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ABSTRACT

Event cameras are bio-inspired vision sensors that output pixel-level brightness changes

instead of standard intensity frames. These cameras do not suffer from motion blur and

have a very high dynamic range, which enables them to provide reliable visual infor-

mation during high-speed motions or in scenes characterized by high dynamic range.

Event sensor also comes with low power consumption and less bandwidth required for

storing and processing event stream, as there is no redundant data. Inspired from these

advantages, an event camera is used to carry out SLAM application using line segments

as features. Although several straight line based SLAM methods have been proposed

using EKF filters, they can not be integrated directly with event cameras because of it’s

asynchronous nature. We propose a method to perform simultaneous localization and

mapping, assuming the camera has linear motion, using line segments as features, with

SFM approach.
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CHAPTER 1

INTRODUCTION

Simultaneous Localization and Mapping (SLAM) based on computer vision has got

much attention over past few years, and this technology is now rapidly transitioning

into a range of real-time products like smart phones, autonomous vehicles, and wearable

devices. These real-time and real world applications required to be quick in reacting to

the dynamics in the scene and should be able to capture as much as possible even in

extreme lighting conditions. It is very important to take power efficiency into account

as every application these days are running on battery.

However, the standard vision cameras on which they heavily rely run into prob-

lems when trying to supply these, either of huge bandwidth requirements and power

consumption at high frame-rates, or diminishing image quality with blur, noise or sat-

uration. Although several SLAM methods have been shown to be working efficiently

in real-time up to 30-50 fps. Still standard cameras suffer form motion blur and low

dynamic range limitations as shown in Figure 2.2 and also they carry redundant data

mostly if the scene is static. These limitations on conventional imaging sensors led

neuromorphic vision research community to develop new vision sensors which can un-

derstand the scene better than CMOS/CCD conventional sensors. A number of different

sensing modalities have been proposed, such as spatial difference or contrast sensors

which reduce spatial redundancy based on intensity differences or ratios over space,

and temporal difference or contrast sensors which reduce temporal redundancy based

on absolute or relative intensity changes over time. One such temporal contrast based

camera is called an event camera which can mimick some of the superior properties

of the human vision and it comes with great merits for real-time vision, with it’s high

measurement rate, low latency, high dynamic range and low data rate properties.

This thesis is organized as follows: In chapter 2, we talk about limitations on con-

ventional imaging sensor and then introduce an event sensor, later it’s advantages, lim-

itations and calibration of event camera. Related work and proposed method are dis-

cussed in chapter 3. Finally, results are shown in chapter 4. The conclusion and future

works are discussed in chapters 5.





CHAPTER 2

Event Sensor

2.1 Event camera

Events sensor is biologically inspired real time vision sensors with great advantages

in storing and processing the data over traditional imaging sensors. The basic idea

of an asynchronous vision sensor is that the output is in the form of address-events

(x, y-coordinates) that are generated locally by the pixels. Unlike traditional camera,

an events camera records not image frames but an asynchronous sequence of per-pixel

intensity changes each with a precise timestamp. It also captures polarity as +1 or -1

representing intensity change whether it’s positive or negative respectively.

So, each event is represented as

ei = {x, y, p, t} (2.1)

where x, y = pixel’s coordinates

p = polarity (+1 or -1)

t = timestamp in the order of µs

This representation is sometimes also referred to as address-event representation

(AER). An event sensor efficiently encodes image dynamics with extremely temporal

contrast and high dynamic range. Figure 2.1 shows that there are no events when the

scene is static and stream of events when a black dot is moving circularly.



Figure 2.1: Standard camera vs event camera. Figure courtesy Kim et al. [6]

2.2 Standard camera vs Event camera

Standard cameras record scenes at fixed time intervals (i.e. global or rolling shutter)

and output a sequence of image frames. For example, as shown in Figure 2.1, if a fixed

standard camera is set up to capture the spinning disc with a black dot shown on the left,

we get a sequence of images as illustrated in the upper spatial-temporal graph on the

right. Even when there are no changes happening in the scene, the sensor keep sending

the redundant data. In the same way, standard camera also suffers from motion blur and

low dynamic range as shown in Figure 2.2. These limitations on the standard camera

were tackled by event camera as discussed below.

On the other hand, Event camera fires asynchronous events (also called spikes),

each with pixel location, microsecond precise timestamp, and polarity, indicating log

intensity changes of a preset threshold size. By encoding only relative intensity changes,

resources required for transmitting, storing and processing a stream of events is much

lower than a standard camera. The lower spatial-temporal graph on right side of Figure

2.1 shows the event stream generation where red and blue dots represent positive and

negative events respectively. The data rate is less when the disc is spinning slow, and is

high when the disc is spinning fast. In the later case, we got tails along the trajectory of

black dot on the standard camera frames.
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Figure 2.2: Standard camera limitations: Motion blurred image on left and low dynamic
range image on right. Figure courtesy Kim et al. [6]

2.3 DAVIS camera

Neuromorphic vision research was trying to create complete neuromorphic systems

which can mimic biological counterparts as precisely as possible till 2000’s. Later in

2004, Brandli et al.[3], designed Dynamic and active pixel vision sensor (DAVIS) which

interleaves conventional intensity frames rather than per-event intensity measurements.

The main advantage of the DAVIS pixel design is sharing the same photocurrent be-

tween the asynchronous detection of brightness changes and the synchronous readout

of intensities, and as a consequence it requires only five additional transistors per pixel

to add a global and rolling shutter readout yielding a smaller pixel size. Figure 2.3

shows an image-like visualization of accumulated events and it’s corresponding inten-

sity frame. The DAVIS240C camera from iniLabs has following specifications:

Property value
Resolution 180 x 240

Dynamic range 120dB
Temporal latency 15µs

Communication type USB 2.0

Table 2.1: Specifications of DAVIS camera
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Figure 2.3: DAVIS output: (a) Accumulated events as a frame (b) an intensity frame
from DAVIS camera. Figures courtesy of Brandli et al.[3]

2.4 Limitations

Even though event sensor has all these advantages it has it’s own share of disadvantages

as well. Event sensor has limits in terms of time resolution and bandwidth. Firstly, it

has minimum timestamp resolution which is mostly 1µs. The chip bandwidth limits the

maximum number of events that can be transmitted per second

Event cameras are also in practice subject to noise and limited in what they can

perceive. Noises arise from two primary factors. First, all the electronic components

such as photodiodes and transistors contribute some electronic noise. For instance,

even in complete darkness, there is still a small electric current across photodiodes

which could produce noise events especially noticeable in low-light conditions or in

darker areas of scenes. Second, even in well-lit conditions with little electronic noise,

all existing event cameras have undesired background events which are not correlated

to scene changes. They are all positive events regularly produced at a certain rate which

could be for instance once every 10 seconds depending on the positive event threshold.
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2.5 Calibration

Camera calibration is the process of estimating parameters of the camera which includes

camera matrix and distortion coefficients. This can be done by using images of a special

calibration pattern like checkerboard in case of standard cameras which can not be

applied directly to event cameras because of it’s odd behaviour. For a good estimate

of parameters, at least 15-20 images are required. To do this task with event cameras,

there are two different ways to proceed. First one is to use a special flickering led

pattern as used by Kim et al.[6] in his work. The second method is to reconstruct log

intensity images first as discussed in [10] and then do the normal calibration procedure

as if they are like intensity images. In this thesis, we have followed the later method

which is simple to proceed but make sure that the reconstructed log-intensity images

are visually better than event frames. Figure 2.4 shows one such reconstructed image

of checkerboard scene and it’s corners detected by Caltech toolbox in MATLAB.

Figure 2.4: Log intensity image on left and the checker board corners detected by the
toolbox on right
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CHAPTER 3

Event based SLAM using straight lines

3.1 Motivation

Straight lines are so prominent in computer vision applications as they contain more

information than point features like SIFT [7], ORB [9], SURF [1], .., etc. This led us

to use line features to perform camera tracking and mapping task. Earlier works on

SLAM using event cameras, uses probabilistic filters like EKF [5], particle filter [4]

to update pose and inverse depth estimations which makes them real-time but they use

only one observation at a time which let the systems to use little information about

scene and the used events could also be noisy giving rise to false updates. Based on this

observation, we propose an algorithm to update camera velocity and inverse depth of

line’s end points which takes a bunch of measurements each time.

3.2 Related work

As discussed in previous chapter, event camera comes with great advantages to embed

in real-time computer vision applications, with high potential in robotics, autonomous

vehicles and wearable devices, and it has proven very challenging to use them in most

standard computer vision problems. There is need to come up with new algorithms to

use event cameras in vision applications because standard computer vision algorithms

can not be applied directly. The high temporal resolution makes the event cameras to

track rapid movements of itself or objects in the scene in real-time. Autonomous driving

application is perfect example for this.

Reinbacher et al.[8] in 2017 proposed a novel method to perform camera tracking

using event camera in panoramic setting with three degree of freedom (only rotations:

3D). They claim that the minimal information needed for simultaneous tracking and

mapping is the geometric information (spatial position of events) of the event stream,



without using the gray scale intensity. The basic idea is that they make a 2D panoramic

map using a probabilistic filter and according to which current camera pose is estimated.

Those two blocks keep running simultaneously and this works in real-time.

Kim et al.[6] in 2016 proposed an approach which relies on three interleaved proba-

bilistic filters to perform simultaneous localization and mapping. One tracks the global

6-DoF camera motion, Second one is to estimate the log intensity gradients in the

keyframe image. Third one is to estimate the inverse depth of a keyframe. The gra-

dient map estimated by second filter is then be upgraded to intensity map in parallel to

tracking and mapping modules.

Strictly speaking, there were no prior works done on straight line based SLAM

using event camera. But with standard camera there are many. In 2006, using a standard

camera, Smith et al.[11] proposed a real-time monocular SLAM with straight lines as

features which is implemented with Extended Kalman Filter (EKF). The observation is

that straight line features contain more information than point features.

3.3 Line Representation and Detection

In the paper [2], Bay et al. devised a simple but reliable line extractor for an intensity

image. In this thesis we are also using the same approach to detect line segments. Given

an image, Canny edges are detected first and line segments are extracted as fallows: At

an edge pixel the extractor connects a straight line with a neighboring one, and continues

fitting lines and extending to the next edge pixel until it satisfies co-linearity with the

current line segment. If the extension meets a high curvature, the extractor returns the

current segment only if it is longer than 20 pixels, and repeats the same steps until

all the edge pixels are consumed. Then with the segments, the system incrementally

merges two segments with length weight if they are overlapped or closely located and

the difference of orientations is sufficiently small. Figure 3.1 shows an event frame on

left and lines detected in blue color on right image. In this thesis line segments are

represented with their end points.
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Figure 3.1: Left image represents an event frame and its lines detected in blue color on
right image

3.4 Proposed method

As discussed earlier SFM approaches takes several images/measurements to update the

pose and inverse depth parameters. Based on assumption that the camera is moving

with uniform velocity, we just need to estimate one velocity parameter. For simplicity,

assume that the camera has linear motion only. Coming to the inverse depth estimation,

if we were to find inverse depth of every point on a straight line, we just need to find

the same for any two points on the line and then interpolate to all other points on the

straight line. So the task is to find the inverse depth dl1or2 of end points of all detected

line segments in an event frame and the camera velocity vx. Given an event stream, our

algorithm works as below:

• Accumulate every 2500 events into a single frame and we call it an event frame.

• Take a batch containing M number of such event frames (say Fj) and take any
one of them as a reference frame for tracking module, in our case it’s middle
frame.

• Detect line segments in the reference event frame. The same straight line may not
be detected in other frames because of the asynchronous nature of event camera.
So, line correspondence matching is a difficult task.

• The detected line segments (say Li) are then warped to other frames in the batch
according to some random initialization on the parameters but make sure that they
lie around the original line segment. Represent the warped line segments as Lj

i .

• In each Fj , and for each Lj
i (Li, vx) take a patch along the line in normal direction

such that N pixels cover on both sides of the line.

• Take normal distance of all events lie inside the patch to the line and add it to the
loss function.
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• Minimizing this loss function will try to keep the warped line and dense event
strip, which we believe a line, closer.

The loss function can be mathematically represented as,

L(vx, d
l
1or2) =

∑
i

∑
j

W (e(u, v), Lj
i )d⊥(e(u, v), L

j
i ) (3.1)

Where,

Lj
i = warped line Li in frame j.

e(u, v) = event pixel at (u, v)

d⊥(e(u, v), L
j
i ) = perpendicular distance from event e(u, v) to warped line Lj

i

W (e(u, v), Lj
i ) =

1, If event e(u, v) lie inside the patch along the line Lj
i .

0, otherwise.

12



CHAPTER 4

Experiments and results

4.1 Dataset

Since established benchmarks in the computer vision field have greatly contributed to

the advance of algorithms in many areas, an important piece of future work is to design

and release suitable comparative benchmarks for event camera-based SLAM research.

Recently, Mueggler et al.[6] collected a set of standard datasets using DAVIS camera

for most of the event based vision applications. ’slider depth’ is one of them which is

used in our work to test the proposed algorithm.

4.2 Results

Figure 4.1 shows the loss function minimization over 50 epochs, Figures 4.2 through

4.4 shows an event frame with depth estimates for line segments on right and their

corresponding intensity frames on left. Far objects are represented with red color and

blue for nearer ones. As we can see from the intensity images on left, The chair object

is in background and several other objects are in foreground. The proposed algorithm

has successfully encoded the object’s depths with colors.



Figure 4.1: Loss minimization over 50 epochs

Figure 4.2: Frame 1: event frame with depth estimates for line segments on right and
their corresponding intensity frames on left

14



Figure 4.3: Frame 2: event frame with depth estimates for line segments on right and
their corresponding intensity frames on left

Figure 4.4: Frame 3: event frame with depth estimates for line segments on right and
their corresponding intensity frames on left
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CHAPTER 5

Conclusion and Future work

We proposed an SFM based algorithm to estimate camera motion and inverse depths

using straight lines as features in the event frames and it works in most of the cases

except when there is a similar line in the considered patch. As the loss function contains

only geometric distance, it will try to converge warped line segment with the nearest one

which would give false parameter updates. From the results above, it can be observed

that the depth estimates are not accurate enough but can be used as an initialization and

refine the estimates in EKF framework. To improve the same, we can also include a

global loss on top of proposed local patch loss.

Loss function proposed in this work takes only the local information along the line

segments which may not let the system to converge to the global minima always. To

improve on the accuracy of inverse depth estimates, some sort of global loss can be

included to make it robust. And the linear motion assumption on camera is not prac-

tical, which can be extended to 6-DoF as well. We can also take these estimates as

initialization and employ an EKF to refine the estimates.
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