interface Card

-«— DP Inductor

Figure 4.7: Double Pulse Test Setup
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CHAPTER 5

HARDWARE RESULTS

Hardware implementation of designed circuit were discussed in previous chapter, de-
signed gate driver and CREEs latest silicon carbide device were tested in Double Pulse
test at 400 to 800V DC Bus. Experimental results for all studies were presented in this

chapter.

5.1 Gate Pulse Comparison

At smaller DC voltages, Devices connected in series shows different rise time and fall
time. This led to primary investigation on Gate voltages, driving circuits in pulse gen-
erator etc. It is found that the length of optical cable connected to gate drivers from
optical interface card is different. Length of two cables differ by 6cm also each cable
has propogation delay of 110ns(for Imeter length). The hardware results reveals that
the input gate pulses given to gate driver IC differs by 0.3 to 3.5ns in rise time and 0.8

to 5.5ns in fall time.
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Figure 5.1: DPT 2"¢ pulse fall time

The time delay observed in second pulse is 0.7ns(minimum) and 4.6ns(maximum) as
shown in Fig.5.1. This difference in delay is observed due to variation in pulse feeded
to optical interface card, i.e., for every press on switch in analog pulse generator, posi-

tion of pulse changes and also time taken for this pulse to reach level shifter and optical



transmitter is different due to track length difference in OIC.
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Figure 5.2: DPT 1% pulse fall time
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From Fig.5.2 minimum fall time delay occured is 2ns and maximum fall time delay is

5.5ns.
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Figure 5.3:

time: (b) Minimum observed delay.

Scale; time: (d) Minimum observed delay.
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Absolute maximum rise time delay is 5.5ns and minimum delay is 0.5ns.
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5.2 Snubber Circuit

In chapter 3, we have seen the simulation for different capacitors that are available in
market. Considering the voltage deviation and losses, the 22nF capacitor were chosen
for hardware implementation. But to make sure that there is no huge difference in sim-
ulation and hardware results, selection of snubber capacitor were done experimentally
by changing the capacitors that are readily available. Small resistance in the range of
m(2s are not readily available and are not recommended because of its smaller ratings.
In hardware implementation, 2.5¢) resistance were chosen for snubber study. As the
snubber resistance increases, losses will also increase accordingly which affects overall
efficiency of converter. Studies were done with two different external gate resistances.
Since the leakage current of device is so small(in nanoAmperes), a 100k{) Resistors
were chosen as balancing resistance (/) for static voltage balancing.

Case 1.a: 1nF WIMA Film capacitor and 2.5(2 Resistance in series, ;= 14.7(2.
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(c) Double Pulse 3 Scale; time: 10us/div, volt- (d) Double Pulse 4 Scale; time: 10us/div, volt-
age: 200V/div, current: 50A/div, snubber age: 200V/div, current: 50A/div, snubber
voltage:100V/div voltage:100V/div

Figure 5.4: DP Waveforms for 1nF snubber capacitor
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Due to pulse contamination, 4 sets of Double pulse waveform were obtained as shown
in Fig.5.4. Studies were done selecting one such set. Fig.5.5. shows the selected set
and Fig.5.6 shows the falling and rising edge of second pulse.
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Figure 5.5: DP waveform for Snubber capacitor, C;=1nF, Scale; time: 10us/div, volt-
age: 200V/div, current: 5S0A/div, snubber voltage:100V/div
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Figure 5.6: DP Waveform for 1nF snubber capacitor: Rising and falling edge capturing.

At 800V DC voltage, top device voltage(Yellow) differ from bottom device volt-
age(green) by approximately 210V. Light pink coloured waveform reveals switching
energy loss at that instant of capturing. Therefore 1nF snubber capacitor is not suitable
or sufficient for high voltage application.
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Case 1.b: 1nF WIMA Film capacitor and 2.5¢2 Resistance in series, R,= 184.7().
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Figure 5.7: DP Waveforms for 1nF snubber capacitor, R,=184.7¢)
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Figure 5.8: DP waveform for Snubber capacitor, Cs=1nF, R,=184.7() Scale; time:
Sps/div, device voltage: 200V/div, current: 50A/div, snubber volt-
age:100V/div
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Figure 5.9: Turn on time capturing, Cs=1nF, R,=184.7() Scale; time: 100ns/div, device
voltage: 200V/div, current: 50A/div, snubber voltage:50V/div

Fig.5.7. depicts three different waveforms obtained due to pulse contamination from
optical interface card.

The device voltages (yellow and green waveform) differences can be noticed in above
oscilloscope output. As you can observe in Fig.5.9, Snubber circuit has least effect
during turn on time.
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Figure 5.10: Turn Off time capturing, C,=InF, ,=184.7Q) Scale; time: 50ns/div, de-
vice voltage: 200V/div, current: 50A/div, snubber voltage:50V/div

Here, R,.,;=180¢2 is used only to check the feasibility of series connection. Turn off
Voltage deviation in devices with InF snubber capacitor is shown in Fig.5.10. A devi-
ation of 300V (Between yellow and green voltage waveform) is seen when 800V DC
voltage applied. The switching loss(pink colour) is also shown in Fig.5.9 and Fig.5.10.

e Turn on energy loss(£,,,) per device = 0.063mlJ.

e Turn off energy loss(E,s)per device = 1.6203mJ.
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Case 2.a: 2.2nF WIMA Film capacitor and 2.5¢2 Resistance in series, R = 14.7€).
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(a) Double Pulse 1 Scale; time: Sus/div, volt- (b) Double Pulse 2 Scale; time: Sus/div, volt-
age: 200V/div, current: 50A/div, snubber age: 200V/div, current: 50A/div, snubber
voltage:50V/div voltage:50V/div
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(c) Double Pulse 3 Scale; time: Sus/div, volt- (d) Double Pulse 4 Scale; time: 5Sus/div, volt-
age: 200V/div, current: 50A/div, snubber  age: 200V/div, current: 50A/div, snubber
voltage:50V/div voltage:50V/div

Figure 5.11: DP Waveforms for 2.2nF snubber capacitor

DS0-% 30344, MY53511480: Meon Mar 18 20:03:38 2019

1200/ 2oo200Ws 3 BOOAS 4 100W/ 12112 50.00%/ Trig'd? £ 1 75.0v
[‘Delay = 71|2 11QDDDu‘s | ] v
Val B DY !
Tz Zo 0D T
s puC I mC B N
\Y"\\ E Chanrels
oc a00:1
‘; /K‘ bc 500:1
23 O L Wi oc 50.0:1
2| e oe 1001
o] Eo—
A4 Avg - FS[1):
N 203.6V
Avg - FS[Z):
205.0V¥
Area - FS[]
286.87Uls

Trigger Mode and Coupling Menu
O Mode =5 Coupling Foise Fej HF Feject ~ Holdoff External
Hormal oc = = 40.0n -

Figure 5.12: First Turn on Edge capturing, C,=2.2nF, R,=14.7() Scale; time: 50ns/div,
device voltage: 200V/div, current: 50A/div, snubber voltage:100V/div
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The turn on edge for first pulse of double pulse (Fig.5.11(d)) is shown in Fig.5.12.
The switching loss of top device for this case is 0.286mJ. Similarly first pulse turn off
switching loss is 0.065mJ shown in Fig.5.13.
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Figure 5.13: First Turn off Edge capturing, C;=2.2nF, R,=14.7(2 Scale; time: 20ns/div,
device voltage: 200V/div, current: 50A/div, snubber voltage:100V/div

Similarly, the waveforms for second pulse turn on and turn off edges are shown in

Fig.5.14. The turn on energy loss is 1.18mJ and turn off loss is 0.083mlJ. Therefore
total switching loss is 1.614mlJ.
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age:100V/div age:100V/div

Figure 5.14: Second pulse Waveforms for 2.2nF snubber capacitor

Case 2.b: 2.2nF WIMA Film capacitor and 2.5¢2 Resistance in series, [2,= 184.7€).
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Figure 5.15: Double Pulse waveform, C,=2.2nF, R,=184.7€) Scale; time: 5us/div, de-
vice voltage: 200V/div, current: 5S0A/div, snubber voltage:50V/div
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200ns/div, (d) Second Turn off, Scale; time: 50ns/div, volt-
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voltage:50V/div

(c) Second Turn on, Scale; time:
voltage: 200V/div, current: 50A/div, snub-
ber voltage:50V/div

Figure 5.16: Turn on and turn off switching Waveforms for 2.2nF snubber capacitor,
R, = 184.74).

Therefore, from these waveforms Total switching loss of device is found to be 5.612mJ.
So overall switching loss if two devices connected in series will be 11.224mJ assum-
ing that device parameters are approximately same. Total losses were calculated by
collecting waveform details in excel datasheet and analysing the waveform completely.
It is also found that overall losses increases with increase in snubber capacitance and
difference in pulse contamination observed before.
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Case 3.a: 11nF WIMA Film capacitor and 2.5¢2 Resistance in series, [2,= 14.7€).
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(c) First Turn off Scale; time: 50ns/div, voltage:
200V/div, current: 20A/div, snubber volt-

age:100V/div
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(d) Second Turn on Scale; time: 100ns/div, volt- (¢) Second Turn off Scale; time: 50ns/div, volt-
age: 200V/div, current: 50A/div, snubber  age: 200V/div, current: 50A/div, snubber
voltage:100V/div voltage:100V/div

Figure 5.17: Double pulse switching Waveforms for 11nF snubber capacitor, R, =
14.72, Vpe=400V

Fig.5.17 shows DP waveform and all four switching edges of DP waveform when
tested the setup at 400V DC Bus. Figure clearly shows that 400V DC bus, the voltage
deviation is less than 10V (Difference in device 1 voltage(yellow) and bottom device
voltage(green)).
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Fig.5.18 shows DP waveform and all four switching edges of DP waveform when
tested the setup at 500V DC Bus.
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Figure 5.18: Double pulse switching Waveforms for 11nF snubber capacitor, R, =
14.7Q, Vpe=500V

Analysing the waveforms of switching edges, Voltage deviation in this case is found to
be 28V. Because of higher di/dt, device has higher overshoot in current at the beginning
of turn on edge.
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DP waveform and all four edges of DP waveform when tested the setup at 800V DC
Bus is shown in Fig.5.19.
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Figure 5.19: Double pulse switching Waveforms for 11nF snubber capacitor, R, =
14.7Q, Vpe=800V

Voltage deviation in this case is 48V. Device switching loss is calculated by analysing
the excel data of above waveform and found to be 2.409m]J.
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Case 3.b: 11nF WIMA Film capacitor and 2.5¢2 Resistance in series, ;= 184.7().
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age: 200V/div, current: 50A/div, snubber  age: 200V/div, current: 20A/div, snubber
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(c) Second Turn on Scale; time: 200ns/div, volt- (d) Second Turn off Scale; time: 100ns/div,
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Figure 5.20: Double pulse switching Waveforms for 11nF snubber capacitor, R, =
184.7€2, Vpe=800V

Fig.5.20 reveals all four edges of DP waveform when tested the setup at 800V DC Bus.

Dynamic voltage difference is 54V. The switching loss of one device is found to be
1.905mJ.

Case 4.a: 22nF WIMA Film capacitor and 2.5¢) Resistance in series, 2,= 14.7€).
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(a) First Turn on Scale; time: 100ns/div, volt- (b) First Turn off Scale; time: 50ns/div, voltage:
age: 200V/div, current: 50A/div, snubber = 200V/div, current: 20A/div, snubber volt-
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Figure 5.21: First pulse switching Waveforms for 22nF snubber capacitor, R, = 14.7€2,
Vpe=800V
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Figure 5.22: Second pulse switching Waveforms for 22nF snubber capacitor, R, =
14.72, Vpe=800V

Fig.5.21 and Fig.5.22 depicts first and second turn on and turn off edges of Double
pulse at 800V DC Bus, dynamic voltage difference at 800V DC Bus is less than 20V.
Switching energy loss per device in this case is calculated and found to be 4.20619mJ.

Case 4.b: 22nF WIMA Film capacitor and 2.5¢2 Resistance in series, 2,= 184.7().
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Figure 5.23: Double pulse switching Waveforms for 22nF snubber capacitor, R, =
184.7€2, Vpe=800V
The switching energy loss for Case.4.b is 8.046548mlJ/device.
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5.3 Effect of R on Dynamic Voltage

This section showcase the hardware results of Double Pulse Test conducted for different
gate resistances connected in gate driver. At minimal gate resistance, the peak overshoot
is almost 300%. So device is not tested above 100V DC Bus for gate resistance below
10€2 (Excludes internal resistance of 4.7€2). Therefore, hardware test were done for 10-
200¢? gate resistance at 400V DC bus voltage.

Case 1: R,=14.7().
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Figure 5.24: Double Pulse waveform, R,=14.7€) Scale; time: 5Sus/div, device voltage:
100V/div, current: 10A/div
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Figure 5.25: Double Pulse test waveform, Rg=14.72

48



Switching Transients in device is shown in Fig.5.25., dynamic difference between
top device (yellow) and bottom device (green) also varies slightly with change in
gate resistance. Voltage slew rate and amount of overshoot also dependent on gate
resistances, which we will see in upcoming cases.

Case 2: R,=51.7€), Vpc=400V.
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Figure 5.26: Double Pulse waveform, R,=14.7€) Scale; time: 20us/div, device voltage:
100V/div, current: 10A/div

Multiple waveforms were taken due to pulse contamination and Waveform that repeats
again after a series of sets were taken into consideration, is shown in Fig.5.26 and
corresponding turn on and off edges were shown below in Fig.5.27.
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Figure 5.27: Double Pulse test waveform, R;=51.7¢2, V=400V
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Case :3 R,=72.7€), Vpc=400V.
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Figure 5.28: Double Pulse waveform, R,=72.7(2 Scale; time:
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Multiple waveforms were taken into account due to pulse contamination and one set of

result is shown in Fig.5.28 and Fig.5.29.
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Figure 5.29: Double Pulse test waveform, R;=72.7¢2, V=400V
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Amount of overshoot in voltage and current reduces with increase in gate resitances,
but it also increases the switching times parallely.

Case :4 R ;= 104.7Q0, Vpc=400V.
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Figure 5.30: Double Pulse waveform, R,=104.7€) Scale; time: Sus/div, device voltage:

100V/div, current: 10A/div
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Figure 5.31: Double Pulse test waveform, R;=104.7C2, Vpc=400V

While analysing all cases,top devices is found to clamps at very high voltage always.
But the intensity or magnitude of peak voltage overshoot reduces with rise in gate re-

sistances.
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Case :5 R = 184.7(), Vpc=400V.
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Figure 5.32: Double Pulse waveform, R,=184.7€) Scale; time: 5ps/div, device voltage:
100V/div, current: 10A/div
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Figure 5.33: Double Pulse test waveform, R;=184.7€), V=400V

In all the five or more cases, top device close to diode clamp or + DC always take maxi-
mum voltage compared to bottom device(s). To identify the reason for taking maximum
voltage, incremental tests were done by interchanging the devices alone, and by inter-
changing the gate driver alone etc.

Interchanging device doesn’t have much effect in the voltage clamping or dynamic re-
sponse but these slight difference in transient response is due to internal capacitance
(C,ss) of device which varies with device voltage, Vp,qin.
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Similarly, interchanging gate driver has no effect on transients at high voltage, but at
lower voltage (say 50-100V DC) the gate side parameters like C'y; and Cy, has impact
on voltage sharing and maximum voltage device clamps. It was found that at one
particular case, the bottom device rise first than top device due to device parameters.
So from simulation and hardware studies, it is clear that non simultaneous switching
will results in unequal voltage sharing among series connected semiconductor devices.
The most important factor contributing to dynamic voltage mismatch is the parasitic
capacitances from gate to ground. According to Fig.5.34 where a higher voltage
SiC MOSFET is realized by series connecting two SiC MOSFET in series, there is a
parasitic capacitance from gate of each device to ground.
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Figure 5.34: Series connected devices in Double Pulse setup

This capacitance is composed of the parasitic capacitance of the power supplies used
for passive gate driver, as well as the parasitic capacitance inside the device package
from gate to baseplate, where the baseplate is usually grounded. Even if well matched
devices and gate drivers are used, during the turn-off process equal currents will flow
to the gate drivers (741=t42). Eventhough the gates are well coupled to sources, due to
dv/dt at the gate, a secondary gate current will flow from each gate to ground which can

be calculated as
dVG’n

dt
where dV/dt is the rate of voltage change at the gate of the nth MOSFET. The total
gate current during turn off is equal to the sum of the gate driver current component
and the current through the parasitic capacitor(Egn.5.2). On the other hand, dv/dt at
the gate of top MOSFET is equal to dv/dt at the drain of the bottom MOSFET, while
the gate of the bottom MOSFET is almost on ground potential which means that even
with perfectly matching gate drivers, the total gate current for the top MOSFET will be
larger than the bottom one, resulting in faster turn off for it. Faster turn off will results
in a higher share of the total dc voltage for the top device

S.D

len = CGn

Z-gn = lgn + len (52)
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5.4 Voltage Sensing

For voltage sensing, Caddock resistance bridge and normal resistance bridge based
opamp circuit were implemented and tested. For measuring the voltages; Lecroy Tele-
dyne oscilloscope, 100MHz 6kV high voltage differential probe(HVD3605A) is used
to measure drain voltage and a high voltage fiber optical isolated probe (HVFO103) is
used to measure the sensed voltage. The high voltage isolated probe far surpasses the
measurement capabilities and signal fidelity of conventional high attenuation, high volt-
age differential probes and acquisition systems that rely on galvanic channel-channel
and channel-ground HV isolation. This probe setup consists of seperable mini tips,
amplifier, optical cable. The amplifier/modulating transmitter is a frequency modu-
lating optical transmitter integrated with a high performance electrical amplifier. The
transmitter is battery powered, so there is no direct connection from the floating DUT,
providing HV isolation between the Device under test(DUT) and the grounded oscil-
loscope. Advantage of this probe other than isolation is common mode injection is
reduced to greater extent and probe capacitance is very small (25pF) compared to other
differential probes.

Fig.5.36 shows the common mode voltage(yellow) of isolation probe when setup is run
at 200V DC. it is to be noted that probe tip was hung or vertically positioned in test
setup as shown in Fig.5.35

Figure 5.35: Voltage Sensing with optically isolated probe/tip
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Fig. 5.36. and Fig. 5.37. shows the two different sets of common mode voltage(Yellow
waveform) when run at 400V DC Bus, device voltage measured with Teledyne
Lecroy’s High voltage differential probe is also shown, pink colour plot.

There is a chance for presence of parasitic capacitor build between adapter attached
to the metal body as shown in Fig.5.35, contributing the common mode injection. So
probe position is changed such a way that adapter is far away from metal bodies of
test setup. Then again common mode voltage were observed at same voltage level
as before. however, this time the common mode voltage is much less than previous case.
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(b) Second Turn off Scale; time: 100ns/div, voltage: 100V/div, common mode voltage: 1V/div

Figure 5.38: Probe Common mode pickup- Double Pulse waveforms set 3

Fig.5.38 shows new common mode voltages when optical isolated probe tips were con-
nected at ground terminal as before and adapter were placed using plastic mobile holder.

Therefore, the sensed voltage will definitely have this common mode signal. Fig.5.39
shows waveforms for potential divider output connected to drain terminal of top device.
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Case: 1 Voltage sensing at Resistance bridge output.
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Figure 5.39: Double Pulse waveform, Scale; time: Sus/div, device voltage: 100V/div,
sensed voltage: 5V/div
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(c) Second Turn on Scale; time: 100ns/div, volt- (d) Second Turn off Scale; time: 50ns/div, volt-
age: 100V/div, vsense: 5V/div age: 100V/div, vsense: 5V/div

Figure 5.40: Double Pulse sensed voltage waveform, V=400V

Transient response are not matching because of trace capacitance in board formed be-
tween sensed terminal and ground. To mitigate these, a set of capacitance were added
in parallel to Resistance in bridge such that ac gain equals dc gain and effect of trace
capacitance is negligible.
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Case: 2 Voltage sensing with Capacitor bridge alone.
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Figure 5.41: Double Pulse waveform, Scale; time: Sus/div, device voltage: 100V/div,
sensed voltage: 5V/div
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Figure 5.42: Capacitor bridge output voltage waveform, Vp-=400V

Capacitor bridge alone were connected just to check the transient response alone. With
larger capacitances, most of board trace capacitance effect were neglected. Sensed Volt-
age(Yellow) and Device voltage(Maroon) transients matches very well with designed
gain, but static voltages are not matched due to absence of resistance or in other words
dc gain is different. As mentioned before, common mode voltage is present in sensed
voltage, To get proper sensed voltages, compensation is required.
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Case: 3 Voltage sensing with RC compensation.
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Figure 5.43: Double Pulse waveform, Scale; time: 5us/div, device voltage: 100V/div,
sensed voltage(yellow): S5V/div
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(c) Second Turn on Scale; time: 50ns/div, volt- (d) Second Turn off Scale; time: 50ns/div, volt-
age: 100V/div, vsense(yellow): 5V/div age: 200V/div, vsense(yellow): 10V/div

Figure 5.44: RC compensated sensed voltage waveform, V=400V

With the selected resistances and capacitances, ac gain and dc gain are equal, but the
sensed waveform is 95% matching with actual waveform. The presence of common
mode in sensing voltage is the reason for mismatch in transient voltage.
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To understand till what range of tolerance level, the sensed voltage matches 100% with
actual measured voltage. Following cases were studied:

Case: 4 Voltage sensing with 120% RC compensation.
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Figure 5.45: Double Pulse waveform, Scale; time: Sus/div, device voltage: 100V/div,
sensed voltage(yellow): 5V/div
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(c) Second Turn on Scale; time: 100ns/div, volt-
age: 100V/div, vsense(yellow): 4.75V/div

Figure 5.46: RC 120% compensated sensed voltage waveform, V=400V

Sensed voltage(yellow) is somehow matching with actual voltage during turn off in-
stant, but in turn on condition, voltage is found to drop below zero level. So to eliminate
this further compensation is added and analysed.
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Case: 5 Voltage sensing with 150% RC compensation.
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Figure 5.47: Double Pulse waveform, Scale; time: Sus/div, device voltage: 126V/div,
sensed voltage(yellow): 6.5V/div
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(a) First Turn on, Scale; time: 50ns/div, voltage: (b) First Turn off Scale; time: 50ns/div, voltage:
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(c) Second Turn on Scale; time: 50ns/div, volt- (d) Second Turn off Scale; time: 50ns/div, volt-
age: 126V/div, vsense(yellow): 6.5V/div age: 126V/div, vsense(yellow): 6.9V/div

Figure 5.48: RC 150% compensated sensed voltage waveform, Vp-=400V

At 150% compensation, turn on voltage is not matched properly at some instant. How-
ever, with proper tuning between 120% and 150%, the voltage can be matched com-
pletely as the device voltage sensing is an important aspect when it comes to series
connection of devices.
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Case: 6 Voltage sensing with 80% RC compensation.
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Figure 5.49: Double Pulse waveform, Scale; time: 5Sus/div, device voltage: 100V/div,
sensed voltage(yellow): 5V/div
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(c) Second Turn on Scale; time: 100ns/div, volt- (d) Second Turn off Scale; time: 50ns/div, volt-
age: 100V/div, vsense(yellow): 5V/div age: 100V/div, vsense(yellow): 5V/div

Figure 5.50: RC 80% compensated sensed voltage waveform, V=400V
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Case: 7 Voltage sensing with 50% RC compensation.
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Figure 5.51: Double Pulse waveform, Scale; time: Sus/div, device voltage: 100V/div,
sensed voltage(yellow): 5V/div

AR e A e

s

. S —— el
(a) First Turn on Scale; time: 100ns/div, volt- (b) First Turn off Scale; time: 50ns/div, voltage:
age: 100V/div, vsense(yellow): 5V/div 100V/div, vsense(yellow): 5V/div

AR e N A e

m—— oyt
(c) Second Turn on Scale; time: 50ns/div, volt- (d) Second Turn off Scale; time: 50ns/div, volt-
age: 100V/div, vsense(yellow): 5V/div age: 100V/div, vsense(yellow): 5V/div

Figure 5.52: RC 50% compensated sensed voltage waveform, Vpc=400V
From above studies, the capacitance or ac gain tolerance range is -20% to +50% of
theoretical compensation value, i.e., RC compensation with 80% to 150% capacitance
tolerance range gives almost matching waveforms. However comparing all the case
studies, RC compensation done at 120% has given the best sensing results .
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Fig.5.53 represents the output waveform of AD8045 IC connected to drain terminal via
compensated RC bridge.
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(d) Second turn off, Scale; time: 100ns/div, voltage: 200V/div, vsense: 2.05V/div

Figure 5.53: AD8045 output-Voltage sensing

Even though the AD8045 has very good CMRR and slew rate, delay might happen due
to opamps deadtime. Luckily, due to compensation, waveforms were matched properly.
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Caddock 1776 C68 is simple resistance bridge divided in the ratios 1/10%, 1/103,..,1/10.
It can be used fo high voltage sensing applications. Output of AD8045 via caddock IC
is shown in Fig.5.54.
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Figure 5.54: Voltage sensing: Caddock-AD8045 output, V=400V, gain= 1/10
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5.5 Pulse Shift Delay Logic

After making certain adjustments like changing the optical reciever, fibre cable etc.,
new delay is introduced, i.e., 20ns delay in turn on edge and turn off edge. Refer
Fig.5.55
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Figure 5.56: Rising and falling edge of Gate Voltage Pulse shown in Fig.5.55

Fig.5.56. shows the turn on and turn off edges of gate voltages as shown in Fig.5.55.
Top device gate voltage is shown by maroon waveform and yellow waveform depicts
bottom device gate voltage. Therefore, to mitigate the delay in gate voltage, a 20ns
delay is introduced in device 1 gate voltage using pulse logic shift delay circuit. Fig.
5.57 shows the device parameters after mitigating the delay
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At 100V DC bus voltage, switching characteristics were analysed after introducing
delay of 20ns in top device gate driver.
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Figure 5.58: Device parameters after the application of PSDL

Fig.5.58. 1is one example for PSDL application, assuming that internal and exter-
nal capacitance of devices connected in series are same. However as you can see in
Fig.5.58(b,d) the dv/dt rates are same, but due to device’s internal capacitor variation,
the dynamic voltage of both device are not fully matched.

With appropriate tuning of PSDL circuit, we can ensure that there is no problem in gate
side to create a problem on voltage balancing in series connection. It will be good if
this idealogy is included in design of active gate driver with feedback sensing system.
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CHAPTER 6

CONCLUSION

6.1 Summary and Conclusion

The superior properties of SiIC MOSFET is well known. The faster switching coupled
with lower conduction losses make SiCFET ideal for high power density converters.
SiC MOSFET modules can further reduce the size of the converters leading to more
dense and compact power converter which can open up a new realm of applications of
power electronics and drives. However, the layout parasitic inductance deteriotes the
performance by introducing overshoot and oscillations on device parameters, leading
to a poor EMI performance. This is verified in both simulation and hardware results.
Therefore in the presence of the layout parasitic inductances, utilizing the SiC MOS-

FET to its full potential without increasing the switching times is a challenge.

In this thesis, challenges in implementing SiC MOSFET in series connection is stud-
ied in detail. The effect of parasitic inductances on the switching performance of a
SiC MOSFET are analysed in detail The presence of kelvin source in device reduces
the gate loop inductances, which reduces the overshoot and oscillations compared to
previous version of Silicon carbide MOSFET. In order to study the new SiC MOSFET
in series connection, a passive gate driver was designed. The optimum range of gate
resistance were identified through simulation and verified by experimental results. Due
to difference in optical cable length and other factors like difference in device capac-
itances, Gate pulse of two device were delayed by 10-20ns. Therefore, assuming that
such problem will happen in future, Pulse delay shift logic and other methods were
proposed in the thesis. These methods were verified in both simulation and hardware

results.

Performance of designed sensing circuits were studied and problems assosciated with
measurements were discussed in thesis. Presence of commonmode noise pickup af-

fected measurement of sensed voltage. The use of High voltage optically Isolated Probe



designed by Teledyne Lecroy.Ltd really helped in understanding the amount of common

mode pickup and actual sensed voltage.

6.2 Future Scope and Work

There remains a good scope of extending this project by adding additional features to
gate driver. To make sure that SiC MOSFET is used at its full potential, noise immune
active gate driver should be designed to drive device in series connection. Once device
is fully utilised, it can be used in following application as series connection of device

will have very good impact:

e Solid state Transformer(SST)

Solid state Circuit Breaker(SSCB)

e MYV Drives

Light HVDC.

Distribution and transmission level appartus
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APPENDIX A

Key Datasheet parameters

Silicon Carbide MOSFET

’ Parameters Value
Part No C3M0065100K
V bsmaz 1000V
IDcontinuous 35A
R DSon 65m¢?
Ciss 660pF
Coss 6OpF
Crss 4pF
VGS(th) 2.1V
Reint 4.7

Table A.1: Key datasheet parameters of CREE SiC MOSFET(C3M0065100K)

Texas Instruments Gate Driver IC

| Parameters | Value |
Part No ISO5852
Vet 5.5V(max)
Veeo 15V (min), 30V (max)
VEE2 —15V(m1n)
I(OUTH) 2.7A
I(OUTL) 5.5A
Withstand isolation | 5700V gars
voltage
Propogation Delay 110ns(Max)
CMTT at 1500V 100V/ns

Table A.2: Key datasheet parameters of gate driver IC(ISO5852)

Details of equipments used for hardware experiments



Equipment | Manufacturer | Part Number | Key parameter
Oscilloscope Agilent Technologies DSO-X 3034A 350MHz
Oscilloscope Teledyne Lecroy wavesurfer 3034Z 350MHz
Differential Probe Agilent Technologies N2790A 100MHz
Differential Probe Tektronix P5205A 100MHz

High voltage Differen- | Teledyne Lecroy HVD3605A 6000V/100MHz
tial Probe

High Voltage optical | Teledyne Lecroy HVFO103A 60MHz
isolation Probe

Current Probe Agilent Technologies N2781B 150A/10MHz

Table A.3: Equipment details
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